当前位置:文档之家› 植物凝集素抗虫性研究

植物凝集素抗虫性研究

植物凝集素抗虫性研究
植物凝集素抗虫性研究

龙源期刊网 https://www.doczj.com/doc/fb1657565.html,

植物凝集素抗虫性研究

作者:马琛徐涛

来源:《现代园艺·综合版》2017年第03期

摘要:在复杂的有机化合物活性蛋白中,植物凝聚素是较为高特异性的糖结合活性蛋白之一,其蛋白质通过氨基酸的相互作用形成的肽链,具有单糖和寡糖特性的结构功能。植物凝聚素存在于植物和微生物之间,能够防御原茵对植物的侵害,广泛应用于各大行业中,尤其是农业和医学业。本文主要根据植物凝集素的定义与来源背景,通过对其分类、结构、功能、抗虫机制、弊端等进一步分析,并提出植物凝聚素在抗虫方面的应用前景。

关键词:植物凝集素;糖结合特异性;抗虫性;应用前景

1植物凝集素的定义与发现

凝集素是一类广泛分布于动物、植物和微生物中的非免疫来源的糖结合蛋白,其结构中至少含有一个非催化结构域能可逆地结合特异性糖类或糖蛋白、糖脂表面糖基,而不改变糖类的结构。19世纪末,Still-mark在蓖麻(Ricinus communis L.)籽的研究中,发现了这类能够起到吸聚人体或其他动物红细胞作用的因子,这是人类最早发现植物凝集素的存在。随后各种植物凝集素被分离纯化出来,而对凝集素的研究也在不断深入。

2植物凝集素糖结合特异性

植物凝集素区别于其他植物蛋白的标志是具有特异性糖结合活性,其结构中至少含有一个非催化结构域,以确保其能选择性识别并与可逆结合特定的游离单糖或糖蛋白、糖脂中的糖基。在生物体中,糖蛋白一般起信号传递或转换作用,凝集素作为一类糖结合蛋白,具有凭借特异性识别并结合糖链末端的糖基团,并引发下游一系列生化信号级联反应的作用和功能。凝集素的很多生物学方面的作用都和其特异性的糖结合能力有着较大的关系。研究表明,凝集素的糖结合能力在凝集素进入靶位,与受体结合进而产生各种生物学效应的这一整套过程中起着举足轻重的作用。而凝集素和糖的结合是由凝集素分子中糖结合结构域决定的,与凝集素分子中共价结合的糖类无关。糖结合结构域的形状、大小、配体糖的结构和糖决定簇在糖链中所处的位置等因素都会对凝集素与糖分子的结合产生某种程度的影响。由于糖结合结构域的保守性,植物凝集素通常只会同一种单糖或寡聚糖结合,对配体糖分子中各个碳原子上的羟基、结合糖链上糖分子的位置以及糖苷链的类型都有专一性。凝集素糖的这种专一性可以利用糖抑制实验进行检验。

3植物抗虫凝集素的抗虫性机制

一般情况下,对鞘翅目、双翅目以及同翅目等昆虫而言,植物凝集素有着巨毒。除此之外,在植食性昆虫的消化道表皮膜表面有着很多的糖蛋白,不仅如此,它上面还有很多的凝集

植物糖生物学研究进展

植物学报 Chinese Bulletin of Botany 2010, 45 (5): 521–529, https://www.doczj.com/doc/fb1657565.html, doi: 10.3969/j.issn.1674-3466.2010.05.001 —————————————————— 收稿日期: 2010-01-18; 接受日期: 2010-03-23 基金项目: 863计划(No.2006AA10A213, No.2007AA091601)和中国科学院知识创新工程重要方向项目(No. KSCX2-YW-G-041) * 通讯作者。E-mail: zxm@https://www.doczj.com/doc/fb1657565.html,; dyguang@https://www.doczj.com/doc/fb1657565.html, 植物糖生物学研究进展 尹恒, 王文霞, 赵小明*, 杜昱光* 中国科学院大连化学物理研究所辽宁省碳水化合物重点实验室, 大连 116023 摘要 自1988年糖生物学概念提出以来, 国内外科学家在动物、微生物领域取得了大量的研究成果, 但植物糖生物学的研究进展较慢, 目前少见系统的专著或综述。该文围绕植物正常生长时糖信号、逆境时糖信号、糖蛋白及其糖链、重要糖基转移酶及植物凝集素等植物糖生物学的主要问题, 全面阐述植物糖生物学的各个研究分支, 并介绍各领域的最新研究进展。提出了植物糖生物学的概念, 并将其定义为研究植物与糖类互作机制及植物体内糖(糖链与糖分子)结构及生物学功能的科学。 关键词 糖蛋白, 糖基转移酶, 凝集素, 植物糖生物学, 糖信号 尹恒, 王文霞, 赵小明, 杜昱光 (2010). 植物糖生物学研究进展. 植物学报 45, 521–529. 糖类是生物体的重要组成成分, 在自然界中分布广泛, 含量丰富。但直到20世纪上半叶, 糖类仍被视为是缺乏生物特异性的一类惰性化合物, 只是作为代谢能量来源或充当结构保护材料(如植物细胞壁和昆虫的外壳), 在生物体内功能较少。由于糖类物质结构复杂、糖链分析技术缺乏, 科学家们对其研究关注不多, 使得糖类的研究远远落后于另2种生物大分子 ——核酸和蛋白质。 20世纪70年代以来, 随着糖链解析技术水平的提高以及分子生物学的发展, 尤其是人、拟南芥(Arabidopsis thaliana )等模式生物基因组测序的完成, 围绕糖类物质的研究工作日渐增多。越来越多的证据表明, 糖类物质全面参与了生物的生殖发育、生长、应激等过程, 是很多生理和病理过程中分子识别的决定因素。最初, 这些围绕糖的研究工作被认为是糖化学的一个分支, 但很快其中大量的生物学工作远远超出了糖化学的范畴, 因此科学家们提出了糖生物化学的概念, 而随着研究内容的进一步深入, 糖生物化学也不能完全涵盖糖在生物领域的最新研究进展。1988年, 生化领域的著名杂志《生物化学年评》发表了英国牛津大学Rademacher 等人题为“糖生物学(Glycobiology)”的一篇综述文章(Rademacher et al., 1988), 标志着糖生物学这一学科的正式诞生。此后, 围绕着糖链结构及糖的生物学功能, 科学家们在糖链与疾病的关系、天然产物中糖的分离提纯以及功能糖的制备与应用等方面进行了大量的工作, 取得了一定进展。2001年, Science 杂志汇编了Hurtley 等人的7篇综述和6篇简介, 以《灰姑娘的马车来了》为题编辑了一期“糖和糖生物学”专辑, 对糖生物学最新的研究成果及前景进行了综述和展望, 从而将糖生物学的研究推向了一个新的高度(Hurtley et al., 2001)。2006年, Nature 杂志也推出了糖化学与糖生物学的专辑, 全面介绍了糖生物学领域的研究进展。我国糖生物学的开展与国际接轨较快, 1995年金城等人将糖生物学概念引入中国(金城和张树政, 1995), 此后, 我国科学家在糖生物合成和糖链功能解析等领域取得了一定进展。 广义糖生物学的含义是: 研究自然界中广泛分布的糖(糖链或聚糖)的结构、生物合成和生物学意义。但有关糖类结构和生物合成的研究也是已有学科糖化学和糖生物化学的主要研究内容之一, 所以糖生物学研究和讨论的对象更多地聚焦在一些重要的功能糖、生物体内糖缀合物的生物学功能上。实际上, 糖生物学的研究焦点是糖类和其它分子的关系, 有一种观点认为, 蛋白质和糖类的相互作用是糖生物学的基础(王克夷, 2009)。目前糖生物学的工作多围绕动物、 ·特邀综述·

