当前位置:文档之家› 基于Simulink的基带数字通信系统的仿真实现

基于Simulink的基带数字通信系统的仿真实现

基于Simulink的基带数字通信系统的仿真实现。
记得是数字基带传输,不是数字信号的频带传输哦!!
扩展频谱通信技术的理论基础和实现方法,利用MATLAB 提供的可视化工具Simulink 建立了扩频通信系统仿真模型,详细讲述了各模块的设计,并指出了仿真建模中要注意的问题。在给定仿真条件下,运行了仿真程序,得到了预期的仿真结果。同时,利用建立的仿真系统,研究了扩频增益与输出端信噪比的关系,结果表明,在相同误码率下,增大扩频增益,可以提高系统输出端的信噪比,从而提高通信系统的抗干扰能力。
1 引言
扩展频谱通信(简称扩频通信)与光纤通信、卫星通信,一同被誉为进入信息时代的三
大高技术通信传输方式,它是指发送的信息被展宽到一个很宽的频带上,在接收端通过相关接收,将信号恢复到信息带宽的一种系统。采用扩频信号进行通信的优越性在于用扩展频谱的方法可以换取信噪比上的好处,即接收机输出的信噪比相对于输入的信噪比有很大改善,从而提高了系统的抗干扰能力。本文根据扩频通信的原理,利用MATALB提供的可视化仿真工具Simulink建立了扩频通信系统仿真模型,研究了扩频通信的特性和扩频增益与输出端信噪比的关系,目的是为以扩频通信为基础的现代通信的研究和设计提供依据。
2 扩展频谱通信技术
2.1 理论基础
扩频通信的基本理论是根据信息论中的Shannon 公式,即log (1 / ) 2 C = B + S N (1) 式中:C为系统的信道容量(bit/s);B为系统信道带宽(Hz);S为信号的平均功率;N为噪 声功率。Shannon公式表明了一个系统信道无误差地传输信息的能力跟存在于信道中的信噪比 (S/N)以及用于传输信息的系统信道带宽(B)之间的关系。该公式说明了两个最重要的概念:一个是在一定的信道容量的条件下,可以用减少发送信号功率、增加信道带宽的办法达到提高信道容量的要求;一个是可以采用减少带宽而增加信号功率的办法来达到。扩频增益是扩频通信的重要参数,它反应了扩频通信系统抗干扰能力的强弱,其定义为接收机相关器输出信噪比和接收机相关器输入信噪比之比,即
d
s
d
s
i i B
B
R
R
S N
S N
G = = =
/
/ 0 0 (2)
式中,Si和S0分别为接收机相关器输入、输出端信号功率;Ni和N0分别为相关器的输入、输出端干扰功率;Rs为伪随机码的信息速率,Rd为基带信号的信息速率;Bs为频谱扩展后的信号带宽,Bd频谱扩展前的信号带宽。
2.2 实现方法
扩频通信与一般的通信系统相比,主要是在发射端增加了扩频调制,而在接收端增加了 扩频解调的过程,扩频通信按其工作方式不同

主要分为直接序列扩频系统、跳频扩频系统、 跳时扩频系统、线性调频系统和混合调频系统。现以直接序列扩频系统为例说明扩频通信的 实现方法。图1为直接序列扩频系统的原理框图。
图1 直接序列扩频系统原理图
由直扩序列扩频系统原理图可以看出,在发射端,信源输出的信号与伪随机码产生器产 生的伪随机码进行模2加,产生一速率与伪随机码速率相同的扩频序列,然后再用扩频序列 去调制载波,这样得到已扩频调制的射频信号。在接收端,接收到的扩频信号经高放和混频 后,用与发射端同步的伪随机序列对扩频调制信号进行相关解扩,将信号的频带恢复为信息 序列的频带,然后进行解调,恢复出所传输的信息。
3 系统仿真模型的建立
3.1 Simulik 简介
MATLAB 最初是Mathworks 公司推出的一种数学应用软件,经过多年的发展,开发了包括通信系统在内的多个工具箱,从而成为目前科学研究和工程应用最流行的软件包之一。 Simulink 是MATLAB 中的一种可视化仿真工具,是实现动态系统建模、仿真和分析的一个集成环境,广泛应用于线性系统、非线性系统、数字控制及数字信号处理的建模和仿真中。它包括一个复杂的由接受器、信号源、线性和非线性组件以及连接件组成的模块库,用户也可以根据需要定制或者创建自己的模块。Simulink 的主要特点在于使用户可以通过简单的鼠标操作和拷贝等命令建立起直观的系统框图模型,用户可以很随意地改变模型中的参数,并可以马上看到改变参数后的结果,从而达到方便、快捷地建模和仿真的目的。
3.2 模型建立及主要模块设计
基于MATLAB /Simulink 所建立的扩频通信系统的仿真模型,能够反映扩频通信系统的 动态工作过程,可进行波形观察、频谱分析和性能分析等,同时能根据研究和设计的需要扩 展仿真模型,实现以扩频通信为基础的现代通信的模拟仿真,为系统的研究和设计提供强有 力的平台。图2 为基于MATLAB/Simulink 的扩频通信系统仿真模型。
图2 系统仿真模型
信源:随机整数发生器(Random Integer generator)作为仿真系统的信源,随机整数发生器产生二进制随机信号,采样时间、初始状态可自由设置,从而满足扩频通信系统所需信接收高放混频解扩解调本振PN 码同步信源扩频调制PN码振荡器发射源的要求。
扩频与解扩:PN 序列生成器模块(PN Sequence Generator)作为伪随机码产生器,扩频过程通过信息码与PN 码进行双极性变换后相乘加以实现。解扩过程与扩频过程相同,即将接收的信号用PN 码进行第二次扩频处理。
调制与解调:使用二相相移键控PSK 方式进行调制、解调。调制由正弦载

