当前位置:文档之家› 浙江大学2011-2012数学分析(1)-试卷及答案(baidu)

浙江大学2011-2012数学分析(1)-试卷及答案(baidu)

浙江大学2011-2012数学分析(1)-试卷及答案(baidu)
浙江大学2011-2012数学分析(1)-试卷及答案(baidu)

浙江大学20 11 -20 12 学年 秋冬 学期

《 数学分析(Ⅰ)》课程期末考试试卷(A )

课程号: 061Z0010 ,开课学院:___理学部___ 考试形式:闭卷,允许带___笔____入场

考试日期: 2012 年 1 月 11 日,考试时间: 120 分钟. 考生姓名: 学号: 所属院系: _

一、6分)

0002()()00013214()().lim ()

.

.

0min{1}00251251

322.lim 3.

111

x x x f x U x A x x x x x x x x f x A f x x x x A f x x x A εδδεδεεδε→→?>?><-<<<<+?=>

<-<----=<-<=+++-<=

设在内有定义,如果存在常数

,对,,当时,不妨令

,则:对,,,当,有

;则称在处有极限,记作::因此

二、 (每题6分,共18分)

1. ()

2

1

2

11cos 1

2

cos 10

1lim cos lim 1(cos 1).x u

x u u u x u u e x =

--

?

-→∞→?

?=+-= ??

?令

2.

22230

3

3

3

00

0332

2200lim

lim lim

arcsin [()]()6

6

2arctan 26lim 6lim 4.33x x x x x x x x x x

x x x

x

x o x x

o x x x x x x

+

+

+

++

→→→→→==?

-++-+===??

?

3. tan 0.x x n x e e x n αα→-设当时,与为等价无穷小量,求:常数、的值

tan tan 3330000(1)tan 1lim lim lim lim 131

3.

3

x x x x x n n n n x x x x e e e e x x x x x x x x x n ααααα-→→→→---==?====,因此,,

三、 导数及应用:(每题7分,共21分) 1.

212

1

1(1)1111

1..

242x y x x x y x y x π='=

=-+

-'===+-则:故,在处的切线方程为

2.

342242

444cos 42(1)2.(2).2cos 2cos cos dy dy dy t t d y t dt dt t dx dx dx t t dx t t t dt dt

'

======

3.

(2012)2(2012)12(2011)2

2(2010)

2012201220122201120102(2012)

(2)()(2)()(2)()(1)(2)(1)2012(22)(1)20122011(2)2012(22)20122011.=20122x x x x x x x x x x y x x e C x x e C x x e x x e x e e x x e x e e y ---------='''=-+-+-=--+--+-?=---+??因此,013=4050156.

四、 计算下列积分:(每题7分,共28分) 1. ln(1)x x dx +?

22

2222111ln(1)ln(1)ln(1)2221111ln(1)1221111

ln(1)(1)ln(1).242

x x x dx x dx x x dx x x x x dx

x x x x x C +=+=+-+??

=+--+ ?+??=+---++????

2.

66

3

33

(2(2(3)

63

(27.

2

x x x u u π--+=+-==+==?

???

3.

2222

2tan 1

42

22200021

2422

000

2(1).

1(1)2=2sin 1(1)3132.

4228

(2)sin 2sin cos .

3sin tan 2sin cos 2sin .8

u t u u

u x dx du u u u u u du tdt

u u x u dx u udu u u u udu udu πππ

πππ=+∞===++??=++=???====?==??????,则:,则:令:,则:则:

4. 2

1

1

()().x

t f x e dt f x dx -=??设,计算:

()2

2

1

1111

100

1

()()().2

2

x x e

e f x dx xf x xf x dx xe

dx ----'=-=-=

=?

??

五、

(1)(2)2.D D x =计算:的面积;绕直线旋转一周所得立体的体积 (9分)

3222

21111222001

(1)(21).2

11

(2)21.

23144(3)212(22(1).

335444

(2)(1).

335

l y x A D S V x x dx V x dy y dy ππππππππππ=

=??-=?=??--=--=??=--=--=?????切线的方程为,切点,的面积或:

六、 证明题:(每题6分,共18分) 1.

2

1121111311

(1)()()0.().41(41)11111

(2).1()().

22222

(3){}.2

()().3

{}{}.

(4n n n n n n n n n n n n n x f x f x f x x x x x x x f x f x x x x x x f x f x x x x +-+--'=

=>-->=>>=>==

<<=<=【方法一】:令,则:则:单调递增下面证明:显然;假设,则:下面证明:单调递减,假设,则:由此可得,单调递减且有下界,因此,数列收敛11121113111

)lim .lim .

