当前位置:文档之家› 多层板结构参考

多层板结构参考

多层板的压合制程(压合)

资料收藏
PCB 收藏天地 https://www.doczj.com/doc/fa14889064.html, 电子邮件
killmai@https://www.doczj.com/doc/fa14889064.html,
资料版权归原作者所有
压合
5.1. 制程目的: 将铜箔(Copper Foil),胶片(Prepreg)与氧化处理(Oxidation)后的内层线路板,压合成多层 基板.本章仍介绍氧化处理,但未来因成本及缩短流程考量,取代制程会逐渐普遍. 5.2. 压合流程,如下图 5.1:
5.3. 各制程说明 5.3.1 内层氧化处理(Black/Brown Oxide Treatment) 5.3.1.1 氧化反应 A. 增加与树脂接触的表面积,加强二者之间的附着力(Adhesion). B. 增加铜面对流动树脂之润湿性,使树脂能流入各死角而在硬化后有更强的抓地力 C. 在裸铜表面产生一层致密的钝化层(Passivation)以阻绝高温下液态树脂中胺类(Amine) 对铜面的影响 5.3.1.2. 还原反应 目的在增加气化层之抗酸性 并剪短绒毛高度至恰当水准以使树脂易于填充并能减少粉红圈 ( pink ring ) 的发生 5.3.1.3. 黑化及棕化标准配方: 表一般配方及其操作条件

资料收藏
PCB 收藏天地 https://www.doczj.com/doc/fa14889064.html, 电子邮件
killmai@https://www.doczj.com/doc/fa14889064.html,
资料版权归原作者所有
上表中之亚氯酸钠为主要氧化剂,其余二者为安定剂,其氧化反应式
此三式是金属铜与亚氯酸钠所释放出的初生态氧先生成中间体氧化亚铜,2Cu+[O]
Cu2O,再继续 反应成为氧化铜 CuO,若反应能彻底到达二价铜的境界,则呈现黑巧克力色之"棕氧化"层,若层膜 中尚含有部份一价亚铜时则呈现无光泽的墨黑色的"黑氧化"层
5.3.1.4. 制程操作条件( 一般代表 ),典型氧化流程及条件

PCB叠层结构知识

PCB叠层结构知识 PCB叠层结构知识 较多的PCB工程师,他们经常画电脑主板,对ALLEGRO等优秀的工具非常的熟练,但是,非常可惜的是,他们居然很少知道如何进行阻抗控制,如何使用工具进行信号完整性分析.如何使用IBIS模型。我觉得真正的PCB高手应该还是信号完整性专家,而不仅仅停留在连连线,过过孔的基础上。对布通一块板子容易,布好一块好难。 小资料 对于电源、地的层数以及信号层数确定后,它们之间的相对排布位置是每一个PCB工程师都不能回避的话题; 层的排布一般原则: 元件面下面(第二层)为地平面,提供器件屏蔽层以及为顶层布线提供参考平面; 所有信号层尽可能与地平面相邻; 尽量避免两信号层直接相邻; 主电源尽可能与其对应地相邻; 兼顾层压结构对称。 对于母板的层排布,现有母板很难控制平行长距离布线,对于板级工作频率在50MHZ 以上的(50MHZ以下的情况可参照,适当放宽),建议排布原则: 元件面、焊接面为完整的地平面(屏蔽); 无相邻平行布线层; 所有信号层尽可能与地平面相邻; 关键信号与地层相邻,不跨分割区。 注:具体PCB的层的设置时,要对以上原则进行灵活掌握,在领会以上原则的基础上,根据实际单板的需求,如:是否需要一关键布线层、电源、地平面的分割情况等,确定层的排布,切忌生搬硬套,或抠住一点不放。 以下为单板层的排布的具体探讨: *四层板,优选方案1,可用方案3 方案电源层数地层数信号层数 1 2 3 4 1 1 1 2 S G P S 2 1 2 2 G S S P 3 1 1 2 S P G S 方案1 此方案四层PCB的主选层设置方案,在元件面下有一地平面,关键信号优选布TOP 层;至于层厚设置,有以下建议: 满足阻抗控制芯板(GND到POWER)不宜过厚,以降低电源、地平面的分布阻抗;保证电源平面的去藕效果;为了达到一定的屏蔽效果,有人试图把电源、地平面放在TOP、BOTTOM层,即采用方案2: 此方案为了达到想要的屏蔽效果,至少存在以下缺陷: 电源、地相距过远,电源平面阻抗较大 电源、地平面由于元件焊盘等影响,极不完整 由于参考面不完整,信号阻抗不连续 实际上,由于大量采用表贴器件,对于器件越来越密的情况下,本方案的电源、地几乎无法作为完整的参考平面,预期的屏蔽效果很难实现;方案2使用范围有限。但在个别单板中,方案2不失为最佳层设置方案。

多层板常规压合结构

多层板常规压合结构 1.2mm 1.6mm 2.0mm 四层板:1/1 2/2 ————Hoz ————1oz ————7628*1 ————2116/7628 ————1.2 1/1(1.1 1/1)————1.0 2/2 (0.9 2/2) ————7628*1 ————7628/2116 ————Hoz ————1oz 总:1.596mm(1.496mm)总:1.63mm(1.53mm)1.2mm板厚和2.0mm板厚以1.6mm为准,在芯板的基础上面减0.4mm和加0.4mm 六层板:1/1 2/2 ————Hoz ————1oz ————2116*1 ————2116*2 ————0.6 1/1 ————0.5 2/2 ————7628*1 ————2116*2 ————0.6 1/1 ————0.5 2/2 ————2116*1 ————2116*2 ————Hoz ————1oz 总:1.616mm 总:1.67mm 1.2mm板厚和 2.0mm板厚以1.6mm为准,在芯板基础上面减0.2mm和加0.2mm;0.5 2/2 可用0.4 1/1加厚,以此类推

