当前位置:文档之家› 2.5 圆锥曲线的共同性质

2.5 圆锥曲线的共同性质

2.5  圆锥曲线的共同性质
2.5  圆锥曲线的共同性质

2.5圆锥曲线的共同性质

班级__________姓名____________ ______年____月____日

【教学目标】了解圆锥曲线的统一定义,掌握根据标准方程求圆锥曲线准线方程的方法. 【教学重点】解决与准线相关的简单的圆锥曲线问题. 【教学难点】根据标准方程求圆锥曲线准线方程. 【教学过程】 一、引入:

1.椭圆、双曲线定义相似,抛物线的定义与椭圆、双曲线的定义区别在何处?

2.离心率:椭圆0<e <1 ,双曲线e >1, 抛物线有没有离心率?什么曲线的离心率等于1?

二、新授内容:

问题1.在推导椭圆的标准方程时,

我们曾经得到这样一个式子2a cx -=,

c

a x c

=-,你能解释这个式子的几何意义吗?

问题2.已知点),(y x P 到定点)0,(c F 的距离与到定直线l :2a x c =的距离之比是常数(0)c

a c a

>>,

求点P 的轨迹方程.

变式:将条件0a c >>改为0c a >>呢?

1.圆锥曲线的统一定义:

平面内到一个定点F 和到一条定直线l (F 不在l 上)的距离的比等于常数e 的点的轨迹.

当 时,它表示椭圆; 当 时,它表示双曲线; 当 时,它表示抛物线.

其中e 是圆锥曲线的离心率,定点F 是圆锥曲线的焦点,定直线l 是圆锥曲线的准线.

2.椭圆22

221(0)x y a b a b +=>>的准线方程是_________________________;

双曲线22

221(0,0)x y a b a b

-=>>的准线方程是_____________________.

例2.求下列曲线的焦点坐标和准线方程:

(1)22416x y +=; (2)22832y x -=; (3)20x y +=.

【变式拓展】求下列曲线的准线方程:

①22

22153x y +=; ②222516400x y +=; ③22832x y -=;

④224x y -=-; ⑤216y x =; ⑥23x y =-.

【变式拓展】(2)焦点坐标为,(,准线方程为x =±的椭圆方程为 .

(3)顶点坐标为(0,2),(0,2)-,准线方程为4

3

y =±的双曲线方程为 .

反思:

例3.已知椭圆2212516

x y +=上一点P 到左焦点的距离为3,求点P 到椭圆右准线的距离.

【变式拓展】已知双曲线22

16436

x y -=上一点P 到左焦点的距离为14,求P 点到右准线的距离.

例3.填空题专项:

(1)到定点(5,0)A 及定直线16

5

l x =:的距离之比为5:4的点的轨迹方程为 .

(2)设双曲线的两条准线把两焦点间的线段三等分,则此双曲线的离心率为 .

(3)已知P 是椭圆22x a +2

2y b

=1(a >b >0)上任意一点,P 与两焦点连线互相垂直,且P 到两准线距离

分别为6,12,则椭圆方程为__________________.

*(4)椭圆22

143

x y +=内有一点(1,1)P -,F 为右焦点,椭圆上有一点M ,使2MP MF +最小,则点M 坐

标为 .

三、课堂反馈:

1.中心在原点,准线方程为4y =±,离心率为1

2

的椭圆方程是 .

2.已知双曲线的焦点为(,渐近线方程为3

2

y x =±,则它的两条准线间的距离是________.

3.已知双曲线22

194

x y -=上一点P 到右焦点的距离为3,则点P 到左准线的距离为 .

4.已知椭圆22

221(0)x y a b a b

+=>>的焦点到相应准线的距离等于a ,则椭圆的离心率为 .

*5.椭圆()22

2210x y a a b

+=>b >的右焦点为F ,其右准线与x 轴的交点为A .在椭圆上存在点P 满足线段

AP 的垂直平分线过点F ,则椭圆离心率的取值范围是 .

四、课后作业: 学生姓名:___________ 1.椭圆的两焦点把两准线间的距离三等分,则这个椭圆的离心率是 .

2.双曲线的两条准线分顶点间距离为三等分,则双曲线的离心率为_________.

3.已知双曲线22221(0,0)x y a b a b

-=>>一条渐近线方程是y ,它的一个焦点在抛物线2

24y x =

的准线上,则双曲线的方程为 .

4.双曲线的渐近线方程为2y x =±,焦点在x , 则双曲线的方程为 .

5.椭圆22

12516

x y +=上的点A 到右焦点的距离等于4,则点A 到两条准线的距离分别为__________.

6.已知双曲线22x a -2

2y b

=1(0,0a b >>)的右焦点为F ,右准线与一条渐近线交于点A ,△OAF 的面积

为22a (o 为原点),则渐近线的方程为_______________.

*7.对于顶点在原点的抛物线,给出下列条件:

(1)焦点在y 轴上; (2)焦点在x 轴上; (3)抛物线上横坐标为1的点到焦点的距离等于6; (4)抛物线的通径的长为5; (5)由原点向过焦点的某条直线作垂线,垂足坐标为(2,1). 其中适合抛物线210y x =的是 (要求写出所有适合条件的序号)____________.

8.若双曲线22

116x y k

-=的一条准线恰好为圆2220x y x ++=的一条切线,则实数k 为________.

9.已知点P 在抛物线24x y =上运动,F 为抛物线的焦点,点A 的坐标为(2,3), 求PA PF +的最小值及此时点P 的坐标.

*10.已知(A -是椭圆22

11612

y x +=内一点,2F 是椭圆的上焦点,点M 在椭圆上移动,

当22MA MF +取最小值时,求点M 的坐标.

