当前位置:文档之家› 数值分析总复习提纲

数值分析总复习提纲

数值分析总复习提纲
数值分析总复习提纲

数值分析总复习提纲

数值分析课程学习的内容看上去比较庞杂,不同的教程也给出了不同的概括,但总的来说无非是误差分析与算法分析、基本计算与基本算法、数值计算与数值分析三个基本内容。在实际的分析计算中,所采用的方法也无非是递推与迭代、泰勒展开、待定系数法、基函数法等几个基本方法。

一、误差分析与算法分析

误差分析与算法设计包括这样几个方面: (一)误差计算 1、截断误差的计算

截断误差根据泰勒余项进行计算。

基本的问题是

(1)1

()(01)(1)!

n n f x x n θεθ++<<<+,已知ε求n 。

例1.1:计算e 的近似值,使其误差不超过10-6。

解:令f(x)=e x ,而f (k)(x)=e x ,f (k)(0)=e 0=1。由麦克劳林公式,可知

211(01)2!!(1)!

n x x

n x x e e x x n n θθ+=+++++<<+

当x=1时,1

111(01)2!

!(1)!

e e n n θθ=+++

++

<<+

故3

(1)(1)!(1)!

n e R n n θ=<++。

当n =9时,R n (1)<10-6,符合要求。此时, e≈2.718 285。

2、绝对误差、相对误差及误差限计算

绝对误差、相对误差和误差限的计算直接利用公式即可。 基本的计算公式是:

①e(x)=x *-x =△x =dx

② *()()()ln r e x e x dx

e x d x x x x

====

③(())()()()e f x f x dx f x e x ''== ④(())(ln ())r e f x d f x =

⑤121212121122121122((,))(,)(,)(,)()(,)()x x x x e f x x f x x dx f x x dx f x x e x f x x e x ''''=+=+ ⑥121212((,))

((,))(,)

f x x f x x f x x εδ=

⑦ x

ε

δ=

注意:求和差积商或函数的相对误差和相对误差限一般不是根据误差的关系而是直接从定义计算,即求出绝对误差或绝对误差限,求出近似值,直接套用定义式

()()r e x e x x =

或x

ε

δ=, 这样计算简单。

例1.2:测得圆环的外径d 1=10±0.05(cm),内径d 2=5±0.1(cm)。求其面积的近似值和相应的绝对误差限、相对误差限。

解:圆环的面积公式为: 22

12()4

S d d π

=

-

所以,圆环面积的近似值为

222(105)58.905()4

S cm π

=

-≈

由上述讨论,面积近似值的绝对误差限为

112211222()(2()2())(()())

4

2

(100.0550.1)2

1.57()

S d d d d d d d d cm π

π

εεεεεπ

+=

+=

?+?≈

相对误差为

() 1.57

()100% 2.7%58.905

S S S εδ==?≈

相对误差要化成百分数。

3、绝对误差、相对误差、有效数字的关系计算

绝对误差、相对误差、有效数字的关系依据如下结论讨论: ①如果一个数

*123

11

10.(0)n n n x a a a a a a a -+=±≠

其近似值

123

10.n n x a a a a a -=±

是对x*的第n+1位进行四舍五入后得到的,则x 有n 位有效数字,且其绝对误差不超过

1

102

n -? ,即 1

*102

n x x --≤? 。

②如果一个数

*123

1110.10(0)m n n n x a a a a a a a -+=±?≠

的近似值

123

10.10m n n x a a a a a -=±?

是对x*的第n+1位进行四舍五入后得到的,则x 有n 位有效数字,且其绝对误差不超过

1

102

m n -? ,即 1

*102

m n x x --≤?。

③设12310.10m n n x a a a a a -=±?是x*的具有n 位有效数字的近似值,则其相对误差限为

11

1102n a δ-=?

反之,若x 的相对误差限111

102(1)

n a δ-=

?+

则x 至少具有n 位有效数字。

例1.3

的近似值,使其绝对误差不超过31

102

-?。

解:因为12<<

所以,化成12310.10m n n x a a a a a -=±?的形式,有11,1a m ==。

而31411

101022

ε--=?=?,

所以,由定理2,n=4,

所以近似值应保留4位有效数字。

1.732≈。

例1.4

的近似值的相对误差不超过410-,应取几位有效数字?

(5%)

解:设取n 个有效数字可使相对误差小于410-,则 1411

10102n a --?<,

而34≤≤,显然13a =,此时,

114111*********n n a ---?=?

10106

n --?<, 也即561010n ?> 所以,n=5。

例1.5:已知近似数x 的相对误差限为0.3%,问x 至少有几个有效数字? 解:设x 有n 位有效数字,其第一位有效数字按最不利情况取为9,则

1131111

0.3%10101010002(91)2102210n n n n

δ---===?=?=?=+??由上可得

6101000n ?=,

n ≈2.2,

所以取n=2。 指出:

也可以按首位为1,9分别计算,取较小者。

4、计算方法的余项计算

各种计算方法的余项的计算根据相应的余项定理进行。 (二)误差分析

精度水平的分析主要依据两个结论: 相对误差越小,近似数的精确度越高。

一个近似数的有效数字越多,它的相对误差越小,也就越精确。反之亦然。

例1.6: 测量一个长度a 为400米,其绝对误差不超过0.5米,测量另一长度b 为20米,其绝对误差不超过0.05米。问,哪一个测量的更精确些?

解:

0.50.125%

400

0.05

0.25%

20

a a b

b a b εδεδ======

显然,δa < δb 所以测值a 更准确一些。 答:测值a 更准确一些。 指出:

衡量测量工作的好坏用相对误差。 解决这样的题目就是三个步骤: 第一,求出两个相对误差。 第二,比较两个相对误差的大小。 第三,结论。

(三)算法分析 1、稳定性分析

算法的稳定性通过对计算的误差的扩缩情况进行分析。

例1.7:设近似值T 0=S 0=35.70具有四位有效数字,计算中无舍入误差,试分析分别用递推式

15142.8i i T T +=-和11

142.85

i i S S +=-

计算T 20和S 20所得结果是否可靠。

解:设计算T i 的绝对误差为e(T i )=T i *-T i ,其中计算T 0的误差为ε,那么计算T 20的误差为

e(T 20)=T 20*-T 20=(5T 19*-142.8)-(5T 19-142.8)=5(T 19*-T 19) =5e(T 19)=52e(T 18)=……=520e(T 0) 显然误差被放大,结果不可靠。

同理,20

2001()()5e S e S ??