八层板:1/1 2/2 ————Hoz ————1oz ————1080*2 ————1080*2 ————0.3 1/1 ————0.3 2/2 ————2116*2 ————2116*2 ————0.3 1/1 ————0.3 2/2 ————2116*2 ————2116*2 ————0.3 1/1 ————0.3 2/2 ————1080*2 ————1080*2 ————Hoz ————1oz 总:1.616mm 总:1.651mm 1.2mm板厚和 2.0mm板厚以1.6mm为准,在芯板的基础上面减0.1mm(PP全部为2张2116)和加0.1mm(PP全部为2张2116);在无2/2铜厚板材情况下可以压板材或用比芯板少0.1mm 1/1的板材加厚

一到八层电路板的叠层设计方式

一到八层电路板的叠层设计方式 电路板的叠层安排是对PCB的整个系统设计的基础。叠层设计如有缺陷,将最终影响到整机的EMC性能。总的来说叠层设计主要要遵从两个规矩: 1. 每个走线层都必须有一个邻近的参考层(电源或地层); 2. 邻近的主电源层和地层要保持最小间距,以提供较大的耦合电容; 下面列出从单层板到八层板的叠层: 一、单面板和双面板的叠层 对于两层板来说,由于板层数量少,已经不存在叠层的问题。控制EMI辐射主要从布线和布局来考虑; 单层板和双层板的电磁兼容问题越来越突出。造成这种现象的主要原因就是因是信号回路面积过大,不仅产生了较强的电磁辐射,而且使电路对外界干扰敏感。要改善线路的电磁兼容性,最简单的方法是减小关键信号的回路面积。 关键信号:从电磁兼容的角度考虑,关键信号主要指产生较强辐射的信号和对外界敏感的信号。能够产生较强辐射的信号一般是周期性信号,如时钟或地址的低位信号。对干扰敏感的信号是指那些电平较低的模拟信号。 单、双层板通常使用在低于10KHz的低频模拟设计中: 1 在同一层的电源走线以辐射状走线,并最小化线的长度总和;

2 走电源、地线时,相互靠近;在关键信号线边上布一条地线,这条地线应尽量靠近信号线。这样就形成了较小的回路面积,减小差模辐射对外界干扰的敏感度。当信号线的旁边加一条地线后,就形成了一个面积最小的回路,信号电流肯定会取道这个回路,而不是其它地线路径。 3 如果是双层线路板,可以在线路板的另一面,紧靠近信号线的下面,沿着信号线布一条地线,一线尽量宽些。这样形成的回路面积等于pcb线路板的厚度乘以信号线的长度。 二、四层板的叠层 推荐叠层方式: 2.1 SIG-GND(PWR)-PWR (GND)-SIG; 2.2 GND-SIG(PWR)-SIG(PWR)-GND; 对于以上两种叠层设计,潜在的问题是对于传统的1.6mm(62mil)板厚。层间距将会变得很大,不仅不利于控制阻抗,层间耦合及屏蔽;特别是电源地层之间间距很大,降低了板电容,不利于滤除噪声。 对于第一种方案,通常应用于板上芯片较多的情况。这种方案可得到较好的SI性能,对于EMI性能来说并不是很好,主要要通过走线及其他细节来控制。主要注意:地层放在信号最密集的信号层的相连层,有利于吸收和抑制辐射;增大板面积,体现20H规则。 对于第二种方案,通常应用于板上芯片密度足够低和芯片周围有足够面积(放置所要求的电源覆铜层)的场合。此种方案PCB的外层均为地层,中间两层均为信号/电源层。信号层上的电源用宽线走线,

PCB常用阻抗设计及叠层

PCB 阻抗设计及叠 层 目 录 、八— 刖言 ............................... 第一章阻抗计算工具及常用计算模型 1.0阻抗计算工具 .............. 1.1阻抗计算模型 ............... 1.11. 1.1 2. 1.13. 1.14. 1.15. 1.16. 1.17. 1.18. 1.19. 1.20. 1.21. 1.2 2. 外层单端阻抗计算模型 ............ 外层差分阻抗计算模型 ............ 外层单端阻抗共面计算模型 ........ 外层差分阻抗共面计算模型 ........ 内层单端阻抗计算模型 ............ 内层差分阻抗计算模型 ............ 内层单端阻抗共面计算模型 ........ 内层差分阻抗共面计算模型 ........ 嵌入式单端阻抗计算模型 .......... 嵌入式单端阻抗共面计算模型 ..... 嵌入式差分阻抗计算模型 .......... 嵌入式差分阻抗共面计算模型 ..... 8 9 .9 10 10 11 11 第二章双面板设计 ................................. 2.0双面板常见阻抗设计与叠层结构 ............ 2.1.50 100 II 0.5mm ...................... 2.2. 50 II 100 II 0.6mm .................... 2.3. 50 II 100 II 0.8mm .................... 2.4. 50 II 100 II 1.6mm .................... 2.5. 50 70 II 1.6mm ....................... 2.6. 50 II 0.9mm II Rogers Er= 3.5 .......... 2.7. 50 II 0.9mm || Arlo n Diclad 880 Er=2.2 第三章四层板设计 ................................. 3.0.四层板叠层设计方案 ..................... 3.1.四层板常见阻抗设计与叠层结构 ........... 12 12 13 14 14 14 14 15 15 15 16 16 17 17 18 3.10. SGGS II 50 55 60 || 90 100 || 0.8mm 1.0mm 1.2mm 1.6mm 2.0mm 3.11. SGGS II 50 55 60 || 90 100 || 0.8mm 1.0mm 1.2mm 1.6mm 2.0mm 3.12. SGGS II 50 55 60 || 90 95 100 || 1.6mm ............................. 3.13. SGGS II 50 55 60 II 85 90 95 100 II 1.0mm 1.6mm .................... 3.1 4. SGGS II 50 55 75 II 100 II 1.0mm 2.0mm ............................. 3.1 5. GSSG II 50 II 100 II 1.0mm ......................................... 18 19 20 21 22 22