植物细胞产酶的研究进展

植物细胞培养产酶的研究进展 王鑫 (吉林师范大学生命科学学院四平136000) 指导教师: 杨丽萍 摘要:随着植物细胞培养技术的迅速发展,利用植物细胞培养技术生产天然产物的 技术也取得了新的进展。其中,酶是植物细胞培养产生次生代谢产物中的主要产物 之一。本文重点介绍了植物细胞培养产酶的方法和提高酶产量的有效措施,包括植 物培养细胞的技术方法、生产过程中的条件控制、提高酶产量的措施、产生酶的种 类、以及该技术未来的应用和前景。 关键词:植物;细胞培养;酶 Research progress of enzyme production obtained by plant cell culture Wang Xin (College of life science,Jilin Normal University,S iping 136000, China) Instructor: Y ang Liping Abstract:The natural production obtained by using of plant cell culture is progressing steadily along with the rapid development of plant cell culture technology. We can get many secondary metabolites by plant cell culture,including enzymes production. This article focuses on plant cell culture methods to get enzyme production and the effective measures to improve the enzyme production, including the plant cultured cells technology and methods, the conditions of control in the production process, the measures to improve enzyme production, as well as applications and prospects of the technology in the future. Keywords:plant; cell culture; Enzyme 植物细胞培养技术起源于本世纪初,从80年代起就迅速发展起来,并且拥有非常广阔的前景。目前,植物细胞培养主要有两种类型,包括单倍体细胞培养,原生质体培养[1]。植物细胞培养具有很多优越性,它不受环境,以及气候条件的限制,节约了生产空间,增值速度也要比整体植株栽培快很多[2]。植物细胞培养技术主要应用在三个领域,其中就包括有用物质的生产,因为在植物细胞生长过程中会产生丰富的代

《生长素的生理作用》教学设计

《生长素的生理作用》教学设计 一、教学分析 1、教材分析 《生长素的生理作用》是人教版必修3《稳态与环境》第3章的第2节,是第1节《植物生长素的发现》的一个延伸和拓展,阐述生长素生理作用及生产实践应用的关键一节,也为第3节的学习做了知识储备。 本节课通过对数据、曲线、图形等材料的分析,介绍生长素作用的两重性,引导学生对生产、生活中的现象及问题的思考和分析,加深对生长素的生理作用特点的了解,把理论和实际相结合,树立学以致用的思想。 同时,本节的能力目标也在“探索生长素类似物促进插条生根的最适浓度”的这一探究活动得到体现,此项探究活动能够训练学生实验设计及得出结论时逻辑上的严密性,是体验科学研究的一般过程、领悟预实验意义的良好载体。合理有序地组织好此探究活动,对于进一步发展学生的科学探究能力,并将科学发现在生产实践中进行应用,有着重要意义。 2、学情分析 (1)经过上一节的学习,学生已了解了什么是植物激素,并对植物产生向光性的原因以及生长素的产生、极性运输和分布特点有了相应的知识准备。 (2)高一的学生的学习兴趣浓厚、思维较活跃。在初中阶段已初步了解过探究实验的一般过程,并在必修一的学习中系统的学习过实验设计的方法和原则,具有一定的实验设计、分析能力。但对于探究的目的性、过程和结论形成缺乏系统的思考,因此在探究实验设计的过程中应加强引导,细化各步骤的问题,做好知识的铺垫。 二、设计思路 由于生长素与生产实践联系紧密,学生对此有一定的感性认识,比较容易建立生长素生理作用两重性与其浓度之间的关系。通过分析坐标曲线、教师呈现图片和实物等教学手段,学生掌握课程标准中的本节内容标准“概述植物生长素的作用”并不难。 较为复杂的是本节教学难点“探索生长素类似物促进插条生根的最适浓度”探究活动的处理。由于该项探究活动跨越周期较长,材料、试剂不同也容易导致实验结果差异大,同时对学生探究能力要求相对较高,在1课时内无法完成。在设计本节课时,事先组织部分学生进行“生长素类似物浓度对插条生根的影响”的实验。通过实验的照片和数据记录,将其作为探讨生长素作用的两重性情景创设的材料,使学生对生长素的两重性有了直观印象,同时也为课堂探究奠定基础。同时,将课堂上的探究目标确立为对实验原理、方法的探究,让学生们在问题引导下积极思考,在合作讨论中有效学习,在整个探究性学习中提高能力。

