当前位置:文档之家› 半导体器件失效分析(精)

半导体器件失效分析(精)

半导体器件失效分析(精)
半导体器件失效分析(精)

半导体器件失效分析

★★★★★微谱检测:中国权威检测机构★★★★★

----------专业研究半导体器件失效分析https://www.doczj.com/doc/fd8099837.html,

微谱检测是国内最专业的未知物剖析技术服务机构,拥有最权威的图谱解析数据库,掌握最顶尖的未知物剖析技术,建设了国内一流的分析测试实验室。首创未知物剖析,成分分析,配方分析等检测技术,是未知物剖析技术领域的第一品牌!

上海微谱化工检测技术有限公司,是一家专业从事材料分析检测技术服务的机构,面向社会各业提供各类材料样品剖析、配方分析、化工品检验检测、单晶硅纯度检测及相关油品测试服务。

本公司由高校科研院所教授博士领衔、多个专业领域专家所组成的技术团队具有长期从事材料分析测试的经验,技术水平和能力属国内一流。通过综合性的分离和检测手段对未知物进行定性鉴定与定量分析,为科研及生产中调整配方、新产品研发、改进生产工艺提供科学依据。

微谱检测与同济大学联合建立微谱实验室,完全按照CNAS国家认可委的要求建设,通过CMA国家计量认证,并依据CNAS-CL01:2006、CNAS-CL10和《实验室资质认定评审准则》进行管理,微谱实验室出具的检测数据均能溯源到中国国家计量基准。

微谱检测的分析技术服务遍布化工行业,从原材料鉴定、化工产品配方分析,到产品生产中的工业问题诊断、产品应用环节的失效分析、产品可靠性测试,微谱检测都可以提供最专业的分析技术服务。

微谱检测深耕于未知物剖析技术领域内的创新,以振兴民族化工材料产业为己任!

微谱检测可以提供塑料制品,橡胶制品,涂料,胶粘剂,金属加工助剂,清洗剂,切削液,油墨,各种添加剂,塑料,橡胶加工改性助剂,水泥助磨剂,助焊剂,纺织助剂,表面活性剂,化肥,农药,化妆品,建筑用化学品等产品的成分分析,配方分析,工艺诊断服务。

微谱检测是国内最大的未知物剖析服务机构,专业研究半导体器件失效分析,技术实力居于国内领先水平。

目前,常可见到的半导体器件失效分析项目包括:半导体芯片(芯片内部分层,孔洞气泡、芯联半导体)、半导体晶圆片、封装器件、红外器件、光电传感器件、SMT贴片器件、MEMS、半导体激光器、半导体致冷器、半导体二极管、半导体三极管、半导体放电管、半导体应变片、半导体热敏电阻、半导体硅晶片等等。

对半导体器件进行失效分析检测,可以帮助改进设计方案、制造工艺,提高产品成品率和可靠性,树立企业形象,提高产品竞争力。

微谱检测中心拥有一支经验丰富、技术精湛的服务团队,各种先进的检测、分析仪器,同时依托于各重点院校的专家科研团队,能为客户提供高效、准确、公正的检测与分析服务。

微谱检测---国内首创成分分析,最大的未知物剖析服务机构

本公司提供分析,测试,检验,化验,检测服务,可根据客户要求定性定量。可分析测试的样品包括:

1、各种未知物:未知固体,未知粉末,未知液体等

2、有机溶剂:混合溶剂的成分分析,分离,定性定量;纯溶剂的性能检测,

电子、纺织、印刷行业用溶剂,油漆稀释剂,天那水,脱漆剂。

3、各种金属材料

4、光亮剂,杀虫剂,,制冷剂,空气清新剂,脱模剂,气雾剂

5、各种助剂:乳化剂、润湿分散剂、消泡剂,润滑剂,增塑剂,阻燃剂,

抗燃剂,稳定剂;电子行业(助焊剂)、纺织行业、涂料、塑料加工行业

所用的助剂;电镀液(锌、铜、铬、镍、贵重金属)助剂分析

6、塑料和橡胶行业助剂:增塑剂、抗氧剂、阻燃剂、光和热稳定剂、发泡

剂、填充剂、抗静电剂等

7、纺织、皮革助剂分析:柔软剂、匀染剂、整理剂等

8、油墨分析:墨水、感光油墨、UV油墨等

9、化妆品:洗发、护发用品、护肤用品、美容用品、口腔卫生制品等

10水处理剂分析:缓蚀剂、混凝剂和絮凝剂、阻垢剂,沉淀剂等11洗涤剂分析:民用和工业用清洗剂

12高分子材料的性能检测,失效分析

13工业故障分析诊断,提供解决方案,工艺失效模式分析

14药物的结构确认

15化工品中有毒物质的成分及含量检测

16石油化学品分析:润滑油、切削液,燃料油,表面处理剂等

B1500A 半导体器件分析仪主机

B1500A 半导体器件分析仪主机/EasyEXPERT 软件 主要特性与技术指标 测量功能 ?在0.1 fA - 1 A / 0.5 μV - 200 V 范围内执行精确的电流-电压(IV)测量,支持点测量、扫描测量、采样和脉冲测量 ?在1 kHz 至5 MHz 频率范围内执行交流电容测量,支持准静态电容-电压(QS-CV)测量 ?先进的脉冲IV 测量和超快IV 测量,最低采样间隔为5 ns(200 MSa/s) ?高达40 V 的高压脉势,适用于非易失存储器测试 ?测量模块可升级至10 插槽配置 工作环境(包含EasyEXPERT) ?EasyEXPERT 软件(链接至EasyEXPERT)在嵌入式Windows 7 中运行 ?数百种测量程序库在需要时即可使用(应用测试) ?15 英寸触摸屏支持您在器件表征时采取直观的操作、分析与探测 ?自动数据记录功能支持测试数据和测试条件的恢复,可使您轻松地进行探测 ?利用曲线追踪(旋钮操作)和自动记录特性来实现实时交互表征 ?利用便捷的在线/离线测试环境完成测试开发与分析(台式EasyEXPERT),从而最大限度地发挥仪器效用 描述 Agilent B1500A 半导体器件分析仪是一款用于器件表征的综合解决方案。它支持IV、CV、脉冲IV 及快速IV 测量,可对器件、材料、半导体、有源/无源元件以及任意电气器件进行各种电气表征和评测。模块化结构可使您根据测试需求随时把仪器升级到10 插槽配置。嵌入式Windows 7 和功能强大的EasyEXPERT 软件借助先进的图形用户界面(GUI),可让您执行高效、数据可恢复的器件表征。Agilent B1500A 是唯一一款能够适应多种测量需要的参数分析仪,具备极高的测量可靠性和易于使用的测试环境,可实现高效、数据可恢复的器件表征。 Agilent EasyEXPERT 是一款基于图形用户界面的必备软件,在B1500A 嵌入式Windows?7 中运行。它支持所有类型的参数测试,从基本的IV 和CV 扫描到超快速IV 和脉冲IV 测量等等。数百种即用型程序库(应用测试)可使您非常轻松地立即开始进行复杂测量。仪器的全部操作通过15 英寸触摸屏、简单的键盘和鼠标操作来实现。EasyEXPERT 软件还提供高效测试环境,支持您在器件表征时采取直观的操作、分析与探测。测试条件和测量数据可以自动保存到工作区内,使您毫不费力地完成器件表征。 EasyEXPERT 主要特性: ?支持所有类型的参数测试,从基本的IV 和CV 扫描到超快速IV 和脉冲IV 测量等等