压合工艺流程

压合 5.1. 製程目的: 將銅箔(Copper Foil),膠片(Prepreg)與氧化處理(Oxidation)後的內層線路板,壓合成 多層基板.本章仍介紹氧化處理,但未來因成本及縮短流程考量,取代製程會逐漸普遍. 5.2. 壓合流程,如下圖5.1 : 5.3. 各製程說明 5.3.1 內層氧化處理(Black/Brown Oxide Treatment) 531.1 氧化反應 A. 增加與樹脂接觸的表面積,加強二者之間的附著力(Adhesion). B. 增加銅面對流動樹脂之潤濕性,使樹脂能流入各死角而在硬化後有更強的抓地力。 C. 在裸銅表面產生一層緻密的鈍化層(Passivatio n)以阻絕高溫下液態樹脂中胺類 (Amine)對銅面的影響。 5.3.1.2. 還原反應 目的在增加氣化層之抗酸性,並剪短絨毛高度至恰當水準以使樹脂易於填充並能減少 粉紅圈(pink ring ) 的發生 5.3.1.3. 黑化及棕化標準配方 表一般配方及其操作條件

上表中之亞氯酸鈉為主要氧化劑,其餘二者為安定劑,其氧化反應式 ⑴2Cu-b2C10?^Cu2ofClo?+Cl ⑵CU J O+TIC^^C U O+CIO J+CI ⑶Cn^O-sCufOH) 2+Cu Cu0+H20 CuCOH) 2 ------ A 刘匸以上 此三式是金屬銅與亞氯酸鈉所釋放出的初生態氧先生成中間體氧化亞銅,2Cu+[0] -Cu20, 再繼續反應成為氧化銅CuO若反應能徹底到達二價銅的境界,則呈現黑巧克力色之"棕氧化"層,若層膜中尚含有部份一價亞銅時則呈現無光澤的墨黑色的"黑氧化"層。 5.3.14 製程操作條件(一般代表),典型氧化流程及條件。

精编【机械制造行业】佳总兴业股份有限公司多层板压合机械操作规范

【机械制造行业】佳总兴业股份有限公司多层板压合机械操作规范 xxxx年xx月xx日 xxxxxxxx集团企业有限公司 Please enter your company's name and contentv

佳总兴业股份有限公司文件发行变更履历表

PSC-03F01D

文件编号:PSC-05S28 佳总兴业股份有限公司版序: A GIA TZOONG ENTERPRISE CO., LTD.页次: 1/13 压合热压机操作规范 1.目的: 建立操作程序方法之制度,并提供作业人员及新进人员训练参考之教材。 2.范围: 本操作规范适用于压合课作业人员操作热压机设备、设定压机参数时使用。 3.权责: 3-1 负责设备点检及按照【生产制作流程单PSC-03F26B】要求作业。 3-2 依工单输入热压机计算机设备上;设定相关压机程序。 3-3 负责相关热压机备品之领用、存放及更换。

3-4 依【设备操作条件查核表PSC-05F84A】点检设备上各项表头与数值。 3-5 负责维护设备周遭之清洁以符合5S要求。 4.操作程序及说明: 4-1 将电源开关打开。 4-2 检查热板温度是否合乎150℃。 4-3 输入板材正确尺寸及排版数。 4-4 依PP迭构组合方式设定压力及配方序号。 4-5 台车位置选择扭转至7,并按前进钮将台车移至7位置。 4-6 定位后按储料架前进钮将待压板子取出。 4-7 选择热压机A.B.C.D(台车位置选择钮分别为1.2.5.6为热压机)(3.4为冷压机)。 4-8 若使用A机则台车位置选择钮转至1并按前进钮将台车移至1号位置。 4-9 旋转A机手动钮将真空门打开。 4-10 台车定位后按储料架前进钮将待压板子送入热压机内,再按储料架前后退钮。 4-11 旋转A机自动钮并按下自动启动开始压合。

PCB常见平板电脑阻抗压合结构图

No. L1--------------------------1/3oz + Plating 2116*1 4mil L2------------------------- 0.7 H/H mm 含铜 L3------------------------- 2116*1 4mil L4-------------------------1/3oz + Plating 压合厚度:0.9±0.1MM 成品厚度:1.0±0.1MM PP厚度为填胶后厚度 阻抗计算: L1/L4(屏蔽层L2/L3):单端:线宽 6.5mil ,阻值 50Ω±10% 单端:线宽 4.5mil ,阻值 60Ω±10% 差分:线宽6mil,线距6mil,阻值 90Ω±10% 差分:线宽5mil,线距7mil,阻值 100Ω±10% No. L1--------------------------1/3oz + Plating 1080*1 3mil L2------------------------- 0.7 H/H mm 含铜(偏上限料) L3------------------------- 1080*1 3mil L4-------------------------1/3oz + Plating 压合厚度:0.9±0.1MM 成品厚度:1.0±0.1MM PP厚度为填胶后厚度 阻抗计算: L1/L4(屏蔽层L2/L3):单端:线宽 5mil ,阻值 50Ω±10% 单端:线宽 4mil ,阻值 55Ω±10% 差分:线宽4.5mil,线距5.5mil,阻值 90Ω±10% 差分:线宽3.5mil,线距5.5mil,阻值 100Ω±10% L3(屏蔽层L2&L4):差分:线宽3.5mil,线距6mil,阻值 90Ω±10% No. L1--------------------------1/3oz + Plating 1080*1 3mil L2------------------------- 0.9MM 1/1 OZ 含铜 L3------------------------- 1080*1 3mil L4-------------------------1/3oz + Plating

