当前位置:文档之家› ###量子自由电子论

###量子自由电子论

###量子自由电子论
###量子自由电子论

(此图夸张地画出了和的差别,实际上相差几万分之一,差别很小)

在温度在几百k的基础上以10的倍数增加时,由T>0时费米能表达式和类似

北大书说大概是在10K左右或更低的温度.

电子的顺磁磁化率:课件,北大书13-14页

费米能、系统内能的推导见课件4.2节补充中“sommerfeld展开式的应用”.

根据图2下面的分析,其实是,但是近似写成

是猜的?不知道.查solid state书,但没时间.

另一种估算总的热激发能(或定量计算被热激发的每个电子获得的平均能量)的方

参考文献

1.中科大赵瑾老师的固体物理课件

2.慕课:北京交通大学 李丹 固体物理学

3.阎守胜《固体物理基础》

本文图片也来源于以上三种资料

4.北京大学固体物理课件:道客巴巴:北京大学固体物理课件(精编资料)

5.固体物理讲稿:百度文库:固体物理学6自由电子论

---本文由量子凝聚态编写

(转载需注明来源)

金属自由电子气理论

金属自由电子气理论 特鲁德电子气模型:特鲁德提出了第一个固体微观理论利用微观概念计算宏观实验观测量 自由电子气+波尔兹曼统计→欧姆定律 电子平均自由程+分子运动论→电子的热导率 特鲁德(Paul Drude )模型的基本假设1 1.自由电子近似:传导电子由原子的价电子提供,离子实对电子的作用可以忽略不计,离子实的作用维持整个金属晶体的电中性,与电子发生碰撞。 2.独立电子近似:电子与电子之间的相互作用可以忽略不计。外电场为零时,忽略电子之间的碰撞,两次碰撞(与离子实碰撞)之间电子自由飞行(与经典气体模型不同,电子之间没有碰撞,电子只与离子实发生碰撞,这一点我们将在能带论中证明是错误的。) 特鲁德(Paul Drude )模型的基本假设2 3.玻尔兹曼统计:自由电子服从玻尔兹曼统计。 4.弛豫时间近似:电子在单位时间内碰撞一次的几率为1/τ,τ称为弛豫时间(即平均自由时间)。每次碰撞时,电子失去它在电场作用下获得的能量,即电子和周围环境达到热平衡仅仅是通过与原子实的碰撞实现的。 特鲁德模型的成功之处——成功解释了欧姆定律 欧姆定律E j ρ=(或j E σ=),其中E 为外加电场强度、ρ为电阻率、j 为电流密度。

202()1I j nev ne S j E eEt m v v E j m ne eE m v m τρτστρ?==-??=??-?? =+??=????==???=-?? 2.经典模型的另一困难:传导电子的热容 根据理想气体模型,一个自由粒子的平均热量为3/2B k T ,故 333 (),222 A B e U U N k T RT C R T ?====? 33/29v ph e C C C R R =+=+≈(卡/molK.) 但金属在高温时实验值只有6(卡/molK.),即3v C R ≈。 4.2 Sommerfeld 的自由电子论 1925年:泡利不相容原理 1926年:费米—狄拉克量子统计 1927年:索末菲半经典电子论 抛弃了特鲁德模型中的玻尔兹曼统计,认为电子气服从费米—狄拉克量子统计得出了费米能级,费米面等重要概念,并成功地解决了电子比热比经典值小等经典模型所无法解释的问题。 量子力学的索末菲模型 1、独立电子近似:所有离子实提供正电背景,忽略电子与电子之间的相互作用。 2、自由电子近似:电子与原子实之间的相互作用也被忽略。 3、采用费米统计以代替玻尔兹曼统计。 传导电子的索末菲模型