半导体器件基础测试题

第一章半导体器件基础测试题(高三) 姓名班次分数 一、选择题 1、N型半导体是在本征半导体中加入下列物质而形成的。 A、电子; B、空穴; C、三价元素; D、五价元素。 2、在掺杂后的半导体中,其导电能力的大小的说法正确的是。 A、掺杂的工艺; B、杂质的浓度: C、温度; D、晶体的缺陷。 3、晶体三极管用于放大的条件,下列说法正确的是。 A、发射结正偏、集电结反偏; B、发射结正偏、集电结正偏; C、发射结反偏、集电结正偏; D、发射结反偏、集电结反偏; 4、晶体三极管的截止条件,下列说法正确的是。 A、发射结正偏、集电结反偏; B、发射结正偏、集电结正偏; C、发射结反偏、集电结正偏; D、发射结反偏、集电结反偏; 5、晶体三极管的饱和条件,下列说法正确的是。 A、发射结正偏、集电结反偏; B、发射结正偏、集电结正偏; C、发射结反偏、集电结正偏; D、发射结反偏、集电结反偏; 6、理想二极管组成的电路如下图所示,其AB两端的电压是。 A、—12V; B、—6V; C、+6V; D、+12V。 7、要使普通二极管导通,下列说法正确的是。 A、运用它的反向特性; B、锗管使用在反向击穿区; C、硅管使用反向区域,而锗管使用正向区域; D、都使用正向区域。 8、对于用万用表测量二极管时,下列做法正确的是。 A、用万用表的R×100或R×1000的欧姆,黑棒接正极,红棒接负极,指针偏转; B、用万用表的R×10K的欧姆,黑棒接正极,红棒接负极,指针偏转; C、用万用表的R×100或R×1000的欧姆,红棒接正极,黑棒接负极,指针偏转; D、用万用表的R×10,黑棒接正极,红棒接负极,指针偏转; 9、电路如下图所示,则A、B两点的电压正确的是。 A、U A=3.5V,U B=3.5V,D截止;

盛吉盛(宁波)半导体科技有限公司_中标190924

招标投标企业报告 盛吉盛(宁波)半导体科技有限公司

本报告于 2019年9月24日 生成 您所看到的报告内容为截至该时间点该公司的数据快照 目录 1. 基本信息:工商信息 2. 招投标情况:中标/投标数量、中标/投标情况、中标/投标行业分布、参与投标 的甲方排名、合作甲方排名 3. 股东及出资信息 4. 风险信息:经营异常、股权出资、动产抵押、税务信息、行政处罚 5. 企业信息:工程人员、企业资质 * 敬启者:本报告内容是中国比地招标网接收您的委托,查询公开信息所得结果。中国比地招标网不对该查询结果的全面、准确、真实性负责。本报告应仅为您的决策提供参考。

一、基本信息 1. 工商信息 企业名称:盛吉盛(宁波)半导体科技有限公司统一社会信用代码:91330200MA2AHN2244工商注册号:/组织机构代码:MA2AHN224 法定代表人:项习飞成立日期:2018-03-22 企业类型:有限责任公司(中外合资)经营状态:存续 注册资本:2000万美元 注册地址:浙江省宁波市鄞州区云龙镇石桥村 营业期限:2018-03-22 至 2068-03-21 营业范围:二手半导体设备及配件的翻新、改造、安装、维护、销售;半导体设备的研发、生产、销售;半导体生产及研发设备的技术服务;自营或代理货物和技术的进出口,但国家限制经营或禁止进出口的货物和技术除外;半导体相关的功能材料、器件、配件及相关产品的技术开发、生产、销售和咨询。(依法须经批准的项目,经相关部门批准后方可开展经营活动) 联系电话:*********** 二、招投标分析 2.1 中标/投标数量 企业中标/投标数: 个 (数据统计时间:2017年至报告生成时间) 6

半导体器件失效原因分析

半导体器件失效原因分析 发信站: 紫金飞鸿 (Mon Oct 2 12:02:48 2000) 多年来,用户要求有更可靠的电子设备,而与此同时,电子设备发展得越来越复杂。这两个因素的结合,促使人们更加关注电子设备在长期运行中确保无故障的能力。通过失效分析可以深入理解失效机理和原因,引导元器件和产品设计的改进,有助于提高电子设备(系统)的可靠性。 半导体器件的失效通常是因为产生的应力超过了它们的最大额定值。电气应力、热应力、化学应力、辐射应力、机械应力及其他因素都会造成器件失效。半导体器件的失效机理主要划分成以下6种: 一、包封失效。这类失效发生在用于封装器件的包封出现缺陷,通常是开裂。机械应力或热应力以及包封材料与金属引线之间热膨胀系数的不同都会引起包封开裂,当环境湿度很高或器件暴露在溶剂、清洗剂等中时,这些裂缝会使湿气浸入,产生的化学反应会使器件性能恶化,使它们失效。 二、导线连接失效。由于通过大电流造成过量的热应力、或由于连接不当使连接线中产生机械应力、连接线与裸芯之间界面的开裂、硅中的电致迁移、以及过量的连接压力,都会引起导线连接失效。 三、裸芯粘接故障。裸芯与衬底之间粘接不当时,就会恶化两者之间的导热性,结果会使裸芯过热,产生热应力和开裂,使器件失效。 四、本征硅的缺陷。由晶体瑕疵或本征硅材料中的杂质和污染物造成的缺陷使器件失效,在器件制造期间扩散工艺产生的工艺瑕疵也会造成器件失效。 五、氧化层缺陷。静电放电和通过器件引线的高压瞬时传送,可能会使氧化层(即绝缘体)断开,造成器件功能失常。氧化层中的开裂、划伤、或杂质也会导致器件失效。 六、铝金属缺陷。这类缺陷往往由下列几种情况造成:由于大电场导致在电流流动方向上发生铝的电迁移;由于大电流造成过量电气应力,导致铝导体断裂;铝被腐蚀;焊接引起铝金属耗损;接触孔被不适当地淀积上金属;有小丘和裂缝。 半导体器件应该工作在由生产厂确定的电压、电流和功耗限定范围内,当器件工作在这个“安全工作范围(SOA)”之外时,电气应力过 度(EOS)就会引起内部电压中断,导致器件内部损伤。如果EOS产生大电流,会使器件过热,形成热应力过度而使器件失效,即增加的热应力会导致“二次状态”失效。

