当前位置:文档之家› 圆锥曲线的共同性质及应用

圆锥曲线的共同性质及应用

圆锥曲线的共同性质及应用
圆锥曲线的共同性质及应用

12.4圆锥曲线的共同性质及应用

【知识网络】

1.用联系的观点看圆锥曲线的共同性质. 2.学会圆锥曲线几何性质的简单综合应用.

3.进一步体会函数方程思想、化归转化思想、分类讨论思想、数形结合思想. 【典型例题】

[例1] (1)若抛物线2

2y px =的焦点与椭圆22

162

x y +=的右焦点重合,则p 的值为( ) A .2- B .2 C .4- D .4

(2)曲线

221(6)106x y m m m +=<--与曲线22

1(59)59x y m m m

+=<<--的 ( ) A .焦距相等 B . 离心率相等 C .焦点相同 D .准线相同

(3)双曲线12222=-b y a x 的离心率为1e ,双曲线122

22=-a

x b y 的离心率为2e ,则1e +2e 的最小值为( )

A .24

B .2

C .22

D .4

(4)已知椭圆m x 2+n

y 2=1与双曲线p x 2-q y 2=1(m,n,p,q ∈R +

)有共同的焦点F 1、F 2,P 是椭圆和双

曲线的一个交点,则|PF 1|·|PF 2|= .

(5)若方程(1-k)x 2+(3-k 2)y 2=4表示椭圆,则k 的取值范围是 .

[例2] 双曲线C 与椭圆22

184

x y +=有相同的焦点,直线y =x 3为C 的一条渐近线. (1)求双曲线C 的方程;

(2)过点P (0,4)的直线l ,交双曲线C 于A,B 两点,交x 轴于Q 点(Q 点与C 的顶点不重合).当

12PQ QA QB λλ==,且3

8

21-=+λλ时,求Q 点的坐标.

[例3] 已知椭圆C 1的方程为14

22

=+y x ,双曲线C 2的左、右焦点分别为C 1的左、右顶点,而C 2的左、右顶点分别是C 1的左、右焦点。

(1) 求双曲线C 2的方程;

(2) 若直线l :2+=kx y 与椭圆C 1及双曲线C 2恒有两个不同的交点,且l 与C 2的两个交点A 和B 满足6

[例4] 学校科技小组在计算机上模拟航天器变轨返回试验. 设计方案如图:航天器运行(按顺时针方向)的轨迹方程为12510022

=+y x ,变轨(即航天器运行轨迹由椭圆变为抛物线)后返回的轨迹是以y 轴

为对称轴、??

? ??

764,0M 为顶点的抛物线的实线部分,降落点为)0,8(D . 观测点)0,6()0,4(B A 、同

时跟踪航天器.

(1)求航天器变轨后的运行轨迹所在的曲线方程; (2)试问:当航天器在x 轴上方时,观测点B A 、测得离航天器的距离分别为多少时,应向航天器发出变轨指令?

【课内练习】

1.双曲线)0(12

2≠=-mn n

y m x 离心率为2,有一个焦点与抛物线x y 42=的焦点重合,则mn 的值为

( )

A .

16

3 B .

8

3 C .

3

16 D .

3

8 2.已知双曲线的中心在原点,离心率为3.若它的一条准线与抛物线x y 42=的准线重合,则该双曲线与抛物线x y 42=的交点到原点的距离是 ( )

A .23+6

B .21

C .21218+

D .21

3.方程22

12sin 3sin 2

x y θθ+=+-所表示的曲线是 ( )

A .焦点在x 轴上的椭圆

B .焦点在y 轴上的椭圆

C .焦点在x 轴上的双曲线

D .焦点在 y 轴上的双曲线

4.某圆锥曲线C 是椭圆或双曲线,其中心为原点,对称轴为坐标轴,且过点A (-2,2 3 ),B (3

2

- 5 ),则

A .曲线C 可以是椭圆也可以是双曲线

B .曲线

C 一定是双曲线 C .曲线C 一定是椭圆

D .这样的曲线不存在

5.若直线mx ny +-=30与圆x y 223+=没有公共点,则以(m ,n )为点P 的坐标,过点P 的一条

直线与椭圆22

173

x y +=的公共点有_________个。

6.设圆过双曲线

116

92

2=-y x 的右顶点和右焦点,圆心在双曲线上,则圆心到双曲线中心的距离 .

7.如图,从点)2,(0x M 发出的光线沿平行于抛物线x y 42=的轴的方向射向此抛物线上的点P ,反射后经焦点F 又射向抛物线上的点Q ,再反射后沿平行于抛物线的轴的方向射向直线

,072:N y x l 上的点=--再反射后又射回点M ,则

x 0= .

8.设F 1(-c ,0)、F 2(c ,0)是椭圆

2

2a x +

2

2b y =1(a>b>0)的两个焦点,P 是以

F 1F 2为直径的圆与椭圆的一个交点,若∠PF 1F 2=5∠PF 2F 1,求椭圆的离心率.

9.双曲线中心在原点,坐标轴为对称轴,与圆x 2+y 2=17交于A (4,-1).若圆在点A 的切线与双曲线的一条渐近线平行,求双曲线的方程.

10.垂直于x 轴的直线交双曲线

2

2a

x -

2

2b

y =1右支于M ,N 两点,A 1,A 2为双曲线的左右两个顶点,求

直线A 1M 与A 2N 的交点P 的轨迹方程,并指出轨迹的形状.

12.4圆锥曲线的共同性质及应用

A 组

1.若方程22

194x y k k +=--表示双曲线时,这些双曲线有相同的( )

A .实轴长

B .虚轴长

C .焦距

D .焦点

2. P 是双曲线22

x y 1916

-=的右支上一点,M 、N 分别是圆(x +5)2+y 2=4和(x -5)2+y 2=1上的

点,则|PM|-|PN|的最大值为( )

A.6

B.7

C.8

D.9

3.设双曲线以椭圆

19

252

2=+y x 长轴的两个端点为焦点,其准线过椭圆的焦点,则双曲线的渐近线的斜率为

( )

A .2±

B .34±

C .2

D .4

4.设0≤α<2π,若方程x 2sin α-y 2cos α=1表示焦点在y 轴上的椭圆,则α的取值范围是 .

5.已知双曲线2

221(0)x y a a

-=>的一条准线与抛物线y 2=-6x 的准线重合,则该双曲线的离心率

是 .

6.设F 1、F 2为曲线C 1∶12y 6x 22=+的焦点,P 是曲线C 2∶1y 3x 2

2=-与C 1的一个交点,求PF 1→ ·PF 2→

|PF 1

→ ||PF 2

→ |

的值.

7.设双曲线方程为22

221(0)x y a b a b

-=>>,P 为双曲线上任意一点,F 为双曲线的一个焦点,讨论以|PF|

为直径的圆与圆x 2+y 2=a 2的位置关系.

8.已知A (-2,0),B (2,0),动点P 与A 、B 两点连线的斜率分别为PA k 和PB k ,且满足PA k ·PB k =t (t ≠0且t ≠-1).

