当前位置:文档之家› 教案第五章二次型

教案第五章二次型

教案第五章二次型
教案第五章二次型

物流学院

2015—2016学年度第 1 学期线性代数课堂教学方案

授课年级 2014

专业层次会计学本科

授课班级 1、2、3、4班

授课教师

2015 年 8 月 28 日

《线性代数》教案

《线性代数》教案

线性代数第五章(答案)

第五章 相似矩阵及二次型 一、 是非题(正确打√,错误打×) 1.若线性无关向量组r αα,,1 用施密特法正交化为r ββ,,1 则对任何),1(r k k ≤≤向量组k αα,,1 与向量组r ββ,,1 等价. ( √ ) 2. 若向量组r αα,,1 两两正交,则r αα,,1 线性无关. ( √ ) 3.n 阶正交阵A 的n 个行(列)向量构成向量空间n R 的一个规范正交基. ( √ ) 4.若A 和B 都是正交阵,则AB 也是正交阵. ( √ ) 5.若A 是正交阵, Ax y =,则x y =. ( √ ) 6.若112???=n n n n x x A ,则2是n n A ?的一个特征值. ( × ) 7.方阵A 的特征向量只能对应唯一的特征值,反之亦成立. ( × ) 8.n 阶矩阵A 在复数范围内有n 个不同的特征值. ( × ) 9. 矩阵A 有零特征值的充要条件是0=A . ( √ ) 10.若λ是A 的特征值,则)(λf 是)(A f 的特征值(其中)(λf 是λ的多项式). ( √ ) 11.设1λ和)(212λλλ≠是A 的特征值, 1x 和2x 为对应特征向量,则21x x +也是A 的特征向量. ( × ) 12. T A 与A 的特征值相同. ( √ ) 13.n 阶矩阵A 有n 个不同特征值是A 与对角矩阵相似的充分必要条件. ( × )

14.若有可逆矩阵P ,使n 阶矩阵A ,B 满足: B PAP =-1,则A 与B 有相同的特征值. ( √ ) 15.两个对角矩阵的对角元素相同,仅排列位置不同,则这两个对角矩阵相似. ( √ ) 16.设n 阶矩阵A ,B 均与对角阵相似且有相同的特征值,则A 与B 相似. ( √ ) 17.实对称矩阵A 的非零特征值的个数等于它的秩. ( √ ) 18. 若k ααα,,,21 线性无关且都是A 的特征向量,则将它们先正交化,再单位化后仍为A 的特征向量. ( √ ) 19.实对称阵A 与对角阵Λ相似Λ=-AP P 1,这里P 必须是正交阵 。 ( × ) 20.已知A 为n 阶矩阵,x 为n 维列向量,如果A 不对称,则Ax x T 不是二次型. ( √ ) 21.任一实对称矩阵合同于一对角矩阵。 ( √ ) 22.二次型 Ax x x x x f T n =),,,(21 在正交变换Py x =下一定化为 标准型. ( × ) 23.任给二次型 Ax x x x x f T n =),,,(21 ,总有正交变换Py x =,使f 化 为规范型。 ( × )

高等代数北大版课程教案-第5章二次型

第五章 二次型 §1 二次型的矩阵表示 一 授课内容:§1 二次型的矩阵表示 二 教学目的:通过本节的学习,掌握二次型的定义,矩阵表示,线性 替换和矩阵的合同. 三 教学重点:矩阵表示二次型 四 教学难点:二次型在非退化下的线性替换下的变化情况. 五 教学过程: 定义:设P 是一数域,一个系数在数域P 中的n x x x ,,,21 的二次齐次多项式 n n n x x a x x a x a x x x f 11211221112122),,,( n n x x a x a 2222222 (2) n nn x a (3) 称为数域P 上的一个n 元二次型,或者,简称为二次型. 例如:2 3 322231212 13423x x x x x x x x x 就是有理数域上的一个3元二次型. 定义1 设n x x x ,,,21 ,n y y y ,,,21 是两组文字,系数在数域P 中的一组关系式 n nn n n n n n n n y c y c y c x y c y c y c x y c y c y c x 22112222121212121111 (4) 称为n x x x ,,,21 到n y y y ,,,21 的一个线性替换,或则,简称为线性替换.如果系数行列式 0 ij c ,那么线性替换(4)就称为非退化的. 二次型的矩阵表示:

令 ji ij a a ,j i 由于 i j j i x x x x ,那么二次型(3)就可以写为 n n n x x a x x a x a x x x f 112112211121),,,( n n x x a x a x x a 2222221221 …+2 2211n nn n n n n x a x x a x x a n i n j j i ij x x a 11 (5) 把(5)的系数排成一个n n 矩阵 nn n n n n a a a a a a a a a A 21 22221 112 11 它称为二次型(5)的矩阵.因为ji ij a a ,n j i ,,2,1, ,所以 A A . 我们把这样的矩阵称为对称矩阵,因此,二次型(5)的矩阵都是对称的. 令 n x x x X 21,于是,二次型可以用矩阵的乘积表示出来, n x x x AX X 2 1 nn n n n n a a a a a a a a a 21 22221 11211 n x x x 21 n nn n n n n n n n x a x a x a x a x a x a x a x a x a x x x 221 122221 21121211121 n i n j j i ij x x a 11. 故 AX X x x x f n ),,,(21 .