= ???,误差缩小,结果可靠。

指出:

注意理论分析,因此初始近似值本身是不必要的。 2、收敛性分析

算法的收敛性分析主要是迭代法解方程的收敛性分析和迭代法解方程组的收敛性分析,其他计算方法的收敛性分析一般在具体计算过程中体现。

(1)迭代法收敛性判定的基本结论是:

定理(迭代法基本定理):对于任意的f ∈R n ,和任意的初始向量x (0)∈R n ,迭代法

x (k+1)=Bx (k)+f(k=0,1,2,…)

收敛的充分必要条件是迭代矩阵B 的谱半径ρ(B)<1。

推论:若1B <,则迭代格式x (k+1)=Bx (k)+f(k=0,1,2,…)收敛。 (2)判定雅可比迭代法、高斯—赛德尔迭代法收敛的基本依据是: 定理: 设线性方程组Ax=b ,其系数矩阵为

数值分析-华中科技大学研究生招生信息网

华中科技大学博士研究生入学考试《数值分析》考试大纲 第一部分考试说明 一、考试性质 数值分析考试科目是为招收我校动力机械及工程专业博士研究生而设置的。它的评价标准是高等学校动力机械及工程专业或相近专业优秀硕士毕业生能达到的水平,以保证被录取者具有较好的数值分析理论与应用基础。 二、考试形式与试卷结构 (一) 答卷方式:闭卷,笔试; (二) 答题时间:180分钟; (三) 各部分内容的考查比例(满分为100分) 误差分析约10% 插值法, 函数逼近与计算约30% 数值积分与数值微分约20% 常微分方程数值解法, 方程求根约20% 解线性方程组的直接方法, 解线性方程组的迭代法约20% (四) 题型比例 概念题约10% 证明题约10% 计算题约80% 第二部分考查要点 一、误差分析 1.误差来源 2.误差的基本概念 3.误差分析的若干原则 二、插值法 1. 拉格朗日插值 2. 均差与牛顿插值公式 3. 差分及其性质 4.分段线性插值公式 5.分段三次埃米尔特插值 6.三次样条插值 三、函数逼近与计算 1. 最佳一致逼近多项式 2. 切比雪夫多项式 3. 最佳平方逼近

4. 正交多项式 5. 曲线拟合的最小二乘法 6. 离散富氏变换及其快速算法 四、数值积分与数值微分 1. 牛顿-柯特斯求积公式 2. 龙贝格求积算法 3. 高斯求积公式 4. 数值微分 五、常微分方程数值解法 1. 尤拉方法 2. 龙格-库塔方法 3. 单步法的收敛性和稳步性 4. 线性多步法 5. 方程组与高阶方程的情形 6. 边值问题的数值解法 六、方程求根 1. 牛顿法 2. 弦截法与抛物线法 3. 代数方程求根 七、解线性方程组的直接方法 1. 高斯消去法 2.高斯主元素 3.追赶法 4.向量和矩阵的范数 5.误差分析 八、解线性方程组的迭代法 1. 雅可比迭代法与高斯-塞德尔迭代法 2. 迭代法的收敛性 3. 解线性方程组的松弛迭代法 第三部分考试样题(略)

北师大网络教育 数值分析 期末试卷含答案

注:1、教师命题时题目之间不留空白; 2、考生不得在试题纸上答题,教师只批阅答题册正面部分,若考北师大网络教育——数值分析——期末考试卷与答案 一.填空题(本大题共4小题,每小题4分,共16分) 1.设有节点012,,x x x ,其对应的函数()y f x =的值分别为012,,y y y ,则二次拉格朗日插值基函数0()l x 为 。 2.设()2f x x =,则()f x 关于节点0120,1,3x x x ===的二阶向前差分为 。 3.设110111011A -????=--????-??,233x ?? ??=?? ???? ,则1A = ,1x = 。 4. 1n +个节点的高斯求积公式的代数精确度为 。 二.简答题(本大题共3小题,每小题8分,共24分) 1. 哪种线性方程组可用平方根法求解?为什么说平方根法计算稳定? 2. 什么是不动点迭代法?()x ?满足什么条件才能保证不动点存在和不动点迭代序列收敛于()x ?的不动点? 3. 设n 阶矩阵A 具有n 个特征值且满足123n λλλλ>≥≥≥ ,请简单说明求解矩阵A 的主特征值和特征向量的算法及流程。 三.求一个次数不高于3的多项式()3P x ,满足下列插值条件: i x 1 2 3 i y 2 4 12 i y ' 3 并估计误差。(10分) 四.试用1,2,4n =的牛顿-科特斯求积公式计算定积分1 01 1I dx x =+? 。(10分) 五.用Newton 法求()cos 0f x x x =-=的近似解。(10分) 六.试用Doolittle 分解法求解方程组:

注:1、教师命题时题目之间不留空白; 2、考生不得在试题纸上答题,教师只批阅答题册正面部分,若考 12325610413191963630 x x x -?????? ??????-=?????? ??????----?????? (10分) 七.请写出雅可比迭代法求解线性方程组1231231 23202324 812231530 x x x x x x x x x ++=?? ++=??-+=? 的迭代格式,并 判断其是否收敛?(10分) 八.就初值问题0(0)y y y y λ'=??=?考察欧拉显式格式的收敛性。(10分)