(1)求动点P 的轨迹C 的方程;

(2)当t <0时,曲线C 的两焦点为F 1,F 2,若曲线C 上存在点Q 使得∠F 1QF 2=120O ,

求t 的取值范围.

B 组

1.已知双曲线m :9x 2-16y 2=144,若椭圆n 以m 的焦点为顶点,以m 的顶点为焦点,则椭圆n 的准线方程是( )

A.516±

=x B.316±=x C.425±=x D.3

25

±=x 2.当8<k <17时,曲线221178x y k k +=--与22

1817x y +=有相同的( )

A .焦距

B .准线

C .焦点

D .离心率

3.已知椭圆22221x y a b +=(a >b >0),与双曲线22

221x y m n

-=(m >0,n >0)有相同的焦点(-c,0),(c,0),

若c 是a,m 的等比中项,n 2是2m 2与c 2的等差中项,则椭圆的离心率是( )

A B .14 D .12

4.设椭圆1n y m x 2222=+,双曲线1n

y m x 22

22=-,抛物线y 2=2(m+n)x(其中m >n >0)的离心率分别为e 1、

e 2、e 3,则e 1e 2与e 3的大小关系是 . 5.一动圆圆心在抛物线x 2=2y 上,过点(0,2

1

)且恒与定直线l 相切,则直线l 的方程( ) A. x=21 B. x=161 C. D. y= -16

1

6.已知定点A (0,t )(t ≠0),点M 是抛物线y 2=x 上一动点,A 点关于M 的对称点是N . (1)求N 点的轨迹方程;

(2)设(1)中所求轨迹与抛物线y 2=x 交于B ,C 两点,求当AB ⊥AC 时t 的值.

7.直线l :x -2y +3=0与椭圆C 1:22143

x y +=交于A ,B 两点,R 是抛物线C 2:y 2

=2px(p >0)上一点.若

直线l 与C 2无公共点,且△ABR 有最小面积4,求p 的值和R 点的坐标.

8.设双曲线C 的中心在原点,以抛物线y 2=23x -4的顶点为双曲线的右焦点,抛物线的准线为双曲线的右准线.

(1)试求双曲线C 的方程;

(2)设直线l:y =2x +1与双曲线C 交于A 、B 两点,求|AB |;

(3)对于直线y =kx +1,是否存在这样的实数k ,使直线l 与双曲线C 的交点A 、B 关于直线y =ax (a 为常数)对称,若存在,求出k 值;若不存在,请说明理由.

12.4圆锥曲线的共同性质及应用

【典型例题】

例1 (1)解:椭圆22

162

x y +=的右焦点为(2,0),所以抛物线22y px =的焦点为(2,0),则4p =,故选D .

(2)由

221(6)106x y m m m +=<--知该方程表示焦点在x 轴上的椭圆,由22

1(59)59x y m m m

+=<<--知该方程表示焦点在y 轴上的双曲线,故只能选择答案A .

(3)C .提示:用基本不等式.

(4)m-p .提示:分别用椭圆和双曲线的定义,并将两等式平方相减. (5)(- 3 ,1).提示:将问题转化成解不等式组问题.

例2(1)依据渐近线设双曲线方程,并用待定系数法求得双曲线方程是 2

2

13

y x -=;(2)设Q 点的坐标,用定比分点公式联列方程组,得 (2,0)Q ±..

例3、(1)设双曲线C 2的方程为122

22=-b

y a x ,则.1,31422222==+=-=b c b a a 得再由

故C 2的方程为2

2 1.3

x y -= (2)将.0428)41(14

22222

=+++=++=kx x k y x kx y 得代入 由直线l 与椭圆C 1恒有两个不同的交点得

,0)14(16)41(16)28(22221>-=+-=?k k k 即 21

.4

k > ①

0926)31(13

22222

=---=-+=kx x k y x kx y 得代入将.

由直线l 与双曲线C 2恒有两个不同的交点A ,B 得

2

22

222

2130,1 1.3(62)36(13)36(1)0.

k k k k k k ?-≠?≠??即且 22

629

(,),(,),,131366,(2)(2)

A A

B B A B A B

A B A B A B A B A B A B k A x y B x y x x x x k k OA OB x x y y x x y y x x kx kx -+=?=--?<+<+=++设则由得而 22222(1)2()2

962(1)221337

.31

A B A B k x x k x x k

k k k k k =+++-=+?

++-+=- 2222

3715136,0.3131k k k k +-<>--于是即解此不等式得22

131.153

k k ><或 ③ 由①、②、③得

.115

13

314122<<<

(1,)(,)(,)(,1)15322315

---

例4、(1)设曲线方程为7

64

2+

=ax y ,

由题意可知,7

64

640+

?=a . 7

1

-

=∴a . ∴ 曲线方程为764

712+-=x y .

(2)设变轨点为),(y x C ,根据题意可知

???

???

?+-==+)

2(,76471)1(,12510022

2x y y x 得 036742=--y y ,

4=y 或4

9

-=y (不合题意,舍去).

4=∴y .

得 6=x 或6-=x (不合题意,舍去). ∴C 点的坐标为)4,6(, 4||,52||==BC AC .

答:当观测点B A 、测得BC AC 、距离分别为452、时,应向航天器发出变轨指令.

【课内练习】

1.A . 提示:可以分别求出m ,n . 2.B .提示:求出基本量.

3.C .提示:注意sin θ的取值范围. 4.B .提示:考虑对称性.

5.2.提示:运用点到直线的距离公式后,说明点P 在椭圆内. 6.

16

3

.提示:可以利用距离相等求出圆心的坐标. 7.6.提示:由抛物线方程得焦点坐标,进而得到P ,Q 的坐标,再由

直线QN 与MN 关于直线l 对称,求得x 0.

8.8.

36

. ∵?

+?=?+?+==?=?cos15sin15a 2sin7515sin |PF ||PF |1c 2sin75|PF |sin15|PF |2121,∴36

60sin 21e 2a 2c =

?

==. 9.22161255255x y -=.提示:先求圆的切线方程,进而得到双曲线的渐近线方程,再用待定系数法求双

曲线的方程.

10.22

221x y a b

+=,a=b 时表示以原点为圆心,a 为半径的圆;a >b 时,表示焦点在x 轴上的椭圆;a

<b 时,表示焦点在y 轴上的椭圆.提示:设出点的坐标,写出直线方程(含参变量),结合点在曲线上,消去参数.

12.4圆锥曲线的共同性质及应用

A 组

1.D .提示:焦点可以在不同的轴上.

2.设双曲线的两个焦点分别是F 1(-5,0)与F 2(5,0),则这两点正好是两圆的圆心,当且仅当点P 与M 、F 1三点共线以及P 与N 、F 2三点共线时所求的值最大,此时 |PM|-|PN|=(|PF 1|-2)-(|PF 2|-1)=10-1=9故选B . 3.C .提示:求出基本量. 4.(

3,

24ππ

)∪(

37,24

ππ

).提示:二次项系数为正,且y 2的分母较大. 5.2

3

3 .提示:依据基本量之间的关系及准线方程,分别求出a,c .

