当前位置:文档之家› 氟硅改性丙烯酸酯聚合物无皂乳液的制备及应用研究

氟硅改性丙烯酸酯聚合物无皂乳液的制备及应用研究

氟硅改性丙烯酸酯聚合物无皂乳液的制备及应用研究

氟硅改性丙烯酸酯聚合物无皂乳液的制备及应用研究

一、引言

现代科技的快速发展与进步需要高性能的材料来满足各个领域的需求。聚合物乳液作为一种重要的功能性材料,具有良好的乳化稳定性、分散性和可调控性,被广泛应用于涂料、胶粘剂、纺织品和化妆品等领域。然而,传统的聚合物乳液在面临高温、高湿环境时容易发生粘附、流变性变化和脱膜问题,限制了其在一些特殊应用场景下的应用。为了解决这些问题,研究人员对聚合物乳液的改性进行了深入探索,氟硅改性丙烯酸酯聚合物乳液因其独特的性能而备受关注。

二、氟硅改性丙烯酸酯聚合物无皂乳液的制备

1. 原料准备

氟硅改性丙烯酸酯聚合物无皂乳液的制备需要以下原料:丙烯酸酯单体、氟硅改性剂、稳定剂、乳化剂等。

2. 无皂乳化聚合反应

首先将丙烯酸酯单体与氟硅改性剂按一定的配比混合,再加入乳化剂和稳定剂,形成预乳液。然后,将预乳液加入乳化釜中,并进行乳化处理,同时加入适量的引发剂,触发乳化聚合反应。反应进行一段时间后,得到聚合物无皂乳液。

3. 乳液的表征与稳定性测试

通过粒径分析仪对乳液的粒径进行测试,通过荧光显微镜观察乳液的稳定性,并对其进行泌

⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠沉性测试。

三、氟硅改性丙烯酸酯聚合物无皂乳液的应用研究

1. 涂料领域

氟硅改性丙烯酸酯聚合物无皂乳液作为涂料的基础材料,能提供优异的耐候性、耐磨性和耐化学药品侵蚀性能。同时,由于其氟硅改性剂的加入,还可以在表面形成覆盖膜,提供抗粘附性和自清洁性能。

2. 胶粘剂领域

氟硅改性丙烯酸酯聚合物无皂乳液的高接触角、低表面能力使其在胶粘剂领域具有独特的应用价值。通过在乳液中加入纳米氟硅改性剂,可以进一步改善其性能,提高胶粘剂在特定材料表面的粘附性能。

3. 纺织品领域

氟硅改性丙烯酸酯聚合物无皂乳液可用于纺织品的涂层处理,提高纺织品的防水、防油、防污染和耐磨性能。此外,由于其优异的耐温性,还可以用于纺织品的耐高温涂层处理。

四、总结

通过研究可知,氟硅改性丙烯酸酯聚合物无皂乳液在材料科学领域中具有广阔的应用前景。其制备方法简单可行,且所得乳液在涂料、胶粘剂和纺织品等领域中具有出色的性能。未来的研究还可以进一步优化制备工艺、探索乳液的性能调控和开拓更多应用领域,以满足不同领域的需求

氟硅改性丙烯酸酯聚合物无皂乳液具有广泛的应用前景,特别在涂料、胶粘剂和纺织品领域。在涂料领域,该乳液能提供优异的耐候性、耐磨性和耐化学药品侵蚀性能,并且具有抗粘附性和自清洁性能。在胶粘剂领域,其高接触角和低表面能力使其具有独特的应用价值,并且通过添加纳米氟硅改性剂可

以进一步提高其粘附性能。在纺织品领域,该乳液可用于涂层处理,提高纺织品的防水、防油、防污染和耐磨性能,同时还具有耐高温性。总的来说,氟硅改性丙烯酸酯聚合物无皂乳液制备方法简单可行,具有优异的性能,未来仍有进一步优化制备工艺、性能调控和开拓更多应用领域的研究空间

丙烯酸酯乳液胶黏剂配方组成,生产工艺及应用

丙烯酸酯乳液胶黏剂配方组成,生产工艺及应用 导读:本文详细介绍了丙烯酸酯乳液胶黏剂的分类,组成,配方等等,需要注意的是,本文中所列出配方表数据经过修改,如需要更详细的内容,请与我们的技术工程师联系。 1. 背景 丙烯酸乳液型胶粘剂是我国20世纪80年代以来发展最快的一种聚合物乳液胶粘剂,它一般是由丙烯酸酯类和甲基丙烯酸酯类共聚或加入醋酸乙烯酯等其它单体共聚而成。该胶粘剂耐候性、耐水性、耐老化性能特别好,并目具有优良的抗氧化性和很大的断裂仲长率,广泛用于包装、涂料、建筑、纺织以及皮革等行业。 随着人们对环境保护的愈发重视,环境友好型产品越来越受到普遍的关注,乳液型胶粘剂因具有无毒无害、无环境污染、不易燃易爆、生产成本低、使用方便等优点而逐渐成为未来胶粘剂的发展趋势。 禾川化学是一家专业从事精细化学品以及高分子分析、研发的公司,具有丰富的分析研发经验,经过多年的技术积累,可以运用尖端的科学仪器、完善的标准图谱库、强大原材料库,彻底解决众多化工企业生产研发过程中遇到的难题,利用其八大服务优势,最终实现企业产品性能改进及新产品研发。 样品分析检测流程:样品确认—物理表征前处理—大型仪器分析—工程师解谱—分析结果验证—后续技术服务。有任何配方技术难题,可即刻联系禾川化学技术团队,我们将为企业提供一站式配方技术解决方案!