线性代数第五章 课后习题及解答

第五章课后习题及解答 1. 求下列矩阵的特征值和特征向量: (1) ;1332??? ? ??-- 解:,0731332 2=--=--=-λλλλλA I 2 373,237321-=+=λλ ,00133637123712137 1??? ? ??→→???? ??=-++- A I λ 所以,0)(1=-x A I λ的基础解系为:.)371,6(T - 因此,A 的属于1λ的所有特征向量为:).0()371,6(11≠-k k T ,001336371237123712??? ? ??→→???? ??-=---+ A I λ 所以,0)(2=-x A I λ的基础解系为:.)371,6(T +

因此,A 的属于2λ的所有特征向量为:).0()371,6(22≠+k k T (2) ;211102113???? ? ??-- 解:2)2)(1(2 111211 3--==------=-λλλλ λλ A I 所以,特征值为:11=λ(单根),22=λ(二重根) ???? ? ??-→→????? ??------=-0001100011111121121 A I λ 所以,0)(1=-x A I λ的基础解系为:.)1,1,0(T 因此,A 的属于1λ的所有特征向量为:).0()1,1,0(11≠k k T ???? ? ??-→→????? ??-----=-0001000110111221112 A I λ 所以,0)(2=-x A I λ的基础解系为:.)0,1,1(T 因此,A 的属于2λ的所有特征向量为:).0()0,1,1(22≠k k T

高等代数北大版教案-第5章二次型

高等代数北大版教案- 第5章二次型 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

48 第五章 二次型 §1 二次型的矩阵表示 一 授课内容:§1 二次型的矩阵表示 二 教学目的:通过本节的学习,掌握二次型的定义,矩阵表示,线性 替换和矩阵的合同. 三 教学重点:矩阵表示二次型 四 教学难点:二次型在非退化下的线性替换下的变化情况. 五 教学过程: 定义:设P 是一数域,一个系数在数域P 中的n x x x ,,,21 的二次齐次多项式 ++++=n n n x x a x x a x a x x x f 11211221112122),,,( +++n n x x a x a 2222222 (2) n nn x a + (3) 称为数域P 上的一个n 元二次型,或者,简称为二次型. 例如:2 3 322231212 13423x x x x x x x x x +++++ 就是有理数域上的一个3元二次型. 定义1 设n x x x ,,,21 ,n y y y ,,,21 是两组文字,系数在数域P 中的一组关系式 ???????+++=+++=+++=n nn n n n n n n n y c y c y c x y c y c y c x y c y c y c x 22112222121212121111 (4) 称为n x x x ,,,21 到n y y y ,,,21 的一个线性替换,或则,简称为线性替换.如果系数行列式 0≠ij c ,那么线性替换(4)就称为非退化的. 二次型的矩阵表示:

49 令 ji ij a a = ,j i < 由于 i j j i x x x x =,那么二次型(3)就可以写为 ++++=n n n x x a x x a x a x x x f 112112211121),,,( ++++n n x x a x a x x a 2222221221 …+2 2211n nn n n n n x a x x a x x a +++ ∑∑===n i n j j i ij x x a 11 (5) 把(5)的系数排成一个n n ?矩阵 ?? ? ? ? ?? ??=nn n n n n a a a a a a a a a A 2122221 112 11 它称为二次型(5)的矩阵.因为ji ij a a =,n j i ,,2,1, =,所以 A A ='. 我们把这样的矩阵称为对称矩阵,因此,二次型(5)的矩阵都是对称的. 令???? ?? ? ??=n x x x X 21,于是,二次型可以用矩阵的乘积表示出来, ()n x x x AX X 2 1 ='??????? ??nn n n n n a a a a a a a a a 2 1 22221 11211??? ? ? ? ? ??n x x x 21 ()? ??? ??? ??+++++++++=n nn n n n n n n n x a x a x a x a x a x a x a x a x a x x x 221 122221 2112121112 1 ∑∑===n i n j j i ij x x a 11.