数值分析重点公式

第一章 非线性方程和方程组的数值解法 1)二分法的基本原理,误差:~ 1 2 k b a x α+--< 2)迭代法收敛阶:1lim 0i p i i c εε+→∞ =≠,若1p =则要求01c << 3)单点迭代收敛定理: 定理一:若当[],x a b ∈时,[](),x a b ?∈且' ()1x l ?≤<,[],x a b ?∈,则迭代格式收敛 于唯一的根; 定理二:设()x ?满足:①[],x a b ∈时,[](),x a b ?∈, ②[]121212,,, ()(),01x x a b x x l x x l ???∈-≤-<<有 则对任意初值[]0,x a b ∈迭代收敛,且: 110 1 11i i i i i x x x l l x x x l αα+-≤ ---≤-- 定理三:设()x ?在α的邻域内具有连续的一阶导数,且'()1?α<,则迭代格式具有局部收敛性; 定理四:假设()x ?在根α的邻域内充分可导,则迭代格式1()i i x x ?+=是P 阶收敛的 () ()()0,1,,1,()0j P j P ? α?α==-≠ (Taylor 展开证明) 4)Newton 迭代法:1'() () i i i i f x x x f x +=-,平方收敛 5)Newton 迭代法收敛定理: 设()f x 在有根区间[],a b 上有二阶导数,且满足: ①:()()0f a f b <; ②:[]' ()0,,f x x a b ≠∈; ③:[]'' ,,f x a b ∈不变号 ④:初值[]0,x a b ∈使得'' ()()0f x f x <; 则Newton 迭代法收敛于根α。

数值分析学期期末考试试题与答案(A)

期末考试试卷(A 卷) 2007学年第二学期 考试科目: 数值分析 考试时间:120 分钟 学号 姓名 年级专业 一、判断题(每小题2分,共10分) 1. 用计算机求 1000 1000 1 1 n n =∑时,应按照n 从小到大的顺序相加。 ( ) 2. 为了减少误差,进行计算。 ( ) 3. 用数值微分公式中求导数值时,步长越小计算就越精确。 ( ) 4. 采用龙格-库塔法求解常微分方程的初值问题时,公式阶数越高,数值解越精确。( ) 5. 用迭代法解线性方程组时,迭代能否收敛与初始向量的选择、系数矩阵及其演变方式有 关,与常数项无关。 ( ) 二、填空题(每空2分,共36分) 1. 已知数a 的有效数为0.01,则它的绝对误差限为________,相对误差限为_________. 2. 设1010021,5,1301A x -????????=-=-????????-???? 则1A =_____,2x =______,Ax ∞ =_____. 3. 已知5 3 ()245,f x x x x =+-则[1,1,0]f -= ,[3,2,1,1,2,3]f ---= . 4. 为使求积公式 1 1231 ()()(0)33 f x dx A f A f A f -≈- ++? 的代数精度尽量高,应使1A = ,2A = ,3A = ,此时公式具有 次的代数精度。 5. n 阶方阵A 的谱半径()A ρ与它的任意一种范数A 的关系是 . 6. 用迭代法解线性方程组AX B =时,使迭代公式(1) ()(0,1,2,)k k X MX N k +=+=产 生的向量序列{ }() k X 收敛的充分必要条件是 . 7. 使用消元法解线性方程组AX B =时,系数矩阵A 可以分解为下三角矩阵L 和上三角矩

数值分析心得体会

数值分析心得体会 篇一:学习数值分析的经验 数值分析实验的经验、感受、收获、建议班级:计算131 学号:XX014302 姓名:曾欢欢 数值分析实验主要就是学习MATLAB的使用以及对数值分析类容的应用,可以使学生更加理解和记忆数值分析学得类容,也巩固了MATLAB的学习,有利于以后这个软件我们的使用。在做实验中,我们需要具备较好的编程能力、明白MATLAB软件的使用以及掌握数值分析的思想,才能让我们独立自主的完成该作业,如果是上述能力有限的同学,需要借助MATLAB的书以及网络来完成实验。数值分析实验对于我来说还是有一定难度,所以我课下先复习了MATLAB的使用方法以及编写程序的基本类容,借助互联网和同学老师资源完成了数值分析得实验的内容。在实验书写中,我复习了各种知识,所以我认为这门课程是有必要且是有用处的,特别是需要处理大量实验数据的人员,很有必要深入了解学习它,这样在以后的工作学习里面就减少了很多计算问题也提高了实验结果的精确度。 学习数值分析的经验、感受、收获、建议数值分析的内容包括插值与逼近,数值微分与数值积分,非线性方程与线性方程组的数值解法,矩阵的特征值与特征向量计算,常微分方程数值解等。

首先我们必须明白数值分析的用途。通常所学的其他数学类学科都是由公式定理开始,从研究他们的定义,性质再到证明与应用。但实际上,尤其是工程,物理,化学等其它具体的学科。往往我们拿到 手的只是通过实验得到的数据。如果是验证性试验,需要代回到公式 进行分析,验证。但往往更多面对的是研究性或试探性试验,无具体 公式定理可代。那就必须通过插值,拟合等计算方法进行数据处理以得到一个相对可用的一般公式。还有许多计算公式理论上非常复杂,在工程中不实用,所以必须根据实际情况把它转化成多项式近似表 示。学习数值分析,不应盲目记公式,因为公事通常很长且很乏味。其次,应从公式所面临的问题以及用途出发。比如插值方法,就 是就是把实验所得的数据看成是公式的解,由这些解反推出一个近似公式,可以具有局部一般性。再比如说拟合,在插值的基础上考虑实 验误差,通过拟合能将误差尽可能缩小,之后目的也是得到一个具有 一定条件下的一般性的公式。。建议学习本门课程要结合知识与实际,比如在物理实验里面很多