植物凝集素提取工艺

植物血凝素也称为植物凝集素(PHA),可自制也可购自商品。自制的方法常用生理盐水提取法。 (A)干品制备法(1)选广东鸡子豆10g,用蒸馏水冲洗,置培养皿内用75%酒精一次性浸洗,倒掉酒精留间隙置37℃。恒温箱内24-48小时;(2)在无菌条件下研碎鸡子豆,加生理盐水30ml,摇匀后放入4℃冰箱24小时,第二天再加生理盐水70ml,再置4℃冰箱内24小时。每8-12小时摇荡一次。(也可一次 (3)无菌条件下移入10-50ml离心管内,3000-4000rpm30性加100ml生理盐水); 分钟。在无菌箱内把上清液分装于10ml小瓶,置冰箱冷冻层备用;(4)效价:外周血染色体制备每100ml培养基加PHA约2ml。注:若整个过程未在无菌条件下进行,分装时用G5玻砂漏斗除菌即可。 (B)鲜品制备法:(1)选择完整无破皮鲜菜豆20g,用75%酒精浸泡10分钟;(2)在净化工作中用无菌盐水或蒸馏水漂洗二次,然后置无菌乳钵中捣成糊状,用100ml无菌盐水浸泡封口;(3)移入4℃冰箱中置24小时,中间摇动数次,次日3000rpm30分钟,在无菌情况下分装上清液于10ml小瓶内,置冰箱冷冻层备用。(4)效价:正式使用前先用一定量作效价测定,按效价使用。 青豌豆的.提取:取青豌豆100克,加含0.15M氯化钠的0.01M pH7.0磷酸缓冲液200ml浸泡过夜,经膨胀后用组织捣碎机捣碎,倒入布袋中压榨出水提液,在沉渣中再力0入磷酸缓冲液100ml搅拌,浸泡1时,压榨出水提液,合并水提液,量出总体积。加0.01%叠氮钠防腐。 2.蛋白质沉淀:边搅边加入固体硫酸铵达80%饱和(每升溶液加硫酸铵561克)冷藏过夜。吸取上清液,沉淀再用二层滤纸抽气过滤至干,即得粗制青豌豆素蛋白沉淀物硫酸铵糊。置冰箱保存。 3.亲和层析分离 (1)装柱:取直径为1.0 cm,长度为25 cm的层析柱,按(实验十五)操作,自顶部缓缓加入稀薄的Sephadex G25悬液,待凝胶上升至距顶柱约3-5 cm即可,用1M NaCl溶液平衡10分钟。 (2)加样并收集:称硫酸铵糊0.3克溶于 3 ml IM氯化钠中,离心3000rPm10分钟,取上层悬液上柱,用1M NaCl洗脱收集每管 3.5 ml,在280 nrn紫外光上比色检测,直至吸光值下降到接近零为止。此洗脱峰为不与葡萄糖亲和的杂蛋白峰。 改用含0.2M葡萄糖的1M NaCl进行洗脱。收集每管 3.5 ml,也在280nrn处检测、直至吸光值下降至接近零为止。此洗脱峰为青豌豆素峰,再用1M NaCl 洗脱,再生柱,约需10分钟。 4.青豌豆素生物活性测定。 取新鲜兔血l ml于抗凝管中,离心去除血浆,血球用生理盐水洗涤离心1000rpm /5min三次,直至洗液无血色为止,加生理盐水稀释20倍制成兔红细胞悬液,

论植物凝集素与植物保护

论植物凝集素与植物保护 所在专业:生物科学 作者:林晓丽 学号:2007231226 摘要:植物凝集素是一种含有非催化结构域并能可逆结合到特异单糖或寡糖上的植物(糖)蛋白,广泛分布于植物界。本文主要综述了植物凝集素近年来的研究概况,简要介绍植物凝集素的分类、结构特性、功能及其应用等方面,从中去剖析植物凝集素在植物保护中所起的作用,为以后更好地利用植物凝集素去保护植物,具有重要的意义。 关键词:植物凝集素;植物凝集素作用;生物学功能与应用前景;植物保护 植物凝集素是一类具有高度特异性糖结合活性的蛋白,在动物、植物体内广泛存在,迄今为止,已发现1000多种植物凝集素,其中豆科植物凝集素有600多种[1]。植物凝集素最早发现于1888年,Stillmark在蓖麻籽萃取物中发现了一种细胞凝集因子,它具有凝集红细胞的作用[2]。而1936年,Summer和Howess从刀豆种子纯化的伴刀豆凝集素(ConA)是第一个得到纯化的凝集素,而且是第一个被结晶的植物凝集素,也是第一个用X射线晶体衍射技术确定结构的植物凝集素[3]。1960年Nowell报道了植物细胞凝集素有促进有丝分裂的作用。1975年Becker等研究了刀豆凝集素分子的三级结构,揭开了研究植物凝集素分子空间结构和功能的序幕[4]。从此人们对凝集素的性质、生理功能、基因结构与表达等方面进行了深入研究,并认识到凝集素在生物体内具有重要的生理功能,在医学、农业上具有巨大的应用前景。 1 植物凝集素的分类 植物凝集素它是一类具有特异糖结合活性的蛋白,具有一个或多个可以与单糖或寡糖特异可逆结合的非催化结构域。可以从不同的角度进行分类: 1.1根据植物凝集素亚基的结构特征,可以分为4种类型:部分凝集素(merolectin)、全凝集素(hololectin)、嵌合凝集素(chemerolectin)和超凝集素(superlectin)。 1.2根据凝集素专一识别的糖类的不同,可以分为七个组别:岩藻糖组、半乳糖/N-乙酰半乳糖胺组、N-乙酰葡萄糖胺组、甘露糖组、唾液酸组、复合糖组。 1.3根据氨基酸序列的同源性及其在进化上的相互关系,可以分为七个家族:豆科凝集素、几丁质结合凝集素、单子叶甘露糖结合凝集素、2型核糖体失活蛋白、木菠萝素家族、葫芦