多层板压合结构计算方法

一、 多层板压合结构计算方法: A :内层板厚(不含铜) B :PP 片厚度 E :内层铜箔厚度 F :外层铜箔厚度 X :成品板厚 Y :成品公差 计算压合上、下限:通常锡板为:上限-6MIL ,下限-4MIL 金板为:上限-5MIL ,下限-3MIL 比如锡板:上限=X+Y-6MIL 下限=X-Y-4MIL 计算中值=(上限+下限)/2 ≈A+第二层铜箔面积%*E+第三层铜箔面积%*E+B*2+F*2 以上常规四层板内层开料比成品板小0.4MM 的开,用2116的PP 片压单张,对于特殊内层铜厚和外层铜厚大于1OZ 以上的在选择内层材料时要把此铜考虑进去。 计算压合公差: 上线=成品板厚+成品上线公差值-[电镀铜厚、绿油字符厚度(常规0.1MM )]- 理论计算的压合后的厚度 下线=成品板厚-成品下线公差值-[电镀铜厚、绿油字符厚度(常规0.1MM )]- 理论计算的压合后的厚度 B

三、常用的PP片类型: KB SY 1080 0.07MM 0.065MM 2116 0.11MM 0.105MM 7628 0.17MM 0.175MM 7630 0.2MM 一般两个含胶高的PP片勿一起使用,内层铜皮太少时请 用含胶量高的PP片 1080 PP片致密度最高,含胶量低,尽可能 不要压单张,最多只能压2张2116、7630 PP片只可压单张、 2OZ以上的厚铜板内层不能用单张PP压 7628 PP片可压单张、 2张、3张、最多可压4张. 多层板压合后理论厚度计算说明 H (半盎司铜厚=0.7MIL) 7628 RC50%(PP压合后厚度=100%残铜压合厚-内层铜厚* (1-残铜率%) 39.4MIL 1/1 内层板蕊,看是否包含铜厚,如果不包括,需加上铜厚。 7628 RC50% (PP压合后厚度=100%残铜压合厚-内层铜厚* (1-残铜率%) H (半盎司铜厚=0.7MIL) 举例说明: 有一个压合结构为39.4MIL(含铜厚),外层铜厚为半盎司, PP用7628 RC50%(厂商提供该种PP 100%残铜压合厚度为 4.5MIL ?

关于PCB叠层理解

关于PCB叠层的理解 设计者可能会设计奇数层印制电路板(PCB)。如果布线不需要额外的层,为什么还要用它呢?难道减少层不会让电路板更薄吗?如果电路板少一层,难道成本不是更低么?但是,在一些情况下,增加一层反而会降低费用。 电路板有两种不同的结构:核芯结构和敷箔结构。 在核芯结构中,电路板中的所有导电层敷在核芯材料上;而在敷箔结构中,只有电路板内部导电层才敷在核芯材料上,外导电层用敷箔介质板。所有的导电层通过介质利用多层层压工艺粘合在一起。 核材料就是工厂中的双面敷箔板。因为每个核有两个面,全面利用时,PCB的导电层数为偶数。为什么不在一边用敷箔而其余用核结构呢?其主要原因是:PCB的成本及PCB的弯曲度。 偶数层电路板的成本优势 因为少一层介质和敷箔,奇数PCB板原材料的成本略低于偶数层PCB。但是奇数层PCB的加工成本明显高于偶数层PCB。内层的加工成本相同;但敷箔/核结构明显的增加外层的处理成本。 奇数层PCB需要在核结构工艺的基础上增加非标准的层叠核层粘合工艺。与核结构相比,在核结构外添加敷箔的工厂生产效率将下降。在层压粘合以前,外面的核需要附加的工艺处理,这增加了外层被划伤和蚀刻错误的风险。 平衡结构避免弯曲 不用奇数层设计PCB的最好的理由是:奇数层电路板容易弯曲。

当PCB在多层电路粘合工艺后冷却时,核结构和敷箔结构冷却时不同的层压张力会引起PCB弯曲。随着电路板厚度的增加,具有两个不同结构的复合PCB弯曲的风险就越大。消除电路板弯曲的关键是采用平衡的层叠。尽管一定程度弯曲的PCB达到规范要求,但后续处理效率将降低,导致成本增加。因为装配时需要特别的设备和工艺,元器件放置准确度降低,故将损害质量。 使用偶数层PCB 当设计中出现奇数层PCB时,用以下几种方法可以达到平衡层叠、降低PCB制作成本、避免PCB弯曲。以下几种方法按优选级排列。 1.一层信号层并利用。如果设计PCB的电源层为偶数而信号层为奇数可采用这种方法。增加的层不增加成本,但却可以缩短交货时间、改善PCB质量。 2.增加一附加电源层。如果设计PCB的电源层为奇数而信号层为偶数可采用这种方法。一个简单的方法是在不改变其他设置的情况下在层叠中间加一地层。先按奇数层PCB种布线,再在中间复制地层,标记剩余的层。这和加厚地层的敷箔的电气特性一样。 3.在接近PCB层叠中央添加一空白信号层。这种方法最小化层叠不平衡性,改善PCB的质量。先按奇数层布线,再添加一层空白信号层,标记其余层。在微波电路和混合介质(介质有不同介电常数)电路种采用。 平衡层叠PCB优点:成本低、不易弯曲、缩短交货时间、保证质量。