数值分析总复习提纲教材

数值分析总复习提纲 数值分析课程学习的内容看上去比较庞杂,不同的教程也给出了不同的概括,但总的来说无非是误差分析与算法分析、基本计算与基本算法、数值计算与数值分析三个基本内容。在实际的分析计算中,所采用的方法也无非是递推与迭代、泰勒展开、待定系数法、基函数法等几个基本方法。 一、误差分析与算法分析 误差分析与算法设计包括这样几个方面: (一)误差计算 1、截断误差的计算 截断误差根据泰勒余项进行计算。 基本的问题是 (1)1 ()(01)(1)! n n f x x n θεθ++<<<+,已知ε求n 。 例1.1:计算e 的近似值,使其误差不超过10-6。 解:令f(x)=e x ,而f (k)(x)=e x ,f (k)(0)=e 0=1。由麦克劳林公式,可知 211(01)2!!(1)! n x x n x x e e x x n n θθ+=+++++<<+ 当x=1时,1 111(01)2! !(1)! e e n n θθ=+++ ++ <<+ 故3 (1)(1)!(1)! n e R n n θ=<++。 当n =9时,R n (1)<10-6,符合要求。此时, e≈2.718 285。 2、绝对误差、相对误差及误差限计算 绝对误差、相对误差和误差限的计算直接利用公式即可。 基本的计算公式是: ①e(x)=x *-x =△x =dx ② *()()()ln r e x e x dx e x d x x x x ==== ③(())()()()e f x f x dx f x e x ''== ④(())(ln ())r e f x d f x = ⑤121212121122121122((,))(,)(,)(,)()(,)()x x x x e f x x f x x dx f x x dx f x x e x f x x e x ''''=+=+ ⑥121212((,)) ((,))(,) f x x f x x f x x εδ=

数值分析试卷及其答案2

1、(本题5分)试确定7 22作为π的近似值具有几位有效数字,并确定其相对误差限。 解 因为 7 22=3.142857…=1103142857.0-? π=3.141592… 所以 3 12 10 2 110 21005.0001264.07 22--?= ?= <=- π (2分) 这里,3,21,0=-=+-=n n m m 由有效数字的定义可知7 22作为π的近似值具有3位有效数字。 (1分) 而相对误差限 3 10 2 10005.00004138.0001264.07 22-?= <≈= -= π π πε r (2分) 2、(本题6分)用改进平方根法解方程组:???? ? ??=????? ??????? ??--654131321 112321x x x ; 解 设???? ? ? ?????? ? ?????? ??===????? ? ?--11 1 11113 1321 11232312132 1 32 31 21 l l l d d d l l l LDL A T 由矩阵乘法得: 5 7,21,21527,25,2323121321- == - == -==l l l d d d (3分) 由y D x L b Ly T 1 ,-==解得 T T x y )9 23,97,910( ,)5 63, 7,4(== (3分) 3、(本题6分)给定线性方程组??? ? ? ??=++-=+-+=-+-=-+17722238231138751043214321 321431x x x x x x x x x x x x x x 1)写出Jacoib 迭代格式和Gauss-Seidel 迭代格式; 2)考查Jacoib 迭代格式和Gauss-Seidel 迭代格式的敛散性; 解 1)Jacoib 迭代格式为

数值分析复习提纲

数值分析(英)复习提纲 考试以基本概念为主,书上以前布置的计算机题目都不作要求。 第一章Solving equations 1.1 THE BISECTION METHOD (a) 熟练掌握二分法; (b) 对于给定解的误差精度要求能够熟练计算所需二分法步数,参考书上28页内容。 习题5,6 1.2 FIXED-POINT ITERATION (a) 熟练掌握不动点迭代方法求方程的根;掌握不动点迭代方法的线性收敛性与收敛率; 此节书后习题不作要求。 1.4 NEWTON’S METHOD (a)熟练掌握方程求根的NEWTON’S METHOD:Example 1.11, 1.12, 1.13 (b)对于重根熟练掌握Theorem 1.12, Theorem 1.13 习题2,5,7 第二章Systems of Equations 2.2 THE LU FACTORIZATION (a)掌握矩阵LU分解方法; (b)会使用LU分解方法求线性方程组的解:Example 2.5, 2.6, 2.7 2.3 SOURCES OF ERROR 本节只要掌握矩阵范数的定义,参阅90页 2.4 THE PA = LU FACTORIZATION 熟练掌握2.4.2 Permutation matrices, 2.4.3 PA = LU factorization: Example 2.16, 2.17, 2.18 习题4 2.5 ITERATIVE METHODS 熟练掌握Jacobi Method,Gauss–Seidel Method. 习题2

第三章Interpolation 3.1 DATA AND INTERPOLATING FUNCTIONS: (a)熟练掌握Lagrange interpolation (b)熟练掌握Newton’s divided differences 习题1,2,5 3.2 INTERPOLATION ERROR 熟练掌握定理3.4, Example 3.8, 习题1,2,4 第四章Least Squares 4.1.1 Inconsistent systems of equations 熟练掌握Normal equations for least squares:Example 4.1, Example 4.2 习题1,2 第五章Numerical Differentiation and Integration 5.1 NUMERICAL DIFFERENTIATION 熟练掌握一阶导数的Two-point forward-difference formula,Three-point centered-difference formula 熟练掌握二阶导数的Three-point centered-difference formula for second derivative 习题1,2,5,8,9 5.2 NEWTON–COTES FORMULAS FOR NUMERICAL INTEGRATION 熟练掌握Composite Trapezoid Rule,Example 5.8,习题1 第六章Ordinary Differential Equations 6.1.1 Euler’s Method (a) 熟练掌握Euler方法(6.7): Example6.2 习题5 6.2.2 The explicit Trapezoid Method 熟练掌握The explicit Trapezoid Method(6.29):Example6.10 习题1