6. 1

3 .提示:分别应用椭圆、双曲线的定义,求出|PF 1|,|PF 2|,再用余弦定理.

7.当点P 在双曲线的右支上时,外切;当点P 在双曲线的左支上时,内切.提示:用双曲线的定义及两圆相切时的几何性质.

8.(1)设点P 坐标为(x,y),依题意得2

2-?

+x y

x y =t ?y 2=t(x 2-4)?42x +t y 42-=1

轨迹C 的方程为42x +t

y 42

-=1(x ≠±2).

(2)当-1<t <0时,曲线C 为焦点在x 轴上的椭圆, 设1PF =r 1,2PF = r 2, 则r 1+ r 2=2a=4. 在△F 1PF 2中,21F F =2c=4t +1, ∵∠F 1PF 2=120°,由余弦定理,

得4c 2=r 21+r 22-2r 1r 2cos120?= r 21+r 22+ r 1r 2

= (r 1+r 2)2-r 1r 2≥(r 1+r 2)2-(221r r +)2=3a 2, ∴16(1+t )≥12, ∴t ≥-4

1

. 所以当-

4

1

≤t <0时,曲线上存在点Q 使∠F 1QF 2=120° 当t <-1时,曲线C 为焦点在y 轴上的椭圆, 设1PF =r 1,2PF = r 2,则r 1+r 2=2a=-4 t, 在△F 1PF 2中, 21F F =2c=4t --1. ∵∠F 1PF 2=120O ,由余弦定理,

得4c 2=r 21+r 22-2r 1r 20120cos = r 21+r 22+ r 1r 2

= (r 1+r 2)2-r 1r 2≥(r 1+r 2)2-(

2

21r r +)2

=3a 2, ∴16(-1-t )≥-12t ?t ≤-4. 所以当t ≤-4时,曲线上存在点Q 使∠F 1QF 2=120O

综上知当t <0时,曲线上存在点Q 使∠AQB=120O 的t 的取值范围是

(]??

?

?

??-?-∞-0,4

14,. B 组

1. C .提示:注意基本之间的联系.

2. A .提示:将方程均化为标准方程,再求其焦距. 3. D .提示:联想基本量之间的关系.

4.e 1e 2<e 3,提示:用离心率的计算公式,注意抛物线的离心率是1.

高考圆锥曲线基本性质综合复习

第一节焦点三角形 一、焦点三角形的周长 知识点:(1)已知21,F F 分别为椭圆122 22=+b y a x 的左、右焦点,P 是椭圆上的动点,则21F PF ?的周长恒为c a 22+; (2)已知21,F F 分别为椭圆122 22=+b y a x 的左、右焦点,l 过焦点1F 且与椭圆交于B A ,两点,则2ABF ?的周长恒为. 4a 例1,已知21,F F 分别为椭圆1:22 22=+b y a x E 的左、右焦点,过1F 斜率为1的直线l 与E 相交于B A ,两点,且22,,BF AB AF 成等差数列,求E 的离心率.变式1,在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点21,F F 在x 轴上,离心率为2 2,过点1F 的直线l 交C 于B A ,两点,且2ABF ?的周长为16,求椭圆的方程.二、焦点三角形的面积 知识点:(1)已知21,F F 分别为椭圆122 22=+b y a x 的左、右焦点,M 是椭圆上的动点,则21F MF ?的面积为)(2 tan 212MF F b y c S M ∠===θθ;(2)已知21,F F 分别为双曲线1-22 22=b y a x 的左、右焦点,M 是双曲线上的动点,则21F MF ?的面积为).(2 tan 212MF F b y c S M ∠===θθ

例2,已知双曲线122 2 =-y x 的焦点为21,F F ,点M 在双曲线上且021=?MF MF ,则点M 到x 轴的距离为_______. 变式2,已知双曲线1:22=-y x C 的焦点为21,F F ,点P 在C 上,02160=∠PF F ,则21PF PF ?=___________. 三、焦点三角形的角平分线 知识点:(1)在ABC ?中,AD 为ABC ?的角平分线,则CD BD AC AB =;(2)已知点P 是椭圆122 22=+b y a x 上的动点,21,F F 为椭圆的两个焦点,21F PF ?的内切圆的半径为r ,则). (21c a r S F PF +=?例3,已知21,F F 为椭圆112 162 2=+y x 的左右焦点,点)3,2(A 在椭圆上,求21AF F ∠的角平分线所在直线的方程. 变式3,已知21,F F 分别为双曲线127 9:2 2=-y x C 的左右焦点,A 为C 上一点,点M 的坐标为)0,2(-,AM 为21AF F ∠的角平分线,则._____2=AF

圆锥曲线的定义方程和性质知识点总结

椭圆的定义、性质及标准方程 1. 椭圆的定义: ⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。 ⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<>=+b a b y a x 中心在原点,焦点在x 轴上 )0(12 2 22>>=+b a b x a y 中心在原点,焦点在y 轴上 图形 范围 x a y b ≤≤, x b y a ≤≤, 顶点 ()()()() 12120000A a A a B b B b --,、,,、, ()()()() 12120000A a A a B b B b --,、,,、, 对称轴 x 轴、y 轴; 长轴长2a ,短轴长2b ; 焦点在长轴上 x 轴、y 轴; 长轴长2a ,短轴长2b ; 焦点在长轴上 焦点 ()()1200F c F c -,、, ()()1200F c F c -,、, 焦距 )0(221>=c c F F )0(221>=c c F F 离心率 )10(<<= e a c e )10(<<= e a c e 准线 2 a x c =± 2 a y c =± 参数方程与普通方程 22 22 1x y a b +=的参数方程为 ()cos sin x a y b θ θθ=?? =?为参数 22 22 1y x a b +=的参数方程为 ()cos sin y a x b θ θθ =?? =?为参数

圆锥曲线的定义性质与结论(解析版)

圆锥曲线的基本定义性质与结论 考点一 圆锥曲线的定义 (一) 椭圆及其标准方程 1.椭圆的定义:平面内与两个定点21,F F 的距离之和等于常数(大于|F 1F 2|)的点的轨迹(或集合)叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距. 2.椭圆的标准方程: ①x 2a 2+y 2 b 2=1(a >b >0),焦点是()()0,0,21 c F c F ,-,且c 2=a 2?b 2. ② y 2a 2+ x 2b 2 =1(a >b >0),焦点是()()0,0,21c F c F ,-,且c 2=a 2?b 2. 3.椭圆的几何性质(用标准方程x 2 a 2+y 2 b 2=1(a >b >0)研究): 1)范围:?a ≤x ≤a ,?b ≤y ≤b ; 2)对称性:以x 轴、y 轴为对称轴,以坐标原点为对称中心,椭圆的对称中心又叫做椭圆的中心; 3)椭圆的顶点:椭圆与它的对称轴的四个交点,如图中的2121,,,B B A A ; 4)长轴与短轴:焦点所在的对称轴上,两个顶点间的线段称为椭圆的长轴,如图中线段的A 1A 2;另一对顶点间的线段叫做椭圆的短轴,如图中的线段B 1B 2. 5)椭圆的离心率:e =c a ,焦距与长轴长之比,0>=-b a b y a x ,焦点坐标为()()0,0,21c F c F ,-,c 2=a 2+b 2; ②)0,0(122 22>>=-b a b x a y ,焦点坐标为()()c F c F ,0,021,-,c 2=a 2+b 2; 3.双曲线的几何性质 1)范围:x ≥a 或x ≤?a ;如图. 2)对称性:以x 轴、y 轴为对称轴,以坐标原点为对称中心,这个对称中心又叫做双曲线的中心.