圆锥曲线的统一性质

圆锥曲线的统一性质: 石家庄第一中学 冯伟冀 1. 第二定义的统一性 圆的准线在∞,0=e . 2. 极坐标方程的统一性 3. 曲线上一点光学性质的统一性 椭圆:点光源在一个焦点上,光线通过另一个焦点。 双曲线:点光源在一个焦点上,反射光线与另一焦点到反射点的连线在同一条直线上。 抛物线:点光源在焦点上,反射光线相互平行且垂直于准线。具体应用:探照灯 4. 一般弦长公式具有统一性 5. 过焦点弦长公式具有统一性 6. 过曲线上一点切线方程的统一性 7. 直径所对周角之斜率乘积的统一性 8. 焦点弦端点切线的交点轨迹的统一性 9. 过焦点且和焦点弦垂直的的直线和焦点弦端点切线的关系统一性 10. 过非等轴双曲线曲线上一点做互相垂直弦共有的性质 11. 过曲线上一点做倾斜角互补直线所成弦而具有共有的性质 12. 内部焦点弦被焦点分成两个焦半径倒数和为定值 13. 圆锥曲线内部外部点代入方程后不等式符号的统一性 14. 过同一焦点两任意焦点弦AB 和CD ,AC 和BD 交点轨迹统一 15. 任意一弦BA 延长交准线于E ,则FE 平分BFA 外角 16. 任意一弦BA 延长交准线于E ,则FE 平分BFA 外角,又任意一弦AN 延长 交准线于Q ,则FQ 平分BFA 外角后得到EFQ 是直角 17. 过一个焦点交圆锥曲线于MN ,做MN 的垂直平分线交轴与P 则离心率等于 2PF/MN 18. 二次曲线和二次曲线交于两点AB ,联立两方程消X 得0)(=Y H ,消Y 得 0)(=X G 则AB 为端点的圆的方程就是0)()(=+Y H X G (必须先保证X 和Y 系数相同) 19. 若有弦AB,AB 中点为),(00.y x P 则弦AB 方程为 0)2,2(),(00=---y y x x f y x f 20. 圆锥曲线通径长统一为定值ep 2 21. 利用统一的圆锥曲线方程中判别式可以判断曲线类型 22. F 是焦点,E 是F 对应准线L 和轴交点AD 垂直L ,BC 垂直L 则有BD 、AC 同时平分线段EF (一组关系) 23. F 是焦点,E 是F 对应准线L 和轴交点AB 是过焦点F 的弦,BC 平行FE ,N 是线段EF 的中点,则BC 和AN 交点C 在准线L 上 24 F 是焦点,E 是F 对应准线L 和轴交点,B 是圆锥曲线上一点,C 在L 上,BC 平行FE ,N 是线段EF 中点,则直线BF 和CN 的交点A 恰在圆锥曲线上 25过圆锥曲线准线L 上一点做圆锥曲线的两条切线MA 、MB 则切点弦必过焦点F 且和MF 垂直(一组关系) 25 F 是焦点,过曲线上一点P 的切线与相应于焦点F 的准线交于Q ,则PFQ 是直角 26 点P 在圆锥曲线上时过P 的切线方程和点P 不在曲线上的切点弦方程一致 27 截圆锥得到圆锥曲线的统一性:用垂直与锥轴的平面去截圆锥,得到的是圆;把平面渐渐倾斜,得到椭圆;当平面和圆锥的一条母线平行时,得到抛物线;当平面再倾斜一些就可以得到双曲线。阿波罗尼曾把椭圆叫“亏曲线”,把双曲线叫做“超曲线”,把抛物线叫做“齐曲线”。 28焦点关于切线的对称点的轨迹统一性问题 29过圆锥曲线外一点做和圆锥曲线有一个公共点的直线的统一性问题 30 圆锥曲线的以焦点为圆心以2a 为直径的特征大圆和以中心为圆点以a 为半径的特征小圆的统一性问题 31从圆锥曲线外一定点P 引两条切线P A 、PB ,A 、B 为切点,过圆锥曲线上的任一点引切线交P A 、PB 于C 、D ,则CFD ∠是定值. 32从圆锥曲线外准线上一点P 引两条切线P A 、PB ,A 、B 为切点,过圆锥曲线上的 任一点引切线交P A 、PB 于C 、D ,则2 π =∠CFD ,是定值. 33AB 是圆锥曲线的(直径,长轴,实轴,轴),过B 的直线l AB ⊥,点D 是圆锥曲线上除轴两端点外任意一点,直线AD 交直线l 于点E ,点C 是线段BE 的中点,那么DC 是圆锥曲线的切线。(一组关系) 34过圆锥曲线焦半径的端点作切线,与以轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直. 35已知圆锥曲线E 的焦点为F,其对应准线为L,L 与F 所在的对称轴交于点A,动弦BC 平行于L,直线AB 与圆锥曲线E 相交于D,则C,D,F 三点共线.

高考圆锥曲线基本性质综合复习

第一节焦点三角形 一、焦点三角形的周长 知识点:(1)已知21,F F 分别为椭圆122 22=+b y a x 的左、右焦点,P 是椭圆上的动点,则21F PF ?的周长恒为c a 22+; (2)已知21,F F 分别为椭圆122 22=+b y a x 的左、右焦点,l 过焦点1F 且与椭圆交于B A ,两点,则2ABF ?的周长恒为. 4a 例1,已知21,F F 分别为椭圆1:22 22=+b y a x E 的左、右焦点,过1F 斜率为1的直线l 与E 相交于B A ,两点,且22,,BF AB AF 成等差数列,求E 的离心率.变式1,在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点21,F F 在x 轴上,离心率为2 2,过点1F 的直线l 交C 于B A ,两点,且2ABF ?的周长为16,求椭圆的方程.二、焦点三角形的面积 知识点:(1)已知21,F F 分别为椭圆122 22=+b y a x 的左、右焦点,M 是椭圆上的动点,则21F MF ?的面积为)(2 tan 212MF F b y c S M ∠===θθ;(2)已知21,F F 分别为双曲线1-22 22=b y a x 的左、右焦点,M 是双曲线上的动点,则21F MF ?的面积为).(2 tan 212MF F b y c S M ∠===θθ