线性代数二次型习题及答案

第六章 二次型 1.设方阵1A 与1B 合同,2A 与2B 合同,证明1 2A ?? ?? ?A 与12?? ?? ? B B 合同. 证:因为1A 与1B 合同,所以存在可逆矩1C ,使T 1111=B C A C , 因为2A 与2B 合同,所以存在可逆矩2C ,使T 2222=B C A C . 令 1 2?? = ??? C C C ,则C 可逆,于是有 T T 1111111 T 2222222??????????== ? ? ? ?????????????B C A C C AC B C A C C A C 1T 2?? = ??? A C C A 即 12A ?? ?? ?A 与12?? ???B B 合同. 2.设A 对称,B 与A 合同,则B 对称 证:由A 对称,故T =A A . 因B 与A 合同,所以存在可逆矩阵C ,使T =B C AC ,于是 T T T T T T ()====B C AC C A C C AC B 即B 为对称矩阵. 3.设A 是n 阶正定矩阵,B 为n 阶实对称矩阵,证明:存在n 阶可逆矩阵P ,使BP P AP P T T 与均为对角阵. 证:因为A 是正定矩阵,所以存在可逆矩阵M ,使 E AM M =T 记T 1=B M BM ,则显然1B 是实对称矩阵,于是存在正交矩阵Q ,使 T 11diag(, ,)n D μμ==Q B Q T 11, ,. n μμ=B M BM 其中为的特征值 令P=MQ ,则有 D BP P E AP P ==T T , ,A B 同时合同对角阵. 4.设二次型2111 ()m i in n i f a x a x ==+ +∑,令()ij m n a ?=A ,则二次型f 的 秩等于()r A . 证:方法一 将二次型f 写成如下形式:

第五章二次型

第五章 二次型 基本内容及考点综述 一、基本概念 1、二次型 设P 是一个数域,一个系数在数域P 中的n x x x ,,,21 的二次齐次多项式 2 222222112112211121222),,,(n nn n n n n n x a x x a x a x x a x x a x a x x x f 称为数域P 上的一个n 元二次型. 2.二次型的矩阵 如果数域P 上的n 元二次型),,,(21n x x x f 可表为矩阵形式. AX X x x x f n ),,,(21 其中A x x x X a A A A n n n ij ).,,,(,)(,21 称为二次型),,,(21n x x x f 的矩阵,A 的秩也称为二次型f 的秩. 3.非退化线性替换 设n n y y y x x x ,,,;,,,2121 是两组文字,系数在数域P 中的一组关系式 11111221221122221122n n n n n n n nn n x c y c y c y x c y c y c y x c y c y c y L L L L L L 称为由n x x x ,,,21 到n y y y ,,,21 的一个线性替换,如果系数行列式 0ij c 那么以上线性替换称为非退化的. 4.矩阵合同 数域P 上n n 矩阵B A ,称为合同的,如果有数域P 上可逆的n n 矩阵C ,使 .AC C B 5.标准形 数域P 上的二次型),,(1n x x f 可以经过非退化线性替换化成 2 222211n n x d x d x d (1) 那么(1)就称为二次型),,(1n x x f 的一个标准形.

线性代数练习册第五章题目及答案(本)复习进程

第五章 相似矩阵与二次型 §5-1 方阵的特征值与特征向量 一、填空题 1.已知四阶方阵A 的特征值为0,1,1,2,则||A E λ-= 2(1)(2)λλλ-- 2.设0是矩阵??? ? ? ??=a 01020101A 的特征值,则=a 1 3.已知三阶方阵A 的特征值为1,-1,2,则2 32B A A =-的特征值为 1,5,8 ;||A = -2 ;A 的对角元之和为 2 . 4.若0是方阵A 的特征值,则A 不可逆。 5. A 是n 阶方阵,||A d =,则*AA 的特征值是,,,d d d ???(共n 个) 二、选择题 1.设1λ,2λ为n 阶矩阵A 的特征值,1ξ,2ξ分别是A 的属于特征值1λ,2λ的特征向量,则( D ) (A )当1λ=2λ时,1ξ,2ξ必成比例 (B )当1λ=2λ时,1ξ,2ξ必不成比例 (C )当1λ≠2λ时,1ξ,2ξ必成比例 (D )当1λ≠2λ时,1ξ,2ξ必不成比例 2.设a=2是可逆矩阵A 的一个特征值,则1 A -有一个特征值等于 ( C ) A 、2; B 、-2; C 、 12; D 、-1 2 ; 3.零为方阵A 的特征值是A 不可逆的( B ) A 、充分条件; B 、充要条件; C 、必要条件; D 、无关条件;

三、求下列矩阵的特征值和特征向量 1.1221A ?? = ??? 解:A 的特征多项式为12(3)(1)2 1A E λλλλλ --==-+- 故A 的特征值为123,1λλ==-. 当13λ=时,解方程()30A E x -=. 由221132200r A E --???? -= ? ?-???? : 得基础解系111p ?? = ??? ,故1(0)kp k ≠是13λ=的全部特征向量. 当21λ=-时,解方程()0A E x +=.由22112200r A E ???? += ? ????? : 得基础解系211p -?? = ??? ,故2(0)kP k ≠是21λ=-的全部特征向量. 2.100020012B ?? ?= ? ??? 解:B 的特征多项式为 2100020(1)(2)0 1 2B E λ λλλλλ --= -=--- 故B 的特征值为1231,2λλλ===. 当11λ=时,解方程()0B E x -=. 由000010010001011000r B E ???? ? ? -= ? ? ? ????? :

线性代数第五章答案

第五章 相似矩阵及二次型 1. 试用施密特法把下列向量组正交化: (1)??? ? ??=931421111) , ,(321a a a ; 解 根据施密特正交化方法, ??? ? ??==11111a b , ??? ? ?? -=-=101] ,[],[1112122b b b a b a b , ? ?? ? ??-=--=12131],[],[],[],[222321113133b b b a b b b b a b a b . (2)??? ? ? ??---=011101110111) , ,(321a a a . 解 根据施密特正交化方法, ??? ? ? ??-==110111a b , ? ???? ??-=-=123131],[],[1112122b b b a b a b , ? ??? ? ??-=--=433151],[],[],[],[222321113133b b b a b b b b a b a b .