2. 丙烯酸乳液胶黏剂 聚丙烯酸酯是一类具有多种性能的、用途广泛的聚合物,其乳液一般是以丙烯酸甲酯、丙烯酸乙酯或丙烯酸丁酯为主要单体,与甲基丙烯酸酯单体、苯乙烯、丙烯腈等共聚形成乳液。对聚合物的结构或聚合方法加以改进,可使得改性后的丙烯酸酯胶黏剂性能更加优异。 2.1有机硅改性 有机硅树脂具有优异的耐高低温性能和耐水性能,利用有机硅对聚丙烯酸酯类乳液胶粘剂改性成为近年来研究的热点。有机功能烷氧基硅烷作为粘合促进剂和交联剂,广泛用于胶粘剂、密封胶和涂料等领域。有专家研究了一种专用于水性体系的有机硅烷Wz-A在水乳型聚丙烯酸密封胶中的应用,这种水性硅烷可以在不改变产品稳定性的情况下显著提高密封胶的力学性能和粘接性能,Wz-A 的添加量在0.8%-1.6%较为合适。专家们通过乳液聚合法,用羟基硅油与硅烷偶联剂A-151和KH-570对丙烯酸酯进行化学改性,借助硅烷偶联剂中的碳碳双键和硅氧烷结构将羟基硅油与丙烯酸酯连接起来,结果发现,通过KH-570改性后的丙烯酸酯乳液胶黏剂在各项性能上都有明显的提升。由八甲基环四硅氧烷与端基为乙烯基的硅烷偶联剂开环聚合,制得了乙烯基改性有机硅乳液。在反应温度为80℃、催化剂为十二烷基苯磺酸、硅烷偶联剂为A-151时候,制得的核-壳乳液中乙烯基改性有机硅乳液单体转化率高、乳液稳定性好。将该乳液作为种子乳液用于聚丙烯酸酯乳液的改性,可以制得一种柔软性好、色牢度佳的涂料印花胶黏剂。 2.2环氧改性

无皂乳液聚合实验

附二实验: 无皂乳液聚合法合成单分散高分子胶体微球 一.目的和要求 1. 了解高分子和高分子聚合反应基本知识。 2. 掌握无皂乳液聚合反应机理以及单分散高分子微球合成操作。 3. 了解形成稳定的胶体微球体系的机理和zeta 电势等有关知识。 4. 了解高分子微球的基本表征手段、仪器原理及相关操作。 二.前言 1. 高分子化学的基本概念 20世纪20年代是高分子科学诞生的年代,1920年,高分子科学的始祖H. Staudinger(德国)首次提出以共价键联结为核心的高分子概念,并获得1953年度诺贝尔化学奖。 高分子(macromelecular)是一种由许多原子通过共价键连接而形成的分子量很高(104-107,甚至更高)的化合物。一般把相对分子质量高于10000的分子称为高分子,所以高分子又称大分子。由于高分子多是由小分子通过聚合反应而制得的,因此也常被称为聚合物或高聚物,用于聚合的小分子则被称为“单体”。如果把小分子化合物看作“点”分子,那么高分子就像“一条链”或“一串珠子”,这条贯穿于整个分子的链被称为高分子的主链,高分子主链的长径比可以达到103-105,甚至更大。 由于高分子化合物的相对分子质量很大,所以在物理、化学和力学性能上与小分子化合物有很大差异。如高分子化合物的高强度、高弹性、高粘度、力学状态的多重性以及结构的多样性等特点都是其有别于小分子化合物的特征。每个高分子都是一个长链,与小分子化合物相比,其分子间的作用力要大得多,超过了组成大分子的化学键能,所以它不能像一般小分子化合物那样被气化,用蒸馏法加以纯化,这也正是高分子化合物具有各种力学强度,用作材料的内在因素。除了少数天然高分子如蛋白质、DNA等外,高分子化合物的分子量通常是不均一的,高分子化合物实际上是一系列同系物的混合物,这种性质称为“多分散性”。

聚丙烯酸酯乳液聚合与改性优化研究

聚丙烯酸酯乳液聚合与改性优化研究 摘要:聚丙烯酸乳液聚合的整个流程主要为分散、乳胶粒生成、乳胶粒长大以及聚合等环节。本文对聚丙烯酸酯乳液聚合过程进行了分析,对聚丙烯酸酯乳液聚合功能性单体改性于复合改性展开了研究,以供参考。 关键词:聚丙烯酸酯乳液聚合;功能性单体改性;复合改性 1.聚丙烯酸酯乳液聚合 1.1 乳液聚合的过程 聚丙烯酸酯乳液聚合的组成主要分为丙烯酸酯类单体、引发剂、乳化剂以及水(分散介质)。乳化剂中含有亲油的非极性基团和亲水的极性基团,使得丙烯酸酯类单体在水中较均匀地分散,形成小胶束,从而在引发剂的作用下进行自由基聚合,完成乳液聚合。根据时间-转化率的关系,将乳液聚合过程分为四个阶段:分散阶段、乳胶粒生成阶段、乳胶粒长大阶段以及聚合反应完成阶段。 分散阶段也就是预备阶段。在搅拌过程中,乳化剂使聚合单体分布在乳化剂分子稳定的单体液滴内、胶束内以及有着极少量的部分在水相中。在聚合单体、乳化剂和水混合均匀时,便达到了单体在单体珠滴、胶束以及水相之间的动态平衡。 在分散阶段后期,加入引发剂并升高温度,引发剂在水相中生成自由基,自由基先和体系中少量氧或单体中的阻聚剂反应,这个过程称为诱导期。诱导期结束后,自由基引发聚合反应,生成乳胶粒,该过程称为乳胶粒生成阶段,乳胶粒生成的机理包括低聚物成核机理和胶束成核机理。 在乳胶粒长大阶段中,自由基由水相进入乳胶粒,并引发聚合,乳胶粒便不断长大。理论上,聚合体系中的数目以及乳胶粒内的单体浓度不变,单体珠滴中的单体输送到乳胶粒,直到单体珠滴消失,这时反应只能消耗乳胶粒内的单体,