例2,已知双曲线122 2 =-y x 的焦点为21,F F ,点M 在双曲线上且021=?MF MF ,则点M 到x 轴的距离为_______. 变式2,已知双曲线1:22=-y x C 的焦点为21,F F ,点P 在C 上,02160=∠PF F ,则21PF PF ?=___________. 三、焦点三角形的角平分线 知识点:(1)在ABC ?中,AD 为ABC ?的角平分线,则CD BD AC AB =;(2)已知点P 是椭圆122 22=+b y a x 上的动点,21,F F 为椭圆的两个焦点,21F PF ?的内切圆的半径为r ,则). (21c a r S F PF +=?例3,已知21,F F 为椭圆112 162 2=+y x 的左右焦点,点)3,2(A 在椭圆上,求21AF F ∠的角平分线所在直线的方程. 变式3,已知21,F F 分别为双曲线127 9:2 2=-y x C 的左右焦点,A 为C 上一点,点M 的坐标为)0,2(-,AM 为21AF F ∠的角平分线,则._____2=AF

2021年高中数学.5圆锥曲线的共同性质

2021年高中数学2.5圆锥曲线的共同性质 要点精讲 椭圆、双曲线、抛物线有共同的性质: 圆锥曲线上的点到一个定点F 和到一条定直线l (F 不在定直线l 上)的距离之比是一个常数e. 这个常数e 叫做圆锥曲线的离心率,定点F 就是圆锥曲线的焦点,定直线l 就是该圆锥曲线的准线. 椭圆的离心率满足01,抛物线的离心率e =1. 根据图形的对称性可知,椭圆和双曲线都有两条准线,对于中心在原点,焦点在x 轴上的椭圆或双曲线,准线方程都是 典型题解析 【例1】以下同个关于圆锥曲线的命题中 ①设A 、B 为两个定点,k 为非零常数,,则动点P 的轨迹为双曲线; ②设定圆C 上一定点A 作圆的动点弦AB ,O 为坐标原点,若则动点P 的轨迹为椭圆; ③方程的两根可分别作为椭圆和双曲线的离心率; ④双曲线 135 192522 22=+=-y x y x 与椭圆有相同的焦点. 其中真命题的序号为 (写出所有真命题的序号) 【分析】本题主要考查圆锥曲线的定义和性质主要由a,b,c,e 的关系求得 【解】双曲线的第一定义是:平面上的动点P 到两定点是A,B 之间的距离的差的绝对值为常数2a, 且,那么P 点的轨迹为双曲线,故①错, 由,得P 为弦AB 的中点,故②错, 设的两根为则可知两根互与为倒数,且均为正,故③对, 的焦点坐标(),而的焦点坐标(),故④正确. 【点评】要牢牢掌握椭圆,双曲线的第一定义,同时还要掌握圆锥曲线的统一定义,弄清圆锥曲线中a,b,c,e 的相互关系. 【例2】设曲线1sin cos 1cos sin 2 2 2 2 =-=+θθθθy x y x 和有4个不同的交点. (Ⅰ)求θ的取值范围;

圆锥曲线经典性质总结材料及证明

圆锥曲线的经典结论 一、椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.(椭圆的光学性质) 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径 的圆,除去长轴的两个端点.(中位线) 3. 以焦点弦PQ 为直径的圆必与对应准线相离.以焦点半径PF 1为直径的圆必与以长轴为直 径的圆切.(第二定义) 4. 若000(,)P x y 在椭圆22 221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=.(求 导) 5. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点 弦P 1P 2的直线方程是00221x x y y a b +=.(结合4) 6. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点 12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2 F PF S b γ ?=.(余弦定理+面积公式+ 半角公式) 7. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).(第二定义) 8. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和 AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF

9. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. MN 其实就在准线上,下面证明他在准线上 根据第8条,证毕 10. AB 是椭圆22 221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则 2 2OM AB b k k a ?=-, 即0 20 2y a x b K AB -=。(点差法)