phase11半导体热阻分析仪

Phase 11 Phase10半导体热阻分析仪 米力光 MICOFORCE 一、Analysis Tech Phase11 Phase10概述 半导体热分析仪Semiconductor Thermal Analyzer热阻测试仪, 由美国Analysis Tech Inc公司的PHASE10 PHASE11 热阻测试仪电子封装器件,符合美军标和JEDEC标准. Analysis Tech Inc.成立于1983年,坐落于波士顿北部,是电子封装器件可靠性测试的国际设计,制造公司。他的创始人是John W.Sofia,美国麻省理工的博士,并且是提出焊点可靠性,热阻分析和热导率理论的专家. 发表了很多关于焊点可靠性,热阻分析和热导率论文. Analysis Tech Inc.在美国有独的 实验室提供技术支持.。 热阻分析仪Phase 11主要用于二极管、三极管、线性调压器、可控硅、LED、MOSFET、MESFET、IGBT、IC等分立功率器件的热阻测试和分析。 二、Analysis Tech Phase 11 Phase10工作原理及测试过程 Phase 11采用油浴法测定热敏参数校正曲线。在通以感应电流结还没有明显产生热量时,如果给定足够的时间,结温和壳温将达到热平衡,壳温非常接近结温。将热电偶直接连接到器件表面采集数据时,油浴将充分保证器件的温度稳定并且使 热电偶采集的温度等于感应结温。 在这个环节中,感应电流大小的选择是很重要的。感应电流过大,会导致结温明显变化;感应电流过小,会导致正向压降值测量误差较大。Phase 11 感应电流的可选范围是0.1mA~50mA,完全符合JEDEC标准。 在加热器件的过程中,Phase 11 采用了脉冲加热方式,如下图所示:

半导体元器件的制造工艺及其失效

半导体元器件的制造工艺及其失效 一、元器件概述 1、元器件的定义: 欧洲空间局ESA标准中的定义:完成某一电子、电气和机电功能,并由一个或几个部分构成而且一般不能被分解或不会破坏的某个装置。GJB4027-2000《军用电子元器件破坏性物理分析方法》中的定义:在电子线路或电子设备中执行电气、电子、电磁、机电或光电功能的基本单元,该基本单元可由一个或多个零件组成,通常不破坏是不能将其分解的。 2、元器件的分类:两大类 a)元件:在工厂生产加工时不改变分子成分的成品,本身不产生电子,对电压、电流无控制和变换作用。 b)器件:在工厂生产加工时改变了分子结构的成品,本身能产生电子,对电压电流的控制、变换(放大、开关、整流、检波、振荡和调制等),也称电子器件。分类(来源:2007年版的《军用电子元器件合格产品目录》) ? 3、电气元件 (1)电阻

最可靠的元器件之一,失效模式:开路、机械损伤、接点损坏、短路、绝缘击穿、焊接点老化造成的电阻值漂移量超过容差。 ? (2)电位器 失效模式:接触不良、滑动噪声大、开路等。 (3)二极管 (4)集成电路 失效模式:漏电或短路,击穿特性劣变,正向压降劣变,开路可高阻失效机理:电迁移,热载流子效应,与时间相关的介质击穿(TDDB),表面氧化层缺陷,绝缘层缺陷,外延层缺陷

(5)声表面波器件 (6)MEMS压力传感器 MEMS器件的主要失效机理: a.粘附两个光滑表面相接触时,在力作用下粘附在一起的现象; b.蠕变机械应力作用下原子缓慢运动的现象;变形、空洞; c.微粒污染阻碍器件的机械运动;

d.磨损尺寸超差,碎片卡入; e.疲劳断裂疲劳裂纹扩展失效。 (7)真空电子器件(vacuum electronic device) 指借助电子在真空或者气体中与电磁场发生相互作用,将一种形式电磁能量转换为另一种形式电磁能量的器件。具有真空密封管壳和若干电极,管内抽成真空,残余气体压力为10-4~10-8帕。有些在抽出管内气体后,再充入所需成分和压强的气体。广泛用于广播、通信、电视、雷达、导航、自动控制、电子对抗、计算机终端显示、医学诊断治疗等领域。 真空电子器件按其功能分为: 实现直流电能和电磁振荡能量之间转换的静电控制电子管; 将直流能量转换成频率为300兆赫~3000吉赫电磁振荡能量的微波电子管; 利用聚焦电子束实现光、电信号的记录、存储、转换和显示的电子束管; 利用光电子发射现象实现光电转换的光电管; 产生X射线的X射线管; 管内充有气体并产生气体放电的充气管; 以真空和气体中粒子受激辐射为工作机理,将电磁波加以放大的真空量子电子器件等。 自20世纪60年代以后,很多真空电子器件已逐步为固态电子器件所取代,但在高频率、大功率领域,真空电子器件仍然具有相当生命力,而电子束管和光电管仍将广泛应用并有所发展。[1] 真空电子器件里面就包含真空断路器,真空断路器具有很多优点,所以在变电站上应用很多。真空断路器已被快易优收录,由于采用了特殊的真空元件,随着近年来制造水平的提高,灭弧室部分的故障明显降低。真空灭弧室无需检修处理,当其损坏时,只能采取更换。真空断路器运行中发生的故障以操作机构部分所占比重较大,其次为一次导电部分,触头导电杆等。 二、元器件制造工艺与缺陷 1、芯片制造缺陷的分类: 全局缺陷:光刻对准误差、工艺参数随机起伏、线宽变化等;在成熟、可控性良好的工艺线上,可减少到极少,甚至几乎可以消除。 局域缺陷:氧化物针孔等点缺陷,不可完全消除,损失的成品率更高。 点缺陷:冗余物、丢失物、氧化物针孔、结泄漏 来源:灰尘微粒、硅片与设备的接触、化学试剂中的杂质颗粒。 2、混合集成电路的失效混合集成电路工艺:

半导体器件失效分析的研究

半导体器件失效分析的研究Research on Semiconductor Device Failure Analysis

中文摘要 半导体失效分析在提高集成电路的可靠性方面有着至关重要的作用。随着集成度的提高,工艺尺寸的缩小,失效分析所面临的困难也逐步增大。因此,失效分析必须配备相应的先进、准确的设备和技术,配以具有专业半导体知识的分析人员,精确定位失效位置。在本文当中,着重介绍多种方法运用Photoemission 显微镜配合IR-OBIRCH精确定位失效位置,并辅以多项案例。 Photoemission是半导体元器件在不同状态下(二极管反向击穿、短路产生的电流、MOS管的饱和发光,等等),所产生的不同波长的光被捕获,从而在图像上产生相应的发光点。Photoemission在失效分析中有着不可或缺的作用,通过对好坏品所产生的发光点的对比,可以为后面的电路分析打下坚实的基础,而且在某些情况下,异常的发光点就是最后我们想要找到的defect的位置。 IR-OBIRCH(Infrared Optical beam Induced Resistance Change)主要是由两部分组成:激光加热器和电阻改变侦测器。电阻的改变是通过激光加热电流流经的路径时电流或者电压的变化来表现的,因此,在使用IR-OBIRCH时,前提是必须保证所加电压两端产生的电流路径要流过defect的位置,这样,在激光加热到defect位置时,由于电阻的改变才能产生电流的变化,从而在图像上显现出相应位置的热点。 虽然Photoemission和IR-OBIRCH可以很好的帮助我们找到defect的位置,但良好的电路分析以及微探针(microprobe)的使用在寻找失效路径方面是十分重要的,只有通过Photoemission的结果分析,加上电路分析以及微探针(micr oprobe)测量内部信号的波形以及I-V曲线,寻找出失效路径后,IR-OBIRCH才能更好的派上用场。因此,在失效分析中,各个步骤缺一不可。 关键词:失效分析;Photoemission;IR-OBIRCH;微探针(microprobe);

保证气体分析仪检测准确度,抑制零点漂移是关键

保证气体分析仪检测准确度,抑制零点漂移是关键 这是电子方面的术语,指当放大电路输入信号为零(即没有交流电输入)时,由于受温度变化,电源电压不稳等因素的影响,使静态工作点发生变化,并被逐级放大和传输,导致电路输出端电压偏离原固定值而上下漂动的现象。这种现象就叫零点漂移(或称温漂)。 产生零点漂移的原因 产生零点漂移的原因很多,如电源电压不稳、元器件参数变化、环境温度变化等。其中最主要的因素是温度的变化,因为晶体管是温度的敏感器件,当温度变化时,其参数UBE、β、ICBO都将发生变化,最终导致放大电路静态工作点产生偏移。此外,在诸因素中,最难控制的也是温度的变化。 零点漂移对气体分析仪检测的影响 在直接耦合放大电路中,任何参数的变化,如电源电压波动、元件老化、半导体元件参数随温度变化而产生的变化,都将产生输出电压的漂移。由于前后级直接相连,前一级的漂移电压会和有用信号一起被送到下一级,而且逐级放大,使放大电路输出信号出现偏差,甚至不能正常工作。 气体分析仪的零点在正常环境中应该显示为000,由于气体分析仪的检测结果是通过传感器将环境中存在的被测气体转化成电信号后以浓度数值方式显示出来的,当出现零点漂移时,放大电路输出信号出现偏差,使分析仪显示浓度大于0,从而使气体分析仪的检测结果产生绝对误差。因此,一旦出现漂移,需要对气体分析仪进行校准。

什么叫零点校准? 在无外界因素干扰的情况下,将仪器仪表测量界面调整为零,或者说是调到标准状态时的零值。 如何进行零点校准? 1.硬件校准 这里的硬件主要指气体分析仪中的电路,在实际电路中常采用补偿和调制两种手段,稳定静态工作点以实现零点校准。 补偿及优化参数配置,是指用另外一个元器件来抵消放大电路的漂移,如果参数配合得当,就能把漂移抑制在较低的限度之内。前级的放大器引入的直流对整体的系统影响最大,通过手动调节分压网络的方式对前级放大器引入的直流进行补偿。后级运放则通过软件调节节另一分压网络的方式对后级可控增益放大级引入的直流进行补偿。 调制即优化电路设计,是指将直流变化量转换为其它形式的变化量(如正弦波幅度的变化),并通过漂移很小的阻容耦合电路放大,再设法将放大了的信号还原为直流成份的变化。 2.标气校准 标准气体属于标准物质,标准物质是高度均匀的,良好稳定和量值准确的测定标准,它们具有复现,保存和传递量值的基本作用,在物理,化学,生物与工程测量领域中用于校准测量仪器和测量过程,评价测量方法的准确度和检测实验室的检测能力,确定材料或产品的特性量值,进行量值仲裁等。气体分析仪在出厂前一般需要先用一个零点标气和几个标准浓度的气体对仪器进行标定,得到标准曲线储存于仪器之中。测定时,仪器将待测气体浓度产生的电信号同标准浓度的电信号进行比较,计算得到准确的气体浓度值。分析仪器在使用过程中,由于受到电压波动、元器件参数及环境温度变化的影响而出现零点漂移,则需要定期采用零点标气对分析仪进行零点校准,以保证气体分析仪测量的准确性。