2. 下列矩阵是不是正交阵: (1)?????? ? ??-- -1 21312112131211; 解 此矩阵的第一个行向量非单位向量, 故不是正交阵. (2)???? ?? ? ??---- --979494949198949891. 解 该方阵每一个行向量均是单位向量, 且两两正交, 故为正交阵. 3. 设x 为n 维列向量, x T x =1, 令H =E -2xx T , 证明H 是对称的正交阵. 证明 因为 H T =(E -2xx T )T =E -2(xx T )T =E -2(xx T )T =E -2(x T )T x T =E -2xx T , 所以H 是对称矩阵. 因为 H T H =HH =(E -2xx T )(E -2xx T ) =E -2xx T -2xx T +(2xx T )(2xx T ) =E -4xx T +4x (x T x )x T =E -4xx T +4xx T =E , 所以H 是正交矩阵. 4. 设A 与B 都是n 阶正交阵, 证明AB 也是正交阵. 证明 因为A , B 是n 阶正交阵, 故A -1=A T , B -1=B T , (AB )T (AB )=B T A T AB =B -1A -1AB =E ,

线性代数第五章作业参考答案(唐明)

第五章作业参考答案 5-2试证:()()()1231,1,0,2,1,3,3,1,2T T T ααα=-== 是3R 的一组基,并求向量()()125,0,7,9,8,13T T v v ==--- 在这组基之下的坐标。 证明:要证123,,ααα 线性无关,即证满足方程1122330k k k ααα++= 的123,,k k k 只能均是0.联立方程得 1231232 32300320k k k k k k k k ++=?? -++=??+=? 计算此方程系数的行列式123 1116003 2 -=-≠ 故该方程只有零解,即1230k k k ===,因此,123,,ααα 是3R 的一组基 设1v 在这组基下的坐标为()123,,x x x ,2v 在这组基下的坐标为()123,,y y y ,由已知得 ()()1111232 212323 3,,,,,x y v x v y x y αααααα???? ? ? == ? ? ? ? ???? 代入易解得112233233,312x y x y x y ???????? ? ? ? ?==- ? ? ? ? ? ? ? ?--????????即为1v ,2v 在这组基下的坐标。 5-5设()()()1,2,1,1,2,3,1,1,1,1,2,2T T T αβγ=-=-=--- ,求: (1 ),,,αβαγ 及,,αβγ 的范数;(2)与,,αβγ 都正交的所有向量。 解(1 ),1223111(1)6αβ=?+?-?+?-= ()()(),112112 121 αγ=?-+?--?-+?= α= = β== γ= = (2)设与,,αβγ 都正交的向量为()1234,,,T x x x x x =,则 123412341234,20 ,230,220x x x x x x x x x x x x x x x αβγ?=+-+=??=++-=??=---+=?? 解得1 43243334 4 5533x x x x x x x x x x =-?? =-+?? =??=? 令340,1x x ==得()()1234,,,5,3,0,1x x x x =- 令341,0x x ==得()()1234,,,5,3,1,0x x x x =-

第五章 二次型 习题答案

第五章 二次型 本章课后习题全解 习 题(P232-P234) 1.(Ⅰ)用非退化线性替换化下列二次型为标准形,并利用矩阵验算所得结果: 1)323121224x x x x x x ++-; 2)2 3 322221214422x x x x x x x ++++; (Ⅱ)把上述二次型进一步化为规范形,分实系数、复系数两种情形;并写出所作的非退化线性替换. 解 (Ⅰ)1)设()323121321224,,x x x x x x x x x f ++-=,此二次型不含有平方项,故作非退化线性替换 1122123 3, ,, x y y x y y x y =+?? =-??=? 并配方,得到 ()312221321444,,y y y y x x x f ++-=2 2 23233121444y y y y y y ++-+-= 222 1332 (2)4y y y y =--++, 再作非退化线性替换 11322332, ,.z y y z y z y =-?? =??=? 即 1132233 11,22,. y z z y z y z ?=+??=??=?? 于是,原二次型的标准形为 ()2 3 22213214,,z z z x x x f ++-=, 并且,所经过的非退化线性替换为