量子信息论简介

量子信息论简介 一、什么是量子信息论? 近20年来,量子力学除了更深入地应用于物理学本身许多分支学科之外,还迅速广泛地应用到了化学、生物学、材料科学、信息科学等领域。量子理论这种广泛,深入应用的结果、极大地促进了这些学科的发展,从根本上改变了它们的面貌,形成了众多科学技术研究热点,产生了许多崭新的学科;与此同时,量子力学本身也得到了很大的丰富和发展。 热点之一就是已经诞生、正在形成和发展中的量子信息科学———量子通信和量子计算机,简称为量子信息论。它是将量子力学应用于现有电子信息科学技术而形成的交叉学科。量子信息论不但将以住的经典信息扩充为量子信息,而且直接利用微观体系的量子状态来表达量子信息。从而进入人为操控、存储和传输量子状态的崭阶段。 近10多年来,量子信息论从诞生到迅猛发展,显示出十分广阔的科学和技术应用前景。这种崭新的交叉结合已经并正在继续大量生長出许多科学技术研究热点,并逐渐形成一片新兴广阔的研究领域,不断取得引人瞩目的輝煌成就。 量子信息论的诞生和发展,在科学方面有着深远的意义。因为它反过来极大地丰富了量子理论本身的内容,并且有助于加深对量子理论的理解,突出暴露并可能加速解决量子理论本身存在的基础性问题。借助这一新兴交叉学科的实验技术,改造量子力学基础,加速变革现有时空观念,加深对定域因果律的认识也许是可能的。 量子信息论在技术方面也有着重大影响。因为它的发展前景是量子信息技朮(QIT)产业,它是更新换代目前庞大IT产业的婴儿,是推动IT产业更新换代的动力,指引IT技朮彻底变革的方向。在这方面大量、迅猛、有效的探索性研究正在逐步导致以下各色各样的新兴分支学科的诞生:量子比特和量子存储器的构造,人造可控量子微尺度结构,量子态的各类超空间传送,量子态的制备、存诸、调控与传送,量子编码及压缩、纠错与容错,量子中继站技朮,量子网络理论,量子计算机,量子算法等等。它们必将对国际民生和金融安全技朮以及国防技朮产生深刻的影响。 目前,一方面是寻求各色各样存取量子信息的载体———量子比特和量子信息处理器。相关的实验和理论研究正在蓬勃开展。实验中的量子信息载体,不仅包括自然的微观系统,更着重于形形色色的人造可控微尺度结构———也就是人造可控量子系统。在研制可控量子比特和量子存储器件时,必须考虑它们和传送环节的光场之间的可控耦合,以保证量子信息的有效写入和取出。这里最重要的是研究光场和人造原子系综的相互作用。 第二方面是关于量子信息的传送。量子通信是量子信息论领域中首先走向实用化的研究方向。目前量子通信主要以极化光子作为信息载体,釆用纠缠光子对作为传送的量子通道。量子通信可以分为光纤量子通信和自由空间量子通信两个方向。关于光纤量子通信方面,建立光纤量子通信局域网和延长光纤量子通信鉅离的时机已经到来。而利用纠缠光子实施自由空间量子通信,其最终目标是通过卫星实现全球化量子通信。量子通信要求长程、高品质、高強度的纠缠光源。这需要掌握包括纠缠纯化、纠缠交换与纠缠焊接的量子中继器技术。同时还需要展开各类量子编码(纠错码、避错码、防错码)研究,各类量子态超空间传送方式研究,进而逐步创立完善的量子网络理论。 第三方面是关于量子计算机。目前的经典计算机受到经典物理原理限制,己经接近其处理能力的极限。而由于量子态迭加原理和量子纠缠特性,量子计算机具有经典计算机无法比拟的、快速的、高保密的计算功能,所以,有必要研究量子计算机。制造量子计算机的核心任务是造出可控多位量子比特的量子信息处理器。这里的关键是寻求能够避免退相干、易于操控和规模化的多位量子比特。这正是制约量子计算机研制进度的主要困难。1994年,计算机专家Chair C.H.Bennett宣布,量子计算机的研制己进入工程阶段。根据近10年来各国量子计算机研制己报导的有关资料预计,量子计算机技术的长远发展,最终有赖于固体方案。关于量子计算机研制进度:乐观估计是到20l0年可以在硅片技朮基础上制造出10多位可控量子比特,从而造出简单的台式计算机; 较稳健的估计是可能在下一个l0年之內; 持悲观估计的人们有个比喻:现在不必做出发展量子计算机的“哈曼顿计划”,因为现在还没有发现“核裂变”。 二、国內外量子信息专业的发展状况 2006年9月1日~4日,来自世界21个国家和地区的近200名科技人员聚集在北京友谊宾馆,参加由中国科大量子信息国家重点实验室举办的亚洲量子信息科学会议。在这次会议中首次提出量子隐形传态思想、首次提出第一个量子密钥分配协议的IBM研究机构科学家Chair C.H.Bennett接受采访时说:“量子信息现在还是个婴儿!”但鉴于量子信息科学技术的巨大发展潜力,目前已受到各国政府、科技专家和公众的广泛关注。 1、国外量子信息的研究和进展: 国际上重要的西方国家(美、英、法、加拿大、以色列、日本、瑞典、奥地利、意大利、瑞士等),特别是美国和欧盟均投入大量人力物力于量子通讯和量子计算的理论和实验研究,量子信息已成为学术界的热门课题,其发展十分迅猛,参与研究的国家、机构和人员日益增多,有关国际会议连接不断。以美国为例,加州理工大学、MIT和南加州大学联合成立了量子信息和计算研究所,其长远目标就是

量子信息学

量子信息学 20世纪前半叶,自然学科诞生了最具影响力的两门学科,量子力学和信息学。前者成为目前研究微观粒子运动规律离不开的理论基础,使人类对自然界的认识发生了里程碑的突破,它解释和预言了大量奇妙的物理现象,如微观粒子的波粒二象性、隧道效应和纠缠现象等等。利用量子力学原理,不仅解释了原子结构、化学键、超导现象、基本粒子的产生和湮灭等重要物理问题,而且也促成了现代微电子技术、激光技术和核能利用技术等的出现。而后者已明显地改变了人们的生产和生活方式,提高了工作效率和生活质量。20世纪末叶,它们交汇在一起,产生了一门新的交叉学科——量子信息学。 鉴于量子信息学研究与应用的巨大潜力,特别是关系到国家信息安全的重大问题,许多国家投入了大量人力物力开展相关方面的研究工作,促进了这一学科在诞生后的10多年时间内飞速发展。目前主要在以下几个方面开展研究。下面简单介绍两个方面。 纠缠理论的研究:在量子信息学中,量子态是信息的载体,量子信息的许多技术是建立在量子态纠缠的基础之上

的。因此,量子纠缠是量子信息学中最重要的研究课题,在理论和实验上均有重要意义。但遗憾的是,对此问题的研究还处于初级阶段。现在只有2×3量子系统纠缠的充要判断|,而对一般量子体系仅有充分性或必要性判据。对于不同纠缠态,其内部的关联程度也是不同的。如果量子态之间纠缠,那么就要掌握其纠缠的程度(即纠缠度)。纠缠度是系统各个部分之间纠缠程度的量度,理想的纠缠度应满足3个条件:①对任意量子态,纠缠度大于零;对正交直积态,纠缠度等于零;②在子系统的么正变换下纠缠度不变;③在局域操作和经典通信条件下纠缠度不能增加。对对多粒子多维纠缠态的纠缠性质研究是目前量子信息学最重要、最活跃的研究方向之一。 量子计算机设计和硬件研究:由于量子计算机具有很高的商业价值,所以研制量子计算机从一开始就是各个国家关注的一个研究重点。目前,关于量子计算机的可行性问题已经解决,IBM公司在实验室中已经研制出7位量子计算机原型系统。由于量子计算机的信息媒介是量子比特,因此对它的储存、处理、提取所使用的方法与设备和经典计算机相比是完全不同的。虽然利用核磁共振、离子阱等物理技术已实现了量子态的纠缠与储存,但总的来说量子器件实现技术还处于实验研究阶段。由于量子态储存过程中,量子系统不可