第五讲 圆锥曲线及其几何性质

回顾复习五:圆锥曲线及其几何性质 ☆考点梳理 1.圆锥曲线的轨迹定义与统一定义. 2.圆锥曲线的标准方程及其推导. 3.圆锥曲线的几何性质:范围、对称性、焦点、离心率、准线、渐近线.☆基础演练 1.如图,椭圆中心为O,A、B为左右顶点,F为左焦点, 左准线l交x轴于C,点P、Q在椭圆上,PD⊥l于D, QF⊥OA于F.给出下列比值: 其中为离心率的有_________________. 2.若 12 ,F F为椭圆 22 1 25 x y m +=的焦点,且 12 8 F F=,则m的 值为. 3.过抛物线的焦点F作直线交其于A、B两点,A、B在抛物线准线上的射影分别为A1、 B1,则 11 A FB ∠=____________. 4.经过两点() 143 ,, ?? - ? ? ?? 的圆锥曲线的标准方程是________________. 5.过双曲线 22 22 1 x y a b -=的右焦点F作一条渐近线的垂线分别交于A、B两点,O为坐标 原点,若OA、AB、OB成等差数列,且BF,FA u u u r u u u r 同向,则离心率e=_________. 6.椭圆 22 1 2516 x y +=的两个焦点为F1、F2,弦AB过F1,若 2 ABF ?的内切圆周长为π, ()() 1122 A x,y, B x,y,则 12 y y -=____________. ☆典型例题 1.椭圆的定义 例1.如图,已知E,F为平面上的两个定点,G为动点, 610 EF,FG, ==点P为线段EG的中垂线与GF的交点. ⑴建立适当的平面直角坐标系求出点P的轨迹方程; ⑵若点P的轨迹上存在两个不同的点A、B,且线段AB 的中垂线与EF(或EF的延长线)相交于一点C,线段EF 的中点为O,证明: 9 5 OC<. 2.中点弦问题 例3.直线l交椭圆 22 1 2016 x y +=于M,N两点,点() 04 B,,若⊿BMN的重心恰为椭圆 右焦点,则直线l的方程是_________________. 3.椭圆的几何性质 例2.已知 1 F、 2 F分别是椭圆() 22 22 10 x y a b a b +=>>的左右焦点,右准线l,离心率e. ⑴若P为椭圆上的一点,且 12 F PF ∠=θ,则 12 PF F S ? =_____________. ⑵若椭圆上存在一点P,使得 12 PF PF ⊥,则e的范围是_____________. ⑶若椭圆上存在一点P,使得 12 PF ePF =,则e的范围是_____________. ⑷若在l上存在一点P,使得线段 1 PF的中垂线经过 2 F,则e的范围是___________. ⑸若P为椭圆上的一点,线段 2 PF与圆222 x y b +=相切于中点Q,则e=________. ⑹过F且斜率为k的直线交椭圆于A、B两点,且3 AF FB = u u u r u u u r ,若 2 e=,则k=___. 4.最值问题 例4.已知动点P在椭圆 22 1 1612 x y +=上,(,(2,0) A B. ⑴若2 PA PB +取最小值,则点P的坐标为____________; ⑵若动点M满足||1 BM= u u u u r ,且0 PM BM= u u u u r u u u u r g,则| |的最小值是; ⑶PA PB +的取值范围是________________________. 例5.椭圆W的中心在原点,焦点在x轴上,离心率为 3 两条准线间的距离为6.椭 圆W的左焦点为F,过左准线与x轴的交点M任作一条斜率不为零的直线l与椭圆W 交于不同的两点A、B,点A关于x轴的对称点为C. ⑴求椭圆W的方程;⑵求证:CF FB λ = u u u r u u u r ;⑶求MBC ?面积S的最大值. ☆方法提炼 1.椭圆的标准方程有两种形式,有时需要就焦点位置进行讨论. 2.椭圆有两种定义方式,解题时要学会“回到定义去”. 3.椭圆有两个焦点、两条准线,解题时建议联系起来考虑. 4.解解析几何问题,“画个图”是个好建议;中点弦问题利用“点差法”可简化运算. 5.在处理直线与椭圆相结合的问题时,要学会利用韦达定理整体处理. P H E F G 第 1 页

圆锥曲线的共同性质

圆锥曲线的共同性质 【教学目标】 1、 知识与技能 通过本节的学习,掌握圆锥曲线的共同性质,理解离必率、焦点、准线的意义。 2、 过程与方法 教材通过多媒体课件演示连续变化的圆锥曲线,通过观察、类比、归纳总结得出圆锥曲线的共同性质。 3、 情感、态度与价值观 通过本节的学习,可以培养我们观察、猜想、归纳、推理的能力,感受圆锥曲线的统一美。 【教学重点】圆锥曲线第二定义的推导 【教学难点】对圆锥曲线第二定义的理解与运用 【教学方法】讨论发现法 【教学过程】 一、知识回顾 1 在推导椭圆的标准方程时,我们曾得到这样的一个式子:222)(y c x a cx a +-=-, 将其变形为: a c x c a y c x =-+-2 2 2)(, 你能解释这个式子的意义吗? 这个式子表示一个动点P (x ,y )到定点(c ,0)与到定直线c a x 2=的距离之比等于定值a c ,那么具有这个关系的点的轨迹一定是椭圆吗? 二、新课讲解 已知点点P (x ,y )到定点F (c ,0)的距离与到定直线c a x l 2 :=的距离之比是常数)0(>>c a a c ,求点P 的轨迹。 解:由题意可得 a c x c a y c x =-+-2 2 2)( 化简得 )()(22222222c a a y a x c a -=+-。 令2 22b c a =-,则上式可以化为 )0(12 2 22>>=+b a b y a x

这是椭圆的标准方程。 所以点P 的轨迹是焦点为(c ,0),(-c ,0),长轴长、短轴长分别为2a 、2b 的椭圆。 若将条件0>>c a 改为c a <<0呢? 由上例知,椭圆上的点P 到定点F 的距离和它到一条定直线l (F 不在l 上)的距离的比是一个常数,这个常数就是椭圆的离必率e 类似地,可以得到:双曲线上的点P 到定点F (c ,0)的距离和它到定直线c a x l 2 :=(2220a c b a c -=>>,)的距离的比是一个常数,这个常数a c 就是双曲线的离心率e 。 F 和到一条定直线l (F 不在定直线l 上)的距离之比是一个常数e 。 这个常数e F l (1) 椭圆的离心率e 满足01,抛物线的的离心率e =1。 (2) 根据图形的对称性知,椭圆和双曲线都有两条准线,对于中心在原点,焦点在x 轴上的椭圆或 双曲线,准线方程都是c a x 2 ±=;对于中心在原点,焦点在y 轴上的椭圆或双曲线,准线方程都是c a y 2 ±=。 (3) 圆锥曲线的定义深刻提示了三类曲线的内在联系,使焦点、离心率和准线等构成一个和谐的整 体,当圆锥曲线上一点与一焦点和相应准线的距离需要建立联系时,常考虑第二定义;当圆锥曲线上一点与两焦点距离之和(或差)为常数时,常考虑第一定义。 三、新知巩固: 1、学生填表(见课本P47习题2.5 1、填空) 2、学生板演:(见课本P46 (1)-(4)) 四、知识拓展: 椭圆的焦半径公式:若P (x ,y )是椭圆上任一点,F 1、F 2是椭圆)0(122 22>>=+b a b y a x 的左焦点和右焦点,则ex a PF ex a PF -=+=21, ;若P (x ,y )是椭圆上任一点,F 1、F 2是椭圆)0(122 22>>=+b a b x a y 的下焦点和上焦点,则ey a PF ey a PF -=+=21,; 例2 若椭圆的长轴长是短轴长的4倍,一条准线方程是4-=y ,求椭圆的标准方程。

圆锥曲线的定义性质与结论(解析版)