植物次生细胞壁加厚调控研究进展

植物生理学报 Plant Physiology Journal doi: 10.13592/https://www.doczj.com/doc/fb1657565.html,ki.ppj.2015.0568 2016, 52 (1): 8–188收稿 2015-10-22 修定 2015-12-15 资助 国家自然科学基金(31130012)和国家重点基础研究项目 (2012CB114502)。 * 通讯作者( E -mail: lgli@https://www.doczj.com/doc/fb1657565.html,)。 植物次生细胞壁加厚调控研究进展 黄成, 李来庚* 中国科学院上海生命科学研究院植物生理生态研究所植物分子遗传国家重点实验室, 上海 200032 摘要: 植物细胞壁是植物细胞的特征性结构。植物体中, 所有细胞都会形成初生壁的结构, 而一些特定组织的细胞会在初生细胞壁内侧进一步加厚形成次生壁, 为这些细胞实现正常生理功能和高等植物发育提供必需的结构。本文分别从转录水平调控、激素调控、加厚模式调控及人工调控等方面介绍目前对于次生细胞壁加厚调控的研究进展。关键词: 次生细胞壁; 转录调控; 木质素; 纤维素 细胞壁是植物细胞区别于动物细胞的一种重要细胞结构。植物细胞完成分裂后, 由中间的细胞板区域开始形成初生细胞壁。一些特殊组织的细胞停止扩展后, 在质膜和初生细胞壁之间形成次生细胞壁。次生细胞壁从结构上可分为S1、S2、S3三层, 主要成分为纤维素、半纤维素和木质素。植物次生细胞壁大量存在于维管组织管状细胞和纤维细胞, 提供植物直立生长所需要的机械支撑力, 疏水性木质素的存在加固管状分子以抵抗负压, 使得植物体能够连续高效的运输水分。同时, 在植物生长过程中, 植物积累的大部分光合作用产物储存在次生细胞壁, 构成植物体结构, 是纤维材料和生物质能源原料的重要来源。次生细胞壁是植物细胞特异分化后产生的细胞结构, 其加厚过程受到多种因素的调控。目前的研究发现植物体中存在复杂的多级转录网络作用于纤维素、半纤维素和木质素合成基因, 从而调控次生细胞壁加厚过程, 多种激素等信号因子也可能参与其中, 木质部纤维细胞和导管细胞次生壁加厚模式与皮层微管密切相关。同时, 由于木质纤维生物质是地球上重要的可再生资源, 人们试图通过各种方式调控次生壁加厚以获得可高效利用的木质纤维原料。本文就这几个方面的研究进展进行综述。 1 植物次生细胞壁加厚的转录水平调控 近十几年来关于次生壁转录调控有大量研究, 目前认为次生壁形成主要由一系列NAC 转录因子和MYB 转录因子形成分层次的网络逐级调控下游次生壁中纤维素、半纤维素和木质素的合成, 同时也有很多其他调控因子参与其中。最近一些文章对次生壁加厚转录调控进行了较详细的综述(Wang 和Dixon 2012; Zhong 和Ye 2015a; Nakano 等2015)。 1.1 转录开关因子 拟南芥中有两类NAC (NAM 、ATAF1/2、CUC2)结构域转录因子被发现作为转录开关因子分别调控维管组织导管细胞和纤维细胞次生壁合成。第一类VND (vascular-related NAC domain)基因家族VND1-7被认为参与导管细胞发育。在百日草悬浮细胞系中过表达VDN6和VND7能诱导各种薄壁细胞转分化为具有环纹和螺纹加厚的原生导管细胞以及具有网纹和孔纹加厚的后生导管细胞, 显性抑制这2个基因能抑制拟南芥根中原生导管和后生导管的形成(Kubo 等2005)。随后的研究发现单独抑制VND7的正常功能就能抑制拟南芥根和茎中所有类型导管的形成, 并且可能形成同源或与其他VND 基因形成异源二聚体行使功能(Ya-maguchi 等2008)。VND1-5在拟南芥花序茎中特异表达在木质部, 过表达能激活次生壁合成途径转录因子和酶基因表达, 引起薄壁细胞异常加厚, 显性抑制VND3使花序茎导管次生壁变薄而塌陷, 这些结果表明VND1-5同VND6、VND7一起特异性调控导管细胞次生壁加厚(Zhou 等2014)。第二类包括NST3/SND1 (NAC secondary wall thickening pro-moting factor 3/secondary wall-associated NAC do-main protein 1)、NST1和NST2, 参与开启维管束间纤维细胞和木质部纤维细胞次生壁加厚(Zhong 和Ye 2015a)。拟南芥NST3/SND1特异性表达在维管束间纤维及木质部纤维细胞, 异位过表达SND1能激活非厚壁细胞中的次生壁合成, 显性抑制SND1