pcb叠层参考

名词定义:SIG:信号层;GND:地层;PWR:电源层; 电路板的叠层安排是对PCB的整个系统设计的基础。叠层设计如有缺 陷,将最终影响到整机的EMC性能。 总的来说叠层设计主要要遵从两个规矩: 1. 每个走线层都必须有一个邻近的参考层(电源或地层); 2. 邻近的主电源层和地层要保持最小间距,以提供较大的耦合电容; 下面列出从两层板到十层板的叠层: 2.1 单面板和双面板的叠层; 对于两层板来说,由于板层数量少,已经不存在叠层的问题。控制EMI辐射主要从布线和布局来考虑;单层板和双层板的电磁兼容问题越来越突出。造成这种现象的主要原因就是因是信号回路面积过大,不仅产生了较强的电磁辐射,而且使电路对外界干扰敏感。要改善线路的电磁兼容性,最简单的方法是减小关键信号的回路面积。 关键信号:从电磁兼容的角度考虑,关键信号主要指产生较强辐射的信号和对外界敏感的信号。能够产生较强辐射的信号一般是周期性信号,如时钟或地址的低位信号。对干扰敏感的信号是指那些电平较低 的模拟信号。

单、双层板通常使用在低于10KHz的低频模拟设计中: 1 在同一层的电源走线以辐射状走线,并最小化线的长度总和; 2 走电源、地线时,相互靠近;在关键信号线边上布一条地线,这条地线应尽量靠近信号线。这样就形成了较小的回路面积,减小差模辐射对外界干扰的敏感度。当信号线的旁边加一条地线后,就形成了一个面积最小的回路,信号电流肯定会取道这个回路,而不是其它地线 路径。 3 如果是双层线路板,可以在线路板的另一面,紧靠近信号线的下面,沿着信号线布一条地线,一线尽量宽些。这样形成的回路面积等于线 路板的厚度乘以信号线的长度。 2.2 四层板的叠层; 推荐叠层方式: 2.2.1 SIG-GND(PWR)-PWR (GND)-SIG; 2.2.2 GND-SIG(PWR)-SIG(PWR)-GND;

PCB叠层及阻抗计算(精典)

关于PCB叠层及阻抗计算 为了很好地对PCB进行阻抗控制,首先要了解PCB的结构: 通常我们所说的多层板是由芯板和半固化片互相层叠压合而成的,芯板是一种硬质的、有特定厚度的、两面包铜的板材,是构成印制板的基础材料。而半固化片构成所谓的浸润层,起到粘合芯板的作用,虽然也有一定的初始厚度,但是在压制过程中其厚度会发生一些变化。 通常多层板最外面的两个介质层都是浸润层,在这两层的外面使用单独的铜箔层作为外层铜箔。外层铜箔和内层铜箔的原始厚度规格,一般有0.5OZ、1OZ、2OZ(1OZ约为35um或1.4mil)三种,但经过一系列表面处理后,外层铜箔的最终厚度一般会增加将近1OZ左右。内层铜箔即为芯板两面的包铜,其最终厚度与原始厚度相差很小,但由于蚀刻的原因,一般会减少几个um。 多层板的最外层是阻焊层,就是我们常说的“绿油”,当然它也可以是黄色或者其它颜色。阻焊层的厚度一般不太容易准确确定,在表面无铜箔的区域比有铜箔的区域要稍厚一些,但因为缺少了铜箔的厚度,所以铜箔还是显得更突出,当我们用手指触摸印制板表面时就能感觉到。 当制作某一特定厚度的印制板时,一方面要求合理地选择各种材料的参数,另一方面,半固化片最终成型厚度也会比初始厚度小一些。下面是一个典型的6层板叠层结构: PCB的参数: 不同的印制板厂,PCB的参数会有细微的差异。 表层铜箔: 可以使用的表层铜箔材料厚度有三种:12um、18um和35um。加工完成后的最终厚度大约是44um、50um和67um。 芯板:我们常用的板材是S1141A,标准的FR-4,两面包铜 半固化片: 规格(原始厚度)有7628(0.185mm),2116(0.105mm),1080(0.075mm),3313(0.095mm ),实际压制完成后的厚度通常会比原始值小10-15um左右。同一个浸润层最多可以使用3个半固化片,而且3个半固化片的厚度不能都相同,最少可以只用一个半固化片,但有的厂家要求必须至少使用两个。如果半固化片的厚度不够,可以把芯板两面的铜箔蚀刻掉,再在两面用半固化片粘连,这样可以实现较厚的浸润层。 阻焊层: 铜箔上面的阻焊层厚度C2≈8-10um,表面无铜箔区域的阻焊层厚度C1根据表面铜厚的不同而不同,当表面铜厚为45um时C1≈13-15um,当表面铜厚为70um时C1≈17-18um。 导线横截面: 以前我一直以为导线的横截面是一个矩形,但实际上却是一个梯形。以TOP层为例,当铜箔厚度为1OZ时,梯形的上底边比下底边短1MIL。比如线宽5MIL,那么其上底边约4MIL,下底边5MIL。上下底边的差异和铜厚有关,下表是不同情况下梯形上下底的关系。 介电常数:半固化片的介电常数与厚度有关,下表为不同型号的半固化片厚度和介电常数参数: 板材的介电常数与其所用的树脂材料有关,FR4板材其介电常数为4.2—4.7,并且随着频率的增加会减小。 介质损耗因数:电介质材料在交变电场作用下,由于发热而消耗的能量称之谓介质损耗,通常以介质损耗因数tanδ表示。S1141A的典型值为0.015。 能确保加工的最小线宽和线距:4mil/4mil。 阻抗计算的工具简介: 当我们了解了多层板的结构并掌握了所需要的参数后,就可以通过EDA软件来计算阻抗。可以使用Allegro来计算,推荐另一个工具Polar SI9000,这是一个很好的计算特征阻抗的工具,现在很多印制板厂都在用这个软件。 无论是差分线还是单端线,当计算内层信号的特征阻抗时,你会发现Polar SI9000的计算结果与Allegro仅存在着微小的差距,这跟一些细节上的处理有关,比如说导线横截面的形状。但如果是计算表层信号的特征阻抗,我建议你选择Coated模型,而不是Surface模型,因为这类模型考虑了阻焊层的存在,所以结果会更准确。下图是用Polar SI9000计算在考虑阻焊层的情况下表层差分线阻抗的部分截图: 由于阻焊层的厚度不易控制,所以也可以根据板厂的建议,使用一个近似的办法:在Surface模型计算的结果上减去一个特定的值,我建议差分阻抗减去8欧姆,单端阻抗减去2欧姆