圆锥曲线的基本定义性质与结论 考点一 圆锥曲线的定义 (一) 椭圆及其标准方程 1.椭圆的定义:平面内与两个定点21,F F 的距离之和等于常数(大于|F 1F 2|)的点的轨迹(或集合)叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距. 2.椭圆的标准方程: ①x 2a 2+y 2 b 2=1(a >b >0),焦点是()()0,0,21 c F c F ,-,且c 2=a 2?b 2. ② y 2a 2+ x 2b 2 =1(a >b >0),焦点是()()0,0,21c F c F ,-,且c 2=a 2?b 2. 3.椭圆的几何性质(用标准方程x 2 a 2+y 2 b 2=1(a >b >0)研究): 1)范围:?a ≤x ≤a ,?b ≤y ≤b ; 2)对称性:以x 轴、y 轴为对称轴,以坐标原点为对称中心,椭圆的对称中心又叫做椭圆的中心; 3)椭圆的顶点:椭圆与它的对称轴的四个交点,如图中的2121,,,B B A A ; 4)长轴与短轴:焦点所在的对称轴上,两个顶点间的线段称为椭圆的长轴,如图中线段的A 1A 2;另一对顶点间的线段叫做椭圆的短轴,如图中的线段B 1B 2. 5)椭圆的离心率:e =c a ,焦距与长轴长之比,0>=-b a b y a x ,焦点坐标为()()0,0,21c F c F ,-,c 2=a 2+b 2; ②)0,0(122 22>>=-b a b x a y ,焦点坐标为()()c F c F ,0,021,-,c 2=a 2+b 2; 3.双曲线的几何性质 1)范围:x ≥a 或x ≤?a ;如图. 2)对称性:以x 轴、y 轴为对称轴,以坐标原点为对称中心,这个对称中心又叫做双曲线的中心.

高考数学圆锥曲线的经典性质50条

For pers onal use only in study and research; not for commercial use 1. 2. 3. 4. 5. 6. 7. 8 . For pers onal use only in study and research; not for commercial use 椭圆与双曲线的对偶性质--(必背的经典结论) 椭圆 点P处的切线PT平分△ PF1F2在点P处的外角. PT平分△ PF1F2在点P处的外角,则焦点在直线PT上的射影H点的轨迹是以长轴为直径的圆,除去长轴的两个端点 以焦点弦PQ为直径的圆必与对应准线相离. 以焦点半径PF1为直径的圆必与以长轴为直径的圆内切. 若 F0(X 若 P0(X0 2 x ,y0)在椭圆一亍 a 2 、x ,y0)在椭圆一2 a 2 2 2 2 y - b y - b =1上,则过P0的椭圆的切线方程是一0厂?辔=1. a b =1外,则过Po作椭圆的两条切线切点为P1、P2,则切点弦 2 x 椭圆 一2 a 2 x 椭圆一 2 a 2 2 2 2 y b y - b =1 (a>b> 0)的左右焦点分别为F1, F2,点P为椭圆上任意一点一RPF2 - =1 ( a > b> 0)的焦半径公式: P1P2的直线方程是°2 - =1. a b 戈,则椭圆的焦点角形的面积为S A:1PF2 = b2 tan—

|MF i |=a ex o ,|MF 2p a-( Fj-c,0) , F 2(c,0) M (心 y °)). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结 AP 和AQ 分别交相应于焦点 F 的椭圆准线于 M 、N 两点,贝U MF 丄NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点 P 、Q, A i 、A 2为椭圆长轴上的顶点, A i P 和A 2Q 交于点M , A 2P 和A i Q 交于点N ,则MF 丄NF. 2 2 2 2 -2 y ^ = 1内,则过Po 的弦中点的轨迹方程是一2 y^ - ―02 - a b a b a b 双曲线 1. 点P 处的切线PT 平分△ PF 1F 2在点P 处的内角. 2. PT 平分△ PF 1F 2在点P 处的内角,则焦点在直线 PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点 3. 以焦点弦PQ 为直径的圆必与对应准线 相交. 4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆 相切.(内切:P 在右支;外切:P 在左支) 2 2 5. 若F 0(x 0, y 0)在双曲线 令-占=1( a > 0,b > 0)上,则过F 0的双曲线的切线方程是 彎一呼 =1. a b a b 2 2 6. 若i =0(x 0, y 0)在双曲线—~2 ^2 -1(a >0,b >0)外,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦 P 1P 2的直线方程是■X 0,__y°y = 11. AB 是椭圆 即 K AB 2 2 a 2 b 2 b 2X 0 —2 。 a y ° =1的不平行于对称轴的弦, M (x 0, y 0)为AB 的中点,_则k OM k AB = b 2 ~2 , a 12. F 0(X o , y o )在椭圆 2 2 7占=1内,则被Po 所平分的中点弦的方程是翠晋色 止 a 2 b 2 13. F 0(x 0,y °)在椭圆

高二数学 圆锥曲线的几何性质练习

圆锥曲线的几何性质 一、选择题(' ' 6636?=) 1. .设22221(0)x y a b a b +=>>为 黄金椭圆,F 、A 分别是它的左焦点和右端点,B 是它的短轴的一个端点,则ABF ∠=( ) A ,60 B ,75 C ,90 D ,120 2.已知双曲线22 221(0,0)x y a b a b -=>>右焦点为F ,右准线为l ,一直线交双曲线于P ,Q 两点,交l 于R 点,则( ) A ,PFR QFR ∠>∠ B ,PFR QFR ∠=∠ C ,PFR QFR ∠<∠ D ,PFR ∠与QFR ∠的大小不确定 3.已知点A(0,2)和抛物线24y x =+上两点B 、C ,使得AB BC ⊥,当点B 在抛物线上移动时,点C 的纵坐标的取值范围是 ( ) A ,(,0][4,)-∞+∞ B ,(,0]-∞ C ,[4,)+∞ D ,[0,4,] 4.设椭圆方程2 213 x y +=,(0,1)A -为短轴的一个端点,M ,N 为椭圆上相异两点。若总存在以MN 为底边的等腰AMN ?,则直线MN 的斜率k 的取值范围是 ( ) A ,(1,1)- B ,[1,1]- C ,(1,0]- D ,[0,1] 5.已知12,F F 分别为双曲线22 221(0,0)x y a b a b -=>>的左、右焦点,P 为双曲线右支上的任 意一点,若 2 12 PF PF 的最小值为8a ,则双曲线的离心率e 的取值范围是 ( ) A ,(1,)+∞ B ,(1,2] C , D ,(1,3] 6.已知P 为抛物线2 4y x =上一点,记P 到此抛物线的准线的距离为1d ,P 到直线 2120x y +-=的距离为2d ,则12d d +的最小值为 ( )