112321233311,2211,22,x z z z x z z z x z ?=++?? ? =-+?? =??? 写成矩阵形式即为=X CY ,其中111 221 1122001?? ? ? ?=- ? ? ? ?? ?C .根据矩阵验算,得 1 1111 022******** 111 1010110402 21111000100112 2?? ?? ? ? --???? ? ? ? ? ?'=---= ? ? ? ? ? ? ? ????? ? ??? ?? ?C AC . 2)设123(,,)f x x x =2 3 322221214422x x x x x x x ++++. 解法1 配方法.对原二次型进行配方,得 ()2222 22123112222331223,,(2)(44)()(2)f x x x x x x x x x x x x x x x =++++=+++, 于是,令 1122233 3, 2,, y x x y x x y x =+?? =+??=? 则原二次型的标准形为 22 12312 (,,)f x x x y y =+, 且所作的非退化线性替换为 11232233 32, 2, . x y y y x y y x y =-+?? =-??=? 相应的替换矩阵为

高等代数二次型

第五讲二次型 一、二次型的概念及标准形 1、 二次型的概念及几种表述 数域F 上的n 元二次齐次函数称为数域F 上的n 元二次型。有以下几种表述方式: (1)1211 (,,,)n n n ij i j i j f x x x a x x ===∑∑; (2)22 2 12111222(,,,)2n nn n ij i j i j f x x x a x a x a x a x x <=++ ++∑; (3)12(,, ,)T n f x x x X AX =,其中12(,,,)T n X x x x =,()ij n n A a ?=,且T A A =,并 称A 为二次型的矩阵。 2、矩阵合同 (1) 设,,n n A B F ?∈若存在可逆矩阵n n T F ?∈,使T B T AT =,则称A B 与是合同的。 (2) 合同是矩阵间的一种等价关系。 (3) 二次型经过非退化的线性替换仍变为二次型,且新老二次型的矩阵是合同的。 3、 标准形 (1) 二次型22 2 121122(,, ,)n n n f x x x d x d x d x =++ +称为标准形。 (2) 任何二次型都可以通过非退化线性替换化成标准形。 (3) 任何对称矩阵都合同于一个对角阵。 4、 复数域上二次型的规范形 (1) 复二次型22 2 121122(,, ,)n n n f x x x d x d x d x =++ +,其中1i d =或0,称为复 数域上的规范形。 (2) 任何复二次型12(,, ,)T n f x x x X AX =都可以通过非退化线性替换化成规范 形22 21212(,, ,)n r f x x x y y y =++ +,其中r A =秩,且规范形是唯一的。 (3) 任何复对称矩阵A 都合同于对角阵000r E ?? ??? ,其中r A =秩。 (4) 两个复对称矩阵合同的充要条件是秩相等。 5、 实数域上二次型的规范形 (1) 实二次型22 2 121122(,, ,)n n n f x x x d x d x d x =++ +,其中1,1i d =-或0,称为 实数域上的规范形。 (2) 任何实二次型12(,, ,)T n f x x x X AX =都可以通过非退化线性替换化成规范 形22 22 212121(,, ,)n p p r f x x x y y y y y +=+++-- -, 其中r A =秩,p 是正惯性指数,且规范形是唯一的。 (3) 惯性定理 任何实二次型经过非退化线性替换化成的标准形中,正平方项的个数

高等代数北大版教案-第5章二次型教学内容

高等代数北大版教案-第5章二次型

仅供学习与交流,如有侵权请联系网站删除 谢谢48 第五章 二次型 §1 二次型的矩阵表示 一 授课内容:§1 二次型的矩阵表示 二 教学目的:通过本节的学习,掌握二次型的定义,矩阵表示,线性 替换和矩阵的合同. 三 教学重点:矩阵表示二次型 四 教学难点:二次型在非退化下的线性替换下的变化情况. 五 教学过程: 定义:设P 是一数域,一个系数在数域P 中的n x x x ,,,21 的二次齐次多项式 ++++=n n n x x a x x a x a x x x f 11211221112122),,,( +++n n x x a x a 2222222 (2) n nn x a + (3) 称为数域P 上的一个n 元二次型,或者,简称为二次型. 例如:2 3 322231212 13423x x x x x x x x x +++++ 就是有理数域上的一个3元二次型. 定义1 设n x x x ,,,21 ,n y y y ,,,21 是两组文字,系数在数域P 中的一组关系式 ???????+++=+++=+++=n nn n n n n n n n y c y c y c x y c y c y c x y c y c y c x 22112222121212121111 (4)