电子元器件失效分析技术与案例

电子元器件失效分析技术与案例 费庆学 二站开始使用电子器件当时电子元器件的寿命20h. American from 1959 开始:1。可靠性评价,预估产品寿命 2。可靠性增长。不一定知道产品寿命,通过方法延长寿命。通过恶裂环境的试验。通过改进提高寿命。―――后来叫a.可靠性物理—实效分析的实例b.可靠数学 第一部分:电子元器件失效分析技术(方法) 1.失效分析的基本的概念和一般程序。 A 定义: 对电子元器件的失效的原因的诊断过程 b.目的:0000000 c.失效模式――》失效结果――》失效的表现形式――》通过电测的形式取得 d.失效机理:失效的物理化学根源 ――》失效的原因 1)开路的可能失效机理 日本的失效机理分类:变形变质外来异物 很多的芯片都有保护电路,保护电路很多都是由二极管组成正反向都不通为内部断开。 漏电和短路的可能的失效机理 接触面积越小,电流密度就大,就会发热,而烧毁 例:人造卫星的发射,因工人误操作装螺丝时掉了一个渣于继电器 局部缺陷导致电流易集中导入产生热击穿(si 和 al 互熔成为合金合金熔点更低) 塑封器件烘烤效果好当开封后特性变好,说明器件受潮或有杂质 失效机理 环境应力:温度温度过低易使焊锡脆化而导致焊点脱落。 , 2.失效机理的内容 I失效模式与环境应力的关系 任何产品都有一定的应力。

a当应力>强度就会失效 如过电/静电:外加电压超过产品本身的额定值会失效 b应力与时间应力虽没有超过额定值,但持续累计的发生 故:如何增强强度&减少应力能延长产品的寿命 c.一切正常,正常的应力,在时间的累计下,终止寿命 特性随时间存在变化 e机械应力如主板受热变形对零件的应力认为用力 塑封的抗振动好应力好陶瓷的差。 f重复应力如:冷热冲击是很好的零件筛选方法 重复应力易导致产品老化,存在不可靠性 故使用其器件:不要过载;温湿度要适当 II如何做失效分析 例:一个EPROM在使用后不能读写 1) 先不要相信委托人的话,一定要复判。 2) 快始失效分析: 取NG&OK品,DataSheet, 查找电源断地开始测试首先做待机电流测试(IV测试) 电源对地的待机电流下降 开封发现电源端线中间断(因为中间散热慢,两端散热快,有端子帮助散热)因为断开,相当于并联电阻少了一个电 阻,电流减小。 原因:闩锁效应应力大于产品本身强度 责任:确定失效责任方:模拟试验->测抗闩锁的能力 看触发的电流值(第一个拐点的电流值),越大越好,至少要大于datasheet或近似良品的值在标准范围内的。看维持电压(第二个拐点的电 压),若大于标准值,则很难回到原值。若多片良品抽测都OK, 说明使用者使用不当导致。 改善措施:改善供电,加保护电路。 III失效分析技术的延伸 失效分析的关键是打开样品 进货分析:不同的封装厂,在 芯片面积越小(扫描声学检测器,红的部分为空气,可用于辨别尺寸的大小),受应力越小。版本过新的产品也有可能存在可靠性问 题。可能存在设计的问题。 良品分析的作用:可以采取一层一层的分解拍照,找捷径

半导体器件失效分析与检测

半导体器件失效分析与检测 半导体元件的失效将直接影响相关产品的正常使用,文章主要就对半导体器件的失效原因进行了细致地分析并提出了几种检测的方法,供相关人士借鉴。 标签:半导体;器件;失效分析;检测 1 半导体器件失效分析 通过分析可知造成半导体器件失效的因素有很多,我们主要从几个方面进阐述。 1.1 金属化与器件失效 环境应力对半导体器件或集成电路可靠性的影响很大。金属化及其键合处就是一个不容忽视的失效源。迄今,大多数半导体器件平面工艺都采用二氧化硅作为掩膜钝化层。为在芯片上实现互连,往往在开窗口的二氧化硅层上淀积铝膜即金属化。 从物理、化学角度分析,金属化失效机理大体包括膜层张力、内聚力、机械疲劳、退火效应、杂质效应及电迁移等。 1.2 晶体缺陷与器件失效 晶体缺陷导致器件失效的机理十分复杂,有些问题至今尚不清楚。晶体缺陷分晶体材料固有缺陷(如微缺陷)和二次缺陷两类。后者是在器件制造过程中,由于氧化、扩散等热处理后出现或增殖的大量缺陷。两种缺陷或者彼此相互作用,都将导致器件性能的退化。二次击穿就是晶体缺陷招来的严重后果。 1.2.1 位错 这种缺陷有的是在晶体生长过程中形成的(原生位错),有的是在器件工艺中引入的(诱生位错)。位错易沿位错线加速扩散和析出,间接地促成器件劣化。事实证明,外表杂质原子(包括施主和受主)沿位错边缘的扩散比在完美晶体内快很多,其结果往往使P-N结的结平面不平整甚至穿通。鉴于位错具有“吸除效应”,对点缺陷如杂质原子、点阵空位、间隙原子等起到内部吸收的作用,故适量的位错反而对器件生产有利。 1.2.2 沉淀物 除位错造成不均匀掺杂外,外界杂质沾污也会带来严重后果,特别是重金属沾污,在半导体工艺中是经常发生的。如果这些金属杂质存在于固溶体内,其危害相对小一些;但是,一旦在P-N结处形成沉积物,则会产生严重失效,使反

Agilen阻抗分析仪使用手册

Agilent 4294A阻抗分析仪 使用手册 华中科技大学激光技术国家重点实验室 2002年1月 目录 目录...................................................................................... 一、介绍.............................................................................. 二、基本原理: ................................................................. 三、A GILENT 4294A的主要技术指标: ............................. 四、前/后面板、硬/软键介绍 ........................................... 五、测量方法...................................................................... 一、介绍 Agilent 4294A精密阻抗分析仪可以对各种电子器件(元件和电路)以及电子材料和非电子材料的精确阻抗测量提供广泛的支持。它是对电子元件进行设计、签定、质量控制和生产测试的强有力工具。它所提供的性能和功能对于电路设计开发人员将获益匪浅。此外,Agilent 4294A的优良测量性能和功能为电路的设计和开发以及材料(电子材料和非电子材料)的研究和