数值分析知识点

第一章绪论(1-4) 一、误差来源及分类 二、误差的基本概念 1.绝对误差及绝对误差限 2.相对误差及相对误差限 3.有效数字 三、数值计算的误差估计 1.函数值的误差估计 2.四则运算的误差估计 四、数值计算的误差分析原则 第二章插值(1.2.4-8) 一、插值问题的提法(定义)、插值条件、插值多项式的存在唯一性 二、拉格朗日插值 1.拉格朗日插值基函数的定义、性质 2.用拉格朗日基函数求拉格朗日多项式 3.拉格朗日插值余项(误差估计) 三、牛顿插值 1.插商的定义、性质 2.插商表的计算 3.学会用插商求牛顿插值多项式 四、等距节点的牛顿插值 1.差分定义、性质及计算(向前、向后和中心) 2.学会用差分求等距节点下的牛顿插值公式 五、学会求低次的hermite插值多项式 六、分段插值 1.分段线性插值 2.分段三次hermite插值 3.样条插值 第三章函数逼近与计算(1-6) 一、函数逼近与计算的提法(定义)、常用两种度量标准(一范数、二范数\平方逼近) 二、基本概念 连续函数空间、最佳一次逼近、最佳平方逼近、内积、内积空间、偏差与最小偏差、偏差点、交错点值、平方误差 三、学会用chebyshev定理求一次最佳一致逼近多项式,并估计误差(最大偏差) 四、学会在给定子空间上通过解方程组求最佳平方逼近,并估计误差(平方误差) 五、正交多项式(两种)定义、性质,并学会用chebyshev多项式性质求特殊函数的(降阶)最佳一次逼近多项式 六、函数按正交多项式展开求最佳平方逼近多项式,并估计误差 七、一般最小二乘法(多项式拟合)求线性拟合问题 第四章数值分析(1-4) 一、数值求积的基本思想及其机械求积公式

西南交通大学数值分析题库

考试目标及考试大纲 本题库的编纂目的旨在给出多套试题,每套试题的考查范围及难度配置均基于“水平测试”原则,按照教学大纲和教学内容的要求,通过对每套试题的解答,可以客观公正的评定出学生对本课程理论体系和应用方法等主要内容的掌握水平。通过它可以有效鉴别和分离不同层次的学习水平,从而可以对学生的学习成绩给出客观的综合评定结果。 本题库力求作到能够较为全面的覆盖教学内容,同时突显对重点概念、重点内容和重要方法的考查。考试内容包括以下部分: 绪论与误差:绝对误差与相对误差、有效数字、误差传播分析的全微分法、相对误差估计的条件数方法、数值运算的若干原则、数值稳定的算法、常用数值稳定技术。 非线性方程求解:方程的近似解之二分法、迭代法全局收敛性和局部收敛定理、迭代法误差的事前估计法和事后估计法、迭代过程的收敛速度、r 阶收敛定理、Aitken加速法、Ne w to n法与弦截法、牛顿局部收敛性、Ne w to n收敛的充分条件、单双点割线法(弦截法)、重根加速收敛法。 解线性方程组的直接法:高斯消元法极其充分条件、全主元消去法、列主元消去法、高斯-若当消元法、求逆阵、各种消元运算的数量级估计与比较、矩阵三角分解法、Doolittle 和Crout三角分解的充分条件、分解法的手工操作、平方根法、Cholesky分解、改进的平方根法(免去开方)、可追赶的充分条件及适用范围、计算复杂性比较、严格对角占优阵。 解线性方程组迭代法:向量和矩阵的范数、常用向量范数的计算、范数的等价性、矩阵的相容范数、诱导范数、常用范数的计算;方程组的性态和条件数、基于条件数误差估计与迭代精度改善方法;雅可比(Jacobi)迭代法、Gauss-Seidel迭代法、迭代收敛与谱半径的关系、谱判别法、基于范数的迭代判敛法和误差估计、迭代法误差的事前估计法和事后估计法;严格对角占优阵迭代收敛的有关结论;松弛法及其迭代判敛法。 插值法:插值问题和插值法概念、插值多项式的存在性和唯一性、插值余项定理;Lagrange插值多项式;差商的概念和性质、差商与导数之间的关系、差商表的计算、牛顿(Newton)插值多项式;差分、差分表、等距节点插值公式;Hermite插值及其插值基函数、误差估计、插值龙格(Runge)现象;分段线性插值、分段抛物插值、分段插值的余项及收敛性和稳定性;样条曲线与样条函数、三次样条插值函数的三转角法和三弯矩法。 曲线拟合和函数逼近:最小二乘法原理和多项式拟合、函数线性无关概念、法方程有唯一解的条件、一般最小二乘法问题、最小二乘拟合函数定理、可化为线性拟合问题的常见函数类;正交多项式曲线拟合、离散正交多项式的三项递推法。最佳一致逼近问题、最佳一致逼近多项式、切比雪夫多项式、切比雪夫最小偏差定理、切比雪夫多项式的应用(插值余项近似极小化、多项式降幂)。本段加黑斜体内容理论推导可以淡化,但概念需要理解。 数值积分与微分:求积公式代数精度、代数精度的简单判法、插值型求积公式、插值型求积公式的代数精度;牛顿一柯特斯(Newton-Cotes)公式、辛卜生(Simpson)公式、几种低价牛顿一柯特斯求积公式的余项;牛顿一柯特斯公式的和收敛性、复化梯形公式及其截断误差、复化Simpson公式及其截断误差、龙贝格(Romberg)求积法、外推加速法、高斯型求积公式、插值型求积公式的最高代数精度、高斯点的充分必要条件。正交多项式的构造方法、高斯公式权系数的建立、Gauss-Legendre公式的节点和系数。本段加黑斜体内容理论推导可以淡化,但概念需要理解。 常微分方程数值解:常微分方程初值问题数值解法之欧拉及其改进法、龙格—库塔法、阿当姆斯方法。

数值分析习题汇总

第一章 引论(习题) 2.证明:x 的相对误差约等于x 的相对误差的1/2. 证明 记 x x f = )( ,则 ) ()(* ** x x x x x x x x f E r +-= -= )(21**x E x x x x x x r ≈-?+= . □ 3.设实数a 的t 位β进制浮点机器数表示为)(a fl . 试证明 t b a b a fl -≤ +*=*12 1||),1/()()(βδδ, 其中的记号*表示+、-、?、/ 中一种运算. 证明: 令: ) () ()(b a fl b a fl b a **-*= δ 可估计: 1|)(|-≥*c b a fl β (c 为b a *阶码), 故: 121||--≤ c t c ββδt -=12 1β 于是: )1()()(δ+*=*b a b a fl . □ 4.改变下列表达式使计算结果比较精确: (1) ;1||, 11211<<+--+x x x x 对 (2) ;1,11>>- -+ x x x x x 对 (3) 1||,0,cos 1<<≠-x x x x 对. 解 (1) )21()1(22 x x x ++. (2) ) 11(2x x x x x -++. (3) x x x x x x x cos 1sin )cos 1(sin cos 12+≈+=-. □