4122

1

(1){}.

2

11131121

10.

2224122(41)11

.{}.

22

2

(2){}.3

n n n n n n n n n n n n n n n n n n x x x x x x x x n N x x x x x x x x x x x x x x x x →+∞→+∞+++-+-==

?==-?∈>--?=>>-=-=>-->=<<设,则:故,【方法二】:数列有下界:对,;假设,则:因此,即:数列有下界数列单调递减,假设,则:

11

1131310.{}.

4141(41)(41)(3)(1)(2){}{}.3111

lim .lim .

4122

n n n n n n n n n n n n n n n n x x x x x x x x x x x x x x x x x x x ----→+∞

→+∞----=-=>-----==

?==-因此,单调递减由、可得,数列单调递减有下界,因此,收敛令:,则:故,

2. ().()[)()f x I f x a g x +∞叙述函数在区间上一致连续的定义设在,上一致连续,

[)lim [()()]0.()[).x a f x g x g x a →+∞

+∞-=+∞在,上连续,且证明:在,上一致连续

(1)00()()().

li (2)()[)00()().

3

00.m [()()]0()(300)x x x I x x f f x a x f x f x I f x g x f x g x x x f x f x G x G x x εδδε

εδδεεδεε

→+∞'''+∞'''''''''?>?>∈-<-?>-<'''-?->><'''=?>->?由于在,内一致连续,则对,,当时,

由于对,,当时,则:对,对,,当、,且时,,当,则称在区间上一致连续,、()()()[1)()()()()()()()()()()()()()().()[1).

()[1]()[).

G x x g x g x g x f x f x f x f x g x g x f x f x f x f x g x g x G g x a G g x a δε'''∈++∞-<''''''''''''-=-+-+-'''''''''≤-+-+-<++∞++∞,,且时,因此,在,内一致连续而,在,上一致连续,因此,在,内一致连续

3. 2

2

40()[02](02)()2(2).x f x e f x dx f -=?

设在,上连续,在,内可导,且 (02)()2().f f ξξξξ'?∈=证明:,,使得

()2

2

2

2

242(1)()()()()2().

(2)(02)2()2(2)()(2).()(2).

(3)()[2](2)(2)(02)()0.()2().

x x

F x e f x F x e f x xf x e f f e f e f F F F x Rolle F f f ηηηηηηηηξηξξξξ-----''==-?∈=?==?∈?''==令:,则:根据积分中值定理,,使得,即:又在,上连续,在,内可导,根据定理,,,使得即:

18数学分析-1复习题试题及参考答案

18数学分析-1复习题参考答案 一、选择题 1.函数1 ()ln(2) f x x = -的连续区间是 ( B ) A. (2,)+∞ ; B. (2,3)(3,)?+∞; C. (,2)-∞ ; D. (3,)+∞. 2.若函数x x x f = )(,则=→)(lim 0 x f x ( D ). A.0 ; B.1- ; C.1 ; D.不存在. 3.下列变量中,是无穷小量的为( C ). A.1ln (0)x x +→; B.cos (0)x x →;C.ln (1)x x → ;D.22(2)4 x x x -→-. 4. 1lim(1)1 n n n →∞ + =+( B ). 1 2.1 ...-A B e C e D e 5.1lim(1)1 →∞ + =-n n n ( B ). 12.1...-A B e C e D e 6.下列两个函数是同一函数的是 ( C ) A. ()3,()f x x x ?=+=41 ()ln ,()ln 4 f x x x x ?== ; C. 2 2 ()sin cos ,()1f x x x x ?=+= ; D. 2 (1)(),()11 x f x x x x ?-= =-- . 7.22 39 lim 712 x x x x →-=-+ ( C ) A.0 ; B.25- ; C.6- ; D. 7 6 . 8.0sin 2lim →=x x x ( D ) A. 0 ; B. 1 ; C. 3 ; D . 2 . 9.=→x x x 1 sin lim 2 ( C ). 1 1A B C D ∞-

数学分析大二第一学期试卷(A)