随着单体浓度降低,反应速率不断下降。但是现实中,由于存在体积效应,在乳 胶粒长大阶段后期出现加速现象。 1.2 新型乳液聚合工艺 1.2.1 无皂乳液聚合 无皂乳液聚合过程中完全不加或只加入微量乳化剂,其无残留乳化剂,产物 的耐水性、电学性能、光泽度等较好。无皂乳液聚合主要是将丙烯酸酯类单体自 身的亲水性链段或基团发挥出乳化剂的作用,从而反应稳定进行。无皂乳液聚合 的特点有①避免了乳化剂的过量使用,降低了成本;②制得的乳液的粒径较为均匀,分散性较好。③产物涂膜性能较好,避免了乳化剂残留的影响。 1.2.2 核-壳乳液聚合 核-壳乳液聚合是将乳化剂、引发剂和水加入反应器,采用间歇法或半连续 法加入核单体,聚合形成种子乳液,再加入壳单体继续聚合形成壳层,从而可制 备具有两层结构的聚合物乳胶粒。壳单体的加入方式有间歇法、平衡溶胀法、连 续法、半连续法和预乳化-半连续法。该工艺可根据加料方式或聚合单体的调整,制备出多层结构的聚合物乳胶粒。核-壳乳液聚合的特点为乳液产物的成膜性较好、力学性能以及贮存稳定性。 1.2.3 微乳液聚合 传统乳液珠滴的直径为1-10μm,而微乳液为10-100nm分散相珠滴的热力学 稳定的油-水分散体系。微乳液聚合应加入助乳化剂(大多为极性有机物)。由 于油水比例及微观结构的差异,可将微乳液分为正相水包油微乳液、中间态双连 续相乳液以及反相油包水微乳液,这三种微乳液能够相互转换。该聚合工艺的特 点为所制得的微乳液的粒径很小,分散性、附着性、耐热稳定性和贮存稳定性都 较好。 1.2.4 细乳液聚合

含氟丙烯酸聚合物的制备和表面性能的研究

含氟丙烯酸聚合物的制备和表面性能的研究 摘要人们用各种各样的烃类单体和全氟烷基乙基丙烯酸一起,采用自由基溶液聚合的方法,已制备出一系列新奇的聚合物。采用两种不同的方法把1加入反应堆制得的聚合物备受关注。通过选择合适的反应条件,可以控制聚合物的结构。 产物即含H 2C=C(CH 3 )CO 2 (CH 2 ) 2 (CF 2 )n F的丙烯酸聚合物在固态时显示出很好的表 面活性。表面活性的大小取决于单体1的加入方法。该聚合加工成薄膜可应用于各种各样的表面。当单体1的质量分数在1.5%的水平时,可以形成防水防油的表面。一般而言,水的接触角(前进接触角)是80°-115°,十六烷的接触角(前进接触角)是60°-70°。另外,当采用角度依赖的化学分析用电子能谱法(ESCA)和次级离子质谱(SIMS)深度剖视法研究该聚合物时,我们发现膜中的氟含量曲线出现一个陡峭的峰值。 介绍有机聚合物的膜已经应用于多种材料的涂料上。在这些应用中,当出现粘结问题时,这些膜的表面性能就变得很重要。例如,降低一张膜的表面张力可以形成不润湿的表面。降低一张膜的表面张力用的最多且最成功的方法之一是:在聚合物中嵌入含氟单体形成涂料。氟可以嵌入聚合物主链。目前已经出现了用氟化二醇和氟化醇类制备聚氨酯的例子。人们已经研究了用氟类聚合物和烃类聚合物的混合物来降低膜的表面张力。有好几个报道利用的是热焓驱使链端倾向于在表面富集和氟一起来改变表面张力。用化学方法把氟单体嵌入制得共聚物和把全氟烷基接枝到聚合物上,二者都可以降低表面张力。 但是,之前的研究大多集中在含氟质量分数相对较大的聚合物上,现在的研究将会证明我们不一定要用含大量氟成分的物质来达到降低表面张力的目的。有例可证:把少量以全氟烷基终止的聚乙稀混入聚乙烯中可以降低表面张力,而且目前的体系是可交叉的,在不用处理粘稠溶液或熔体的情况下,可以获得高分子量且耐用的膜。分子的表面活性很大程度上决定了表面张力降低的多少。也可以证明,选择合适的反应条件也可控制聚合物的结构和分子量。膜的表面性质可用接触角测量法,X光照-化学分析用电子能谱法,时间飞行次级离子质谱法(TOF-SIMS)和动态次级离子质谱法(DSIMS)来检测。 结果和讨论 丙烯酸聚合物体系的合成用来制备含有H 2C=C(CH 3 )CO 2 (CH 2 ) 2 (CF 2 )n F的丙烯酸

丙烯酸酯乳液改性方法的研究进展

丙烯酸酯乳液改性方法的研究进展 万凯;张婉容;朱超;张禹;冯波;艾照全 【摘要】The present progresses of acrylate coatings modified by epoxy resin,organic fluorine,organic silicon,polyurethane,nanometer materials etc.were reviewed in this paper,and the development of acrylate modification was also prospected..%综述了环氧树脂、有机氟、有机硅、聚氨酯以及纳米粒子改性丙烯酸酯的研究现状与进展,并对丙烯酸酯改性的发展进行了展望. 【期刊名称】《粘接》 【年(卷),期】2017(000)002 【总页数】4页(P57-60) 【关键词】丙烯酸酯;乳液;改性;研究进展 【作者】万凯;张婉容;朱超;张禹;冯波;艾照全 【作者单位】有机功能分子合成与应用教育部重点实验室,湖北大学化学化工学院,湖北武汉430062;有机功能分子合成与应用教育部重点实验室,湖北大学化学化工学院,湖北武汉430062;有机功能分子合成与应用教育部重点实验室,湖北大学化学化工学院,湖北武汉430062;有机功能分子合成与应用教育部重点实验室,湖北大学化学化工学院,湖北武汉430062;有机功能分子合成与应用教育部重点实验室,湖北大学化学化工学院,湖北武汉430062;有机功能分子合成与应用教育部重点实验室,湖北大学化学化工学院,湖北武汉430062