6.设937.0=a 关于精确数x 有3位有效数字,估计a 的相对误差. 对于x x f -=1)(,估计)(a f 对于)(x f 的误差和相对误差. 解 a 的相对误差:由于 31021|)(|-?≤ -=a x x E . x a x x E r -=)(, 221018 1 10921)(--?=?≤ x E r . (1Th ) )(a f 对于)(x f 的误差和相对误差. |11||)(|a x f E ---== ()25 .0210 11321??≤ -+---a x x a =3 10- 33 104110 |)(|--?=-≤a f E r . □ 9.序列}{n y 满足递推关系:1101.100-+-=n n n y y y . 取01.0,110 ==y y 及 01.0, 101150=+=-y y ,试分别计算5y ,从而说明该递推公式对于计算是不稳 定的. 解 递推关系: 1101.100-+-=n n n y y y (1) 取初值 10=y , 01.01=y 计算 可得: 110 01.1002 2-?=-y 10001.1-=410-= 6 310-=y , 8 410 -=y , 10 510-=y , … (2) 取初值 5 0101-+=y , 2 110 -=y , 记: n n n y y -=ε, 序列 {}n ε ,满足递推关系,且 5 010--=ε , 01=ε 1101.100-+-=n n n εεε, 于是: 5210-=ε, 531001.100-?=ε, 55241010)01.100(---?=ε, 5 5351002.20010)01.100(--?-?=ε,

《数值分析》实验考试大纲

东华大学研究生《数值分析》实验考试大纲 教材:?数值分析及其MATLAB实验?姜健飞吴笑千胡良剑编 考试规则领座试卷不同,开卷,解答全部用笔写在考卷上,作图题只需手画草图。开考前可将准备程序Copy到硬盘, 但是开考后不允许用软盘,也不允许上网。 评分原则每题20分,满分100分。 类型1:使用Matlab命令的计算题共3题 主要使用如下MATLAB命令解题: 第二章(1)用矩阵除法解线性方程组; (2)行列式det、逆inv; (3)特征值、特征向量eig; (4)范数和条件数; 第三章81页(1)用roots求多项式的根;polyval(p,x) (2)用fzero解非线性方程; (3)用fsolve解非线性方程组; 第四章(1)多项式插值和拟合polyfit(线性插值和抛物插值程序参见4章习题3) (2) 线性插值interp1 (3) 样条插值spline, csape (4)最小二乘拟合lsqcurvefit 第五章(158页)(1)用diff或gradiet求导数 (2)用integral求积分; (3)用integral2或integral3求重积分; 第六章(1)用ode45求解微分方程; (2)用ode45求解微分方程组; (3)用ode45求解高阶微分方程; 类型2:使用课本程序的计算题共1题(不必将课本程序部分写在考卷上,蓝色星号*程序需掌握如何使用) 第二章nagauss* nagauss2* nalu* nalupad* 第三章nabisect* nanewton* nags* naspgs* nasor* 第四章nalagr* naspline nafit naorthfit 第五章natrapz nagsint naromberg naadapt dblquad2 第六章naeuler naeulerb naeuler2 nark4 nark4v naeuler2s 类型3:编程题共1题(必须将程序写在考卷上) 要求使用MATLAB控制流语句编程,主要涉及for, while, if等语句以及关系与逻辑运算,M 函数编写。 第二章nagauss*(22页顺序Gauss消去法) nagauss2*(23页选列主元Gauss消去法) nalu*(32页LU分解) nalupad*(33页紧凑格式的LU分解) 第三章nabisect*(59页二分法) nanewton*(70页Newton迭代法) nags*(78页普通线性方程组的G-S迭代法) naspgs* (79页大型稀疏线性方程组的G-S迭代法) nasor* (79页分量形式的SOR迭代

数值分析试题A卷10.1

中国石油大学(北京)2009--2010学年第一学期 研究生期末考试试题A (闭卷考试) 课程名称:数值分析 注:计算题取小数点后四位 一、填空题(共30分,每空3分) 1、 已知x =是由准确数a 经四舍五入得到的近似值,则x 的绝对误差 界为_______________。 2、数值微分公式()() '()i i i f x h f x f x h +-≈ 的截断误差为 。 3、已知向量T x =,求Householder 变换阵H ,使(2,0)T Hx =-。 H = 。 4、利用三点高斯求积公式 1 1 ()0.5556(0.7746)0.8889(0)0.5556(0.7746)f x dx f f f -≈-++? 导出求积分 4 0()f x dx ?的三点高斯求积公式 。 5、4 2 ()523,[0.1,0.2,0.3,0.4,0.5]_____.f x x x f =+-= 若则 6、以n + 1个互异节点x k ( k =0,1,…,n ),(n >1)为插值节点的 Lagrange 插值基函数为l k (x)( k =0,1,…,n ),则 (0)(1)__________.n k k k l x =+=∑ 7、已知3()P x 是用极小化插值法得到的cos x 在[0,4]上的三次插值多项式,则3()P x 的 截断误差上界为3()cos ()R x x P x =-≤_________.