一、填 空 题 1.将函数展开为麦克劳林级数,则=-+x x 11ln ______________________ 。 2.x x x f sin )(= 在( - π,π )上展开的傅里叶级数为________ ______ 。 3.已知方程 z e z y x =++可以确定隐函数,那么 =???y x z 2________________________ __。 二、单项选择题 1、幂级数∑∞ =-112n n x n 的收敛域与和函数分别是___________ 。 A 、 [ - 1 , 1 ] ,2)1(1x x -+; B 、( - 1, 1 ) ,3 )1(1x x -+; C 、(- 1 , 1 ) ,)1(1x x -+; D 、[ - 1 , 1 ] ,4) 1(1x x -+。 2、 22)(y x x f +=在( 0 , 0 )满足 ________ 。 A 、连续且偏导数存在; B 、不连续但偏导数存在; C 、连续但偏导数不存在; D 、不连续且偏导数不存在。 4、函数222z y x u -+=在点A(b,0,0)及B(0,b,0)两点的梯度方向夹 角 。 A 、2π; B 、3 π; C 、4 π; D 、6π。 三、计算题 1、设),(y x z z =是由隐函数0),(=++ x z y y z x F 确定,求表达式y z y x z x ??+??,并要求简化之

3、设函数),(v u x x =满足方程组???==0 )),(,(0)),(,(v x g y G u y f x F ,其中g f G F ,,,均为连续可微函 数,且x y g f G F G F 2211≠,记1F 为F 对第一个变量的偏导数,其他类推,求v x u x ????,。

2006年浙江大学427数学分析考研真题【圣才出品】

1 / 3 2006年浙江大学427数学分析考研真题 浙江大学2006年攻读硕士学位研究生入学试题 考试科目:数学分析(427) 考生注意: 1.本试卷满分为150 分,全部考试时间总计180 分钟; 2.答案必须写在答题纸上,写在试题纸上或草稿纸上均无效。 一、(20分) ()i 证明:数列 1111ln (1,2,3,)23n x n n n =++++-=收敛; ()ii 计算:1111lim()1232n n n n n →∞ +++++++. 二、(15分) 设()f x 是闭区间 [],a b 上的连续函数,对任一点(),x a b ∈,存在趋于零的数列,使得 2()()2()lim 0k k k k f x r f x r f x r →∞++--=. 证明:函数()f x 为一线性函数. 三、(15分) 设()h x 是 (),-∞+∞上的无处可导的连续函数,试以此构造连续函数()f x ,在 (),-∞+∞上仅在两点可导,并且说明理由.

2 / 3 四、(15分) 设22222221()sin ,0(,)0,0x y x y x y f x y x y ?++≠?+=??+=?. ()i 求(,)f x y x ??以及(,)f x y y ??; ()ii 问(,),(,)f f x y x y x y ????在原点是否连续?(,)f x y 在原点是否可微?试说明理由. 五、(20分) 设()f x 在()0,+∞的任何闭子区间[],αβ上黎曼可积,且0()f x dx +∞ ?收敛, 证明:对于常数 1a >,成立 000lim ()()xy y a f x dx f x dx ++∞+∞-→=??. 六、(15分) 计算曲面积分 32222()S xdydz ydzdx zdxdy I ax by cz ++=++?? 其中 {}2222(,,)S x y z x y z r =++=,常数0,0,0,0a b c r >>>>. 七、(15分) 设V 为单位球: 2221x y z ++≤,又设,,a b c 为不全为零的常数,计算: cos()V I ax by cz dxdydz =++???. 八、(20分) 设函数21()12f x x x =--,证明级数 ()0!(0)n n n f ∞=∑收敛. 九、(15分) 设()f x 在)0,+∞??上可微,(0)0f =.若有常数0A >,使得对任意 ) 0,x ∈+∞??,有

数学分析期末考试第一学期

一、填空题(每空1分,共9分) 1. 函数()f x =的定义域为________________ 2.已知函数sin ,1()0,1 x x f x x ??=?-??==??-

北京理工大学2012-2013学年第一学期工科数学分析期末试题(A卷)试题2012-2(A)