圆锥曲线的统一定义解读

圆锥曲线的统一定义解读 江苏王冬琴 圆锥曲线的统一定义揭示了椭圆、双曲线、抛物线三种曲线的内在关系,使我们充分感受数学的内在的、和谐的美,有了发现美、欣赏美的意识;统一定义的推导需要娴熟的代数恒等变形的技能,整个推导过程渗透了特殊到一般,具体到抽象的数学思想. 一、圆锥曲线的统一定义 1.定义平面内到一定点F 与到一条定直线l ( 点F 不在直线l 上)的距离之比为常数e 的点的轨迹叫圆锥曲线. ①当 0< e <1 时, 点的轨迹是椭圆;②当e= 1 时, 点的轨迹是抛物线;③当e>1 时, 点的轨迹是双曲线,其中常数e叫做圆锥曲线的离心率,定点F叫做圆锥曲线的焦点, 定直线l就是该圆锥曲线的准线. 2.焦半径:圆锥曲线上的点与焦点的连线段叫做焦半径. 运用圆锥曲线的统一定义,可以推导出曲线上一点到焦点的距离就是焦半径,一般用点的坐标和离心率表示. 3.注意事项 (1)统一定义是充分必要条件,即满足条件的点一定在圆锥曲线上,反之,圆锥曲线上的任意一点也满足条件. (2)焦点与准线要对应,对于椭圆或双曲线,其上的一点到一个焦点的距离与它到相应准线的距离的比等于它的离心率。这里的“相应”指的是:“左焦点对应左准线”、“右焦点对应右准线”;特别地,对于焦点在x 轴上的双曲线来说,右支上任意一点到左焦点的距离与这点到左准线的距离之比也等于离心率. (3)准线与圆锥曲线一定没公共点. (4)当点F在直线l上时,设平面内动点M到直线l的距离是d,且MF e d =,若1 e>, 则动点M的轨迹是过F点与直线l成等锐角的两条相交直线;若1 e=,则动点M的轨迹是过F点与直线l成等直角的一条直线;若1 e<,则动点M的轨迹不存在. 二、圆锥曲线的几何性质

高考数学圆锥曲线的经典性质50条

椭圆与双曲线的对偶性质--(必背的经典结论) 椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是002 21x x y y a b +=. 6. 若000 (,)P x y 在椭圆22221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为12 2 tan 2F PF S b γ?=. 8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则2 2 OM AB b k k a ?=-, 即0 20 2y a x b K AB -=。

圆锥曲线的特殊性质

1命题12.椭圆两个共轭直径上的正方形之和等于两个对称轴上的正方形之和.命题13.双曲线两个共轭直径上的正方形之差等于两个对称轴上的正方形之差.命题31.椭圆或双曲线的两条共轭直径所构成的平行四边形(以其交角为内角)等于两条对称轴所构成的矩形. 2我探究的这一特性是在抛物线、椭圆和双曲线上讨论的——过圆锥曲线的焦点,做一条弦与圆锥曲线相交,则由焦点分割弦得到的两段线段长度的倒数之和,与圆锥曲线离心率和焦点到相应准线的距离相乘的倒数的两倍;但是对于双曲线,当这两个交点分别位于两支上面的时候,之和应该改为之差。这样说来可能比较抽象,那么用数学表达式来说明一下。设m和n是焦点分割弦形成的线段的长度,e代表圆锥曲线的离心率,p代表焦点到相应准线的距离,则有112mnep+=恒成立,对于交点位于两支上的弦,满足112mnep?=的关系。换句话说,焦点分割弦得到的线段长度的倒数之和或者之差是一个定值,只与圆锥曲线有关系,而与点在圆锥曲线的位置没有关系。这给我们什么启示呢 3用a、b、c、d分别表示四边形顶点A、B、C、D的复数,则AB、CD、AD、BC、AC、BD的长度分别是:(a-b)、(c-d)、(a-d)、(b-c)、(a-c)、(b-d)。 首先注意到复数恒等式:,两边取模,运用三角不等式得 。 等号成立的条件是(a-b)(c-d)与(a-d)(b-c)的辐角相等,这与A、B、C、D四点共圆等价。因此托勒密定理得证。 1.第二定义的统一性圆的准线在∞,0=e. 2.极坐标方程的统一性3.曲线上一点光学性质的统一性椭圆:点光源在一个焦点上,光线通过另一个焦点。双曲线:点光源在一个焦点上,反射光线与另一焦点到反射点的连线在同一条直线上。抛物线:点光源在焦点上,反射光线相互平行且垂直于准线。具体应用:探照灯4.一般弦长公式具有统一性5.过焦点弦长公式具有统一性6.过曲线上一点切线方程的统一性7.直径所对周角之斜率乘积的统一性8.焦点弦端点切线的交点轨迹的统一性9.过焦点且和焦点弦垂直的的直线和焦点弦端点切线的关系统一性10.过非等轴双曲线曲线上一点做互相垂直弦共有的性质11.过曲线上一点做倾斜角互补直线所成弦而具有共有的性质12.内部焦点弦被焦点分成两个焦半径倒数和为定值13.圆锥曲线内部外部点代入方程后不等式符号的统一性14.过同一焦点两任意焦点弦AB和CD,AC和BD交点轨迹统一15.任意一弦BA延长交准线于E,则FE平分BFA外角16.任意一弦BA延长交准线于E,则FE平分BFA外角,又任意一弦AN延长交准线于Q,则FQ平分BFA外角后得到EFQ是直角17.过一个焦点交圆锥曲线于MN,做MN的垂直平分线交轴与P则离心率等于2PF/MN 18.二次曲线和二次曲线交于两点AB,联立两方程消X得0)(=YH,消Y得0)(=XG则AB为端点的圆的方程就是0)()(=+YHXG(必须先保证X和Y系数相同)19.若有弦AB,AB中点为),(00.yxP 则弦AB方程为0)2,2(),(00=???yyxxfyxf 20.圆锥曲线通径长统一为定值ep2 21.利用统一的圆锥曲线方程中判别式可以判断曲线类型22.F是焦点,E是F对应准线L和轴交点AD垂直L,BC垂直L 则有BD、AC同时平分线段EF(一组关系)23.F是焦点,E是F对应准线L和轴交点AB是过焦点F的弦,BC平行FE,N是线段 EF的中点,则BC