开发提供强有力的工具。它具有: ·在宽阻抗范围的宽频率范围内进行精确测量 ·强大的阻抗分析功能 ·便于使用并能用多种方式与PC机配套 电子器件: 无源元件:二端元件如电容器、电感器、铁氧体珠、电阻器、变压器、晶体/陶瓷谐振器、多芯片组件或阵列/网络元件的阻抗测量。 半导体元件:变容二极管的C-V(电流-电压)特性分析;二极管、晶体管或集成电路(IC)封装终端/引线的寄生分析;放大器的输入/输出阻抗测量。 其它元件:印制电路板、继电器、开关、电缆、电池等的阻抗评估。材料: 介质材料:塑料、陶瓷、印制电路板和其它介质材料和损耗切角评估。 磁性材料:铁氧体、非晶体和其它磁性材料的导磁率和损耗角评估。 半导体材料:半导体材料的介电常熟、导电率和C-V特性。 二、基本原理: Agilent 4294A阻抗分析仪所采用的是自动平衡电桥技术。如图所示:可以将平衡电桥看作一个放大器电路,基于欧姆定律V=I*R进行测量。被测器件(DUT)通过一个交流源激励,它的电压就是在高端H监测到的电压。低端L为虚拟地,电压为0V。通过电阻器R2的电流I2跟通过被测器件(DUT)的电流I相等。因此,输出电压和通过被测器件(DUT)的电流成正比,电压和电流自动平衡,这也就是它的名字的由来。 在实际应用中,为了覆盖更加大的频率范围,通常用一个null-detector 和modulator来代替电路中的放大器。当然,这只是一个基本的测量原理电路,为了得到精确的结果,还有许多的附加电路。 三、Agilent 4294A的主要技术指标:

半导体器件烧毁的物理机理

半导体器件烧毁的物理机理* 余稳蔡新华黄文华刘国治 摘要叙述了半导体器件烧毁的物理机理、目前的研究进展及作者正在开展的工作. 关键词半导体器件,烧毁,高功率微波 MECHANISM OF BURNOUT OF SEMICONDUCTOR DEVICES Yu Wen Cai Xinhua (Institute of EM Theory, Changde Teachers' College,Hunan415000) Huang Wenhua Liu Guozhi (Northwest Institute of Nuclear Technology, Xi'an710024) Abstract The general mechanism of burnout of semiconductor devices is described,as well as recent progress and our present research. Key words semiconductor devices, burnout, high power microwave(HPM) 1前言 高功率微波(HPM)对电子系统进行破坏,可使系统暂时失灵或永久失效,这直接涉及系统内部电子元器件的暂时失灵或永久失效.因此要研究HPM对电子系统的破坏机理,首先要研究半导体器件烧毁的物理机理.另外,从系统的抗辐射能力和加固方面看,也需要对电子系统进行在电过应力(EOS)环境下的易损性评估.以下几个问题使得评估很困难:(1)对任意一个电子器件,很难得到精确的理论或实验失效阈值;(2)实际的EOS应力参数必须与用于理论或实验上确定失效阈值时使用的理想参数相比较,过度保守的估计将导致系统的超加固,增加不必要的成本,拖延进度,降低系统性能,而过高的估计则可使系统易损;(3)器件的复杂性问题[不同的制造过程、不同种类的器件(甚至同种器件间)有变化];(4)产生EOS的电磁环境问题[如电磁脉冲(EMP)、核电磁脉冲(NEMP)、光电磁脉冲(LEMP)、电磁干扰(EMI)、静电放电(ESD)、系统电磁脉冲(SGEMP)、微波(MW)等等];(5)同一批器件,数据变化也很大,不同一批器件和不同厂家的产品,数据变化就更大.因此,从理论上探讨器件烧毁的物理机理,找出大致规律,很有意义. 2器件烧毁的物理机理 半导体器件承受EOS测试时,将表现出很多失效物理机理[1],几乎器件的每一部分都有可能失效:(1)敷金属和引线能被熔化,电迁移能使金属膜导体变薄,甚至导致开路;(2)在器件的绝缘材料或氧化区或器件表面,可产生导致局部高温的电击穿;(3)在有源结区,可产生导致强流和高温的二次击穿. 根据研究,对双极型器件,90%的失效是由结区击穿引起的,敷金属失效仅占10%,但对MOS 器件,则63%的失效来源于敷金属失效,27%则属于氧化物击穿. 通常在局部温度升高到熔点时发生敷金属和引线失效,该热量来自于金属中的强流密度或金属附近的热硅(由其他地方的强流密度引起).敷金属失效将因线路分开(有点像保险丝烧毁)而导致开路.引起失效的强流可能来自于击穿或器件其他地方的失效,所以敷金属和引线失效可能只是一种结果而不是器件失效的原因.电迁移应用于强流密度情形下金属中的质量输运.最近,人们认为,对金属膜导体截面不够的半导体器件,电迁移可能是一种消耗失效模式,该失效将导致电路开路.当半导体或绝缘体两条蚀刻导电通道之间的电场超过中间介质击穿极限时,将因产生电弧形成熔融金属通道而使电路短路,器件线度越小,该失效机制越重要. PN结的表面条件将影响其电特性.依赖于表面条件的表面复合过程,对自由载流子来说像一个阱.强场表面击穿是表面损伤的原因之一.对半导体器件,该强场发生于靠近结区与表面的交界处.器件绝缘区失效主要是高压击穿(由材料中的强瞬间电场或硅材料附近热点的热损伤或机械损伤所致).半导体器件有源结区的失效通常来自于局部熔化及随后的硅再结晶,或来自于从结表面来的实际热注入,该热量由通过结的强流密度引起,反过来又导致热或电流二次击穿. 二次击穿模式有热模式和电流模式两种[2—4]. 随入射EOS功率不同而采取不同的模式,