雪花莲凝集素转基因抗虫植物的研究进展

雪花莲凝集素转基因抗虫植物的研究进展 摘要:近年来雪花莲凝集素(GNA)基因已成为国内外在植物抗虫基因工程中应用较为广泛的基因。目前已在小麦、大豆、水稻等农作物上的研究获得成功,并有相当规模的种植。另外在烟草、马铃薯、地瓜、莴苣、棉花、甘蔗、油菜等经济作物也已经试验成功.GNA转基因抗虫植物的培育为减少杀虫剂的使用和提高产量以及环境保护方面起到了巨大的作用。本文就GNA的分布、来源、杀虫机理、GNA转基因抗虫植物的发展况以及种植GNA抗虫植物的安全性进行了概述。 关键词:GNA基因;转基因植物;抗虫;安全 Research advances in GNA transgenic anti-insect plants Abstract:in recent years the snowdrops lectin gene(GNA)become insect-resistant genes in plants at home and abroad in engineering application a wide range of genes. Currently on wheat,soy and rice crops in research,and has won initial success of comparable size planting.Other tobacco potatoes sweet potato lettuce in economic crops such as cotton and sugar cane rape trial has success.GNA genetically modified insect resistance plant cultivation to reduce the use of pesticides and increase production and environmental protection has played a great role.This paper the distribution insecticidal mechanism GNA GNA genetically modified insect resistance plant development status and planting GNA insect resistance plant impact on environment were summarized. Keywords:GNA genes;transgenic plants;anti-insect;safety 雪花莲凝集素(Galanthus nivalis agglutinin简称GNA)是植物外源激素的一种,成熟的GNA是四聚体蛋白,且蛋白质分子未被糖基化,同时含有12个甘露糖专一性结合位点,属整体凝集素类。可特异性地结合糖蛋白末端甘露糖残基[1]。因其能结合到昆虫消化道上皮细胞糖蛋白受体上,对昆虫产生局部或系统的毒害作用,从而抑制其生长,甚至将其杀死;它还能在昆虫消化道内诱发病灶,促进消化道中细菌的繁殖,对害虫本身造成伤害,抑制害虫生长发育繁殖,抑制逆转录病毒和老鼠小肠中的大肠杆菌的繁殖等研究表明GNA分子对蚜虫飞虱叶蝉粉虱等刺吸式害虫及线虫有强烈的毒性,对鳞翅目等咀嚼式口器的害虫具有中等毒性,但对高等动物安全。 目前,转雪花莲凝集素基因的小麦水稻和大豆已经在国内外较为广泛地进行了种植,效果很好。其他新的转基因抗虫植物也在研究中,一些也在逐渐推广种

植物细胞融合的研究进展_综述_郭学民

河北科技师范学院学报 第19卷第1期,2005年3月 Jo ur nal o f Hebei N or mal U niver sity of Science&T echnolog y Co llege V o l.19 No1.1M arch2005 植物细胞融合的研究进展(综述) 郭学民1,2,徐兴友1,2,王同坤1,王华芳2,尹伟伦2 (1河北科技师范学院生命科学系,河北秦皇岛,066600;2北京林业大学生物科学与技术学院)摘要:概述了原生质体分离和培养的影响因素,介绍了近年来国内外原生质体培养与融合及杂种细胞、筛选和鉴定的动态。 关键词:细胞融合;原生质体;筛选与鉴定 中图分类号:Q321+.2 文献标识码:A 文章编号:1672-7983(2005)01-0065-05 细胞融合(cy to mixis),亦称细胞杂交(cell fusio n),是指亲本的两个细胞在特定的物理和化学因子处理下合并为一个杂种细胞的过程[1]。植物细胞融合可分为体细胞杂交(somatic hybridizatio n)和配子-体细胞杂交(gameto-somatic hy br idizatio n),前者是指不经过有性过程,而直接由体细胞原生质体融合产生杂种细胞,形成愈伤组织,并再生出植株的过程[2],后者是指性细胞(如小孢子四分体、精子、精细胞、幼嫩花粉、成熟花粉、卵细胞、助细胞和中央细胞等)原生质体和二倍体原生质体融合产生三倍体杂种细胞,形成愈伤组织,并再生出植株的过程[3]。植物细胞融合是植物细胞工程的一个重要分支,是一种突破物种生殖隔离、创造远缘杂种的新途径,原生质体技术还可用于细胞突变体的筛选、细胞器移植和外源DNA的导入。 自1960年Cocking[4]用酶法分离出番茄根原生质体后,Natag a和T akebe[5]1970年首次利用烟草叶分离原生质体,经培养获得再生植株;1975年以色列的Vardi等[6]首次从木本植物Sham onti甜橙珠心组织诱导胚性愈伤组织,并从愈伤组织分离原生质体,经培养通过胚状体再生出植株;在禾本科植物中,除在珍珠谷、紫狼尾草用悬浮细胞为材料,较早获得原生质体再生植株外,直到1985年Fujim ur a[7]等率先在水稻原生质体培养中获得了再生植株,才出现了重大突破。现已从许多种内、种间、属间甚至亚科间的体细胞杂交获得杂种细胞系或杂种植株。随着多种植物原生质体的成功培养和融合技术的不断改进,植物细胞融合获得了巨大成功。植物细胞融合包括原生质体的制备、细胞融合的诱导、杂种细胞的筛选和培养,以及植株的再生和鉴定等环节。 1 原生质体的分离和培养 1.1 起始材料 起始材料及其生理状态对原生质体的制备及其活力有很大的影响。在以往的双子叶植物培养中,大多以叶片为分离原生质体的材料,近年来,起始材料的适用范围有了较大扩展。目前,以愈伤组织、悬浮细胞和体细胞胚为材料制备原生质体是最主要的方式;禾本科植物原生质体培养获得成功的试验,几乎都是用从幼胚或成熟胚诱导形成的胚性愈伤组织或胚性细胞系来游离原生质体。采用这些材料制备原生质体方法简便、产量高、不污染、不易破碎。 1.2 基因型 同一植物不同基因型的原生质体脱分化与再分化所要求的条件不同,所以在相同条件下,不同品种的再生能力不同。王光远和夏镇澳[8]在水稻原生质体培养中曾用26个品种进行组织培养,其中仅有3个品种(粳稻农虎6号、国香1号和上农香糯)能成功地用于原生质体培养,获得再生植株。据统计,小麦获得原生质体再生植株的基因型只有大约10个[9]。基因型的选择在植物原生质体培养中起着重要作用,它不仅影响原生质体的产量和活力,而且还影响植株的再生。Cheng和Veillenux证明芙薯(Solanum phureja)从原生质体培养到愈伤组织形成受2个独立位点的显性基因的调控[10]。因此,现有 收稿日期:2004-03-09;修改稿收到日期:2004-12-12