(完整版)第四章金属自由电子理论

第四章 金属自由电子理论 1.金属自由电子论作了哪些假设?得到了哪些结果? 解:金属自由论假设金属中的价电子在一个平均势场中彼此独立,如同理想气体中的粒子一样是“自由”的,每个电子的运动由薛定谔方程来描述;电子满足泡利不相容原理,因此,电子不服从经典统计而服从量子的费米-狄拉克统计。根据这个理论,不仅导出了魏德曼-佛兰兹定律,而且而得出电子气对晶体比热容的贡献是很小的。 2.金属自由电子论在k 空间的等能面和费米面是何形状?费米能量与哪些因素有关? 解:金属自由电子论在k 空间的等能面和费米面都是球形。费米能量与电子密度和温度有关。 3.在低温度下电子比热容比经典理论给出的结果小得多,为什么? 解:因为在低温时,大多数电子的能量远低于费米能,由于受泡利原理的限制基本上不能参与热激发,而只有在费米面附近的电子才能被激发从而对比热容有贡献。 4.驰豫时间的物理意义是什么?它与哪些因素有关? 解:驰豫时间的物理意义是指电子在两次碰撞之间的平均自由时间,它的引入是用来描写晶格对电子漂移运动的阻碍能力的。驰豫时间的大小与温度、电子质量、电子浓度、电子所带电量及金属的电导率有关。 5.当2块金属接触时,为什么会产生接触电势差? 解:由于2块金属中的电子气系统的费米能级高低不同而使热电子发射的逸出功不同,所以这2块金属接触时,会产生接触电势差。 6.已知一维金属晶体共含有N 个电子,晶体的长度为L ,设0=T K 。试求: (1)电子的状态密度; (2)电子的费米能级; (3)晶体电子的平均能量。 解:(1)该一维金属晶体的电子状态密度为: dE dk dk dZ dE dZ E ? == )(ρ …………………………(1) 考虑在k 空间中,在半径为k 和dk k +的两线段之间所含的状态数为: dk L dk dZ π =?=k 2 ………………………… (2) 又由于 m k E 22 2η= 所以 m k dk dE 2η= …………………………(3) 将(2)和(3)式代入(1)式,并考虑到每个状态可容纳2个自旋相反的电子,得该 一维金属晶体中自由电子的状态密度为: E m L E 22)(ηπρ= (4) (2)由于电子是费米子,服从费米—狄拉克统计,即在平衡时,能量为E 的能级被电子占据的几率为:

量子信息安全系统

量子信息安全系统 1、量子密码学的起源与发展 利用量子现象(效应)对信息进行保密是1969年哥伦比亚大学的科学家S. Wiesner首先提出的[1]。当时,Wiesner写了一篇题为“共辄编码(conjugate coding)”的论文,在该文中,Wiesner提出了两个概念:量子钞票(quantum bank notes)和复用信道(multiplexing channel)。Wiesner的这篇论文开创了量子信息安全研究的先河,在密码学史上具有重要的意义。但遗憾的是这篇论文当时没能获准发表。 在一次偶然的谈话中,Wiesner向IBM公司的科学家C. H. Bennett提及他10年前的思想,引起Bennett的注意。在1979年举行的第20次IEEE计算机科学基础大会上,Bennett 与加拿大Montreal大学的密码学家G. Brasard讨论了Wiesner的思想。但最初他们没能正确理解Wiesner的思想,在1983年发表的论文中他们利用量子态储存来实现量子密码并提出了量子公钥算法体制,而长时间储存量子态在目前的实验上不能实现,因此他们的论文没引起人们的共识,甚至有人认为他们的想法是天方夜谭。不久他们意识到在量子密码中量子态的传输可能比量子态的储存更重要,于是在1984年重新考虑了量子密码,并开创性地提出了量子密钥分发的概念,并提出了国际上第一个量子密钥分发协议(BB84协议)[3]。从此,量子密码引起了国际密码学界和物理学界的高度重视。在以后的十多年的研究中,量子密码学获得了飞速发展。目前,量子密码也引起了非学术界的有关部门(如军方、政府)等的注意。 2、量子密码的基本理论 2.1量子密码信息理论基础 密码学的发展经历了三千多年的历史,但直到升到科学的体系,成为一门真正的学科,因此,信息论是密码学的基础。事实上,在密码学中,信息理论是与安全性联系在一起的,Shannon信息论包括信息安全和计算安全。量子密码的安全属于信息安全,因此量子密码应建立在信息论的基础上。值得指出的是,量子密码的实现是以量子物理学为基础的,而S hannon信息论对应经典物理学。众所周知,量子物理学和经典物理学依赖于不同的法则,因此量子信息论不能简单地套用Shannon信息论,必须在Shannon信息论的基础上建立新的理论体系。 文献[5]从信息的角度提出了适合非正交量子态信道的信息理论,但他们的理论只能解释BB84协议以及改进版。文献[6]研究了量子相干性与量子保密性的关系。文献[7]做了较