1 北京理工大学2012-2013学年第一学期 工科数学分析期末试题(A 卷) 一. 填空题(每小题2分, 共10分) 1. 设?????<≥++=01arctan 01)(x x x x a x f 是连续函数,则=a ___________. 2. 曲线θρe 2=上0=θ的点处的切线方程为_______________________________. 3. 已知),(cos 4422x o bx ax e x x ++=- 则_,__________=a .______________=b 4. 微分方程1cos 2=+y dx dy x 的通解为=y __________________________________. 5. 质量为m 的质点从液面由静止开始在液体中下降, 假定液体的阻力与速度v 成正比, 则质点下降的速度)(t v v =所满足的微分方程为_______________________________. 二. (9分) 求极限 21 0)sin (cos lim x x x x x +→. 三. (9分) 求不定积分?+dx e x x x x )1arctan (12. 四. (9分) 求322)2()(x x x f -=在区间]3,1[-上的最大值和最小值. 五. (8分) 判断2 12arcsin arctan )(x x x x f ++= )1(≥x 是否恒为常数. 六. (9分) 设)ln(21arctan 22y x x y +=确定函数)(x y y =, 求22,dx y d dx dy . 七. (10分) 求下列反常积分. (1);)1(1 22?--∞+x x dx (2) .1)2(1 0?--x x dx 八. (8分) 一垂直立于水中的等腰梯形闸门, 其上底为3m, 下底为2m, 高为2m, 梯形的上底与水面齐平, 求此闸门所受 到的水压力. (要求画出带有坐标系的图形) 九. (10分) 求微分方程x e x y y y 3)1(96+=+'-''的通解. 十. (10分) 设)(x f 可导, 且满足方程a dt t f x x x f x a +=+?)())((2 ()0(>a , 求)(x f 的表达式. 又若曲线 )(x f y =与直线0,1,0===y x x 所围成的图形绕x 轴旋转一周所得旋转体的体积为,6 7π 求a 的值. 十一. (8分) 设)(x f 在]2,0[上可导, 且,0)2()0(==f f ,1sin )(1 21 =?xdx x f 证明在)2,0(内存在ξ 使 .1)(='ξf

数学分析试题及答案解析

2014 ---2015学年度第二学期 《数学分析2》A 试卷 一. 判断题(每小题3分,共21分)(正确者后面括号内打对勾,否则打叉) 1.若()x f 在[]b a ,连续,则()x f 在[]b a ,上的不定积分()?dx x f 可表为()C dt t f x a +?( ). 2.若()()x g x f ,为连续函数,则()()()[]()[]????= dx x g dx x f dx x g x f ( ). 3. 若()?+∞a dx x f 绝对收敛,()?+∞a dx x g 条件收敛,则()()?+∞ -a dx x g x f ][必然条件收敛( ). 4. 若()?+∞ 1dx x f 收敛,则必有级数()∑∞=1 n n f 收敛( ) 5. 若{}n f 与{}n g 均在区间I 上内闭一致收敛,则{}n n g f +也在区间I 上内闭一致收敛( ). 6. 若数项级数∑∞ =1n n a 条件收敛,则一定可以经过适当的重排使其发散 于正无穷大( ). 7. 任何幂级数在其收敛区间上存在任意阶导数,并且逐项求导后得到 的新幂级数收敛半径与收敛域与原幂级数相同( ). 二. 单项选择题(每小题3分,共15分) 1.若()x f 在[]b a ,上可积,则下限函数()?a x dx x f 在[]b a ,上( ) A.不连续 B. 连续 C.可微 D.不能确定 2. 若()x g 在[]b a ,上可积,而()x f 在[]b a ,上仅有有限个点处与()x g 不相 等,则( )

A. ()x f 在[]b a ,上一定不可积; B. ()x f 在[]b a ,上一定可积,但是()()??≠b a b a dx x g dx x f ; C. ()x f 在[]b a ,上一定可积,并且()()??=b a b a dx x g dx x f ; D. ()x f 在[]b a ,上的可积性不能确定. 3.级数()∑∞=--+12111n n n n A.发散 B.绝对收敛 C.条件收敛 D. 不确定 4.设∑n u 为任一项级数,则下列说法正确的是( ) A.若0lim =∞→n n u ,则级数∑ n u 一定收敛; B. 若1lim 1<=+∞→ρn n n u u ,则级数∑n u 一定收敛; C. 若1,1<>?+n n u u N n N ,时有当,则级数∑n u 一定收敛; D. 若1,1>>?+n n u u N n N ,时有当,则级数∑n u 一定发散; 5.关于幂级数∑n n x a 的说法正确的是( ) A. ∑n n x a 在收敛区间上各点是绝对收敛的; B. ∑n n x a 在收敛域上各点是绝对收敛的; C. ∑n n x a 的和函数在收敛域上各点存在各阶导数; D. ∑n n x a 在收敛域上是绝对并且一致收敛的;