仅供学习与交流,如有侵权请联系网站删除 谢谢49 称为n x x x ,,,21 到n y y y ,,,21 的一个线性替换,或则,简称为线性替换.如果系数行列式 0≠ij c ,那么线性替换(4)就称为非退化的. 二次型的矩阵表示: 令 ji ij a a = ,j i < 由于 i j j i x x x x =,那么二次型(3)就可以写为 ++++=n n n x x a x x a x a x x x f 112112211121),,,( ++++n n x x a x a x x a 2222221221 …+2 2211n nn n n n n x a x x a x x a +++ ∑∑===n i n j j i ij x x a 11 (5) 把(5)的系数排成一个n n ?矩阵 ?? ? ? ? ?? ??=nn n n n n a a a a a a a a a A 2122221 112 11 它称为二次型(5)的矩阵.因为ji ij a a =,n j i ,,2,1, =,所以 A A ='. 我们把这样的矩阵称为对称矩阵,因此,二次型(5)的矩阵都是对称的. 令???? ?? ? ??=n x x x X 21,于是,二次型可以用矩阵的乘积表示出来, ()n x x x AX X 2 1 ='??????? ??nn n n n n a a a a a a a a a 2 1 22221 11211??? ? ? ? ? ??n x x x 21

线性代数第五章习题

第五章 相似矩阵及二次型 一、判断题 1.线性无关的向量组必是正交向量组.( ) 2.正交矩阵的列向量组和行向量组都是单位正交向量组.( ) 3.正交矩阵一定是可逆矩阵.( ) 4.若n 阶矩阵A 与B 相似,则A 与B 不一定等价.( ) 5.若n 阶矩阵A 有n 不同的特征值,则A 相似于对角矩阵.( ) 6.实对称矩阵一定可以相似对角化.( ) 7. 相似矩阵的行列式必相同.( ) 8.若n 阶矩阵A 和B 相似,则它们一定有相同的特征值.( ) 9.n 阶实对称矩阵A 的属于两个不同特征值的两个特征向量一定正交.( ) 10. 若A 是正定矩阵,则A 的特征值全为正.( ) 二、单项选择题 1. 设,则001010100A ?????=????? A 的特征值是( ). (A) -1,1,1 (B) 0,1,1 (C) -1,1,2 (D) 1,1,2 2. 若12,x x 分别是方阵A 的两个不同的特征值对应的特征向量,则也是1122k x k x +A 的特征向量的充分条件是( ). (A) (B) (C) 120k k ==且00120k k ≠≠且120k k = (D) 1200k k ≠=且 3. 若n 阶方阵,A B 的特征值相同,则( ). (A) A B = (B) ||||A B = (C) A 与B 相似 (D) A 与B 合同 4. 设A 为n 阶可逆矩阵, λ是A 的特征值,则的特征根之一是( ). *A (A) (B) (C) 1||n A λ?1|A λ?|||A λ (D) ||n A λ5. 矩阵A 的属于不同特征值的特征向量( ). (A)线性相关 (B)线性无关 (C)两两相交 (D)其和仍是特征向量 6. ||||A B =是阶矩阵n A 与B 相似的( ). (A)充要条件 (B)充分而非必要条件

线性代数第五章习题答案

思考题5-1 1. 1123123100,000=?+?+?=?+?+?a a a a 0a a a . 2.不一定。例如,对于123101,,012?????? ===???????????? a a a ,它们中的任两个都线性无关,但 是123,,a a a 是线性相关的。 3. 不一定。也可能是2a 能由13,a a 线性表示,还可能是3a 能由12,a a 线性表示。 4. 不一定。例如,对于12121100,;,0012-???????? ====???????????????? a a b b 。12,a a 和12,b b 这两个 向量组都线性相关,但1122,++a b a b 却是线性无关的。 5. 向量组121,,,,n n +a a a a 线性无关。根据定理5-4用反证法可以证明这一结论。 习题5-1 1.提示:用行列式做。 (1)线性无关。 (2)线性相关。. 2. 0k ≠且1k ≠。 3.证:1212,,,1,,,,n n ==∴e e e E e e e 线性无关。 设[]12,,,,T n b b b =b 则1122.n n b b b =+++b e e e 4. 证法1:因为A 可逆,所以方程组=Ax b 有解。根据定理5-1,向量b 能由A 的列向量组12,,,n a a a 线性表示,所以向量组12,,,,n a a a b 线性相关. 证法2:通过秩或根据m n >时m 个n 元向量一定线性相关也可马上证明。 5. .证: (1)因为A 的列向量组线性相关,所以齐次线性方程组=Ax 0有非零解,设≠u 0是它的非零解,则.=Au 0 由=B PA ,得.=Bu 0可见=Bx 0有非零解,所以B 的列向量组线性相关。 (2)若P 可逆,则1-=A P B 。由(1)的结论可知,B 的列向量组线性相关时,A 的列向量组也线性相关,所以A 和B 的列向量组具有相同的线性相关性。 注:该题也可根据性质5-6和性质5-3来证明。 6. 证:由A 可逆知,A 的列向量组线性无关。根据定理5-6,增加两行后得到的矩阵B 的列向量组也线性无关.