8、已知向量(3,2,5)T x =-,求Gauss 变换阵L ,使(3,0,0)T Lx =。L =_________. 9、设3 2 ()(7)f x x =-, 给出求方程()0f x =根的二阶收敛的迭代格式_________。 10、下面M 文件是用来求解什么数学问题的________________________. function [x,k]=dd (x0) for k=1:1000 x=cos (x0); if abs(x-x0)<, break end x0=x; end 二、(15分)已知矛盾方程组Ax=b ,其中11120,1211A b ???? ????==???????????? , (1)用施密特正交化方法求矩阵A 的正交分解,即A=QR 。 (2)用此正交分解求矛盾方程组Ax=b 的最小二乘解。 三、(10分)已知求解线性方程组Ax=b 的分量迭代格式 1 (1) (1) ()1 +1 /, 121,,i n k k k i i ij j ij j ii j j i x b a x a x a i n n -++===-- =-∑∑(),, (1)试导出其矩阵迭代格式及迭代矩阵; (2)若11a A a ?? = ??? ,推导上述迭代格式收敛的充分必要条件。 四、(15分)(1)证明对任何初值0x R ∈,由迭代公式11 1sin ,0,1,2, (2) k k x x k +=+ = 所产生的序列{}0k k x ∞ =都收敛于方程1 1sin 2 x x =+ 的根。 (2)迭代公式11 21sin ,0,1,2, (2) k k k x x x k +=-- =是否收敛。 五、(15分)用最小二乘法确定一条经过原点(0,0)的二次曲线,使之拟合下列数据

数值分析期末试题

数值分析期末试题 一、填空题(20102=?分) (1)设??? ? ? ??? ??---=28 3 012 251A ,则=∞ A ______13_______。 (2)对于方程组?? ?=-=-3 4101522121x x x x ,Jacobi 迭代法的迭代矩阵是=J B ?? ? ? ??05.25.20。 (3)3*x 的相对误差约是*x 的相对误差的 3 1倍。 (4)求方程)(x f x =根的牛顿迭代公式是) ('1)(1n n n n n x f x f x x x +-- =+。 (5)设1)(3 -+=x x x f ,则差商=]3,2,1,0[f 1 。 (6)设n n ?矩阵G 的特征值是n λλλ,,,21 ,则矩阵G 的谱半径=)(G ρi n i λ≤≤1max 。 (7)已知?? ? ? ??=1021 A ,则条件数=∞ )(A Cond 9 (8)为了提高数值计算精度,当正数x 充分大时,应将)1ln(2 -- x x 改写为 )1ln(2 ++ -x x 。 (9)n 个求积节点的插值型求积公式的代数精确度至少为1-n 次。 (10)拟合三点))(,(11x f x ,))(,(22x f x ,))(,(33x f x 的水平直线是)(3 1 3 1 ∑== i i x f y 。 二、(10分)证明:方程组? ?? ??=-+=++=+-1 211 2321321321x x x x x x x x x 使用Jacobi 迭代法求解不收敛性。 证明:Jacobi 迭代法的迭代矩阵为 ???? ? ?????---=05 .05 .01015.05.00J B J B 的特征多项式为

数值分析期末试题

一、(8分)用列主元素消去法解下列方程组: ??? ??=++-=+--=+-11 2123454 321321321x x x x x x x x x 二、(10分)依据下列数据构造插值多项式:y(0)=1,y(1)= —2,y '(0)=1, y '(1)=—4 三、(12分)分别用梯形公式和辛普生公式构造 复化的梯形公式、复化的辛普生公式并利用复化的梯形公式、复化的辛普生公式计算下列积分: ? 9 1dx x n=4 四、(10分)证明对任意参数t ,下列龙格-库塔方法是二阶的。 五、(14分)用牛顿法构造求c 公式,并利用牛顿法求115。保留有效数字五位。 六、(10分)方程组AX=B 其中A=????????? ?10101a a a a 试就AX=B 建立雅可比迭代法和高斯-赛德尔迭代法,并讨论a 取何值时 迭代收斂。 七、(10分)试确定常数A,B,C,a,使得数值积分公式?-++-≈2 2 ) (}0{)()(a Cf Bf a Af dx x f 有尽可能多的 代数精确度。并求该公式的代数精确度。 八、{6分} 证明: A ≤ 其中A 为矩阵,V 为向量. 第二套 一、(8分)用列主元素消去法解下列方程组: ??? ??=++=+-=+3 2221 43321 32132x x x x x x x x 二、(12分)依据下列数据构造插值多项式:y(0)=y '(0)=0, y(1)=y '(1)= 1,y(2)=1 三、(14分)分别用梯形公式和辛普生公式构造 复化的梯形公式、复化的辛普生公式,并利用复化的梯形公式、 复化的辛普生公式及其下表计算下列积分: ?2 /0 sin πxdx ????? ? ? -+-+=++==++=+1 3121231)1(,)1(() ,(),()(2 hk t y h t x f k thk y th x f k y x f k k k h y y n n n n n n n n

数值分析试题及答案汇总

数值分析试题及答案汇 总 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

数值分析试题 一、填空题(2 0×2′) 1. ?? ????-=? ?????-=32,1223X A 设x =是精确值x *=的近似值,则x 有 2 位有效数字。 2. 若f (x )=x 7-x 3+1,则f [20,21,22,23,24,25,26,27]= 1 , f [20,21,22,23,24,25,26,27,28]= 0 。 3. 设,‖A ‖∞=___5 ____,‖X ‖∞=__ 3_____, ‖AX ‖∞≤_15_ __。 4. 非线性方程f (x )=0的迭代函数x =(x )在有解区间满足 |’(x )| <1 ,则使用该迭代函数 的迭代解法一定是局部收敛的。 5. 区间[a ,b ]上的三次样条插值函数S (x )在[a ,b ]上具有直到 2 阶的连续导数。 6. 当插值节点为等距分布时,若所求节点靠近首节点,应该选用等距节点下牛顿差 商公式的 前插公式 ,若所求节点靠近尾节点,应该选用等距节点下牛顿差商公式的 后插公式 ;如果要估计结果的舍入误差,应该选用插值公式中的 拉格朗日插值公式 。 7. 拉格朗日插值公式中f (x i )的系数a i (x )的特点是:=∑=n i i x a 0)( 1 ;所以当系数 a i (x )满足 a i (x )>1 ,计算时不会放大f (x i )的误差。 8. 要使 20的近似值的相对误差小于%,至少要取 4 位有效数字。 9. 对任意初始向量X (0)及任意向量g ,线性方程组的迭代公式x (k +1)=Bx (k )+g (k =0,1,…) 收敛于方程组的精确解x *的充分必要条件是 (B)<1 。 10. 由下列数据所确定的插值多项式的次数最高是 5 。