【正文语种】中文 【中图分类】TQ331.4 丙烯酸酯类共聚物乳液是指由丙烯酸酯类或甲基丙烯酯类与其他乙烯基酯类单体进行乳液聚合所得到的产物[1]。以丙烯酸为主要原料合成的丙烯酸酯树脂不仅具有良好的耐候、耐碱、耐化学品性能和粘接性能,且成本低廉,在建筑物外墙涂料和胶粘剂等方面得到了广泛应用[2]。但丙烯酸酯类共聚物自身也存在一些缺陷,如耐水性较差、热黏冷脆等性质[3],其应用受到了限制。近年来,由于人们对绿色化工的重视程度不断增加以及聚合理论和技术的不断发展与完善,水性丙烯酸酯乳液的改性广受关注。一般来说,从2个方面对丙烯酸酯乳液进行改性:一是通过乳液聚合技术改性;二是通过引入功能单体对其进行改性。已有文献对丙烯酸酯乳液聚合方法及其研究进展作了详尽的介绍[3~7]。本文主要从功能单体改性这一途径进行介绍与展望。 环氧树脂是指在分子中含有2个或2个以上环氧基,以脂肪族、芳香族等为骨架的一类有机化合物[8]。由于环氧基在催化剂的作用下可与丙烯酸酯发生开环酯化反应,反应得到的环氧苯丙乳液(EA)具有环氧树脂和苯丙乳液的双重性能,不仅拥有良好的耐水、耐候和耐化学品性能,且固化膜硬度大、高光泽、热稳定性能优异,但也存在脆性高、柔韧性差等不足。通过引入如有机多元酸、双羟基化合物马来酸、聚乙二醇单酯等柔性组分可以有助于改善环氧树脂固化产物的柔韧性。唐慧敏[9]用已二酸合成的端羧基聚酯分2步对环氧丙烯酸酯进行改性,将产物经紫外光固化成膜后,膜的柔韧性等得到明显改善。 UV固化技术具有快速固化、环保节能等优点,被广泛应用于环氧改性丙烯酸酯涂料、粘合剂等领域。传统UV固化环氧丙烯酸酯在应用于一些复杂三维涂覆时,会出现局部光照不足固化不完全等现象。Chang等[10]以质量比为4:1的环氧丙烯

丙烯酸酯类树脂的合成工艺进展

丙烯酸酯类树脂的合成工艺进展 摘要:对一些丙烯酸酯类树脂的合成工艺进行了简单的介绍,包括复合材料的 制备、微球的制备、含氟改性产品的制备等。 关键词:丙烯酸酯类树脂,合成工艺,进展 自1843年Joseph Redtenbacher 首先发现丙烯酸单体以来,人们一直对这类具有活性的有机化合物不断地从结构与性能上进行探讨,合成各类的丙烯酸树脂。丙烯酸树脂是由丙烯酸酯类和甲基丙烯酸酯类及其它烯属单体共聚制成的树脂,通过选用不同的树脂结构、不同的配方、生产工艺及溶剂组成,可合成不同类型、不同性能和不同应用场合的丙烯酸树脂,丙烯酸树脂根据结构和成膜机理的差异又可分为热塑性丙烯酸树脂和热固性丙烯酸树脂。丙烯酸类树脂的生产方式主要有本体聚合、悬浮聚合、乳液聚合。本文主要综述了近两年来国内外的一些丙烯酸类树脂的合成工艺进展。 1.丙烯酸类树脂的合成工艺 1.1丙烯酸类树脂复合材料的制备 丙烯酸类树脂复合材料是含丙烯酸类树脂的由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观上组成具有新性能的材料。各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料而满足各种不同的要求。互穿网络具有良好的阻尼性能而引起了各地科学家的重视,暨南大学的将笃孝【1】等人以甲基丙烯酸丁酯和聚氧硅烷为主要原料,制备了聚丙烯酸酯/聚氧硅烷互穿网络阻尼材料。并用院子力显微镜对聚丙烯酸酯/聚氧硅烷互穿网络阻尼材料的微相结构观察表明,聚丙烯酸酯/聚氧硅烷互穿网络阻尼材料的微相结构的阻尼性能,有效的互传和一定程度的微相分离,才使材料具有良好的阻尼性能。 原位插层聚合法聚合制备聚合物基无机纳米复合材料是近年来研究最多的。鲍艳【2】等人采用原位插层聚合法成功制备了PMAA/MMT和P (MMA-AL/MMT)两种纳米复合材料。所制备的两种纳米复合材料均为剥离型纳米复合材料,纳米复合材料的热性能较相应的聚合物提高了20℃左右,应用结果表明另种纳米复合材料均具有鞣制性能,其应用性能较显影聚合物有所提高。 1.2丙烯酸类树脂微球的制备 反应性凝胶是一种分子内交联,表面或者内部带有一定火星集团的大分子,由于具有独特的结构和流变性能而广泛应用于生物医药、涂料与软了、、石油开采等方面。微凝胶最常用的制备方法是乳液聚合和溶液聚合。张静【3】等采用疏水性较强的带有长脂肪链的丙烯酸单体进行共聚,利用分散合成聚合法合成了带有不同反应性基团的丙烯酸酯类微凝胶。张静等人还发现当丙烯酸十六酯用量为30mol%~40mol%,三羟甲基丙烷三甲基丙烯酸酯的用量为5mol%时可得到