PCB叠层设计规范 文档

层压设计规则 作者:刘军喜2010/10/20 1.0设计规则: 1.1非客户指定结构设计、非阻抗板压板结构设计 1.1.1底铜厚度≤1OZ板最外层介电层(L1-2,LN-LN-1层)厚度设计为 2.8-14.6MIL,其它层介电 层设计为 3-14.6MIL; 1.1.2无耐高压测试要求的板压板结构设计 a、3oz≥底铜厚度≥2OZ介电层厚度设计至少大于4.5MIL; b、4oz≥底铜厚度≥3OZ介电层厚度设计至少大于6.5MIL; c、底铜厚度≥5oz的板需工程出工程评估给工艺组评估后再确定。 1.1.3有耐高压测试板要求的板,根据客户高压要求设计具体的压合结构,通常高压测试在 2000V-2800V时,介电层设计至少大于6MIL,具体客户要求的板材TG、CTE、CTI、耐CAF 等详细情况需工程出工程评估给工艺组评估后再确定。 备注:介电层指PP层,含core介电层,介电层厚度及core厚度均指中值,不含公差, 当厚度>5MIL时公差按IPC4101三级公差进行控制;当厚度≤5MIL时,公差按±0.5MIL控 制;超IPC4101三级公差的MI备注要求特别控制及备料. 1.2 客户指定结构板、阻抗板压板结构设计 若客户指定结构,工程组在接单时尽量与客户沟通按以上要求设计,当不能满足以上要求时,出工程评估单给工艺评估. 1.3板边尺寸设计制作标准 1.3.1所有板MI设计开料尺寸需比压合后成型尺寸单边大0.1~0.2″,同时预留开料刀具损耗 每刀0.1″。 1.3.2四层板板边一般设计为≥0.5″,特殊情况下可以做到0.4″,但必须满足以下条件: A、非阻抗板; B、介电层厚<8.0MIL; C、内层铜厚<2OZ; 1.3.3六层及以上板按照板边≥0.75″控制,六层板特殊情况下可做0.6″(min),但需满足上 述a、b、c条件。 1.3.4两张及以上芯板压合的四层板板边设计要求同六层板。 1.3.5 OPE系统设计单元边到开料边一般为≥0.9″,最小可生产0.80″。按0.80″设计时需 优先保证OPE系统靶标完整,其他靶标可移位处理。 1.3.6对于内层铜厚≥2OZ底铜板,板边设计≥0.8″,以防止流胶过大导致板厚超公差及板边 白点。 1.3.7对于阻抗板及金手指板板边设计特别要求: a、阻抗TEST COUPON设计在板中,无法设计在板中的,TEST COUPON边距板边须满足≥ 0.4″,金手指位的方向尽量朝板中。 b、设计拼图时,加大板边尺寸,板边尺寸按≥0.8inch设计。 1.4高层板、内层厚铜板无铜区叠加及薄介电层板内层需添加辅助铜皮以避免压合起皱:

PCB叠层

PCB叠层 1 层叠的定义及添加 对高速多层板来说,默认的两层设计无法满足布线信号质量及走线密度要求,这个时候需要对PCB层叠进行添加,以满足设计的要求。 2 正片层与负片层 正片层就是平常用于走线的信号层(直观上看到的地方就是铜线),可以用“线”“铜皮”等进行大块铺铜与填充操作,如图8-32所示。 图8-32 正片层 负片层则正好相反,即默认铺铜,就是生成一个负片层之后整一层就已经被铺铜了,走线的地方是分割线,没有铜存在。要做的事情就是分割铺铜,再设置分割后的铺铜

的网络即可,如图8-33所示。 图8-33 负片层 3 内电层的分割实现 在Protel版本中,内电压是用“分裂”来分割的,而现在用的版本Altium Designer 19直接用“线条”、快捷键“PL”来分割。分割线不宜太细,可以选择15mil及以上。分割铺铜时,只要用“线条”画一个封闭的多边形框,再双击框内铺铜设置网络即可,如图8-34所示。