圆锥曲线定义的运用

圆锥曲线定义的运用》案例分析 双鸭山31 中郭秀涛 一、教学内容分析 本课选自《全日制普通高级中学教科书(必修)?数学》(人教版)高二(上),第八章(圆锥曲线方程复习课) 圆锥曲线的定义反映了圆锥曲线的本质属性, 它是无数次实践后的高度抽象. 恰当地利用定义解题, 许多时候能以简驭繁. 因此, 在学习了椭圆、双曲线、抛物线的定义及标准方程、几何性质后,我认为有必要再一次回到定义, 熟悉“利用圆锥曲线定义解题”这一重要的解题策略. 二、学生学习情况分析 我所任教班级的学生是初中开始“课程改革”后的第一届毕业生,他们在初中三年的学习中,接受的是“新课改”的理念,学习的是“新课标”下的课程、教材,由于05 年高中“课改”还未全面推行,因此如今他们面对的高中教材还是旧教材。 与以往的学生比较,这届学生的特点是:参与课堂教学活动的积极性更强,思维敏捷,敢于在课堂上发表与众不同的见解,但计算能力较差,字母推理能力较弱,使用数学语言的表达能力也略显不足。 三、设计思想 由于这部分知识较为抽象, 难以理解. 如果离开感性认识, 容易使学生陷入困境,降低学习热情. 在教学时, 我有意识地引导学生利用波利亚的一般解题方法处理习题, 针对学生练习中产生的问题, 进行点评, 强调“双主作用”的发挥. 借助多媒体动画, 引导学生主动发现问题、解决问题, 主动参与教学,在轻松愉快的环境中发现、获取新知, 提高教学效率. 四、教学目标 1.深刻理解并熟练掌握圆锥曲线的定义,能灵活应用定义解决问题;熟练掌握焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法;能结合平面几何的基本知识求解圆锥曲线的方程。 2.通过对练习,强化对圆锥曲线定义的理解,培养思维的深刻性、创造性、科学性和批判性, 提高空间想象力及分析、解决问题的能力;通过对问题的不断引申, 精心设问, 引导学生学习解题的一般方法及联想、类比、猜测、证明等合情推理方法. 3.借助多媒体辅助教学, 激发学习数学的兴趣. 在民主、开放的课堂氛围中, 培养学生敢想、敢说、勇于探索、发现、创新的精神. 五、教学重点与难点: 教学重点

圆锥曲线知识点总结版

圆锥 曲线的方程与性质 1.椭圆 (1)椭圆概念 平面内与两个定点1F 、2F 的距离的和等于常数2a (大于21||F F )的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离2c 叫椭圆的焦距。若M 为椭圆上任意一点,则有21||||2MF MF a +=。 椭圆的标准方程为: 22 221x y a b +=(0a b >>)(焦点在x 轴上)或 122 22=+b x a y (0a b >>)(焦点在y 轴上)。 注:①以上方程中,a b 的大小0a b >>,其中222b a c =-; ②在22221x y a b +=和22 221y x a b +=两个方程中都有0a b >>的条件,要分清焦点的位 置,只要看2 x 和2 y 的分母的大小。例如椭圆22 1x y m n +=(0m >,0n >,m n ≠)当m n >时表示焦点在x 轴上的椭圆;当m n <时表示焦点在y 轴上的椭圆。 (2)椭圆的性质 ①范围:由标准方程22 221x y a b +=知||x a ≤,||y b ≤,说明椭圆位于直线x a =±,y b =±所围成的矩形里; ②对称性:在曲线方程里,若以y -代替y 方程不变,所以若点(,)x y 在曲线上时,点(,)x y -也在曲线上,所以曲线关于x 轴对称,同理,以x -代替x 方程不变,则曲线关于y 轴对称。若同时以x -代替x ,y -代替y 方程也不变,则曲线关于原点对称。 所以,椭圆关于x 轴、y 轴和原点对称。这时,坐标轴是椭圆的对称轴,原

点是对称中心,椭圆的对称中心叫椭圆的中心; ③顶点:确定曲线在坐标系中的位置,常需要求出曲线与x 轴、y 轴的交点坐标。在椭圆的标准方程中,令0x =,得y b =±,则1(0,)B b -,2(0,)B b 是椭圆与y 轴的两个交点。同理令0y =得x a =±,即1(,0)A a -,2(,0)A a 是椭圆与x 轴的两个交点。 所以,椭圆与坐标轴的交点有四个,这四个交点叫做椭圆的顶点。 同时,线段21A A 、21B B 分别叫做椭圆的长轴和短轴,它们的长分别为2a 和2b , a 和 b 分别叫做椭圆的长半轴长和短半轴长。 由椭圆的对称性知:椭圆的短轴端点到焦点的距离为a ;在22Rt OB F ?中, 2||OB b =,2||OF c =,22||B F a =,且2222222||||||OF B F OB =-,即222c a b =-; ④离心率:椭圆的焦距与长轴的比c e a =叫椭圆的离心率。∵0a c >>,∴ 01e <<,且e 越接近1,c 就越接近a ,从而b 就越小,对应的椭圆越扁;反之,e 越接近于0,c 就越接近于0,从而b 越接近于a ,这时椭圆越接近于圆。当且仅当a b =时,0c =,两焦点重合,图形变为圆,方程为222x y a +=。 2.双曲线 (1)双曲线的概念 平面上与两点距离的差的绝对值为非零常数的动点轨迹是双曲线(12||||||2PF PF a -=)。 注意:①式中是差的绝对值,在1202||a F F <<条件下;12||||2PF PF a -=时为双曲线的一支; 21||||2PF PF a -=时为双曲线的另一支(含1F 的一支);②当122||a F F =时,12||||||2PF PF a -=表示两条射线; ③当122||a F F >时,12||||||2PF PF a -=不表示任何图形;④两定点12,F F 叫做双曲线的焦点,12||F F 叫做焦距。 (2)双曲线的性质

圆锥曲线的经典性质总结

椭圆 必背的经典结论 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两 个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是 002 2 1x x y y a b + =. 6. 若000(,)P x y 在椭圆 222 2 1x y a b + =外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是 002 2 1x x y y a b + =. 7. 椭圆 222 2 1x y a b + = (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角 形的面积为1 2 2 tan 2 F P F S b γ ?=. 8. 椭圆 222 2 1x y a b + =(a >b >0)的焦半径公式: 10||M F a ex =+,20||M F a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点 F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和 A 1Q 交于点N ,则MF ⊥NF. 11. A B 是椭圆 2222 1x y a b + =的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22 O M AB b k k a ?=- , 即0 2 02 y a x b K AB - =。 12. 若000(,)P x y 在椭圆 222 2 1x y a b + =内,则被Po 所平分的中点弦的方程是 2 2 00002 2 2 2 x x y y x y a b a b + = + . 13. 若000(,)P x y 在椭圆222 2 1x y a b +=内,则过Po 的弦中点的轨迹方程是22002 2 2 2 x x y y x y a b a b + = + .