硅氧烷偶联剂VTES及含氟丙烯酸酯G04改性苯丙乳液的合成及性能研究

硅氧烷偶联剂VTES及含氟丙烯酸酯G04改性苯丙乳液的合 成及性能研究 赵佳树;魏刚;乔宁 【摘要】A modified styrene -acrylate emulsion which can be used at high temperature to impart anti-corrosion resistance has been prepared using triethoxyvinylsilane (VTES) and dodecafluoroheptyl methacrylate (G04). Using methacrylate, butyl aery late, styrene, acrylic acid, VTES and G04 as co-monomers, a stable fluorosiloxane modified styrene - acrylate emulsion was synthesized by a semi-continuous polymerization process. FT-IR spectroscopy was used to characterize the copolymer, and the effects of varying the amounts of VTES and C04 on the water absorption , attachment strength, high temperature performance and anti-corrosion performance of the modified emulsion films were studied. The results showed that the modified emulsion film had excellent mechanical and anti-corrosion properties below 120℃, and the water absorption of the film was reduced to 5% when the amounts of VTES and C04 were 5% and 18% , respectively, of the total amount of co-monomers. Besides, when the amount of alcohol was 5% , the self-condensation of VTES can be inhibited, and the hardness of the emulsion film was improved to 2H with a 3% amount of AA.%为提高苯丙乳液的耐热防腐性能,利用乙烯基三乙氧基硅烷(VTES)和甲基丙烯酸十二氟庚酯(G04)对传统苯丙乳液进行改性.采用半连续乳液聚合工艺,通过甲基丙烯酸甲酯、丙烯酸丁酯、苯乙烯、丙烯酸与VTES和G04的接枝共聚反应,合成了稳定的有机硅氟改性苯丙乳液.通过红外光谱对共聚产物进行了结构表

无皂乳液聚合

无皂乳液聚合的几种制备方法比较及应用 摘要:无皂乳液聚合又称无乳化剂乳液聚合,是一种环保清洁的制备高聚物的 聚合方法。与常规乳液聚合相比,具有许多优点,因此受到越来越多的关注,应用空间和发展前景十分广阔。详细地讨论了几种无皂乳液聚合的制备方法,对其优缺点进行了比较,并根据不同的方法举出一些应用的例子。 关键词:无皂乳液聚合;制备方法;应用 前言 无皂乳液聚合是指在反应过程中完全不加入乳化剂或仅加入微量乳化剂(小于临界胶束浓度CMC)的乳液聚合过程。与常规乳液聚合相比,无皂乳液聚合具有如下特点:(1)避免了由于乳化剂的加入,而带来的对聚合产物电性能、光学性能、表面性能、耐水性及成膜性等的不良影响;(2)不使用乳化剂,降低了产品成本,缩减了乳化剂的后处理工艺;(3)制备出来的乳胶粒具有单分散性,表面“洁净”,粒径比常规乳液聚合的大,可以被制成具有表面化学能的功能颗粒; (4)无皂聚合乳液的稳定性通过离子型引发剂残基、亲水性或离子型共聚单体等在乳胶粒表面形成带电层来实现。 无皂乳液聚合由于体系中不含乳化剂,所以具有许多优异的性能。但是也正是由于缺少乳化剂的保护作用,而使得乳液的稳定性下降,固含量相对较低。因此,开发新型的反应性乳化剂和优化无皂乳液聚合工艺,是无皂乳液聚合面临的首要问题。 1.制备方法 1.1制备方法的选择原因 无皂乳液聚合的制备方法可根据其单体种类与性质以及反应体系来选择,并可以根据其机理,反应动力学、热力学以及影响无皂乳液聚合稳定性的因素来判断制备方法的优缺点。 其中无皂乳液的稳定性是在选择制备方法时的必要考虑因素。在无皂乳液聚合过程中,生成的表面活性物质、聚合物的结构因素以及静电因素都可以不同程度的影响无皂乳液的稳定性。根据影响稳定性的不同因素可知,要增强粒子稳定性。原则上应增强粒子表面的电荷和亲水性,使Gibbs自由能充分降低。可以得出增强稳定性的方法如下: (1)以聚(醋酸乙烯酯/丙烯酸钠)两亲聚台物为乳化剂。制备了(质量分数)为50%~55%的高固含量无皂乳液。该乳化剂由亲水基和亲油基共同组成,大大提高了乳化效果。两亲聚合物形成的胶束和乳胶粒之间由于静电斥力作用的加强,两者不互相粘结,提高了乳液的稳定性。 (2)丙烯酸丁酯(BA)之类的极性单体,随着含量的增加,乳胶聚合物的极性增大,微球表面与水相间的相互作用增强,表面能降低。乳胶的稳定性增强。

无皂乳液聚合理论及应用研究进展

无皂乳液聚合理论及应用研究进展 无皂乳液聚合是在传统乳液聚合的基础上发展起来的一项聚合反应新技术,相比传统乳液聚合具有很多优点,因此广受关注。介绍了无皂乳液聚合的反应机理(包括成核机理、稳定机理)和反应动力学,无皂乳液的制备方法,并对无皂乳液聚合的应用和发展前景做了展望。 标签:无皂乳液;机理;稳定性;应用 乳液聚合是高分子合成过程中常用的一种合成方法,它以水作分散剂,在乳化剂的作用下并借助于机械搅拌,使单体在水中分散成乳状液,由引发剂引发而进行的聚合反应。由于传统的乳液聚合中会使用乳化剂,反应后乳化剂会对产品性能有一定影响,而且乳化剂价格昂贵,对环境造成一定污染。因此,人们开始致力于无皂乳液聚合技术。 无皂乳液聚合是指不含乳化剂或仅含少量乳化剂(其浓度小于临界胶束浓度CMC)的乳液聚合,但少量乳化剂所起的作用与传统的乳液聚合完全不同。最早的无皂型乳液聚合是Gee,Davis和Melvile于1939年进行的丁二烯乳液聚合。由于无皂乳液聚合环保,并且可以赋予乳液诸多优异的性能而备受关注,成为近年迅速发展的一项聚合反应新技术[1]。与传统乳液聚合方法相比无皂乳液聚合具有以下突出优点:(1)传统乳液聚合中的乳化剂会被带入到最终产品中去,其纯化工艺非常复杂,因此无皂乳液可以免去去除乳化剂的后处理,产品可以直接应用;(2)无皂乳液聚合由于不含乳化剂,所制备的乳胶粒子表面比较洁净,从而避免了乳化剂对聚合物产品光学性、电性能、耐水性及成膜性等的不良影响;(3)无乳化剂乳液聚合所制备的聚合物微球具有单分散性,微球尺寸较常规乳液聚合的大,还可得到具有一定表面化学性质的功能性颗粒。 1 无皂乳液聚合机理 1.1 无皂乳液聚合的成核机理 无皂乳液聚合体系的粒子密度、粒径大小与成核机理密切相关。自1965年Matsumoto和Ochi在完全不含乳化剂的条件下,合成了具有单分散性乳胶粒粒径乳液以来,人们便对无乳化剂乳液聚合的机理进行了大量广泛深入的研究[2],提出了多种无皂乳液聚合成核机理,普遍为人们所接受的为“均相凝聚成核机理”和“齐聚物胶束成核机理”,但是现有的任何一种成核机理均难以描述所有单体粒子成核的机理。 1.1.1 均相凝聚成核机理 一般认为均相凝聚成核机理适用于极性单体对于非极性单体的成核机理,目前争议较多。均相凝聚成核机理是1969年由Fitch等人首先提出的,而后Goodwin Hansen和Vgelstad以及Feeny等人对这一机理进行了完善和充实。该机理认为