植物体的三大生理作用

复习内容:植物体的三大生理作用晚 一、选择题(10分)1.相对封闭的温室中,绿色植物受到阳光 的照射而生长,昼夜测定温室内氧气的含量,结果如下图所示。 其中正确的是() 2.植物光合作用贮存在淀粉中的能量从根本上来源于()A. 太阳的光能B.太阳的热能C.植物体内化学能D.太阳的化学能 3.韭菜的上端是绿色的,而下端埋在土壤中的部分是白色的,其根本原因是()A.韭菜下端没 有叶绿体B.叶绿素在光下才能形成C.叶的下部不能进行光合作用D.叶绿体在光下才能形成 4.为使验证植物呼吸作用产生二氧化碳的实验获得良好结果,如右图所示的实验示意图中的塑料带最好 为()A.白色 B.黑色 C.红色 D.无色 5.将天竺葵放置在暗处24小时后取出,将一片叶的主脉从中部切断,给予光照2 小时,再检验叶片含淀粉的情况,近叶柄部分多,原因是 ( ) A.近叶柄部分的淀粉由其它部分转运来 B.远叶柄部分缺乏水分供应 C.近叶柄部分呼吸较弱 D.远叶柄部分缺乏二氧化碳的供应 6将一棵约0.2千克的柳树在肥沃的土壤中培养2年,两年后连根挖出,脱水后称 重达11千克,其增加的10余千克的重量主要来源于() A.土壤中的无机盐 B.土壤中的无机盐和水 C.大气中的二氧化碳和土壤中的水 D.大气中的氧 7冰箱能够保鲜水果蔬菜得原因是:冰箱能够()A.减少果蔬水分含量,加快呼吸作用 B.降低环境温度,减弱呼吸作用 C.降低环境温度,加快呼吸作用D.减少环境中氧气含量,减弱呼吸作用 8.右图是关于水果存放时,空气中氧气浓度与二氧化碳气体量得关系曲线。你认为存放水果以什 么状态下的氧气浓度为最好?()A.A B.B C.C D.D 9.温室栽培西瓜时,要保持一定的昼夜温差的原因是() A.降低呼吸强度,增加有机物的积累 B.提高光合效率,加速有机物的运输 C.降 低室内温度,控制营养生长过程D.调节室内温度,控制病害的发生 10.对于光合作用来说,光照增强,光合作用随之增强。但在炎热夏季中午,光 合作用反而会下降,其原因是()A.蒸腾作用太强,体内水分不足B.细胞内 叶绿体活性下降 C.气孔关闭,二氧化碳摄入不足 D.气孔关闭,氧气释 放受阻 二、非选择题11、某生物兴趣小组的同学为研究植物的生命活动,设计 了以下实验。请据图回答下列问题:(1)实验一的步骤如下,正确顺序是 _______ ____。①分别摘取甲乙袋中的叶片各一片②把实验材料放在光 下照射2~3小时③实验一中的装置放于暗处一昼夜④用清水漂洗叶片后 滴加碘夜⑤把叶片放入盛有酒精的小烧杯中隔水加热 (2)实验一探究的是:______是光合作用必须的原料。 (3)实验二探究的是:__________________;实验中,塑料袋内壁出现的 水珠主要来自植物的______作用,水分是通过叶片上的______散失的。 水分是通过在茎中运输的。 12、下面图甲表示某生长的大棚蔬菜,图乙为该植物叶肉细胞结构示意图,图丙为二氧化碳浓度和光照 强度对大棚该蔬菜光合作用强度的影响曲线。请回答:(1)植物生长生理活动需要水和无机盐,是通 过甲图植物茎中的【D】__________ 运输到植物所需要的部位。光合作 用主要是在叶肉细胞的 中进行的,光合作用的产物 是和。(2)甲图中A、 B、C为植物叶片发生在植物体内的 某些生理过程,【】____过程在细 胞内始终进行的生理活动。这一过程主 要发生在乙图的【】_____中。(3)甲 图中过程B为__________。(4)根据对图丙分析①a或b曲线都可以说明是影响光合作用强度的因素;②A点和B点的光合作用强度差异说明是影响光合作用强度的因素。(5)经过长期的研究和实践,人们已经总结出许多提高光合作用效率的方法,如、等。 13、图A为某叶片的横切面结构,图B和图C为探究“光合作用吸收二氧化碳”的演示装置,B装置的 培养皿中的液体为氢氧化钠溶液,C装置的培养皿中的液体为清水,先将B、C装置放在黑暗中一昼夜,再移置光下几小时。请分析回答:(1)把B、C两装置同时放在黑暗中一昼夜的目的是_______________。 (2)能产生淀粉的装置是____________;若把该装置的一叶片脱色、漂洗、滴加碘液后,叶片发生的变化是__________,而另一装置的叶片做同样处理,没有出现上述现象。通过B、C两装置的实验现象,说明了_________是光合作用的原料。(3)将变蓝的叶片横切,制成切片,放在低倍显微镜下观察可见其结构如图A所示,则图中变蓝的主要结构是[ ] ___,气体进出叶片的门户是[ ] ____,光合作用的原料和产物是由[ ] ____________运输的。

生长素的生理作用

生长素的生理作用 一.教材分析 《生长素的生理作用》是人教版必修三第三章第二节内容,本节属于高考的范畴,占有一定地位;在农业生产实践中具有一定作用。 本课题是在前面讲过的植物生长素的发现和植物的向光性等知识基础上,进一步以生长素的生理作用为例讲诉植物的激素调节问题。 生长素的生理作用的讲解有利于学生对其他植物激素的理解,从而掌握植物的激素调节。 二.学情分析 经过前面的学习学生已有一定的生物学基础知识、一定的观察思维能力、逻辑推理能力及实验现象的分析能力,因此理解和掌握本节内容不难。其次对于生物知识学生有一定的好奇心理,有利于课程的进行。 三.教学目标 1、知识目标 (1)概述植物生长素的生理作用,通过实例让学生理解生长素作用的两重性; (2)理论联系实际,简述生长素及类似物在农业生产上的应用,加深学生理解; 2、能力目标 能利用现有实验条件,设计并完成实验; 3、情感目标 探讨了生长素在生活中的应用,培养学生将所学知识运用于生产实践和日常生活中的能力 四.教学重难点 1.教学重点 (1)植物生长素的两重性; (2)植物不同部位对生长素不同的敏感程度。 2.教学难点:顶端优势、根的向地性、茎的背地性产生的原因的分析 五、教学策略 替代式教学策略、竞争与合作学习策略 六、教具 多媒体教具 七、教学过程

“人体垂体分泌生长激素促进人体生长,那么植物呢?” .引入植物生长素。(2分钟) 提问:生长素在植物体内发挥生理作用时有什么特点?