线性代数习题[第五章]相似矩阵及二次型

线性代数练习纸 [ 第五章 ] 相似矩阵及二次型 5-1 向量的内积与方阵的特征值 A 1.设 为矩阵 A 的特征值,且 0 ,则 为 的特征值。 a. 1 A; b.A * ; c. A; d.A 1 ; 2.设 A 为 n 阶实对称阵, x 1, x 2 为 A 的不同特征值对应的特征向量,则 。 a. x 1T x 2 1 b. x 1 与 x 2 线性相关; c. x 1 与 x 2 线性无关; d. x 1 x 2 0 3.设 1 , 2 都为 n 阶矩阵 A 的特征值 ( 1 2 ) ,且 x 1 , x 2 分别为对应于 1 , 2 的特征向量, 则当 满足时, x k x k x 2 必为 A 的特征向量。 1 1 2 a. k 1 0 且 k 2 0 ; b. k 1 0 且 k 2 0 ; c. k 1 0 且 k 2 0 ; d. k 1 k 2 0 4.设 n 阶方阵 A 的特征值全不为零,则 。 a. r ( A) n; b. r ( A) n; c.r ( A) n; d.r ( A) n 2 1 1 5. 设矩阵 A 0 2 0 , 求 A 的特征值及特征向量 . 4 1 3

班级:姓名:序号: 111 6.试用施密特法把向量组( a1, a2 011 , a3 ) 正交化。 11 110 7.设A与B都为n阶正交阵,证明:AB 也是正交阵。 8.证明:正交阵的行列式必定等于 1 或— 1。 9.设x为n维列向量且x T x 1 ,而 H E 2 xx T,试证 H 是对称的正交矩阵。

居于马线性代数第五章答案

第五章 特征值和特征向量 矩阵的对角化答案 1.求下列矩阵的特征值和特征向量: (1) 2331-?? ?-?? (2) 311201112-?? ? ? ?-?? (3) 200111113?? ? ? ?-?? (4) 1234012300120001?? ? ? ? ??? (5) 452221111-?? ?-- ? ?--?? (6) 220212020-?? ?-- ? ?-?? 【解析】(1) 令2331A -??= ?-?? ,则矩阵A 的特征方程为 故A 的特征值为123322λλ+= =。 当132 λ+=时,由1()0I A x λ-=,即 得其基础解系为(16,1T x =-,因此,11k x (1k 为非零任意常数)是A 的对应 于132 λ=的全部特征向量。 当2λ=时,由2()0I A x λ-=,即 得其基础解系为(26,1T x =,因此,22k x (2k 为非零任意常数)是A 的对应于2λ=的全部特征向量。 (2) 令3112 01112A -?? ?= ? ?-?? ,则矩阵A 的特征方程为 故A 的特征值为121,2λλ==(二重特征值)。 当11λ=时,由1()0I A x λ-=,即 得其基础解系为()10,1,1T x =,因此,11k x (1k 为非零任意常数)是A 的对应于11λ=的全部

特征向量。 当22λ=时,由2()0I A x λ-=,即 得其基础解系为()21,1,0T x =,因此,22k x (2k 为非零任意常数)是A 的对应于22λ=的全部特征向量。 (3) 令200111113A ?? ?= ? ?-?? ,则矩阵A 的特征方程为 故A 的特征值为2λ=(三重特征值)。 当2λ=时,由()0I A x λ-=,即 得其基础解系为()()121,1,0,0,1,1T T x x ==,因此,A 的对应于2λ=的全部特征向量为1122k x k x +(其中12,k k 为不全为零的任意常数)。 (4) 令1234012300120001A ?? ? ?= ? ??? ,则矩阵A 的特征方程为 故A 的特征值为1λ=(四重特征值)。 当1λ=时,由()0I A x λ-=,即 得其基础解系为()1,0,0,0T x =,因此,kx (k 为非零任意常数)是A 的对应于1λ=的全部特征向量。 (5) 令45222 1111A -?? ?=-- ? ?--?? ,则矩阵A 的特征方程为 故A 的特征值为1λ=(三重特征值)。 当1λ=时,由()0I A x λ-=,即 得其基础解系为()1,1,1T x =-,因此,kx (k 为非零任意常数)是A 的对应于1λ=的全部特征向量。 (6) 令2202 12020A -?? ?=-- ? ?-?? ,则矩阵A 的特征方程为 按沙路法(课本P2),得 故A 的特征值为1231,4,2λλλ===-。

线性代数课后习题解答第五章习题详解

第五章 相似矩阵及二次型 1.试用施密特法把下列向量组正交化: (1) ? ?? ? ? ??=931421111),,(321a a a ; (2) ????? ? ? ?---=01 1101110111),,(321a a a 解 (1) 根据施密特正交化方法: 令????? ??==11111a b , [][]??? ?? ??-=-=101,,1112122b b b a b a b , [][][][]???? ? ??-=--=12131,,,,22 2321113133b b b a b b b b a b a b , 故正交化后得: ? ????? ?? ? ? --=311132013111),,(321b b b . (2) 根据施密特正交化方法: 令?????? ??-==110111a b ; [][]?????? ??-=-=123131,,1112122b b b a b a b , [][][][]???? ? ? ??-=--=433151,,,,22232111313 3b b b a b b b b a b a b 故正交化后得 ???? ? ?? ???? ? ? ---=5431153321531051311),,(321b b b 2.下列矩阵是不是正交矩阵?并说明理由: (1) ??? ??? ?? ?? ---121312112131211; (2) ?? ?????? ??------97949 4949198949891. 解 (1) 第一个行向量非单位向量,故不是正交阵. (2) 该方阵每一个行向量均是单位向量,且两两正交,故为正交阵. 3. 设x 为n 维列向量, x T x =1, 令H =E -2xx T , 证明H 是对称的正交阵. 证明 因为 H T =(E -2xx T )T =E -2(xx T )T =E -2(xx T )T =E -2(x T )T x T =E -2xx T ,