无皂乳液聚合

无皂乳液聚合的研究进展 摘要 本文阐述了无皂乳液聚合的反应机理(包括成核成粒机理和核增长机理)和反应动力学,以及影响其稳定性的因素和增强稳定性的方法。着重介绍了无皂乳液的聚合方法,包括引发剂碎片法、水溶性单体共聚法、反应性乳化剂共聚法、超声无皂乳液聚合和加入其他添加剂的聚合方法。并结合无皂乳液聚合的应用对其发展趋势作了展望。 关键词:无皂乳液聚合;反应机理;聚合方法;稳定性;应用

1 前言 无皂乳液聚合是指完全不加乳化剂或乳化剂用量小于临界胶束浓度的乳液 聚合。由于在反应过程中不含乳化剂或乳化剂浓度很低,和传统乳液聚合相比,无皂乳液聚合产物具有以下特点:1)不使用乳化剂降低了产品成本,同时在某些应用场合也免去了去除乳化剂的后处理;2)制得的乳胶粒表面洁净,避免了应用过程中由于乳化剂的存在对聚合物产品电性能、光学性质、表面性质、耐 水性及成膜性等的不良影响;3)制得的乳胶粒子的粒径单分散性好。 最早的无皂乳液聚合是由Gee,Davis和Melvile[1]于1939年在乳化剂浓度小 于CMC条件下进行的丁二烯乳液聚合。1960年Matsumoto和Ochi[2]在完全不含乳化剂的条件下,合成了聚苯乙烯、聚甲基丙烯甲酯及聚醋酸乙烯酯乳液,这些 乳胶粒具有单分散性粒度。此后相继出现了许多有关无皂乳液聚合研究的报道。目前对无皂乳液聚合的研究居于领先地位的是美、日等国,我国对此的研究起 步较晚,但鉴于对它的重要性的认识,进入90年代以来,特别是近年来,国内 已有不少研究机构和学者开始从事这方面的研究工作,如浙江大学、广州市化 学工业研究所、南开大学、天津大学、中国科学院等,并取得了不少重要的成果。 2 无皂乳液聚合的理论研究 2.1无皂乳液聚合的反应机理 2.1.1 成核机理 反应机理包括乳胶粒子成核与增长机理。胶粒的性质很大程度上取决于成 核机理,乳液体系的粒子密度(Np)、粒径大小(Dp)与成核机理密切相关。传统 乳液聚合是按胶束成核机理进行反应、成核的,在反应过程中体系靠高浓度的 乳化剂起稳定作用。无皂乳液聚合由于完全不含或含有微量乳化剂,因此其成 核与稳定机理不同于传统乳液聚合。自70年代以来人们对无皂乳液聚合成核与 稳定机理进行了深入的研究。目前普遍接受的成核机理可归纳为均相成核机理 和齐聚物胶束成核机理。

含氟硅聚合物的合成

含氟硅聚合物的合成 目前合成氟硅聚合物的常用含氟单体主要有(甲基)丙烯酸全氟烷基酯类、氟烷基乙烯基醚类和氟烯烃等单体。含硅化合物主要有含硅烷基丙烯酸酯类、乙烯基硅烷类、环硅氧烷类等单体;聚烷基氢硅氧烷聚合物或大分子。合成含氟硅聚合物的思路一般是: (1)分别选择合适的含氟单体、含硅单体和其它丙烯酸酯类或其它乙烯类单体共聚; (2)含氟单体与聚烷基氢硅氧烷聚合物或大分子聚合; (3)含氟硅单体均聚; (4)含氟硅单体与其它硅氧烷或丙烯酸酯类共聚。 上述思路大部分通过自由基聚合,采用乳液聚合、溶液聚合、本体聚合等传统聚合方法实施,可以达到引入碳氟键(C-F)不多却具较好性能的目的。所用引发剂大多数是水溶性引发剂,如过硫酸铵((NH3)2S2O8)、过硫酸钾(K2S2O8)、过硫酸钠(Na2S2O8)和过硫酸钠-亚硫酸氢钠(Na2S2O8-NaHSO3);也可用油溶性引发剂,如偶氮二异丁腈(AIBN)、过氧化二苯甲酰(BPO);或用偶氮大分子作为引发剂。除自由基聚合以外,也可通过氢化硅烷化反应来制备含氟硅聚合物,即由SiH加到不饱和双键上得到。 1.1 乳液聚合 乳液聚合法是制备氟硅聚合物乳液的常见方法。徐芸莉等以八甲基环四硅氧烷(D4)、乙烯基双封头剂、三氟丙基环三硅氧烷合成氟硅预聚体;以有机硅改性聚乙烯醇类乳化剂,与聚氧乙烯基醚类非离子乳化剂和烷基苯基磺酸盐类阴离子型乳化剂配成复合乳化剂;将预聚体作为丙烯酸酯的改性单体,从而研制出具有良好性价比的新型聚合物乳液。 1.2 溶液聚合 Kim等在有链转移剂CH3(CH2)11SH(DT)的条件下,于甲基乙基酮(MEK)溶剂中,将全氟烷基丙烯酸酯(FA)分别与含硅单体CH2=CHSi(OCH3)3(VTMS)、CH2 =CHSi(OC2H5)3(VTES)、CH2=C(CH3)CO2(CH2)3Si(OSi(CH3)3)3(SiMA)共聚制得无规共聚物,并比较了它们的分子量和表面自由能(表1.1)。 表1.1 氟硅聚合物的表面自由能