解读生长素生理作用两重性曲线:最适浓度,根芽茎对生长素的敏感程度对比;“根据刚刚所学内容,结合生活中现象:农民会适时摘除棉花的顶芽,同学们思考下面这个问题” 提问:什么是顶端优势?

糖生物学作业-植物凝集素概述

植物凝集素概述 摘要:植物凝集素是来源于植物的一类能凝集细胞和沉淀单糖或多糖复合物的非免疫来源的非酶蛋白质。植物凝集素具有细胞凝集、抗病毒、抗真菌及诱导细胞凋亡或自噬等多种能力,因此在生命科学、医学及农业方面均有较好的研究价值和应用前景。本文综述了植物凝集素近年来的研究概况,介绍了凝集素的定义,植物凝集素的结构特性、分类、分离纯化、功能及其应用。 1凝集素的发现及定义 目前已经发现了近 1 000 种植物凝集素,并在生理生化及分子生物学方面对它们进行了许多研究,其中豆科植物凝集素有600多种。植物中,不仅种子中存在凝集素,根、茎、叶、皮、果汁中也发现有凝集素。1888年Herman和Sti11mark首次在蓖麻萃取物中发现了凝集素,它具有凝集红细胞的作用。Renkonnen 发现它们对血细胞凝集时具有选择性。随着对红细胞凝集反应中血型特异性认识程度的逐渐深入, Watkin 和Morgan 建立了人类ABO 血型系统凝集反应中严格的糖特异性结合理论。Go1dstein 给出了凝集素的第一个较确切的定义:凝集素是自然界广泛存在的一类能凝集细胞、多糖或糖复合物的非源于免疫反应的糖蛋白。现在研究表明,它还能够特异性识别并可逆结合复杂糖复合物中的糖链,而不改变所结合糖基的共价键结构。 另外,1980 年,Nature 杂志发表了5 位凝集素研究方面著名科学家的联名信,提出了当时较有权威性的凝集素定义:凝集素是指非免疫来源的糖结合蛋白或糖蛋白,并应有使细胞凝集或糖复合物沉淀的能力。此定义包含三个要点:(1)凝集素是蛋白质或糖蛋白;(2)凝集素必须有专一的与糖基结合的特性,但是排除了免疫来源的针对糖基的抗体;(3)因为规定了能使细胞凝集或是糖复合物沉淀的特性,所以凝集素分子必须具有两个或更多糖结合位点,这样把一些虽有糖结合能力但是糖结合位点仅有一个的酶、转运蛋白、激素、毒素等排除在外。 2植物凝集素的结构特性 目前已经获得纯化的凝集素中,阐明氨基酸序列的并不多,多数是对甘露糖(或葡萄糖)专一的凝集素。从已分离的凝集素看,分子量变化范围约为10 kDa~100 kDa ,亚基数目为2~4 个。关于亚基产生的分子机制,有三种解释:(1)不同亚基是不同基因编码的产物;(2)不同亚基由统一基因编码,但经翻译过程形成分子量相同或不同的肽链;(3)翻译后不同程度的修饰导致。 现己知道,凝集素与糖的结合是通过其分子中肽链的活性部位,即专一结合糖的区域实现的,与凝集素分子中共价结合的糖无关。凝集素至少应该具有2 个与糖结合的位点,而且结合是可逆的。它有以共价键相连接的蛋白质和糖2 个部分。其中前者占较大的比例,一般是几个单糖构成寡糖链,再以2种方式与蛋白质肽链相连,分别构成N-连接糖蛋白和O-连接糖蛋白。现已知的糖肽连接键主要有三种:(1)血清型糖蛋白,亦称天冬酰胺2连接或N-连接的糖蛋白;(2)粘蛋白型糖蛋白,糖链与肽链由Ga1NAcα1-Ser/ Thr 连接;(3)真菌中的Man-Thr 连接。凝集素不仅可以识别不同的单糖而且也可以特异结合不同的寡糖。此外,凝集素2糖互作也较好地解释了细胞识别系统的机制。基于细胞表面含有大量的凝集素和糖复合物,使细胞以凝集素为桥梁进行相互作用成为可能。凝集素除了有与糖结合的位点外,还可以与其它生物大分子几丁质、糖脂和多糖等结合。 凝集素一般为二聚体或四聚体结构,其分子由一个或多个亚基组成,每一个亚基有一个与糖分子特异结合的专一点。豆科植物凝集素至少有一个非催化结构域,并可逆地结合到特异单糖或寡糖上。结构域的数量由凝集素的复合体数目来决定。二体或多体凝集素可以形成多种结构的蛋白糖复合体。单体凝集素不能形成这种复合结构(Ron 等,1992)。通过豆科植物凝集素晶

植物凝集素的防卫功能及其研究进展

- 33 - 世界农业World Agricult ure 200012(总250) 山西农业大学农业生物工程中心 高燕会李润植毛雪李彩霞 植物凝集素的防卫功能及其研究进展 植物凝集素(lectin) 是一类具有至少一个 非催化结构域, 并能可逆地结合特异单糖或寡聚糖的植物蛋白。自从Stillmark (1888) 首次在蓖麻种子抽提物中发现一种凝血因子和Sumner 第一次分离纯化到植物凝集素———伴刀豆球蛋白A (ConA) 以来, 人们已经从豆科、茄科、大戟科、禾本科、百合科和石蒜科等众多植物类群中分离鉴定出几百种这类蛋白质, 并对它们的性质、分子结构及功能作了大量的研究, 许多工作已深入到基因水平。同类凝集素的氨基酸序列同源性极高, 这种保守性暗示着凝集素在生物进化过程中以及植物生命过程中起着重要作用。例如, 凝集素作为贮藏蛋白用来包装和运输物质, 作为植物细胞的促有丝分裂因子, 在多酶体系中结合糖蛋白, 参与细胞壁的延伸, 细胞间的识别、生长调节以及碳水化合物的运输等。尤其是凝集素防卫功