清华大学固体物理:第一章 自由电子论

第一章 自由电子论 1.1 经典自由电子论 1900年特鲁德 (P. Drude) 首先提出金属中的价电子好比气体分子,组成电子气体,它们可以同离子碰撞,在一定的温度下达到热平衡。因此电子气体可以用具有确定的平均速度和平均自由时间的电子来描述。在外电场作用下,电子产生定向漂移运动引起了电流。在温度场中电子气体的定向流动伴随着能量传送,使金属具有良好的热导。金属的电导和热导之间的维德曼-夫兰兹(Wiedemann -Franz) 定律反映了它们都起因于电子气体的定向流动,支持了电子气体模型。特鲁德金属电子气体模型的基本假设为: (1) 在两次碰撞间隙,忽略给定电子和其它电子及离子的相互作用。没有外加电磁场时,电子作匀速直线运动,在有外加电磁场时,电子受电磁力,运动遵从牛顿运动定律。忽略其它电子和离子产生的复杂的附加场。在两次碰撞间隙,忽略电子-电子之间的相互作用称为独立电子近似;忽略电子-离子之间的相互作用称为自由电子近似。 (2) 一个电子在有限的时间间隔dt 内经历的碰撞次数为τdt ,τ 称为平均自由时间,或弛豫时间。特鲁德假定弛豫时间与电子的位置和速度无关。这称为弛豫时间近似。 (3) 电子通过碰撞和它们的环境达到热平衡。遵从玻尔兹曼统计。电子每一次碰撞后,完全丢失原来的速度和运动方向,随机地改变运动方向,获得新的速率近似地由发生碰撞处的温度决定。这样发生碰撞的区域越热,碰撞后电子的速率越大。 应用特鲁德理论可以成功地解释金属的一些输运性质: 1 电子的运动方程 在任意时间t 电子的平均速度为p (t ) / m ,p 是每个电子的总动量。我们来计算经过无穷小的时间间隔dt 后每个电子的总动量p (t+dt )。电子在这段时间间隔内的碰撞几率为τdt ,不遭受碰撞的几率为τdt -1。假设电子不遭受碰撞,但是受到越过空间均匀的电场或/和磁场力()t f 的作用,因此电子总动量的增量为()()2dt o dt t +f 。忽略碰撞对电子总动量的影响有: ()()()()()()()()()()22 1t dt dt t t dt o dt t dt t t dt o dt ττ??+=-++-++?? p p f =p p f (1.1.1) 因此得到: ()()()()()()2dt o dt t t dt t dt t ++-=-+f p p p τ (1.1.2) 方程两边同除以dt ,并取dt → 0时的极限: ()()()t t dt t d f p p +-=τ (1.1.3) 这就是电子的运动方程。 2 金属的直流电导 欧姆定律的微分形式为: j = σ E (1.1.4) 其中σ 称为电导率。设单位体积中n 个电子以相同的平均速度υ运动,由此产生的电流密度j 将平行于υ。在时间间隔dt 内电子在速度方向运动的距离为υdt ,这样将有n υdtA 的电子越过垂直于速度方向的面积A ,每一个电子携带电荷 - e ,在时间间隔dt 内越过面积A 的电荷为 -ne υdtA ,因此电流密度为: j = -ne υ (1.1.5) 在没有外加电场时,电子的平均速度为零,电流密度也为零。在有外加电场E 时,稳态时,按照电子运 动方程,()0=dt t d p ,()()t t f p =τ ,因此附加定向速度的平均值为υ = -e E τ / m ,τ 为弛豫时间。因此: E j m ne τ 2= (1.1.6) 因此金属的电导率为: m ne τ σ2= (1.1.7) 3 霍尔效应 1879年霍尔 (E. H. Hall) 研究了在磁场中的载流导体,发现当磁场B (设沿z 方向) 垂直于电流j x 时,在垂直于电流和磁场方向导体两边 (沿y 方向) 有电压降。首先定义两个重要的物理量: ()x x j E H =ρ (1.1.8) 称为横向磁阻。其中E x 为沿电流j x 方向的电场。

量子通信的基本原理

量子通信的基本原理 量子通信系统的基本部件包括量子态发生器、量子通道和量子测量装置.按其所传输的信息是经典还是量子而分为两类.前者主要用于量子密钥的传输,后者则可用于量子隐形传态和量子纠缠的分发.所谓隐形传送指的是脱离实物的一种“完全”的信息传送.从物理学角度,可以这样来想象隐形传送的过程:先提取原物的所有信息,然后将这些信息传送到接收地点,接收者依据这些信息,选取与构成原物完全相同的基本单元,制造出原物完美的复制品.但是,量子力学的不确定性原 理不允许精确地提取原物的全部信息,这个复制品不可能是完美的.因此长期以来,隐形传送不过是一种幻想而已.\x0d1993年,6位来自不同国家的科学家,提出了利用经典与量子相结合的方法实现量子隐形传态的方案:将某个粒子的未知量子态传送到另一个地方,把另一个粒子制备到该量子态上,而原来的粒子仍留在原处.其基本思想是:将原物的信息分成经典信息和量子信息两部分,它们分别经由经典通道和量子通道传送给接收者.经典信息是发送者对原物进行某种测量而获得的,量子信息是发送者在测量中未提取的其余信息;接收者在获得这两种信息后,就可以制备出原物量子态的完全复制品.该过程中传送的仅仅是原物的量子态,而不是原物本身.发送者甚至可以对这个量子态一无所知,而接收者是将别的粒子处于原物的量子态上.在这个方案中,纠缠态的非定域性起着至关重要的作用.量子力学是非定域的理论,这一点已被违背贝尔不等式的实验结果所证实,因此,量子力学展现出许多反直观的效应.在量子力学中能够以这样的方式制备两个粒子态,

在它们之间的关联不能被经典地解释,这样的态称为纠缠态,量子纠缠指的是两个或多个量子系统之间的非定域非经典的关联.量子隐形传态不仅在物理学领域对人们认识与揭示自然界的神秘规律具有重要意义,而且可以用量子态作为信息载体,通过量子态的传送完成大容量信息的传输,实现原则上不可破译的量子保密通信. 1997年,在奥地利留学的中国青年学者潘建伟与荷兰学者波密斯特等人合作,首次实现了未知量子态的远程传输.这是国际上首次在实验上成功地将一个量子态从甲地的光子传送到乙地的光子上.实验中传输的只是表达量子信息的“状态”,作为信息载体的光子本身并不被传输.最近,潘建伟及其合作者在如何提纯高品质的量子纠缠态的研究中又取得了新突破.为了进行远距离的量子态隐形传输,往往需要事先让相距遥远的两地共同拥有最大量子纠缠态.但是,由于存在各种不可避免的环境噪声,量子纠缠态的品质会随着传送距离的增加而变得越来越差.因此,如何提纯高品质的量子纠缠态是目前量子通信研究中的重要课题.近年,国际上许多研究小组都在对这一课题进行研究,并提出了一系列量子纠缠态纯化的理论方案,但是没有一个是能用现有技术实现的.最近潘建伟等人发现了利用现有技术在实验上是可行的量子纠缠态纯化的理论方案,原则上解决了目前在远距离量子通信中的根本问题.这项研究成果受到国际科学界的高度评价,被称为“远距离量子通信研究的一个飞跃”.\x0d参考资料:《科技日报》\x0d量子通信系统的基本部件包括量子态发生器、量子通道和量子测量装置.按其所传输的信息是经典还是量子而分为两类.前者主要用于量子密钥