无皂乳液聚合研究论文

无皂乳液聚合研究论文 •相关推荐 无皂乳液聚合研究论文 毕业论文 题目 CTFE、羟丁基乙烯基醚、 丙烯酸无皂乳液聚合研究 学院化学化工学院 专业化学工程与工艺 班级 学生 学号 指导教师 二〇一七年五月四日 摘要 无皂乳液聚合是一种较为新颖的乳液聚合技术。含氟聚合物的无皂乳液聚合是以水为分散介质的,因此避免了有机溶剂涂料中的有机溶剂对环境的污染和对人类的危害,而且耐腐蚀性较强。水性涂料中的水不会造成环境污染等问题,而且生产成本也不高,所以水基涂料是环保性涂料发展的很重要方向。 本论文分四个部分。第一部分,介绍了无皂乳液聚合研究进展,主要讨论了无皂乳液聚合的成核机理、稳定机理、增长机理,影响无皂乳液聚合稳定性的因素。第二部分,主要是实验过程,系统的研究了单体、乳化剂和引发剂的选择及配比以及聚合温度、聚合时间对其单体总转化率、乳液性状、粒径及稳定性等主要性能的影响,通过设计对比试验找出反应的最佳配比。第三部分,主要是对试验结果的讨论和分析,确定最佳的反应温度、时间和单体配比、乳化剂与引发剂的用量,对聚合物产品的表征和性能的测定。第四部分,得出本次研究的结论。 关键词:无皂乳液聚合、CTFE、羟丁基乙烯基醚、固含量、粒径。

ABSTRACT Soap-free emulsion polymerization is novel new technology. Fluoropolymer-free emulsion with water as the dispersion medium, to avoid organic solvents in the organic solvent coating environmental pollution and harm to humans, but relatively strong corrosion resistance. Water-based paint will not bring the water pollution problems, and cost of production is not high, so water-based paint is the development of environmentally friendly coatings is very important direction. The thesis is divided into four parts. The first part, introduced free emulsion polymerization progress, mainly discussed the soap-free emulsion polymerization nucleation mechanism, stability mechanism, growth mechanism, influencing factors in the stability of emulsion polymerization. The second part, an experimental process, the system of the monomer, emulsifier and initiator of the selection and ratio and polymerization temperature, polymerization time on the total conversion rate of monomer, emulsion characteristics, particle size and stability of other major performance, by designing tests to find the optimum contrast ratio. The third part, mainly for the discussion and analysis of test results to determine the optimum reaction temperature, time and monomer ratio, the amount of emulsifier and initiator, the polymer product characterization and determination of properties. The fourth part, the conclusions drawn in this study. Key words: emulsion polymerization, CTFE, hydroxyl butyl vinyl ether, solid content, particle size. 目录 摘 要 .......................................................................................................................... ...... I

含氟硅丙烯酸酯乳液的合成及拒水性能分析

含氟硅丙烯酸酯乳液的合成及拒水性能分析 李智斌;樊增禄;毛宁涛;李庆;蔡信彬 【摘要】为提高纯棉织物的拒水性,以丙烯酸丁酯(B A )、甲基丙烯酸十二氟庚酯(G‐04)和乙烯基三乙氧基硅烷(KH‐151)作为反应单体,在阴/非复合乳化剂和引发剂过硫酸钾(KPS)作用下,采用乳液聚合的方法制备含氟硅丙烯酸酯乳液.用红外光谱(FT‐IR)对含氟硅丙烯酸酯乳液主组分的结构进行表征,并考察其对棉织物的拒水性能.通过探讨不同合成工艺参数对含氟硅丙烯酸酯乳液的拒水性能的影响,确定合成的含氟硅丙烯酸酯乳液的最佳原料配比.将制备的乳液对纯棉织物进行拒水整理,可明显改善织物的拒水性能,整理后纯棉织物对水的接触角达到126.8°,静水压达到1.45kPa ,表现出良好的拒水效果.%In order to improve the properties of water repellency for cotton fabrics ,butyl acry‐late(BA),dodecafluoroheptyl methacrylate(G‐04) and triethoxyvinylsilane(KH‐151) were used as monomers to synthesize pololyacrylate latex containing ,fluorine and silicone ,by adop‐ting emulsion polymerization technique .K2S2O8 (KPS) and nionic/nonionic surfactants were employed as water soluble initiator and mixed emulsifier ,respectively .Structure information of polyacrylate latex containing fluorine and sil icone was characterized by Fourier Transform In‐frared Spectrometer(FT‐IR) ,and the water repellent property of cotton fabric was investiga‐ted .The optimum raw material ratio of polyacrylate latex containing fluorine and silicone was set by the investigation of the influence of processing parameter on w ater repellency .T he trea‐ted cotton fabric exhibits good water repellency property ,the water contact