能的发现及论证, 引起了人们极大的关注, 一些植物凝集素的基因克隆已应用于植物抗病虫基因工程。 一、植物凝集素的防卫功能 Chrispeels 和Raikhel (1991) 曾客观地评 价了植物凝集素家族和许多几丁结合蛋白质的防卫作用。近年来, 越来越多的分子生物学、生物化学、细胞学、生理学及进化学上的证据表明, 大多数植物凝集素在植物生长发育的各个阶段, 以不同的方式保护植物免受病虫的侵害( Etzler ,1995) 。 11 植物凝集素的抗虫作用菜豆凝集素 ( PHA) 是第一个被描述的具有抗虫性的植物凝集素。有趣的是, PHA 对豆象幼虫具有毒 性的结论是基于一个错误的实验结果, 后来研究发现这种防卫作用是由于含有α- 淀粉酶抑制剂的缘故(Huesing 等, 1991) 。如今许多实验表明, 来源于麦胚、马铃薯块茎、核桃、沙棘、水稻和刺荨麻的凝集素对豌豆象甲幼虫和豇豆象甲幼虫的生长有抑制作用。麦胚凝集素和紫羊蹄甲种子凝集素在相当低的含量水平就使初孵玉米螟幼虫致死(Czapla & Lang ,

文献综述—植物细胞壁中纤维素合成的研究进展

植物细胞壁中纤维素合成的研究进展 摘要 纤维素是植物细胞壁的主要成分,是植物细胞壁执行生理功能的基础,也是人类生产和生活中必不可少的一类物质。本文对纤维素合成、合成中所需要的酶以及纤维素沉积中微纤丝的作用等方面进行了综述和探讨,并对纤维素合成的深入研究进行了展望。 【关键词】:纤维素合成纤维素合酶蔗糖合酶微纤丝

Recent progress on ellulose synthesis in cell wall of plants Abstract cellulose is a major component in cell wall and carries out many importnt physiological functions. In addition,it is necessary material for human life and production. The rcwnt progress in cellulose synthesis,the function of relative enzymes and microfibril in proess of cellulose synthesis were reviewed. The studies in cellulose synthesis were propected 【Key words】:cellulose synthesis cellulose synthase sucrose synthase microfibril

细胞壁是由纤维素和果胶质交结形成的多糖和蛋白质及其它成分构成的三维网络结构,也是植物细胞区别于动物细胞的重要特征之一。过去,细胞壁被认为是一惰性结构,只具有机械支持和防御功能。但随着实验技术和方法的不断创新和应用,人们逐渐认识到细胞壁作为植物细胞的重要组成部分,不仅具有保护和支持的作用,还与植物细胞的物质运输、信号传导等生理功能有关[1]。组成细胞壁的主要成分是纤维素、半纤维素、果胶质和木质素等,其中纤维素和木质素是森林木材中的重要组成成分,也是非粮食类生物质的主要成分,因此细胞壁被认为是地球上可再生的重要植物生物质资源。近年来,有关植物细胞壁各组分的生物合成、细胞壁的构建模式、细胞壁与植物的生长发育等问题,特别是植物细胞壁的形成及其调控机理的研究成为人们关注的焦点[2]。本文对植物细胞壁中的纤维素合成、合成中所需要的酶以及纤维素沉积中微纤丝的作用等方面进行综述,为今后深入研究纤维素的合成及其机理研究提供科学参考。 1 细胞壁的组成及其功能 植物细胞壁一般分为初生壁、次生壁和中胶层( 胞间层) 三层结构。初生壁位于中胶层和次生壁之间,主要由多糖、蛋白质、一些酶类以及钙离子和凝集素等组成。其多糖成分主要为纤维素、半纤维素和果胶质。细胞壁中的纤维素是由β-1,4 葡萄糖残基组成的不分支多糖,是植物细胞壁的主要成分。在初生壁中,纤维素微纤丝沿着生长轴方向有序地排列,这种排列模式是决定细胞伸展方向的关键因子[3]。半纤维素中以木-葡萄糖苷含量最高,主要功能是交连纤维素微纤丝。果胶质在细胞壁水合、粘连以及细胞生长过程中,以及在细胞壁的延展性和弹性方面起着重要作用[4]。次生壁是当细胞的伸长生长停止后,细胞初生壁继续生长加厚形成的,它在结构和组成上高度特化,与初生壁有很大的不同。次生壁有多层沉积,具有比初生壁厚的纤维素,而且微纤丝的排列也比较有规律。在次生壁中除含有纤维素和半纤维素外,还含有木质素,这是一类不溶性的芳香类聚合物。它在细胞壁中与纤维素紧密交联形成一个疏水的网状结构,阻止细胞进一步伸长,且增加了细胞壁的机械强度以及对病原体的抵抗能力,因此木质素在维持植物正常结构、运输水分和养料以及抵抗不良外界环境的侵袭中具有重要作用。中胶层在初生壁之外,其组成和细胞壁的其余部分很不相同,富含果胶质,蛋白质的成分也与初生壁和次生壁大不相同[5]。蛋白质是组成细胞壁的另一类主要成分,主要包括富羟脯氨酸糖蛋白( HGPRs) "富含甘氨酸的蛋白( GPRs)富含脯氨酸的糖蛋白( PRPs) 和阿拉伯半乳聚糖蛋白(AGOs) ,它们在植物细胞生长过程中均发挥着重要的调节作用。细胞壁组分中除纤维素和胼胝质在质膜上合成以外[1],果胶质、木质素以及细胞壁蛋白质均在细胞质中合成。

相关主题
文本预览
相关文档 最新文档