图8-34 双击给予网络 正、负片都可以用于内电层,正片通过走线和铺铜也可以实现。负片的好处在于默认大块铺铜填充,再进行添加过孔、改变铺铜大小等操作都不需要重新铺铜,这样省去了重新铺铜计算的时间。中间层用电源层和GND层(也称地层、地线层、接地层)时,层面上大多是大块铺铜,这样用负片的优势就很明显。 4 PCB层叠的认识 随着高速电路的不断涌现,PCB的复杂度也越来越高,为了避免电气因素的干扰,信号层和电源层必须分离,所以就牵涉到多层PCB的设计。在设计多层PCB之前,设计者需要首先根据电路的规模、电路板的尺寸和电磁兼容(EMC)的要求来确定所采用的电路板结构,也就是决定采用4层、6层,还是更多层数的电路板。这就是设计多层板的一个简单概念。 确定层数之后,再确定内电层的放置位置及如何在这些层上分布不同的信号。这就是多层PCB层叠结构的选择问题。层叠结构是影响PCB的EMC性能的一个重要因素,一个好的层叠设计方案将会大大减小电磁干扰(EMI)及串扰的影响。 板的层数不是越多越好,也不是越少越好,确定多层PCB的层叠结构需要考虑较多的因素。从布线方面来说,层数越多越利于布线,但是制板成本和难度也会随之增加。

Lauffer多层板压合系统的操作说明

Lauffer多层板压合系统的操作内容 一.系统的开启和停止 系统开启: 1.打开主电柜的主电源、二次热交换机的电源 2.打开冷却水的阀门 3.打开压缩空气的阀门 4. 打开电脑控制桌的系统运行开启的控制按钮(system on) 二.系统的自动运行 在打开电脑控制桌的系统运行开启的控制按钮后,开启电脑的电源,此时压合系统专用的ml软件自动运行。 ML软件自动运行后,软件的视图中呈现整个Lauffer压合体统现场分布图及各部分的

名称。根据图示看其个部分的状态State): 1.在运行中(Cycle running)和此次压合程序的周期(Cycle time)和现役运行 的时间(Act cycle time),单位:分钟。 2.没有操作(No operation),同时显示上一次运行的程序的周期(Cycle time)和运 行时间(Act Cycle time)0(单位:分钟)。 3.按图示提供的标示看各部分是自动或手动。 4.入市系统中一个在手动状态,图示的左下角“手动按钮(Manual)“是蓝色 自动压板前的注意和检查事项: A. 此时可以看出每一部分的运行模式:自动模式/手动模式(手动模式Manual operation呈蓝色,同时总画面View的左下角Manual按钮呈现蓝色,反之自 动模式)。 B. 热压机1/2和冷压机的运行状态(State):空载(No operation呈现红色),及 压机上一次运行的时间(Cycle time单位为分钟min);运行中(Cycle running呈 现绿色),及本次运行的压合程式的总时间(Cycle time单位为分钟min)和实际 压合程式已运行的时间(Actual time). C. 热压机、冷压机、进料架、出料架的对照式感应器(Light beam)的状态:正常状 态呈现绿色(Light beam free)和异常状态呈现红色(light beam interrupt). D. 在总视图的下方报警栏显示当前的报警数目:若有报警,双击数目栏查看报警 内容并消除报警;也可以在视图的最上方的“简介(Info)”中查看。 压合程式的程式建立: 1冷热压程式的建立 首先选择所要建立的冷压或是热压程序,输入密码”q”再输入名称,进入以下界面,然后一次生产所用的程序数据,核对(check)保存。

PCB叠层规定

Sub:多层板常规叠层规定 为节约成本,规范叠层,特对叠层规定如下:(客户对叠层有要求除外) 压板厚度=内层芯板厚度+内层半固化片厚度+内层所有铜厚+外层铜箔厚度 1、压板厚度=成品厚度+0.05/-0.075mm 2、内层半固化片厚度按阻抗规范要求计算(其取值随相邻两铜面情况不同而变化)。 3、对于铜面情况与规定不一致或非常规铜厚情况,需在该规定基础上调整。 18um 、35 um 、70 um 铜箔厚度 7628(0.185mm),2116(0.105mm)1080(0.075mm)3313(0.095mm) 半固化片厚度 一、 四层板(其中2、3层全部是GND层) (1)成品板厚要求:0.5+/-0.10MM ___________________ 18UM ___________2116*1 ___________________ 0.13mm 35/35um ___________2116*1 ____________________18um 理论压板厚:0.46mm (2)成品板厚要求:0.8mm+/-0.10mm ___________________ 18UM ___________1080*1 ____________2116*1 _______________0.25mm 35/35um ____________2116*1 ____________1080*1 _____________________18um 理论压板厚:0.71mm (3)成品板厚要求:1.0MM+/-0.10MM ____________________ 18UM ___________1080*2 ________________0.51mm 35/35um ____________1080*2 _____________________18um 理论压板厚:0.89mm (4)成品板厚要求:1.6+/-0.15MM _____________________ 18UM ___________1080*1 ____________7628*1 _______________1.0mm 35/35um ____________7628*1 ____________1080*1 _____________________18um 理论压板厚:1.54mm (5)成品板厚要求:2.0+/-0.20MM _____________________ 18UM ___________1080*2