圆锥曲线经典性质总结及证明!!!

Gandongle 椭圆双曲线的经典结论 一、椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.(椭圆的光学性质) 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径 的圆,除去长轴的两个端点.(中位线) 3. 以焦点弦PQ 为直径的圆必与对应准线相离.以焦点半径PF 1为直径的圆必与以长轴为直 径的圆内切.(第二定义) 4. 若000(,)P x y 在椭圆22 22 1x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=.(求导) 5. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点 弦P 1P 2的直线方程是00221x x y y a b +=.(结合4) 6. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点 12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2 F PF S b γ ?=.(余弦定理+面积公式+ 半角公式) 7. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).(第二定义) 8. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和 AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF

圆锥曲线的定义及几何性质

圆锥曲线的定义及几何性质 1. 椭圆 222 2 1x y a b + =和 222 2 x y k a b + =(0)k >一定具有( ) A .相同的离心率 B .相同的焦点 C .相同的顶点 D .相同的长轴长 2. 已知1F 、2F 是椭圆的两个焦点,过1F 且与椭圆长轴垂直的直线交椭圆于A 、B 两点,若2 ABF ?是正三角形,则这个椭圆的离心率是( ) A . 2 B . 3 C 2 D 3 3. 已知1F 、2F 是椭圆的两个焦点,满足120M F M F ?= 的点M 总在椭圆内部,则椭圆离心率的 取值范围是( )A .(01), B .1(0]2 , C .(02 D .1)2 4. 过椭圆 222 2 1(0) x y a b a b + =>>的左焦点1F 作x 轴的垂线交椭圆于点P ,2F 为右焦点,若 1260F PF ∠=°,则椭圆的离心率为( ) A . 2 B . 3 C .12 D .1 3 5. 已知椭圆 2222 1x y a b +=的左、 右焦点分别为1F 、2F ,且12||2F F c =,点A 在椭圆上,1120AF F F ?= ,2 12AF AF c ?= ,则椭圆的离心率e = ( ) A . 3 B . 2 C 2 D 2 6. 已知P 是以12F F ,为焦点的椭圆 222 2 1(0)x y a b a b + =>>上的一点,若 120 PF PF ?= , 121tan 2 PF F ∠= ,则此椭圆的的离心率为( ) A . 12 B . 23 C .1 3 D 3 7. 已知椭圆 2 2 15 x y m + = 的离心率e 5 =m 的值为( ) A .3 B . 253 或3 C . D 8. 椭圆的长轴为12A A ,B 为短轴的一个端点,若∠012120A BA =,则椭圆的离心率为( ) A . 12 B 3 C 3 D 2 9. 椭圆 222 2 1(0)x y a b a b + =>>的四个顶点为A 、B 、C 、D ,若四边形ABC D 的内切圆恰好过椭 圆的焦点,则椭圆的离心率是( ) A . 2 B . 4 C 2 D 4 10. 设12F F ,分别是椭圆 222 2 1x y a b + =(0a b >>)的左、右焦点,若在直线2 :a l x c = 上存在P (其 中c =),使线段1PF 的中垂线过点2F ,则椭圆离心率的取值范围是( ) A .0, 2? ?? B .0, 3? ? ? C .,12????? D .,13? ???? 11. 椭圆上一点A 看两焦点的视角为直角,设1AF 的延长线交椭圆于B ,又2||||AB AF =,则椭圆的 离心率e =( ) A .2-+ B . C 1- D 12. 椭圆() 222 2 10x y a b a b + =>>的右焦点F ,其右准线与x 轴的交点为A ,在椭圆上存在点满足线 段AP 的垂直平分线过点F ,则椭圆离心率的取值范围是( ) 13. A .02? ? ? B .102? ? ?? ?, C .)11 , D .112 ???? ??, 14. 已知椭圆() 222 2 10x y a b a b + =>>,A 是椭圆长轴的一个端点,B 是椭圆短轴的一个端点,F 为 椭圆的一个焦点. 若AB BF ⊥,则该椭圆的离心率为 ( ) 224416. 在ABC △中,A B B C =,7cos 18 B =- .若以A B ,为焦点的椭圆经过点C ,则该椭圆的离 心率e = . 17. 在平面直角坐标系xOy 中,设椭圆 222 2 1(0) x y a b a b +=>>的焦距为2c ,以点O 为圆心,a 为 半径作圆M .若过点20a P c ?? ? ?? ,作圆M 的两条切线互相垂直,则椭圆的离心率为 . 18. 直线:220l x y -+=过椭圆的左焦点1F 和一个顶点B ,该椭圆的离心率为_________. 19. 设12(0)(0)F c F c -,,,是椭圆 222 2 1(0) x y a b a b + =>>的两个焦点,P 是以12F F 为直径的圆与椭 圆的一个交点,若12 21 2PF F PF F ∠=∠,则椭圆的离心率等于________. 20. 椭圆 222 2 1(0)x y a b a b + =>>的半焦距为c ,若直线2y x =与椭圆一个交点的横坐标恰为c ,椭圆 的离心率为_________ 21. 已知1F ,2F 是椭圆的两个焦点,过1F 且与椭圆长轴垂直的直线交椭圆于A B ,两点,若 2ABF △是正三角形,则这个椭圆的离心率是_________.