金属自由电子理论

金属自由电子理论文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]

第四章金属自由电子理论 1.金属自由电子论作了哪些假设得到了哪些结果 解:金属自由论假设金属中的价电子在一个平均势场中彼此独立,如同理想气体中的粒子一样是“自由”的,每个电子的运动由薛定谔方程来描述;电子满足泡利不相容原理,因此,电子不服从经典统计而服从量子的费米-狄拉克统计。根据这个理论,不仅导出了魏德曼-佛兰兹定律,而且而得出电子气对晶体比热容的贡献是很小的。 2.金属自由电子论在k空间的等能面和费米面是何形状费米能量与哪些因素有关 解:金属自由电子论在k空间的等能面和费米面都是球形。费米能量与电子密度和温度有关。 3.在低温度下电子比热容比经典理论给出的结果小得多,为什么 解:因为在低温时,大多数电子的能量远低于费米能,由于受泡利原理的限制基本上不能参与热激发,而只有在费米面附近的电子才能被激发从而对比热容有贡献。 4.驰豫时间的物理意义是什么它与哪些因素有关 解:驰豫时间的物理意义是指电子在两次碰撞之间的平均自由时间,它的引入是用来描写晶格对电子漂移运动的阻碍能力的。驰豫时间的大小与温度、电子质量、电子浓度、电子所带电量及金属的电导率有关。 5.当2块金属接触时,为什么会产生接触电势差 解:由于2块金属中的电子气系统的费米能级高低不同而使热电子发射的逸出功不同,所以这2块金属接触时,会产生接触电势差。

6.已知一维金属晶体共含有N 个电子,晶体的长度为L ,设0=T K 。试求: (1)电子的状态密度; (2)电子的费米能级; (3)晶体电子的平均能量。 解:(1)该一维金属晶体的电子状态密度为: dE dk dk dZ dE dZ E ? == )(ρ (1) 考虑在k 空间中,在半径为k 和dk k +的两线段之间所含的状态数为: dk L dk dZ π =?= k 2 (2) 又由于 m k E 22 2 = 所以 m k dk dE 2 = …………………………(3) 将(2)和(3)式代入(1)式,并考虑到每个状态可容纳2个自旋相反的电子,得该一维金属晶体中自由电子的状态密度为: E m L E 22)( πρ= (4) (2)由于电子是费米子,服从费米—狄拉克统计,即在平衡时,能量为E 的能级被电子占据的几率为:

固体物理学6自由电子论

第六章 自由电子论和电子的输运性质 6-1电子气的费米能和热容量 自由电子气(自由电子费米气体):自由的、无相互作用的 、遵从泡利原理的电子气。 一 费米能量 1.模型(索末菲) (1)金属中的价电子彼此之间无相互作用; (2)金属内部势场为恒定势场(价电子各自在势能等于平均势能的势场中运动); (3)价电子速度服从费米—狄拉克分布。 2.费米分布函数 在热平衡时,能量为E 的状态被电子占据的概率是 1 e 1)(B F )(+= -T k E E E f E F ---费米能级(等于这个系统中电子的化学势),它的意义是在体积不变的条件下,系统增加一个电子所需的自由能。它是温度T 和晶体自由电子总数N 的函数。 随着T 的增加,f (E )发生变化的能量范围变宽,但在任何情况下,此能量范围约在E F 附近±k B T 范围内。 3.费米面 0.a =T ?? ? ??>=<<=F F F 01 )(E E E E E E E f 陡变0 .b ≠T ? ????>>=<<=F F F 0211)(E E E E E E E f

E=EF 的等能面称为费米面。 在绝对零度时,费米面以内的状态都被电子占据,球外没有电子。 T ≠0时,费米球面的半径k F 比绝对零度时费米面半径小,此时费米面以内能量离EF 约k B T 范围的能级上的电子被激发到EF 之上约k B T 范围的能级。 4.求EF 的表达式 E~E+dE 间的电子状态数:E E N )d ( E~E+dE 间的电子数:E E N E f )d ()( 系统总的电子数:? ∞ =0 E E N E f N )d ()( 分两种情况讨论: (1)在T=0K 时,上式变成:? = 0)d (F E E E N N 0 将自由电子密度N(E)=CE 1/2代入得: () 2 30 2 103 2d ? ==F E F E C E CE N 0 其中2 3222π2?? ? ??= m V C c () 2 30 2 3222π232F E m V N ?? ? ??= 令n=N/V ,代表系统的价电子浓度

量子光学与量子信息讲课教案

量子光学与量子信息

量子光学与量子信息 摘要:量子光学是应用辐射的量子理论研究光辐射的产生、相干统计性质、传输、检测以及光与物质相互作用中的基础物物理问题的一门学科。 关键字:量子光学量子信息 JC模型 TC模型 早在1900和1905年,普朗克和爱因斯坦就提出了光量子假说,并成功解释了黑体辐射谱分布与光电效应,确定了光具有波粒二象性的基本物理思想。然而,长期以来由于经典电磁辐射理论能完满地解释绝大多数物理光学实验现象,光的量子理论并未得到系统发展。直到2O世纪7O年代以后,随着激光与光电子技术的进步,一系列用经典理论无法解释的非经典光学效应逐步被实验观测,才形成了以量子化光场为基础的量子光学学科领域。 光量子或称光子为基本能量单元的量子化光场遵循量子电动力学基本规律,严格地说只有用QED理论,才能解释迄今为止所观察到的所有光学现象。量子光学用量子电动力学理论研究光场的量子性和相干性,以及光与原子相互作用的量子力学效应。当前,量子光学中应用性较强的重要研究领域有:光场的量子噪声,光场与物质相互作用中的动量传递、腔量子电动力学等。 在光学与原子物理这门课程的学习中,我们了解到了量子化这个概念。那么,量子光学在科技实验研究中有哪些应用呢? 首先,量子光学的原理和理论基础为: 热辐射基尔霍夫定律 一.热辐射