贵州师范大学计算数学《数值分析》考研复试大纲

贵州师范大学硕士研究生入学考试大纲(复试) (科目名称:数值分析) 一、考查目标 本《考试大纲适用于贵州师范大学数学科学学院数学专业硕士研究生入学考试复试。数值分析是高等院校数学与应用数学、信息与计算科学等理工科专业的一门专业核心必修课程。它是一门内容丰富,研究方法深刻,有自身理论体系的课程。其研究对象是解决各种数学问题的数值计算程序、方法与相关理论。 1、考试目的 测试考生对数值计算方法的基本原理和基本方法的掌握,以及对数值分析的理解及基本应用能力。考生应该掌握拉格朗日插值方法、数值积分、数值微分、方程求根、线性代数方程组的数值解法,并有应用这些方法解决和分析数值计算中常见问题的基本能力。 《数值分析》是我校数学科学学院招收全日制硕士研究生而设置的具有选拔性质的复试科目,其目的是考察学生是否具备本学科计算数学专业硕士研究生学习所要求的水平,为我校数学科学学院择优选拔硕士研究生提供依据。 2、考试的基本要求 要求学生了解和掌握这门课程所涉及的各种常用的数值计算公式、数值方法的构造原理及适用范围,为今后用计算机去有效地解决实际问题打下基础。 (1)掌握算法的基本原理和思想,包括算法的构造、算法处理的技巧、误差分析、收敛性和稳定性等基本理论。 (2)掌握误差与有效数字定义、函数插值与逼近的方法、积分与微分的数值计算方法、线性方程组的数值解法、非线性方程根的求解方法。 (3)掌握各种算法的理论分析;了解主要算法的设计思路。 二、考试形式与试卷结构 (一)试卷成绩及考试时间 本试卷满分为100分。考试时间为180分钟。 (二)答题方式 闭卷,笔试;所有题目全部为必答题。 (三)试卷内容 数值计算中的误差、拉格朗日插值方法、数值积分、数值微分、方程求根、线

数值分析整理版试题及复习资料

例1、 已知函数表 求()f x 的Lagrange 二次插值多项式和Newton 二次插值多项式。 解: (1) 插值基函数分别为 ()()()()()()()()()() 1200102121()1211126 x x x x x x l x x x x x x x ----= ==-------- ()()()()()()()() ()()021******* ()1211122x x x x x x l x x x x x x x --+-= ==-+---+- ()()()()()()()()()()0122021111 ()1121213 x x x x x x l x x x x x x x --+-= ==-+--+- 故所求二次拉格朗日插值多项式为 () ()()()()()()()()()()2 20 2()11131201241162314 121123537623k k k L x y l x x x x x x x x x x x x x ==?? =-? --+?-+-+?+-????=---++-=+-∑ (2)一阶均差、二阶均差分别为

[]()()[]()()[][][]010********* 011201202303 ,11204 ,412 3 4,,5 2,,126 f x f x f x x x x f x f x f x x x x f x x f x x f x x x x x ---===-----= = =----=== --- 故所求Newton 二次插值多项式为 ()()[]()[]()() ()()()20010012012,,,35 311126537623P x f x f x x x x f x x x x x x x x x x x x =+-+--=-+ +++-=+- 例2、 设2 ()32f x x x =++,[0,1]x ∈,试求()f x 在[0, 1]上关于()1x ρ=,{} span 1,x Φ=的最佳平方逼近多项式。 解: 若{}span 1,x Φ=,则0()1x ?=,1()x x ?=,且()1x ρ=,这样,有 ()()()()()()()()1 1 200110 1 1 2011000 1 210 1 ,11, ,3 1 23 ,,, ,3226 9,324 dx x dx xdx f x x dx f x x x dx ??????????==== ====++= =++= ????? 所以,法方程为 011231261192 34a a ??????????=?????????? ?????????? ,经过消元得012311 62110123a a ??? ???????=???????????????????? 再回代解该方程,得到14a =,011 6a =

数值分析试题及答案

数值分析试题 一、 填空题(2 0×2′) 1. ?? ????-=? ?????-=32,1223X A 设x =是精确值x *=的近似值,则x 有 2 位有效数字。 2. 若f (x )=x 7-x 3+1,则f [20,21,22,23,24,25,26,27]= 1 , f [20,21,22,23,24,25,26,27,28]= 0 。 3. 设,‖A ‖∞=___5 ____,‖X ‖∞=__ 3_____, ‖AX ‖∞≤_15_ __。 4. 非线性方程f (x )=0的迭代函数x =?(x )在有解区间满足 |?’(x )| <1 ,则使用该迭代 函数的迭代解法一定是局部收敛的。 5. 区间[a ,b ]上的三次样条插值函数S (x )在[a ,b ]上具有直到 2 阶的连续导数。 6. 当插值节点为等距分布时,若所求节点靠近首节点,应该选用等距节点下牛顿差 商公式的 前插公式 ,若所求节点靠近尾节点,应该选用等距节点下牛顿差商公式的 后插公式 ;如果要估计结果的舍入误差,应该选用插值公式中的 拉格朗日插值公式 。 7. 拉格朗日插值公式中f (x i )的系数a i (x )的特点是:=∑=n i i x a 0)( 1 ;所以 当系数a i (x )满足 a i (x )>1 ,计算时不会放大f (x i )的误差。 8. 要使 20的近似值的相对误差小于%,至少要取 4 位有效数字。 9. 对任意初始向量X (0)及任意向量g ,线性方程组的迭代公式x (k +1)=Bx (k )+g (k =0,1,…) 收敛于方程组的精确解x *的充分必要条件是 ?(B)<1 。 10. 由下列数据所确定的插值多项式的次数最高是 5 。 11. 牛顿下山法的下山条件为 |f(xn+1)|<|f(xn)| 。

相关主题
文本预览
相关文档 最新文档