圆锥曲线几何性质总汇

,. 圆锥曲线的几何性质 一、椭圆的几何性质 (以22a x +22 b y =1(a ﹥b ﹥0)为例) 1、⊿ABF 2的周长为4a(定值) 证明:由椭圆的定义 12121212242AF AF a AF AF BF BF a BF BF a +=?? ?+++=?+=?? 即24ABF C a =< 2、焦点⊿PF 1F 2中: (1)S ⊿PF1F2=2 tan 2θ?b (2)(S ⊿PF1F2)max = bc (3)当P 在短轴上时,∠F 1PF 2最大 证明:(1)在12AF F <中 ∵ 2 2 2 1212 4cos 2PF PF c PF PF θ+-= ? ∴ () 2 1212 122cos 2PF PF PF PF PF PF θ?=+-?- ∴ 21221cos b PF PF θ ?=+ ∴ 12 22112sin cos tan 21cos 2 PF F b S b θθθθ-=??=?+ (2)(S ⊿PF1F2)max = max 1 22 c h bc ??= ()()2 2 2 2 2222 12004444PF PF c a ex a ex c a c +-++---x x

,. 当0x =0时 cos θ有最小值22 2 2a c a - 即∠F 1PF 2最大 3、 过点F 1作⊿PF 1F 2的∠P 的外角平分线的垂线,垂足为M 则M 的轨迹是x 2+y 2=a 2 证明:延长1F M 交2F P 于F ,连接OM 由已知有 1PF FP = M 为1 F F 中点 ∴ 212OM FF = =()121 2 PF PF +=a 所以M 的轨迹方程为 2 2 2 x y a += 4、以椭圆的任意焦半径为直径的圆,都与圆x 2+y 2=a 2内切 证明:取1PF 的中点M ,连接OM 。令圆M 的直径1PF ,半径为∵ OM =()211111 2222 PF a PF a PF a r =-=-=- ∴ 圆M 与圆O 内切 ∴ 以椭圆的任意焦半径为直径的圆,都与圆x 2+y 2=a 2内切 5、任一焦点⊿PF 1F 2的内切圆圆心为I ,连结PI 延长交长轴于则 ∣IR ∣:∣IP ∣=e 证明:证明:连接12,F I F I 由三角形内角角平分线性质有 ∵ 1212121222F R F R F R F R IR c e PI PF PF PF PF a +=====+ x x y x

圆锥曲线间的三个统一(统一定义、统一公式、统一方程)

圆锥曲线间的三个统一 内蒙古巴彦淖尔市奋斗中学0504班 高卓玮 指导老师:薛红梅 世界之美在于和谐,圆锥曲线间也有其内在的和谐与统一,通过对圆锥曲线图形和已知公式的变换,我们可以得出以下结论。 一、四种圆锥曲线的统一定义 动点P 到定点F 的距离到定直线L 的距离之比等于常数e ,则当01e <<时,动点P 的轨迹是椭圆:当1e =时,动点P 的轨迹是抛物线;当1e >时,动点P 的轨迹是双曲线;若0e =,我们规定直线L 在无穷远处且P 与F 的距离为定值(非零),则此时动点P 的轨迹是圆,同时我们称e 为圆锥曲线的离心率,F 为焦点,L 为准线。 二、四种圆锥曲线的统一方程 从第1点我们可以知道离心率影响着圆锥曲线的形状。为了实现统一我们把椭圆、双曲线进行平移,使椭圆、双曲线的右顶点与坐标原点重合,记它们的半通径为p ,则2 b p a = 。 如图1,将椭圆 222 2 1(0)x y a b a b + =>>按向量(,0a )平移 得到 2 22 2()1x a y a b -+ = ∴2 22 2 2 2b b y x x a a = + ∵椭圆的半通径2 11||b F M p a == , 22 2 1b e a =- ∴椭圆的方程可写成2222(1)y px e x =+- (01)e << 类似的,如图2,将双曲线 222 2 1(0,0)x y a b a b - =>>按向量(,0)a -平移得到 2 22 2 ()1x a y a b +- = ∴2 22 2 2 2b b y x x a a = +

∵双曲线的半通径2 22||b F M a = , 22 2 1b e a =- ∴双曲线方程可写成2222(1)(1)y px e x e =+-> 对于抛物线22(0)y px x =>P 为半通径,离心率1e =,它也可写成 2 2 2 2(1)(1)y px e x e =+-= 对于圆心在(P ,0),半径为P 的圆,其方程为222()x p y p -+=,它也可写成222 2(1)(0)y px e x e =+-= 于是在同一坐标下,四种圆锥曲线有统一的方程2222(1)y px e x =+-,其中P 是曲线的半通径长,当0e =,01e <<,1,1e e =>时分别表示圆、椭圆、抛物线、双曲线。 三、四种圆锥曲线的统一焦点坐标、准线方程和焦半径公式 在同一坐标系下,作出方程2222(1)y px e x =+-所表示的四种圆锥曲线,如图3,设P 、B 、A 、C 分别是圆的圆心,椭圆的左焦点、抛物线的焦点、双曲线的右焦点统一记为2222(1)y px e x =+-的焦点F 则有22 2 (1)(1)1 1 c a a e P O C c a e a c e e --=-= = = >+++ (1)2 1p p O A e e == =+,2 2 2 (1)(01)1 1 a c a e p O B a c e a c e e --=-= = = <<+++ (0)1 p O P p e e == =+ 即方程2222(1)y p x e x =+-所表示的四种圆锥曲线的一个焦点为 ( ,0)1 p F e +,设焦点F 相应的准线为x m =,则有 O F e m =-。 ∴准线L 为(1) p x m e e -==+,对于圆0e =表示准线L 在无限远处,设点

相关主题
文本预览
相关文档 最新文档