圆锥曲线的定义及其应用

圆锥曲线的定义及其应用 一、教学目标: 1.进一步明确圆锥曲线定义,并用定义解决有关问题; 2.通过发散思维和创新思维的训练,培养学生的探究能力; 3.培养学生用运动变化的观点分析和解决问题. 二、教学重点、难点:圆锥曲线定义的灵活应用. 三、教学方法:教师引导启发与学生自主探索相结合. 四、教学过程: (一)引入: 问题1:平面内到定点12(3,0),(3,0)F F -的距离之和为8的点P 的轨迹是什么? 121286PF PF F F +=>= ∴P 的轨迹是以12(3,0),(3,0)F F -为焦点的椭圆,方程是22 1167 x y + = 问:(1)若到两定点距离之和为改为6,则点P 的轨迹是什么? ( 以12,F F 为端点的线段) (2)若改为到两定点距离之差为2,则P 点的轨迹是什么? (以12,F F 为焦点的双曲线的一支) (3)若改为到两定点距离之差为6,则P 点的轨迹是什么? (以12,F F 为端点的射线) (通过提问,让学生对圆锥曲线的第一定义进行回顾,并且进一步明确定义中所含的限制条件) 由学生总结椭圆和双曲线的定义 问题2:已知定点F (1,0),定直线:1l x =-,设一动点P 到直线l 的距离为d ,若有PF d =,则P 点的轨迹是什么? (F l ?,∴P 点的轨迹是以F (1,0)为焦点,以直线:1l x =-为准线的抛物线。) 问:(1)若点F 改为(-1,0),则点P 的轨迹是什么? (2)当 PF d 为何值时,所求轨迹是椭圆? (3)当PF d 为何值时,所求轨迹是双曲线? (通过提问,让学生对圆锥曲线的统一定义进行回顾和巩固,注意圆锥曲线第二定义的联系和区别) 由学生总结圆锥曲线的统一定义,。

(完整版)高中数学圆锥曲线知识点总结

高中数学知识点大全—圆锥曲线 一、考点(限考)概要: 1、椭圆: (1)轨迹定义: ①定义一:在平面内到两定点的距离之和等于定长的点的轨迹是椭圆,两定点是焦点,两定点间距离是焦距,且定长2a大于焦距2c。用集合表示为: ; ②定义二:在平面内到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做椭圆。其中定点叫焦点,定直线叫准线,常数是离心 率用集合表示为: ; (2)标准方程和性质:

注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。 (3)参数方程:(θ为参数); 3、双曲线: (1)轨迹定义: ①定义一:在平面内到两定点的距离之差的绝对值等于定长的点的轨迹是双曲线,两定点是焦点,两定点间距离是焦距。用集合表示为: ②定义二:到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做双曲线。其中定点叫焦点,定直线叫准线,常数e是离心率。 用集合表示为:

(2)标准方程和性质: 注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。

4、抛物线: (1)轨迹定义:在平面内到定点和定直线的距离相等的点的轨迹是抛物线,定点是焦点,定直线是准线,定点与定直线间的距离叫焦参数p。用集合表示为 : (2)标准方程和性质: ①焦点坐标的符号与方程符号一致,与准线方程的符号相反;②标准方程中一次项的字母与对称轴和准线方程的字母一致;③标准方程的顶点在原点,对称轴是坐标轴,有别于一元二次函数的图像;

二、复习点睛: 1、平面解析几何的知识结构: 2、椭圆各参数间的关系请记熟“六点六线,一个三角形”,即六点:四个顶点,两个焦点;六线:两条准线,长轴短轴,焦点线和垂线PQ;三角形:焦点三角形。则椭圆的各性质(除切线外)均可在这个图中找到。

最新圆锥曲线的概念及性质

圆锥曲线的概念及性 质

第二讲 圆锥曲线的概念及性质 一、选择题 1.(2010·安徽)双曲线方程为x 2-2y 2=1,则它的右焦点坐标为 ( ) A.?? ??22,0 B.????52,0 C.??? ?62,0 D .(3,0) 解析:∵原方程可化为x 21-y 2 1 2=1,a 2=1, b 2=12, c 2=a 2+b 2=32, ∴右焦点为??? ? 62,0. 答案:C 2.(2010·天津)已知双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的一条渐近线方程是y =3x ,它的一 个 焦点在抛物线y 2=24x 的准线上,则双曲线的方程为 ( ) A.x 236-y 2108=1 B.x 29-y 2 27=1 C.x 2108-y 236=1 D.x 227-y 2 9 =1 解析:∵渐近线方程是y =3x ,∴ b a = 3.① ∵双曲线的一个焦点在y 2=24x 的准线上, ∴c =6.② 又c 2=a 2+b 2,③ 由①②③知,a 2=9,b 2=27, 此双曲线方程为x 29-y 2 27=1. 答案:B

4.(2010·辽宁)设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,P A⊥l,A为垂足.如果直线AF的斜率为-3,那么|PF|= () A.4 3 B.8 C.8 3 D.16 解析:解法一:AF直线方程为: y=-3(x-2), 当x=-2时,y=43,∴A(-2,43). 当y=43时代入y2=8x中,x=6, ∴P(6,43), ∴|PF|=|P A|=6-(-2)=8.故选B. 解法二:∵P A⊥l,∴P A∥x轴. 又∵∠AFO=60°,∴∠F AP=60°, 又由抛物线定义知P A=PF, ∴△P AF为等边三角形. 又在Rt△AFF′中,FF′=4,

圆锥曲线经典例题及总结(全面实用)

圆锥曲线经典例题及总结 1.圆锥曲线的两定义: 第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。 2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程): (1)椭圆:焦点在x 轴上时12222=+b y a x (0a b >>),焦点在y 轴上时22 22b x a y +=1(0a b >>)。 方程2 2 Ax By C +=表示椭圆的充要条件是什么?(ABC ≠0,且A ,B ,C 同号,A ≠B )。 (2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:22 22b x a y -=1(0,0a b >>)。方程 22Ax By C +=表示双曲线的充要条件是什么?(ABC ≠0,且A ,B 异号)。 (3)抛物线:开口向右时2 2(0)y px p =>,开口向左时2 2(0)y px p =->,开口向上时 22(0)x py p =>,开口向下时22(0)x py p =->。 3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断): (1)椭圆:由x 2 ,y 2 分母的大小决定,焦点在分母大的坐标轴上。 (2)双曲线:由x 2,y 2 项系数的正负决定,焦点在系数为正的坐标轴上; (3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。 提醒:在椭圆中,a 最大,2 2 2 a b c =+,在双曲线中,c 最大,2 2 2 c a b =+。