数学分析(1)期末试题A

山东师范大学2007-2008学年第一学期期末考试试题 (时间:120分钟 共100分) 课程编号: 4081101 课程名称:数学分析 适用年级: 2007 学制: 四 适用专业:数学与信息试题类别: A (A/B/C) 2分,共20分) 1. 数列{}n a 收敛的充要条件是数列{}n a 有界. ( ) 2. 若0N ?>, 当n N >时有n n n a b c ≤≤, 且lim lim n n n n a c →∞ →∞ ≠, 则lim n n b →∞ 不存在. ( ) 3. 若0 lim ()lim ()x x x x f x g x →→>, 则存在 00(;)U x δ使当00(;)x U x δ∈时,有()()f x g x >. ( ) 4. ()f x 为0x x →时的无穷大量的充分必要条件是当00(;)x U x δ∈时,()f x 为无界函数. ( ) 5. 0x =为函数 sin x x 的第一类间断点. ( ) 6. 函数()f x 在[,]a b 上的最值点必为极值点. ( ) 7. 函数21,0,()0, 0x e x f x x -?? ≠=??=?在0x =处可导. ( ) 8. 若|()|f x 在[,]a b 上连续, 则()f x 在[,]a b 上连续. ( ) 9. 设f 为区间I 上严格凸函数. 若0x I ∈为f 的极小值点,则0x 为f 在I 上唯一的极小值点. ( ) 10. 任一实系数奇次方程至少有两个实根. ( )

二、 填空题(本题共8小题,每空2分,共20分) 1. 0 lim x x x + →=_________________. 2. 设2 ,sin 2x u e v x ==,则v d u ?? = ??? __________________. 3. 设f 为可导函数,(())x y f f e =, 则 y '=_______________. 4. 已知3(1)f x x +=, 则 ()f x ''=_______________. 5. 设 ()sin ln f x x x =, 则()f π'=_______________ . 6. 设21,0, (),0; x x f x ax b x ?+≥=?+

2001年浙江大学436数学分析考研真题【圣才出品】

2001年浙江大学436数学分析考研真题 浙江大学2001年攻读硕士学位研究生入学试题 考试科目:数学分析(436) 一、(30分) ()i 用“εδ-语言”证明2211lim 3233n n n n n →∞-+=+-; ()ii 求极限tan 21lim(2)x x x π→-; ()iii 设101(ln )1x f x x x <≤?'=?>?,且(0)0f =,求()f x . 二、(10分) 设()y y x =是可微函数,求(0)y ',其中 2sin 7x y y ye e x x =-+-. 三、(10分) 在极坐标变换cos ,sin x r y r θθ==之下,变换方程2222(,)z z f x y x y ??+=??. 四、(20分) ()i 求由半径为a 的球面与顶点在球心,顶角为2α的圆锥面所围成区域的体积; ()ii 求曲面积分222()()()s I y x dydz z y dzdx x z dxdy =-+-+-??,其中S 是曲面 222(12)z x y z =--≤≤的上侧.

五、(15分) 设二元函数(,)f x y 在正方形区域 [][]0,10,1?上连续,记[]0,1J =. ()i 试比较inf sup (,)y J y J f x y ∈∈与supinf (,)y J y J f x y ∈∈的大小并证明之; ()ii 给出一个使等式inf sup (,)supinf (,)y J y J y J y J f x y f x y ∈∈∈∈=成立的充分条件并证明之. 六、(15分) 设()f x 是在 []1,1-上可积且在0x =处连续的函数,记 (1)01()10n n nx x x x e x ??-≤≤?=?-≤≤?? . 证明:11lim ()()(0)2n n n f x x dx f ?-→∞=?.

数学分析1-期末考试试卷(A卷)

数学分析1 期末考试试卷(A 卷) 一、填空题(本题共5个小题,每小题3分,满分15分) 1、设 82lim =?? ? ??-+∞→x x a x a x , 则 =a 。 2、设函数) 2(1 )(--=x x e x f x ,则函数的第一类间断点是 ,第二类间断点 是 。 3、设)1ln(2 x x y ++=,则=dy 。 4、设)(x f 是连续函数,且dt t f x x f )(2)(1 0?+=,则=)(x f 。 5、xdx arctan 1 ?= 。 二、单项选择题(本题共5个小题,每小题3分,满分15分) 1、设数列n x 与数列n y 满足0lim =∞ →n n n y x ,则下列断言正确的是( )。 (A )若n x 发散,则n y 必发散。 (B )若n x 无界,则n y 必无界。 (C )若n x 有界,则n y 必为无穷小。 (D )若n x 1 为无穷小,则n y 必为无穷小。 2、设函数x x x f =)(,则)0(f '为( )。 (A ) 1。 (B )不存在。 (C ) 0。 (D ) -1。 3、若),() ()(+∞<<-∞=-x x f x f 在)0(,-∞内0)(,0)(<''>'x f x f ,则 )(x f 在),0(+∞内有( )。 (A )0)(,0)(<''>'x f x f 。 (B )0)(,0)(>''>'x f x f 。