半导体器件失效分析_半导体器件芯片焊接技巧及控制

半导体器件失效分析_半导体器件芯片焊接技巧及控制 随着技术的发展,芯片的焊接(粘贴)技巧也越来越多并不断完善。半导体器件焊接(粘贴)失效主要与焊接面洁净度差、不平整、有氧化物、加热不当和基片镀层质量有关。树脂粘贴法还受粘料的组成结构及其有关的物理力学性能的制约和影响。要解决芯片微焊接不良问题,必须明白不同技巧的机理,逐一分析各种失效模式,及时发现影响焊接(粘贴)质量的不利因素,同时严格生产过程中的检验,加强工艺管理,才能有效地避免因芯片焊接不良对器件可靠性造成的潜在危害。 本文首先介绍了芯片焊接(粘贴)技巧及机理,其次介绍了失效模式分析,最后介绍了焊接质量的三种检验技巧以及焊接不良原因及对应措施,具体的跟随小编一起来了解一下。 芯片焊接(粘贴)技巧及机理芯片的焊接是指半导体芯片与载体(封装壳体或基片)形成牢固的、传导性或绝缘性连接的技巧。焊接层除了为器件提供机械连接和电连接外,还须为器件提供良好的散热通道。其技巧可分为树脂粘接法和金属合金焊接法。 树脂粘贴法是采用树脂粘合剂在芯片和封装体之间形成一层绝缘层或是在其中掺杂金属(如金或银)形成电和热的良导体。粘合剂大多采用环氧树脂。环氧树脂是稳定的线性聚合物,在加入固化剂后,环氧基打开形成羟基并交链,从而由线性聚合物交链成网状结构而固化成热固性塑料。其过程由液体或粘稠液→凝胶化→固体。固化的条件主要由固化剂种类的选择来决定。而其中掺杂的金属含量决定了其导电、导热性能的好坏。 掺银环氧粘贴法是当前最流行的芯片粘贴技巧之一,它所需的固化温度低,这能够避免热应力,但有银迁移的缺点。近年来应用于中小功率晶体管的金导电胶优于银导电胶。非导电性填料包括氧化铝、氧化铍和氧化镁,能够用来改善热导率。树脂粘贴法因其操作过程中载体不须加热,设备简单,易于实现工艺自动化操作且经济实惠而得到广泛应用,尤其在集成电路和小功率器件中应用更为广泛。树脂粘贴的器件热阻和电阻都很高。树脂在高温下简单分解,有可能发生填料的析出,在粘贴面上只留下一层树脂使该处电阻增大。因此它不适于要求在高温下工作或需低粘贴电阻的器件。另外,树脂粘贴法粘贴面的机械强

半导体器件分析仪 (B1500A)

技术 概述B1500A 半导体器件分析仪

加快基本的电流-电压(IV )和电容-电压(CV )测量 以及业界领先的超快速 IV 器件表征 脉冲 IV 测量 (IV )和电容-电压(CV )表征到快速、精准的脉冲 IV 测试的全方位测量。此外,B1500A 的 10 槽模块化体系结构使您可以添加或升级测量模块,适应不断变化的测量需求。 综合解决方案满足您的 所有器件表征需求 B1500A 半导体器件分析仪将多种测量和分析功能整合到一台仪器中,可精确快速地进行器件表征。它是目前唯一能够提供广泛的器件表征功能以及出色测量可靠性和可重复性的多功能参数分析仪。它能够执行从基本的电流 - 电压Keysight EasyEXPERT group+ 软件是 B1500A 自带的 GUI 界面软件,可在 B1500A 的嵌入式 Windows 10 平台上运行,支持高效和可重复的器件表征。B1500A 拥有几百种即时可用的测量(应 用测试) ,为测试执行和分析提供了直观和功能强大的操作环境。它可以帮助工程师对器件、材料、半导体、有源/无源元器件或几乎任何其他类型的电子器件进行精确和快速的电子表征和 测试。 关键特性 优势 精密电压和电流测量 (0.5 μV 和 0.1 fA 分辨率) –低电压和小电流的精确表征。 用于多频率(1 kHz 至 5 MHz )电容测量(CV 、C-f 和 C-t )与电流/电压(IV )测量 切换的高精度和低成本解决方案。 –无需重新连接电缆即可在 CV 和 IV 测量之间进行切换– 保持出色的小电流测量分辨率 (使用 SCUU 时最小为 1 fA ,使用 ASU 时最小为 0.1 fA )– 为被测器件提供完整的 CV 补偿输出 超快速 IV 测量, 100 ns 脉冲和 5 ns 采样率 –捕获传统测试仪器无法精确测量的超快速瞬态现象超过 300 种应用测试即时可用 –缩短从学习仪器使用、进行测量到熟练操作仪器所需的时间包含示波器视图的曲线追踪仪模式 –交互式地开发测试,并即时查看器件特征 –无需使用任何其他设备便可对电流和电压脉冲进行验证(MCSMU 提供示波器视图) 功能强大的数据分析和稳定可靠的数据管理 –自动分析测量数据,无需使用外部 PC – 自动存储测量数据和测试条件,日后快速调用此信息

塑封料对半导体器件的失效应力影响

塑封器件是指用塑料等树脂类聚合物材料封装的半导体器件。由于树脂类材料固有的特点,限制了塑封器件在卫星、军事等一些高可靠性场合的使用[1]。虽然自20世纪70年代以来,封装 关键词:塑封器件热膨胀 1 引言 塑封器件是指用塑料等树脂类聚合物材料封装的半导体器件。由于树脂类材料固有的特点,限制了塑封器件在卫星、军事等一些高可靠性场合的使用[1]。虽然自20世纪70年代以来,封装材料、芯片钝化和生产工艺得到了极大的改进,塑封器件的可靠性也随之提高,但仍存在许多可靠性问题。这些可靠性问题大致可以分为:塑封材料固有的密封问题导致的腐蚀失效、爆米花失效等;生产工艺问题导致的芯片粘接缺陷、封装缺陷以及钝化层缺陷等[2];由于塑封材料与芯片之问的热膨胀系数(CTE)不匹配导致的低温/温冲失效。本文主要讨论最后一种缺陷。 2 CTE不匹配导致的失效及其机理分析 通常由元器件生产厂商提供的塑封器件对温度的要求不高,能满足如下3种温度范围的要求即可:0℃-70℃(商业温度)、-40℃~+85℃(工业温度)、-40℃~+125℃(汽车温度)。大量的失效案例表明[3],在以上3种温度范围内,器件失效的比例很高。对失效器件的分析表明,外界的温度冲击或低温环境造成的塑封材料对芯片的应力是主要机理。 2.1封装分层 在从室温到极端寒冷环境的温度循环过程中,模压复合物与基片或引线框之间的热膨胀系数(CTE)差异会造成分层和开裂。在极端低温下,由于与贮存温度和包封温度之间的差很大,可能会导致模压复合物与基片或引线框之间分层和开裂。并且,随着极端低温的下降,开裂的可能性还会随之增加(封装经过-55℃~+125℃的热循环时,引线框尖锐边缘处就会出现开 裂和分层)。另外,潮气会使低温下基片与封装材料界面上的分层加速。这种加速是由封装内凝结水汽的冻结所引起。 2.2对芯片的机械应力 由于塑封料和硅的线性热膨胀系数相差一个数量级(塑封料≈25×10-6℃-1,硅 ≈2.3×10-6℃-1,当温度变化时,它们的尺寸变化相差会较大。例如,对角线为1cm的芯片,温度每变化1℃,芯片对角线的长度可变化2.3×10-2μm;变化100℃,长度可变化2.3μm。而同样长度的塑封料每变化1℃,其长度将变化25×10-2μm;温度变化100℃,其长度将 变化25μm。如果塑封料与芯片表面是分离的,塑封料将会在芯片表面移动,它的最大位移量将会大于11.35μm。然而在一般情况下,塑封料是黏附在芯片表面的,它不可能在芯片表面移动(但存在这种趋势)。于是,在芯片和塑封料界面就会存在剪切应力。这个力可能会使芯片上附着力弱的金属化层产生滑移(温度升高,向芯片边缘滑移;温度降低,向芯片中