1.热辐射:在一定时间内辐射能量的多少及能量按波长的分布都与物体的温度有关,故称电磁辐射为热辐射(温度辐射); 辐射能(λ,T ),如炉子,酒精灯… 2.平衡热辐射:相同时间内辐射与吸收的能量相等,T 不变 二. 辐出度(辐射出射度,发射本领) 1. 单色辐出度:单位时间内从物体表面单位面积上向各个方向所发射的波长在λλλd ~+范围内辐射能量)T (dE λ和波长间隔λd 的比值 λ λλd )T (dE )T (e = 2. 辐出度:单位时间内从物体表面单位面积上向各个方向所发射的各种波长的辐射总能量。 λλd )T ,(e )T (E ?∞ =0 三. 吸收比、反射比 1. 吸收比:J B )T (a = 单色吸收比:) T ,(J )T ,(B )T ,(a λλλ= 2. 反射比:J R )T (=ρ 单色反射比:) T ,(J )T ,(R )T ,(λλλρ= 不透明物体:1=+)T ,()T ,(a λρλ 四. 绝对黑体(黑体) 1. 定义:1=)T ,(a λ的物体

量子通信技术基于量子物理学的基本原理

关键词:量子通信安全性中国发展 摘要:用国际顶级量子专家王肇中教授的话说,量子通信就是单模光纤两端加上能代替常用光模块功能的、光量子态的发送和接收设备,实现基于物理加密的保密通信。 量子通信技术基于量子物理学的基本原理,克服了经典加密技术内在的安全隐患,是迄今为止唯一被严格证明是无条件安全的通信方式。为了拓展应用、与现有通信系统兼容以及大量减少成本,需对点对点的通信方式进行组网并充分利用经典通信设施。与此同时,量子克隆技术的出现也使得我们开始重新审视量子通信的安全性问题。量子通信是相对最安全的,但任何事情都不是绝对的,有矛就有盾。一方面有“量子非克隆原理”,另一方面有实现近似量子克隆的“量子克隆机”。怎样可靠地评估安全性?怎样进行攻击?是值得研讨的问题。在不久的将来,量子通信与经典通信的融合发展将会带来通信世界的新纪元。 例如一个量子态可以同时表示0和1两个数字,7个这样的量子态就可以同时表示128个状态或128个数字:0~127。光量子通信的这样一次传输,就相当于经典通信方式的128次。可以想象如果传输带宽是64位或者更高,那么效率之差将是惊人的2,以及更高。 1. 欧洲联合了来自12个欧盟国家的41个伙伴小组成立了SECOQC量子通信网络[8][9]。并于2008年10月在维也纳现场演示了一个基于商业网络的安全量子通信系统。该系统集成了多种量子密码手段,包含6个节点。其组网方式为在每个节点使用多个不同类型量子密钥分发的收发系统并利用可信中继进行联网。 息量子通信验证网”在北京开通,在世界上首次将量子通信技术应用于金融信息安全传输。 2014年11月15日,团队研发的远程量子密钥分发系统的安全距离扩展至200公里,刷新世界纪录。 2. 应用与用途 潘建伟教授指出,量子通信技术的实际应用将分三步走:一是通过光纤实现城域量子通信网络;二是通过量子中继器实现城际量子通信网络;三是通过卫星中转实现可覆盖全球的广域量子通信网络。 对市场角度来说,互联网本质上是一个不安全的网络,而量子通信在理论上的绝对保密特征,已经得到物理定理的证明,很显然在军事、国防、金融等领域有着广阔的应用前景。在大众商业市场,随着技术成熟,量子通信也将具有极大的发展潜力。 3.量子通信技术的发展趋势 4.不足 但量子通信本身,仍然处在研究阶段,还远远没有达到大规模商用化的水平,实用的量子通信网络其保密的绝对性还有待商榷。 量子通信面临四项难点:可扩展、强抗毁、广覆盖、立体化 子密钥分发在未来推广应用方面面临两大挑战:融合性和安全性。量子通信从量子力学的