PCB叠层及阻抗计算

PCB叠层及阻抗计算 多层板的结构: 为了很好地对PCB进行阻抗控制,首先要了解PCB的结构: 通常我们所说的多层板是由芯板和半固化片互相层叠压合而成的,芯板是一种硬质的、有特定厚度的、两面包铜的板材,是构成印制板的基础材料。而半固化片构成所谓的浸润层,起到粘合芯板的作用,虽然也有一定的初始厚度,但是在压制过程中其厚度会发生一些变化。 通常多层板最外面的两个介质层都是浸润层,在这两层的外面使用单独的铜箔层作为外层铜箔。外层铜箔和内层铜箔的原始厚度规格,一般有0.5OZ、1OZ、2OZ(1OZ约为35um 或1.4mil)三种,但经过一系列表面处理后,外层铜箔的最终厚度一般会增加将近1OZ左右。内层铜箔即为芯板两面的包铜,其最终厚度与原始厚度相差很小,但由于蚀刻的原因,一般会减少几个um。 多层板的最外层是阻焊层,就是我们常说的“绿油”,当然它也可以是黄色或者其它颜色。阻焊层的厚度一般不太容易准确确定,在表面无铜箔的区域比有铜箔的区域要稍厚一些,但因为缺少了铜箔的厚度,所以铜箔还是显得更突出,当我们用手指触摸印制板表面时就能感觉到。 当制作某一特定厚度的印制板时,一方面要求合理地选择各种材料的参数,另一方面,半固化片最终成型厚度也会比初始厚度小一些。下面是一个典型的6层板叠层结构: PCB的参数: 不同的印制板厂,PCB的参数会有细微的差异。 表层铜箔:

可以使用的表层铜箔材料厚度有三种:12um、18um和35um。加工完成后的最终厚度大约是44um、50um和67um。 芯板:我们常用的板材是S1141A,标准的FR-4,两面包铜 半固化片: 规格(原始厚度)有7628(0.185mm),2116(0.105mm),1080(0.075mm),3313(0. 095mm ),实际压制完成后的厚度通常会比原始值小10-15um左右。同一个浸润层最多可以使用3个半固化片,而且3个半固化片的厚度不能都相同,最少可以只用一个半固化片,但有的厂家要求必须至少使用两个。如果半固化片的厚度不够,可以把芯板两面的铜箔蚀刻掉,再在两面用半固化片粘连,这样可以实现较厚的浸润层。 阻焊层: 铜箔上面的阻焊层厚度C2≈8-10um,表面无铜箔区域的阻焊层厚度C1根据表面铜厚的不同而不同,当表面铜厚为45um时C1≈13-15um,当表面铜厚为70um时C1≈17-18um。 导线横截面: 以前我一直以为导线的横截面是一个矩形,但实际上却是一个梯形。以TOP层为例,当铜箔厚度为1OZ时,梯形的上底边比下底边短1MIL。比如线宽5MIL,那么其上底边约4MIL,下底边5MIL。上下底边的差异和铜厚有关,下表是不同情况下梯形上下底的关系。 介电常数:半固化片的介电常数与厚度有关,下表为不同型号的半固化片厚度和介电常数参数:

PCB多层板压合机

多层板压合机 Multilayer Press Equipment 用于不同种类、不同材料的多层电路板压合,如压合铜箔积层板、铜箔树脂纤维板、电木积层板等,最高可制作8层印刷电路板。热压过程中的温度、压力、时间等参数均可以设置改变,其压合工艺 范围显著优于大多数生产型层压机的工艺范围,配以过程监控软件,是真正意义上的研发型层压机。 转向球头压合结构,确保压合工艺平整均匀 层压专用监控软件,实时监控温度、压力、时间等过程参数专用压板模组,保证粘结温度及压力均匀受控 温度高,升温速率高,适合更多种类的压合材料Design Comes True

多层板压合机 多层板压合机MP300 软件 Easy Processing - Mul ti layer Press Equipment “PCB 压合机过程监控软件”是专门针对MP300而开发的专用监控软件,其功能是为了让用户更方便、更直观的监控层压机的完整工作过程,便于分析压合过程中温度、压力、时间等过程参数对最终产品的影响。软件支持用户在电脑上对层压过程实时监控,支 持对生成的层压过程参数曲线保存及打印输出。 牛皮纸铝模板镜面不锈钢第一层半固化片第二、三层半固化片第四层镜面不锈钢铝模板牛皮纸 PCB 压合机过程监控软件 Design Comes True 结构 压板模组 MP300内置微处理器,可以精确控制多层电路板热压合的全过程,液晶屏显示工艺参数,导航键操作,使用十分容易。内置了多种压合程序,以满足不同尺寸、不同材料、不同种类的PCB 对热压合过程控制的工艺要求。 MP300使用特殊加热结构,使得设备升温速度超过 15℃/分钟,满足绝大多数材料的升温速率要求,最高温度能达到350℃,使得MP300能适应微波材料的压合需求。双层隔热板设计使得设备外壁温度在350℃ 状态下仍然符合安全要求,适合实验室使用。 MP300层压机本体采用钢结构,根据有限元分析软件进行及受力变形分析,确定最优结构。底部压合模块采用转向球头结构,能在压合过程中根据被压合材料及顶部压板的位置自动匹配角度,确保压合工艺的平整均匀。 其中待压合电路板和半固化片装载于专用压板模组内,模组由内到外由镜面不锈钢板、铝模板、牛皮纸按顺序配置,保证界面接触时间、粘结温度以及压力均匀受控。压板模组内置销钉定位孔,操作相对方便,定位准确。 多层板压合机MP300D MP300D 是一款双开口立式层压机,可以同时压合4块以上多层板,层压面积也更大,适合多层板研发量较大的的实验室或有小批量生产需求的客户。 参数更改,恕不通知 *取决于半固化片性能 **液压装置重量另记 300 N/cm 技术参数 最大布线尺寸最大层压面积最大层压压强最高温度电路板层数 层压时间重量电源基板材料 285 × 205 mm 305 × 229 mm 300 N/cm 350 ℃约90分钟*2 2 180 kg** 220V/50Hz/2.1KW FR4,其它材料根据需求而定 305 × 230 mm 325 × 250 mm 350 ℃约90分钟*300 kg**220V/50Hz/3KW 8层(与材料和设计有关) MP300 MP300D 24

相关主题
文本预览
相关文档 最新文档