半导体基本器件

半导体基本器件 Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

第二章半导体基本器件 内容提要 【了解】半导体的相关知识 【熟悉】二极管(即PN结)的单向导电性及主要参数 【了解】三极管的电流放大原理 【熟悉】三极管输出特性曲线的三个工作区及条件和特点、主要参数 【了解】MOS管的工作原理、相应的三个工作区以及与三极管的性能区别 ? 一.一.网上导学 二.二.典型例题 三.三.本章小结 四.四.习题答案 ? 网上导学: *了解半导体基础相关知识:1.半导体(导电性能介于┉) ;2.本征半导体(纯净,晶体)、共价键(共用电子对);热激发:自由电子-空穴对、载流子、复合、浓度(微量,温度影响) 与掺杂半导体:N 型(五价磷)、P型半导体(三价硼)、多子、少子;结:扩散、不能移动的离子、空间电荷区、内电场EIN、阻挡层、漂移、动态平衡。(p38~p41)

本征半导体 掺杂半导体 (a) 多子扩散 (b)空间电荷区 PN结 PN结形成和单向导电性 一. 一.PN结(二极管)的单向导电性:p41 (a) 正向偏置 (b) 反向偏置 单向导电性 结内部扩散和漂移的动态平衡(空间电荷区的调节作用); 2.外加电压(外电场)打破原有的平衡(加正向偏压,削弱了内电场的作用,有利于扩散,形成较大的正向电流,导通;加反向偏压,增强了内电场的作用,有利于漂移,形成微弱的反向电流,截止);

3.熟悉PN结(即二极管)的伏安特性(i~u):硅和锗的导通电压UON分别为和、正向电压降UD分别为~和~,击穿电压U(RB)、二极管符号、主要参数(p43,最大正向电流IF、反向击穿电压U(RB)、反向电流IR等)及应用(数字:开关;模拟:整流、限幅);稳压管:正常工作在反向击穿状态,为了使稳压管不会因过流而损坏,应当在电路中加限流电阻(见图),主要参数UZ、IZ、IZM。二极管、三极管和MOS管 伏安特性稳压管电路 *了解三极管电流放大原理:(1)发射结正偏,其正向电流主要是由发射区的多子向基区扩散所形成的电流IE(因为发射区重掺杂而基区掺杂浓度很低 ,故基区的多子向发射区扩散可以忽略);(2) 注入到基区的多子在基区的复合和继续扩散;(3) 复合所形成基极复合电流IBN(≈IB)很小,大部分扩散被集电结反向偏置电场吸引到集电区,形成较大的集电极收集电流ICN(≈IC)(因为基区薄、掺杂浓度低,集电结反偏)。从而实现了三极管电流放大作用即β =IC/IB》1。三极管的电流放大作用就是利用发射区注入的多子在基区的扩散电流(IC)大大超过复合电流(IB)而实现的;了解三极管的两种类型(NPN,PNP)。 两种类型 二.三极管三个工作区(截止、放大、饱和)条件和特点、输出特性曲线:p48 1.截止区:当ui<UON,截止区,iB≈0,iC≈0; 2.放大区:当ui≥UON,且UB<UC,或 iB<IBS,放大区, iC=βiB;

半导体器件芯片焊接失效模式分析与解决探讨

半导体器件芯片焊接失效模式分析与解决探讨半导体器件芯片焊接失效模式分析与解决探讨芯片到封装体的焊接(粘贴)方法很多,可概括为金属合金焊接法(或称为低熔点焊接法)和树脂粘贴两大类。它们连接芯片的机理大不相同,必须根据器件的种类和要求进行合理选择。要获得理想的连接质量,还需要有针对性地分析各种焊接(粘贴)方法机理和特点,分析影响其可靠性的诸多因素,并在工艺中不断地加以改进。本文对两大类半导体器件焊接(粘贴)方法的机理进行了简单阐述,对几种常用方法的特点和适用性进行了比较,并讨论了在半导体器件中应用最为广泛的金-硅合金焊接失效模式及其解决办法。 1、芯片焊接(粘贴)方法及机理 芯片的焊接是指半导体芯片与载体(封装壳体或基片)形成牢固的、传导性或绝缘性连接的方法。焊接层除了为器件提供机械连接和电连接外,还须为器件提供良好的散热通道。其方法可分为树脂粘接法和金属合金焊接法。 树脂粘贴法是采用树脂粘合剂在芯片和封装体之间形成一层绝缘层或是在其中掺杂金属(如金或银)形成电和热的良导体。粘合剂大多采用环氧树脂。环氧树脂是稳定的线性聚合物,在加入固化剂后,环氧基打开形成羟基并交链,从而由线性聚合物交链成网状结构而固化成热固性塑料。其过程由液体或粘稠液→凝胶化→固体。固化的条件主要由固化剂种类的选择来决定。而其中掺杂的金属含量决定了其导电、导热性能的好坏。 掺银环氧粘贴法是当前最流行的芯片粘贴方法之一,它所需的固化温度低,这可以避免热应力,但有银迁移的缺点。近年来应用于中小功率晶体管的金导电胶优于银导电胶。 非导电性填料包括氧化铝、氧化铍和氧化镁,可以用来改善热导率。树脂粘贴法因其操作过程中载体不须加热,设备简单,易于实现工艺自动化操作且经济实惠而得到广泛应用,尤其在集成电路和小功率器件中应用更为广泛。树脂粘贴的器件热阻和电阻都很高。树脂在高温下容易分解,有可能发生填料的析出,在粘贴面上只留下一层树脂使该处电阻增大。因此它不适于要求在高温下工作或需低粘贴电阻的器件。另外,树脂粘贴法粘贴面的机械强度远不如共晶焊接强度大。 金属合金焊接法主要指金硅、金锗、金锡等共晶焊接。这里主要以金硅共晶焊为例加以讨论。金的熔点为1063℃,硅的熔点为1414℃,但金硅合金的熔点远低于单质的金和硅。含有31%的硅原子和69%的金原子的

相关主题
文本预览
相关文档 最新文档