圆锥曲线定义的运用(精)

圆锥曲线定义的运用 一、教学内容分析 本课选自《全日制普通高级中学教科书(必修) 数学》(人教版)高二 (上),第八章(圆锥曲线方程复习课) 圆锥曲线的定义反映了圆锥曲线的本质属性,它是无数次实践后的高度抽象.恰当地利用定义解题,许多时候能以简驭繁.因此,在学习了椭圆、双曲线、抛物线的定义及标准方程、几何性质后,我认为有必要再一次回到定义,熟悉“利用圆锥曲线定义解题”这一重要的解题策略. 二、学生学习情况分析 我所任教班级的学生是初中开始“课程改革”后的第一届毕业生,他们在初中三年的学习中,接受的是“新课改”的理念,学习的是“新课标”下的课程、教材,由于05年高中“课改”还未全面推行,因此如今他们面对的高中教材还是旧教材。 与以往的学生比较,这届学生的特点是:参与课堂教学活动的积极性更强,思维敏捷,敢于在课堂上发表与众不同的见解,但计算能力较差,字母推理能力较弱,使用数学语言的表达能力也略显不足。 三、设计思想 由于这部分知识较为抽象,难以理解.如果离开感性认识,容易使学生陷入困境,降低学习热情.在教学时,我有意识地引导学生利用波利亚的一般解题方法处理习题, 针对学生练习中产生的问题,进行点评,强调“双主作用”的发挥.借助多媒体动画,引导学生主动发现问题、解决问题,主动参与教学,在轻松愉快的环境中发现、获取新知,提高教学效率. 四、教学目标 1.深刻理解并熟练掌握圆锥曲线的定义,能灵活应用定义解决问题;熟练掌握焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法;能结合平面几何的基本知识求解圆锥曲线的方程。 2.通过对练习,强化对圆锥曲线定义的理解,培养思维的深刻性、创造性、科学性和批判性,提高空间想象力及分析、解决问题的能力;通过对问题的不断引申,精心设问,引导学生学习解题的一般方法及联想、类比、猜测、证明等合情推理方法. 3.借助多媒体辅助教学,激发学习数学的兴趣.在民主、开放的课堂氛围中,培养学生敢想、敢说、勇于探索、发现、创新的精神. 五、教学重点与难点: 教学重点 1.对圆锥曲线定义的理解 2.利用圆锥曲线的定义求“最值” 3.“定义法”求轨迹方程 教学难点:

圆锥曲线定义、标准方程及性质(精)

圆锥曲线定义、标准方程及性质 一.椭圆 定义Ⅰ:若F 1,F 2是两定点,P 为动点,且21212F F a PF PF >=+ (a 为常数)则P 点的轨迹是椭圆。 定义Ⅱ:若F 1为定点,l 为定直线,动点P 到F 1的距离与到定直线l 的距离之比为常数e (0>b a 取值范围:}{a x a x ≤≤-, }{b y b x ≤≤- 长轴长=a 2,短轴长=2b 焦距:2c 准线方程:c a x 2 ±= 焦半径:)(21c a x e PF +=,)(2 2x c a e PF -=,212PF a PF -=,c a PF c a +≤≤-1等(注意:涉及焦半径时①用点P 坐标表示,②第一定义,第二定义。) 注意:(1)图中线段的几何特征:=11F A c a F A -=22,=21F A c a F A +=12 =11F B a F B F B F B ===122221 ,222122b a B A B A += =等等。顶点与 准线距离、焦点与准线距离分别与c b a ,,有关。 (2)21F PF ?中经常利用余弦定理....、三角形面....积公式... 将有关线段1PF 、2PF 、2c , 有关角21PF F ∠结合起来,建立1 PF +2PF 、1 PF ? 2PF 等关系 (3)椭圆上的点有时常用到三角换元:?? ?θ =θ =sin cos b y a x ; (4)注意题目中椭圆的焦点在x 轴上还是在y 轴上,请补充当焦点在y 轴上时,其相 应的性质。 二、双曲线 (一)定义:Ⅰ若F 1,F 2是两定点,21212F F a PF PF <=-(a 为常数),则动点P 的轨迹是双曲线。 Ⅱ若动点P 到定点F 与定直线l 的距离之比是常数e (e>1),则动点P 的轨迹是双曲线。 (二)图形: (三)性质 方程:12222=-b y a x )0,0(>>b a 122 22=-b x a y )0,0(>>b a 取值范围:}{a x a x x ≤≥或; 实轴长=a 2,虚轴长=2b 焦距:2c

圆锥曲线经典性质总结及证明

圆锥曲线的经典结论 一、椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.(椭圆的光学性质) 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径 的圆,除去长轴的两个端点.(中位线) 3. 以焦点弦PQ 为直径的圆必与对应准线相离.以焦点半径PF 1为直径的圆必与以长轴为直 径的圆内切.(第二定义) 4. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=.(求 导) 5. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点 弦P 1P 2的直线方程是00221x x y y a b +=.(结合4) 6. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点 12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2 F PF S b γ ?=.(余弦定理+面积公式+ 半角公式) 7. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c -,2(,0)F c 00(,)M x y ).(第二定义) 8. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和 AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF

9. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. MN 其实就在准线上,下面证明他在准线上 根据第8条,证毕 10. AB 是椭圆22 221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则 2 2OM AB b k k a ?=-, 即0 20 2y a x b K AB -=。(点差法)

圆锥曲线性质

圆锥曲线的性质 、基础知识 (一)椭圆: 1定义和标准方程: (1)平面上到两个定点F U F2的距离和为定值(定值大于F1F2)的点的轨迹称为椭圆,其中F1, F2称为椭圆的焦点,F1F2称为椭圆的焦距 (2)标准方程: ①焦点在x轴上的椭圆:设椭圆上一点P x,y ,F1 -c,0 , F2C,0,设距离和 2 2 PF i PF2 = 2a,则椭圆的标准方程为:-y2 =1,其中a b 0,b2二a2 - c2 a b ②焦点在y轴上的椭圆:设椭圆上一点P x,y ,F10^C ,F20,C,设距离和 2 2 PFi +|PF2;=2a,则椭圆的标准方程为:专+令二丨,其中(a Ab>0,b2=a2—c2) a b 焦点在哪个轴上,则标准方程中哪个字母的分母更大 2 2 2、椭圆的性质:以焦点在x轴的椭圆为例:笃?爲=1 a b 0 a b (1)a:与长轴的顶点有关:A - a,0 ,A a,0 ,A A =2a称为长轴长 b :与短轴的顶点有关: BdO,-b),B2(0,b ),IB1B2 =2b称为短轴长 C :与焦点有关:斤(—c,O )F? (c,O ), F1F2 =2c称为焦距 (2)对称性:椭圆关于x轴,y轴对称,且关于原点中心对称 (3)椭圆上点的坐标范围:设P x O,y O,则-a乞x O空a,-b乞y O乞b (4)通径:焦点弦长的最小值 ①焦点弦:椭圆中过焦点的弦 2b2 ②过焦点且与长轴垂直的弦,PQ|=—— a 说明:假设PQ过F r;_c,O ,且与长轴垂直,则P:L c, y O ,Q1. —c, - y O,所以