线性代数习题 [第五章] 相似矩阵及二次型

5-1向量的内积与方阵的特征值 1.设λ为矩阵A 的特征值,且0≠λ,则 λ A 为 的特征值。 ;.;.;.;.1*1--A d A c A b A a λλ 2.设A 为n 阶实对称阵,21,x x 为A 的不同特征值对应的特征向量,则 。 1.21=x x a T 1.x b 与2x 线性相关; 1.x c 与2x 线性无关; 0.21=+x x d 3.设21,λλ都为n 阶矩阵A 的特征值)(21λλ≠,且21,x x 分别为对应于21,λλ的特征向量,则当 满足时,2211x k x k x +=必为A 的特征向量。 0.1=k a 且02=k ; 0.1=k b 且02≠k ; 0.1≠k c 且02≠k ; 0.21=?k k d 4.设n 阶方阵A 的特征值全不为零,则 。 n A r d n A r c n A r b n A r a <≤≠=)(.;)(.;)(.;)(. 5.设矩阵??? ? ? ??--=314020 112A ,求A 的特征值及特征向量.

6.试用施密特法把向量组?? ??? ???? ???---=011 101110 11 1),,(321a a a 正交化。 7.设A 与B 都为n 阶正交阵,证明:AB 也是正交阵。 8.证明:正交阵的行列式必定等于1或—1。 9.设x 为n 维列向量且1=x x T ,而T xx E H 2-=,试证H 是对称的正交矩阵。

习题5-2 相似矩阵与对称矩阵的对角化 1.设A 与B 为n 阶方阵,则B A =是A 与B 相似的 。 .a 充分条件; .b 必要条件; .c 充要条件; .d 无关条件 2.对实对称阵?? ? ???-=???? ??=1001,1001B A ,有A 与B 。 .a 互为逆矩阵; .b 相似; .c 等价; .d 正交 3. n 阶矩阵A 与对角阵相似的充要条件是 。 a. 矩阵A 有n 个特征值; b. 矩阵A 有n 个线性无关的特征向量; c. 矩阵A 的行列式0≠A ; d. 矩阵A 的特征多项式有重根 4. 设n 阶矩阵A 与B 相似,则 。 a.A 与B 正交; b. A 与B 有相同的特征向量; c. A 与B 等价; d. A 与B 相同的特征值。 5.若A 与B 是相似矩阵,证明T A 与T B 也相似。 6.设方阵??????????------=12 4 22421x A 与?? ?? ? ???? ?-=Λ45 y 相似,求x 与y 。

线性代数 第五章

第五章 特征值与二次型 §1 向量的内积 在空间几何中,内积描述了向量的度量性质,如长度、夹角等。由内积的定义:cos ?=x y y x θ,可得 cos()= y ,?= +x y x x y x 且在直角坐标系中123123112233()()=x ,x ,x y ,y ,y x y x y x y .?++ 将上述三维向量的内积概念自然地推广到n 维向量上,就有如下定义。 定义1 设有n 维向量 12n x x x ??????=??????x ,12n y y y ??????=?????? y , 称[]1122n n x y x y x y ,=++ +x y 为x 与y 的内积. 内积是向量的一种运算,用矩阵形式可表为[],'=x y x y 。 例1 计算[],x y ,其中x,y 如下: (1) x =(0,1,5,-2),y =(-2,0,-1,3); (2) x =(-2,1,0,3),y =(3,-6,8,4)。 解 (1) [x,y ]=0·(-2)+1·0+5·(-1)+(-2)·3=-11; (2) [x ,y ]=(-2)·3+1·(-6)+0·8+3·4=0。 若x、y、z为n 维实向量,λ为实数,则下列性质从内积的定义可立刻推得。 (i ) [x,y ]=[y,x ], (ii )[λx,y ]=λ[x ,y ], (iii)[x+y ,z ]=[x,z ]+[y ,z ]. 同三维向量空间一样,可用内积定义n 维向量的长度和夹角. 定义2 称 = =x x 的长度(或范数),当‖x ‖=1 时称x 为单位向量. 从向量长度的定义可立刻推得以下基本性质: (i)非负性: 当x ≠0时,‖x ‖>0,当x =0时‖x ‖=0。

相关主题
文本预览
相关文档 最新文档