氟硅改性丙烯酸酯聚合物无皂乳液的制备及应用研究

氟硅改性丙烯酸酯聚合物无皂乳液的制备及应用研究 氟硅改性丙烯酸酯聚合物无皂乳液的制备及应用研究 一、引言 现代科技的快速发展与进步需要高性能的材料来满足各个领域的需求。聚合物乳液作为一种重要的功能性材料,具有良好的乳化稳定性、分散性和可调控性,被广泛应用于涂料、胶粘剂、纺织品和化妆品等领域。然而,传统的聚合物乳液在面临高温、高湿环境时容易发生粘附、流变性变化和脱膜问题,限制了其在一些特殊应用场景下的应用。为了解决这些问题,研究人员对聚合物乳液的改性进行了深入探索,氟硅改性丙烯酸酯聚合物乳液因其独特的性能而备受关注。 二、氟硅改性丙烯酸酯聚合物无皂乳液的制备 1. 原料准备 氟硅改性丙烯酸酯聚合物无皂乳液的制备需要以下原料:丙烯酸酯单体、氟硅改性剂、稳定剂、乳化剂等。 2. 无皂乳化聚合反应 首先将丙烯酸酯单体与氟硅改性剂按一定的配比混合,再加入乳化剂和稳定剂,形成预乳液。然后,将预乳液加入乳化釜中,并进行乳化处理,同时加入适量的引发剂,触发乳化聚合反应。反应进行一段时间后,得到聚合物无皂乳液。 3. 乳液的表征与稳定性测试 通过粒径分析仪对乳液的粒径进行测试,通过荧光显微镜观察乳液的稳定性,并对其进行泌 ⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠沉性测试。

三、氟硅改性丙烯酸酯聚合物无皂乳液的应用研究 1. 涂料领域 氟硅改性丙烯酸酯聚合物无皂乳液作为涂料的基础材料,能提供优异的耐候性、耐磨性和耐化学药品侵蚀性能。同时,由于其氟硅改性剂的加入,还可以在表面形成覆盖膜,提供抗粘附性和自清洁性能。 2. 胶粘剂领域 氟硅改性丙烯酸酯聚合物无皂乳液的高接触角、低表面能力使其在胶粘剂领域具有独特的应用价值。通过在乳液中加入纳米氟硅改性剂,可以进一步改善其性能,提高胶粘剂在特定材料表面的粘附性能。 3. 纺织品领域 氟硅改性丙烯酸酯聚合物无皂乳液可用于纺织品的涂层处理,提高纺织品的防水、防油、防污染和耐磨性能。此外,由于其优异的耐温性,还可以用于纺织品的耐高温涂层处理。 四、总结 通过研究可知,氟硅改性丙烯酸酯聚合物无皂乳液在材料科学领域中具有广阔的应用前景。其制备方法简单可行,且所得乳液在涂料、胶粘剂和纺织品等领域中具有出色的性能。未来的研究还可以进一步优化制备工艺、探索乳液的性能调控和开拓更多应用领域,以满足不同领域的需求 氟硅改性丙烯酸酯聚合物无皂乳液具有广泛的应用前景,特别在涂料、胶粘剂和纺织品领域。在涂料领域,该乳液能提供优异的耐候性、耐磨性和耐化学药品侵蚀性能,并且具有抗粘附性和自清洁性能。在胶粘剂领域,其高接触角和低表面能力使其具有独特的应用价值,并且通过添加纳米氟硅改性剂可

纳米二氧化硅改性硅丙无皂乳液的制备方法

(19)中华人民共和国国家知识产权局 (12)发明专利说明书 (10)申请公布号 CN102020817B (43)申请公布日2011.12.28(21)申请号CN201010540499.7 (22)申请日2010.11.11 (71)申请人陕西科技大学 地址710021 陕西省西安市未央区大学园1号 (72)发明人周建华;张琳;马建中 (74)专利代理机构西安通大专利代理有限责任公司 代理人陆万寿 (51)Int.CI 权利要求说明书说明书幅图 (54)发明名称 纳米二氧化硅改性硅丙无皂乳液的制备方法 (57)摘要 本发明涉及一种纳米二氧化硅改性硅 丙无皂乳液的制备方法。用具有反应活性和 表面活性剂性质的聚丙烯酸-b-聚丙烯酸丁酯 (PAA-b-PBA)两亲性嵌段共聚物替代常规乳化 剂及反应型乳化剂,首先使丙烯酸酯类单 体、乙烯基硅油和含双键烷氧基硅烷进行无 皂乳液聚合,然后加入正硅酸乙酯发生溶胶- 凝胶反应,制得有机硅及纳米二氧化硅改性 丙烯酸树脂无皂乳液,适合在皮革、纺织、 涂料、造纸、粘合剂等领域应用。采用本发 明可完全消除小分子乳化剂对丙烯酸树脂乳

液的不利影响,同时降低了采用反应型乳化 剂制备无皂乳液的成本,将有机硅和纳米 SiO 法律状态 法律状态公告日法律状态信息法律状态 2011-04-20公开公开 2011-04-20公开公开 2011-06-08实质审查的生效实质审查的生效 2011-06-08实质审查的生效实质审查的生效 2011-12-28授权授权 2011-12-28授权授权 2018-11-02专利权的终止专利权的终止

权利要求说明书 纳米二氧化硅改性硅丙无皂乳液的制备方法的权利要求说明书内容是....请下载后查看

含氟丙烯酸酯乳液的合成工艺研究

含氟丙烯酸酯乳液的合成工艺研究 张聪;李金瑞;闫锋;张树峰;谭鹏林 【摘要】研究了工艺条件对含氟改性丙烯酸酯乳液的单体转化率的影响并优选出制备该改性乳液的最优方案。利用红外(FTIR)对涂膜进行了表征。结果表明,w (复合乳化剂)=4%,w(引发剂)=0.6%,w(有机氟)=6%,n(BA)/n (MMA)=46︰51,聚合温度为80℃时单体转化率最高,稳定性最好,乳胶膜疏水性好,具有较好的综合性能。%Influences of process conditions on the monomer conversion rate of fluorine-containing acrylate emulsion were studied, the optimum preparation conditions were determined. The coating film was characterized by infrared spectroscopy(FTIR).The result shows that when emulsifier is 4%, initiator is 0.6%, organic fluorine is 6%, n(BA)/n (MMA)=46︰51,and temperature is 80 ℃,the conversion rate of monomer is the highest, and the membrane shows excellent hydrophobicity. 【期刊名称】《当代化工》 【年(卷),期】2014(000)001 【总页数】4页(P17-20) 【关键词】丙烯酸酯;乳液;FTIR;有机氟 【作者】张聪;李金瑞;闫锋;张树峰;谭鹏林

相关主题
文本预览
相关文档 最新文档