= (|PF i | +IPF 2I ) -2 PF 』PF 2 (1 +COSF 1PF2 ) .4c 2 =4a 2 -2 PF j|PF 2 1 cosFfF 2 PF 」|PF 2 = " _2c 1 +cosF 1PF 2 1 +cosF 1PF 2 比 2 .込各比出n 吐 1 COS RPF 2 2 F 1,F 2距离差为一个常数,则轨迹为双曲线的一支 2、标准方程: 厶 + 卑=1 二 y ; =3,可得 y 。-。则 PQ = a b a a 2b 2 (5) 离心率:e = c ,因为c a ,所以e - 0,1 a (6) 焦半径公式:称 P 到焦点的距离为椭圆的焦半径 ①设椭圆上一点 P(x 0,y 0 ),则 PR =a+ex), PF 2 ②焦半径的最值:由焦半径公式可得:焦半径的最大值为 (7)焦点三角形面积: S P FF 2二b 2 tan ;(其中n 1 证明:S PF ^- PF 1 - PF 2 sinRPF 2 2 + PF 且 F 1F 2 2 -2 PF 1H PF 2 cosRPF ? =a - e)(Q (可记为“左加右减”) a c ,最小值为a - c =PF 1F 2) 2b 2 1 〈PFf =2 PF 1 ' PF 2 1 sin F ]PF 2 : 2 1 cosPF F 2b 2 sin F |PF 2 1 因为 S PF/2 = 2 2c F 1PF 2 We%,所以2 =c y o ,由此得到的推论: ①.F 1PF 2的大小与 y 0之间可相互求出 ②? F 1 PF 2的最大值: F 1 PF 2 最大二 S PF 1 F 2 最大二 y o 最大=P 为短轴顶点 (二) 双曲线: 1、定义:平面上到两个定点 F 「F 2距离差的绝对值为一个常数(小于 F 1F 2)的点的轨迹 称为双曲线,其中 h,F 2称为椭圆的焦点, F 1F 2称为椭圆的焦距;如果只是到两个定点

圆锥曲线定义及其应用

圆锥曲线定义及其应用 授课人:杨海芳 一、教学目标 1、 知识目标:能掌握圆锥曲线的二种定义及熟练灵活地应用定义求轨迹方程,距离,最值等问题。 2、 能力目标:能够准确地运用圆锥曲线的定义来解决实际问题,培养学生应用意识,提高分析,解决问题的能力。 二.、难点 圆锥曲线定义的灵活应用 三、教具 多媒体教学课件 四、教学过程 第一环节:经典回顾 圆锥曲线的定义:第一定义。第二定义。 第二环节:定义的应用 1.距离问题 例1、椭圆 上一点P 到右焦点F2的距离为7,求P 到左焦点的距离 思考: 变式1:求点P 到左准线的距离? 变式2:求点P 到右准线的距离? 2.坐标问题 例2.求抛物线y2=12x 上与焦点的距离等于9的点的坐标 由例2请大家在椭圆或双曲线上设计一道题目??? 注意:1、涉及椭圆双曲线上的点与两个焦点构成的三角形问题,常用第一定义来解决; 116252 2=+y x y F2 P X O F1 L1 L2 P2 P1 · · F M l N x o y

2、涉及焦点、准线、离心率、圆锥曲线上的点中的三者,常用统一定义解决问题. 第三环节:探究引申 1.轨迹问题 例3、已知动圆A 和圆B :(x+3)2+y2=81内切,并和圆C :(x-3)2+y2=1外切,求动圆圆心A 的轨迹方程。 分析:圆内外切时圆心与切点有何关系? 变式1:求三角形ABC 面积的最大值; 2.最值问题 变式2已知椭圆 中B 、C 分 别为其 左、右焦点和点M (2,2) ,试在椭圆上找一点A ,使: (1) 取得最小值; 点评: 1、在求轨迹方程时先利用定义判断曲线形状,可避免繁琐的计算; 2、一般,设A 为曲线含焦点F 的区域内一点在曲线上求一点P ,使|PF|+1/e|PA| 的值最小,都可以过点A 作与焦点F 相应准线的垂线,则垂线段与曲线的交点即为所求之点。 四、小结反思: 1、本节的重点是掌握圆锥曲线的定义在解题中的应用,要注意两个定义的区别和联系。 2、利用圆锥曲线的定义解题时,要注意曲线之间的共性和个性 3、利用圆锥曲线的定义解题时,要用数形结合、化归思想,以得到解题的最佳途径 4、有些最值问题要灵活地利用圆锥曲线的定义将折线段和的问题化归为平面几何中的直线段最短来解决。 y B C O x A AB AM 35+1162522=+y x 变式3:已知椭圆 中B 、C 分别为其 左、右焦点;又点 M ,试在椭圆上找一点 A,使: 取得最小值. 1162522=+y x )2,2(AC AM +

圆锥曲线知识点总结

圆锥曲线 一、椭圆 1、定义:平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆. 即:|)|2(,2||||2121F F a a MF MF >=+。 这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 2、椭圆的几何性质: 焦点的位置 焦点在x 轴上 焦点在y 轴上 图形 标准方程 ()22 2210x y a b a b +=>> ()22 2210y x a b a b +=>> 范围 a x a -≤≤且 b y b -≤≤ b x b -≤≤且a y a -≤≤ 顶点 ()1,0a A -、()2,0a A ()10,b B -、()20,b B ()10,a A -、()20,a A ()1,0b B -、()2,0b B 轴长 短轴的长2b = 长轴的长2a = 焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c 焦距 ()222122F F c c a b ==- 对称性 关于x 轴、y 轴、原点对称 离心率 ()2 2101c b e e a a ==-<

二、双曲线 1、定义:平面内与两个定点1F ,2F 的距离之差的绝对值等于常数(小于 12F F )的点的轨迹称为双曲线.即:|)|2(,2||||||2121F F a a MF MF <=-。 这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距. 2、双曲线的几何性质: 焦点的位置 焦点在x 轴上 焦点在y 轴上 图形 标准方程 ()22 2210,0x y a b a b -=>> ()22 2 210,0y x a b a b -=>> 范围 x a ≤-或x a ≥,y R ∈ y a ≤-或y a ≥,x R ∈ 顶点 ()1,0a A -、()2,0a A ()10,a A -、()20,a A 轴长 虚轴的长2b = 实轴的长2a = 焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c 焦距 ()222122F F c c a b ==+ 对称性 关于x 轴、y 轴对称,关于原点中心对称 离心率 ()2 211c b e e a a ==+>,e 越大,双曲线的开口越阔 渐近线方程 b y x a =± a y x b =± 5、实轴和虚轴等长的双曲线称为等轴双曲线. 三、抛物线