量子信息与量子计算

关于量子信息与量子计算 量子计算是一种依照量子力学理论进行的新型计算,量子计算的基础原理以及重要量子算法为在计算速度上超越图灵机模型提供了可能。 量子计算(quantum computation) 的概念最早由IBM的科学家R. Landauer及C. Bennett于70年代提出,对于普通计算机运行时芯片会发热,极大地影响了芯片的集成度,科学家们想找到能有更高运算速度的计算机。 到了1994年,贝尔实验室的应用数学家P. Shor指出,相对于传统电子计算器,利用量子计算可以在更短的时间内将一个很大的整数分解成质因子的乘积。这个结论开启量子计算的一个新阶段:有别于传统计算法则的量子算法确实有其实用性,绝非科学家口袋中的戏法。自此之后,新的量子算法陆续的被提出来,而物理学家接下来所面临的重要的课题之一,就是如何去建造一部真正的量子计算器,来执行这些量子算法。许多量子系统都曾被点名作为量子计算器的基础架构,例如光子的偏振(photon polarization)、空腔量子电动力学、离子阱以及核磁共振(nuclear magnetic resonance, NMR)等等。以目前的技术来看,这其中以离子阱与核磁共振最具可行性。事实上,核磁共振已经在这场竞赛中先驰得点:以I. Chuang为首的IBM研究团队在2002年的春天,成功地在一个人工合成的分子中(内含7个量子位)利用NMR完成N =15的因子分解。 到底是什么导致量子如此高的计算能力呢?答案是量子的重叠与牵连原理的巨大作用。普通计算机中的2位寄存器在某一时间仅能存储4个二进制数(00、01、10、11)中的一个,而量子计算机中的2位量子位(qubit)寄存器可同时存储这四个数。量子位是量子计算的理论基石。在常规计算机中,信息单元用二进制的 1 个位来表示, 它不是处于“ 0” 态就是处于“ 1” 态. 在二进制量子计算机中, 信息单元称为量子位,它除了处于“ 0” 态或“ 1” 态外,还可处于叠加态(super posed state) . 叠加态是“ 0” 态和“ 1” 态的任意线性叠加,它既可以是“ 0” 态又可以是“ 1” 态, “ 0” 态和“ 1” 态各以一定的概率同时存在. 通过测量或与其它物体发生相互作用而呈现出“ 0” 态或“ 1” 态.任何两态的量子系统都可用来实现量子位, 例如氢原子中的电子的基态( ground state)和第 1 激发态( first excited state)、质子自旋在任意方向的+ 1/ 2 分量和- 1/ 2 分量、圆偏振光的左旋和右旋等。 一个量子系统包含若干粒子,这些粒子按照量子力学的规律运动,称此系统处于态空间的某种量子态.态空间由多个本征态( eigenstate ) ( 即基本的量子态)构成基本态空间可用Hilbert 空间( 线性复向量空间)来表述,即Hilbert 空间可以表述量子系统的各种可能的量子态.为了便于表示和运算, Dirac提出用符号x〉来表示量子态, x〉是一个列向量,称为ket ;它的共轭转置( conjugate transpose) 用〈x 表示,〈x 是一个行向量, 称为bra.一个量子位的叠加态可用二维Hilbert 空间( 即二维复向量空间)的单位向量〉来描述 无论是量子并行计算还是量子模拟计算,本质上都是利用了量子相干性。遗憾的是,在实际系统中量子相干性很难保持。在量子计算机中,量子比特不是一个孤立的系统,它会与外部环境发生相互作用,导致量子相干性的衰减,即消相干。因此,要使量子计算成为现实,一个核心问题就是克服消相

量子理论基础

班级___________学号______姓名___________ 第12-1 光的量子性 1. 下列各物体哪个是绝对黑体?( ) (A)不辐射任何光线的物体 (B)不能反射任何光线的物体 (C)不能反射可见光的物体 (D)不辐射可见光的物体 2. 金属的光电效应的红限依赖于:( ) (A)入射光的频率 (B)入射光的强度 (C)金属的逸出功 (D)入射光的频率和金属的逸出功 3. 关于光电效应有下列说法: (1)任何波长的可见光照射到任何金属表面都能产生光电效应; (2)若入射光的频率均大于一给定金属红限,则该金属分别受到不同频率,强度相等的光照射时,释出的光电子的最大初动能也不同; (3)若入射光的频率均大于一给定金属红限,则该金属分别受到不同频率,强度相等的光照射时,单位时间释出的光电子数一定相等; (4)若入射光的频率均大于一给定金属的红限,则当入射光频率不变而强度增大一倍时,该金属的饱和光电流也增大一倍. 其中正确的是:( ) (A) (1),(2),(3) (B) (2),(3),(4) (C) (2),(3) (D) (2),(4) 4. 一个光子的能量等于一个电子的静能量,则该光子的波长λ=_____________,动量p= ____________,质量m=____________ . 5. 已知钾的逸出功为2.0eV,如果用波长为3.60 ×10-7m的光照射在钾上,则光电效应的遏止电压的绝对值U a=__________________,从钾表面发射出电子的最大速度v max=_____________. (h= 6.63×10-34Js,1eV=1.6×10-19J,m e=9.11×10-31kg) 6. 某一波长的X光经物质散射后,其散射光中包含波长________和波长_______的两种成份,其中__________的散射成份称为康普顿散射. 7. 康普顿散射中,当出射光子与入射光子方向成夹角θ=_________时,光的频率

第四章 金属自由电子理论

第四章金属自由电子理论 1.金属自由电子论作了哪些假设?得到了哪些结果? 解:金属自由论假设金属中的价电子在一个平均势场中彼此独立,如同理想气体中的粒子一样是“自由”的,每个电子的运动由薛定谔方程来描述;电子满足泡利不相容原理,因此,电子不服从经典统计而服从量子的费米-狄拉克统计。根据这个理论,不仅导出了魏德曼-佛兰兹定律,而且而得出电子气对晶体比热容的贡献是很小的。 2.金属自由电子论在k 空间的等能面和费米面是何形状?费米能量与哪些因素有关? 解:金属自由电子论在k 空间的等能面和费米面都是球形。费米能量与电子密度和温度有关。 3.在低温度下电子比热容比经典理论给出的结果小得多,为什么? 解:因为在低温时,大多数电子的能量远低于费米能,由于受泡利原理的限制基本上不能参与热激发,而只有在费米面附近的电子才能被激发从而对比热容有贡献。 4.驰豫时间的物理意义是什么?它与哪些因素有关? 解:驰豫时间的物理意义是指电子在两次碰撞之间的平均自由时间,它的引入是用来描写晶格对电子漂移运动的阻碍能力的。驰豫时间的大小与温度、电子质量、电子浓度、电子所带电量及金属的电导率有关。 5.当2块金属接触时,为什么会产生接触电势差? 解:由于2块金属中的电子气系统的费米能级高低不同而使热电子发射的逸出功不同,所以这2块金属接触时,会产生接触电势差。 6.已知一维金属晶体共含有N 个电子,晶体的长度为L ,设0=T K 。试求: (1)电子的状态密度; (2)电子的费米能级; (3)晶体电子的平均能量。 解:(1)该一维金属晶体的电子状态密度为: dE dk dk dZ dE dZ E ?== )(ρ…………………………(1) 考虑在k 空间中,在半径为k 和dk k +的两线段之间所含的状态数为: dk L dk dZ π=?=k 2…………………………(2) 又由于m k E 22 2 = 所以m k dk dE 2 =…………………………(3) 将(2)和(3)式代入(1)式,并考虑到每个状态可容纳2个自旋相反的电子,得该一维金属晶体中自由电子的状态密度为: E m L E 22)( πρ=…………………………(4) (2)由于电子是费米子,服从费米—狄拉克统计,即在平衡时,能量为E 的能级被电子占据的几率为:

金属中的电子气的理论

金属中的电子气的理论 金属中的自由电子并非真正自由,而是要受到金属离子的周期势场的作用,因此一些自由电子理论并不能解释金属的全部性质。由F.布洛赫和L.-N.布里渊确立的单电子能带论解释了金属导电性与绝缘体和半导体的差别(见能带理论,半导体),并能定量计算金属的结合能,在考虑了金属离子的热运动的影响后,在描述金属的导电和导热等输运过程方面均取得了很大成功。金属中自由电子之间有很强的相互作用,在低温下考虑了电子通过晶格推动相互耦合就能很好地解释单电子理论无法解释的超导电性。近年来,研究合金中电子运动规律的合金电子理论也是金属电子论中的重要内容。 一、托马斯-费米近似方法 在相互作用强度很大的情况下,相互作用能在系统能量中占主导地位,相比之下,处于基态的系统的粒子由于受到非常强的相互排斥作用,其运动范围受到了限制,因此,动能就会远小于相互作用能。这时候,哈密顿量中的动能就可以忽略掉,被称为托马斯-费米(Thomas-Fermi)近似。一维定态GP 方程变为 则玻色子的密度分布为 同时玻色子密度分布的边界满足,在外势为简谐势的情况 我们得到凝聚体的半径为 则系统的粒子数为 将上式变换一下,得到化学势μ满足

其中单粒子基态的特征半径为 边界R 满足 化学势u 和边界R 都是随着粒子个数N 和相互作用强度U 1的增加而增加的。 在处理多电子原子问题中,、通常采用Hartree-Fook 近似方法比较好,但是计算比较繁复,工作量大,在电子计算机使用以后,可以帮助人们进行大量的计算,减轻人们的负担,但用电子计算机计算有一个缺点,就是计算机只能进行数值计算,而不能解出一般形式,我们希望能找出一个普遍形式,这样对各种具体问题都能适用。 费米模型认为将金属中电子看作限制在边长为a 的立方体盒子中运动.盒子内部势能为0.盒外势能为无限大,这样通过解定态薛定谔方程,可得出金属中电子的许多性质,如电子能级,电子的最高能量,电子的平均能量,电子气的压强,电子气的能级密度和磁化率,而且费米气体模型在固体理论中和原子核结构上也有很大用处,可以推出原子核的质量公式,跟实验结果比较符合得很好。 对于多电子原子应用如下的近似方法,即托马斯——费米方法,这是一个统计方法.它不是直接解薛定愕方程,可得出一些有用结论,其基本思想是在重原子中把正电荷看作连续分布(背景),电子在背景中运动n,这样处理中性原子运动比较成功。 二、哈特利-福克近似方法 通过绝热近似,把电子运动与离子实的运动分开,但系统的薛定谔方程仍然是一个多体方程。由于电子间存在的库伦相互作用,严格求解这种多电子问题是不可能的。通过哈特利-福克(Hartree-Fock )近似,可以将多电子的薛定谔方程简化为单电子有效势方程。 哈特利波函数将多电子波函数表述为每个独立电子波函数的连乘积形式: ()()()()12n n φφφφ=12r r r r

量子光学与量子信息

量子光学与量子信息 摘要:量子光学是应用辐射的量子理论研究光辐射的产生、相干统计性质、传输、检测以及光与物质相互作用中的基础物物理问题的一门学科。 关键字:量子光学 量子信息 JC 模型 TC 模型 早在1900和1905年,普朗克和爱因斯坦就提出了光量子假说,并成功解释了黑体辐射谱分布与光电效应,确定了光具有波粒二象性的基本物理思想。然而,长期以来由于经典电磁辐射理论能完满地解释绝大多数物理光学实验现象,光的量子理论并未得到系统发展。直到2O 世纪7O 年代以后,随着激光与光电子技术的进步,一系列用经典理论无法解释的非经典光学效应逐步被实验观测,才形成了以量子化光场为基础的量子光学学科领域。 光量子或称光子为基本能量单元的量子化光场遵循量子电动力学基本规律,严格地说只有用QED 理论,才能解释迄今为止所观察到的所有光学现象。量子光学用量子电动力学理论研究光场的量子性和相干性,以及光与原子相互作用的量子力学效应。当前,量子光学中应用性较强的重要研究领域有:光场的量子噪声,光场与物质相互作用中的动量传递、腔量子电动力学等。 在光学与原子物理这门课程的学习中,我们了解到了量子化这个概念。那么,量子光学在科技实验研究中有哪些应用呢? 首先,量子光学的原理和理论基础为: 热辐射 基尔霍夫定律 一. 热辐射 1.热辐射:在一定时间内辐射能量的多少及能量按波长的分布都与物体的温度有关,故称电磁辐射为热辐射(温度辐射); 辐射能(λ,T ),如炉子,酒精灯… 2.平衡热辐射:相同时间内辐射与吸收的能量相等,T 不变 二. 辐出度(辐射出射度,发射本领) 1. 单色辐出度:单位时间内从物体表面单位面积上向各个方向所发射的波长在λλλd ~+范围内辐射能量)T (dE λ和波长间隔λd 的比值 λλλd )T (dE )T (e = 2. 辐出度:单位时间内从物体表面单位面积上向各个方向所发射的各种波长的辐射总能量。

相关主题
文本预览
相关文档 最新文档