波与双极性扩频码直接相乘实现,采用相干解调法进行解调。
信道:传输信道为加性高斯白噪声信道。在加性高斯白噪声信道模块中,可进行信号功 率和信噪比的设置。
误码计算:误码计算由误码仪实现,误码仪在通信系统中的主要任务是评估传输系统的 误码率,它具有两个输入端口:第一个端口(Tx)接收发送方的输入信号,第二个端口(Rx) 接收接收方的输入信号。
3.3 几点说明
在Simulink中,没有单独实现统计的计数器模块,需要自行创建,计数模型的设计如图
3。在计数模型中,用与信源和伪随机码同频的脉冲模块分别实现码元同步和切普同步,利用加法器的累加功能,实现每个码元的相关峰值统计。
图3 计数模型实现框图
在扩频通信建模中,扩频与解扩使用的PN 码以及调制和解调所使用的载波必须保持同 步,因此要注意伪随机码模块和载波模块的参数设置。在误码率计算中,接收到的信号,由于经过扩频解扩、调制解调、相关统计等处理,会存在一个延迟,在误码仪模块的对话框中要设置一个合适的延迟。
4 仿真结果分析
4.1 仿真系统运行情况分析
在给出下列仿真的条件下,观察仿真运行情况。信息速率20b/s,幅度为1;伪随机序列采用10 级,传输速率为200b/s 的m 序列;载波频率10KHz;信号功率为1W,信噪比30dB;仿真时间设为2s。在这样的仿真条件下,理论上可获得10 倍的扩频增益。图4 是系统扩频解扩的仿真结果。上图为信源,中图为扩频码,下图为信宿。从图4 可见,信源和信宿相同,误码率为0,基于MATLAB/Simulink 所设计的仿真系统满足扩频通信系统的软件仿真要求。
图4 系统扩频解扩的仿真结果
4.2 扩频增益与输出端信噪比的关系
设置信息速率和伪随机序列传输速率,在扩频增益10 和50 的情况下,不断改变信噪比的大小,从而得到扩频增益、误码率和信噪比的关系如图5。从图5 可以看到,在相同误码率下,扩频增益越大,输出端信噪比越大,并且随着系统要求的提高,增大扩频增益,输出端信噪比会得到更大的好处。
图5 不同扩频增益下误码率仿真曲线
5 结论
扩频通信以其较强的抗干扰、抗衰落、抗多径性能而成为第三代通信的核心技术,本文 阐述了扩频通信的理论基础和实现方法,利用MATLAB 提供的可视化工具箱Simulink 建立了扩频通信系统仿真模型,详细讲述了各模块的设计,并给出了仿真建模中需注意的问题。在给定仿真条件下,运行了仿真系统,验证了所建仿真模型的正确性。通过仿真研究了扩频增益和输出端信噪比的关系,结果表明,在相同误码率下,增大扩频增益,可以提高系统输出端

的信噪比,从而提高系统的抗干扰能力。本文作者创新点:通过MATLAB/Simulink 建立的仿真平台,研究了扩频增益与误码率、信噪比之间的关系,为以扩频通信为基础的卫星信号

相关主题
文本预览
相关文档 最新文档