圆锥曲线知识点整理

高二数学圆锥曲线知识整理 知识整理 解析几何的基本问题之一:如何求曲线(点的轨迹)方程。它一般分为两类基本题型:一是已知轨迹类型求其方程,常用待定系数法,如求直线及圆的方程就是典型例题;二是未知轨迹类型,此时除了用代入法、交轨法、参数法等求轨迹的方法外,通常设法利用已知轨迹的定义解题,化归为求已知轨迹类型的轨迹方程。因此在求动点轨迹方程的过程中,一是寻找与动点坐标有关的方程(等量关系),侧重于数的运算,一是寻找与动点有关的几何条件,侧重于形,重视图形几何性质的运用。 在基本轨迹中,除了直线、圆外,还有三种圆锥曲线:椭圆、双曲线、抛物线。 1、三种圆锥曲线的研究 (1)统一定义,三种圆锥曲线均可看成是这样的点集:? ?? ???>=0e ,e d |PF ||P ,其中F 为定点,d 为P 到定直线的距离,F ?,如图。 因为三者有统一定义,所以,它们的一些性质,研究它们的一些方法都具有规律性。 当01时,点P 轨迹是双曲线;当e=1时,点P 轨迹是抛物线。 (2)椭圆及双曲线几何定义:椭圆:{P||PF 1|+|PF 2|=2a ,2a>|F 1F 2|>0,F 1、F 2为定点},双曲线{P|||PF 1|-|PF 2||=2a ,|F 1F 2|>2a>0,F 1,F 2为定点}。 (3)圆锥曲线的几何性质:几何性质是圆锥曲线内在的,固有的性质,不因为位置的改变而改变。 ①定性:焦点在与准线垂直的对称轴上 椭圆及双曲线中:中心为两焦点中点,两准线关于中心对称;椭圆及双曲线关于长轴、短轴或实轴、虚轴成轴对称,关于中心成中心对称。 ②定量: 椭 圆 双 曲 线 抛 物 线 焦 距 2c 长轴长 2a —— 实轴长 —— 2a 短轴长 2b (双曲线为虚轴) 焦点到对应 准线距离 P=2c b 2 p 通径长 2·a b 2 2p

圆锥曲线的定义及其应用(精)

圆锥曲线的定义及其应用 教学目标: 1.进一步明确圆锥曲线定义,并用定义解决有关问题; 2.通过发散思维和创新思维的训练,培养学生的探究能力; 3.培养学生用运动变化的观点分析和解决问题。 教学重点、难点:圆锥曲线定义的灵活应用。 教学方法:教师引导启发与学生自主探索相结合。 教学过程: 一.引入: 问题1:到定点12(2,0),(2,0) F F -的距离之和为8的点P 的轨迹是什么? 121284 PF PF F F +=>= ∴P 的轨迹是以12(2,0),(2,0)F F -为焦点的椭圆,方程是22 11614x y += 问:(1)若到两定点距离之和为改为4,则点P 的轨迹是什么? ( 以 12 ,F F 为端点的线段) (2)若改为到两定点距离之差为2,则P 点的轨迹是什么? (以 12 ,F F 为焦点的双曲线的一支) (3)若改为到两定点距离之差为4,则P 点的轨迹是什么? (以 12 ,F F 为端点的射线) (通过提问,让学生对圆锥曲线的第一定义进行回顾,并且进一步明确定义中所含的限制条件) 由学生总结椭圆和双曲线的定义(打出幻灯片) 问题2:已知定点F (1,2),定直线:210l x y +-=,设一动点P 到直线l 的距离为d ,若有PF d =,则P 点 的轨迹是什么? ( F l ?,∴P 点的轨迹是以F (1,2)为焦点,以直线:210l x y +-=的抛物线。) 问:(1)若点F 改为(3,-1),则点P 的轨迹是什么? (2)当PF d 为何值时,所求轨迹是椭圆? (3)当PF d 为何值时,所求轨迹是双曲线? (通过提问,让学生对圆锥曲线的统一定义进行回顾和巩固,注意圆锥曲线第二定义的联系和区别) 由学生总结圆锥曲线的统一定义,打出幻灯片。 二.圆锥曲线定义的应用 (一)利用圆锥曲线定义求轨迹 例1.设动圆M 过定点A (-3,0),并且在定圆B :22 (3)64x y -+=的内部与其内切,试求动圆圆心M 的轨迹方程。

解析几何-- 圆锥曲线的概念及性质

4.2解析几何--圆锥曲线的概念及性质 一、选择题 1.(2010·安徽双曲线方程为x2-2y2=1,则它的右焦点坐标为 ( A. B. C. D.(,0 解析:∵原方程可化为-=1,a2=1, b2=,c2=a2+b2=, ∴右焦点为. 答案:C 2.(2010·天津已知双曲线-=1(a>0,b>0的一条渐近线方程是y=x,它的一个焦点在抛物线y2=24x的准线上,则双曲线的方程为 ( A.-=1 B.-=1 C.-=1 D.-=1 解析:∵渐近线方程是y=x,∴=.① ∵双曲线的一个焦点在y2=24x的准线上, ∴c=6.② 又c2=a2+b2,③ 由①②③知,a2=9,b2=27, 此双曲线方程为-=1. 答案:B

4.(2010·辽宁设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足.如果直线AF的斜率为-,那么|PF|= ( A.4 B.8 C.8 D.16 解析:解法一:AF直线方程为: y=-(x-2, 当x=-2时,y=4,4A(-2,4. 当y=4时代入y2=8x中,x=6, 4P(6,4, 4|PF|=|PA|=6-(-2=8.故选B. 解法二:5PA∞l,4PA%x轴.

又5 AFO=60°,4 FAP=60°, 又由抛物线定义知PA=PF, 4≥PAF为等边三角形. 又在Rt≥AFF′中,FF′=4, 4FA=8,4PA=8.故选B. 答案:B 5.高8 m和4 m的两根旗杆笔直竖在水平地面上,且相距10 m,则地面上观察两旗杆顶端仰角相等的点的轨迹为 ( A.圆 B.椭圆 C.双曲线 D.抛物线 解析:如图1,假设AB、CD分别为高4 m、8 m的旗杆,P点为地面上观察两旗杆顶端仰角相等的点,由于∠BPA=∠DPC,则Rt△ABP∽Rt△CDP,=,从而 PC=2PA.在平面APC上,以AC为x轴,AC的中垂线为y轴建立平面直角坐标系(图2,则A(-5,0,C(5,0,设P(x,y,得=2 化简得x2+y2+x+25=0,显然,P点的轨迹为圆. 答案:A 二、填空题 解析:由题知,垂足的轨迹为以焦距为直径的圆,则c

相关主题
文本预览
相关文档 最新文档