(C )0)(,0)(<''<'x f x f 。 (D )0)(,0)(>''<'x f x f 。 4、设)(x f 是连续函数,且? -=dt t f x F x e x )()(,则)(x F '等于( ) 。 (A )() )(x f e f e x x ----。 (B )() )(x f e f e x x +---。 (C ) () )(x f e f e x x --- 。 (D )() )(x f e f e x x +--。 5、设函数x x a x f 3sin 31sin )(+=在3 π =x 处取得极值,则( )。 (A ))3(,1πf a =是极小值。 (B ))3 (,1π f a =是极大值。 (C ))3(,2πf a =是极小值。 (D ))3 (,2π f a =是极大值。 三、计算题(本题共7个小题,每小题6分,满分42分) 1、求 ) 1ln(sin 1tan 1lim 30x x x x ++-+→ 2、设4lim 221=-++→x x b ax x x ,求 b a 、。

数学分析大一上学期考试试题 B

数学分析第一学期期末考试试卷(B 卷) 一、叙述题(每题5分,共10分) 1.上确界; 2.区间套的定义。 二、填空题(每题4分,共20分)1.函数|3|ln 3)(--=x x x f 的全部间断点是. 2.定义在]1,0[区间上的黎曼函数的连续点为. 3.)1ln()(2 x x f +=,已知5 6)2()(lim 000=--→h h x f x f h ,=0x .4.正弦函数x y sin =在其定于内的拐点为.5.点集}1)1({n S n +-=的所有聚点为.三、计算题(每题4分,共28分)(1)求]1 21 11[lim 222n n n n n ++++++∞→ ;(2)求30sin tan lim x x x x -→;(3)求)1ln(sin 1tan 1lim 30x x x x ++-+→;(4)求2210)21(e lim x x x x +-→;(5)求)1ln(2x x y ++=的一阶导; (6)求3)(sin )(+=x x x f 的一阶导; (7)求???==; cos ,sin 22t t y t t x 的一阶导。四、讨论题(共12分)1.极限x x 1sin lim 0 →是否存在,说明原因。2.设000)()(=≠?????-=-x x x e x g x f x ,其中)(x g 具有二阶连续导数,且

1)0(,1)0(-='=g g .求)(x f '并讨论)(x f '在),(+∞-∞上的连续性. 五、证明题(共30分)1.证明.x x f 2cos )(=在),0[+∞上一致连续. 2.设f 在],[b a 上连续,],[,,,21b a x x x n ∈ ,另一组正数n λλλ,,,21 满足121=+++n λλλ .证明:存在一点],[b a ∈ξ,使得 )()()()(2211n n x f x f x f f λλλξ+++= . 3.设函数)(x f 在[]b a ,上连续,在),(b a 内可导,且0>?b a .证明存在),(b a ∈ξ,使得)()()()(1 ξξξf f b f a f b a b a '-=-.

(完整word版)华南农业大学2009数学分析1(A卷)期末考试试卷

华南农业大学期末考试试卷( A 卷 ) 2009学年第1学期 考试科目:数学分析I 考试类型:(闭卷)考试 考试时间: 120 分钟 学号 姓名 年级专业 一、 填空题 (每题4分,共24分) 1. 用N ε-语言叙述数列极限的柯西准则: . 2. 用εδ-语言叙述()0lim x x f x A →=: . 3. (归结原则)设()f x 在00(U x ;)δ内有定义,()0lim x x f x →存在的充要条件是: . 4. 设0x →时,函数1(1)1x x --+与x α是同阶无穷小量,则α= . 5. 曲线221x t y t t ?=-??=-??在1t =处的切线方程为: . 6. 设函数,0sin ()3,02(1),0x ax be x x f x x a b x x ?+?? 在0x =处连续,则a =_____,b =____.

二、 计算题. (共52分) 1. 求下列极限(每题6分,共24分) (1) 7020 90(36)(85)lim (51) x x x x →+∞+--. (2) 01lim []x x x →. (3) 30tan sin lim ln(1)x x x x →-+. (4) 2132lim ()31x x x x -→+∞+- .

2. 求下列导数(每小题6分,共18分) (1)32(arctan )y x =. (2)设cos x y e x =, 求(4)y . (3)求由参数方程()()()x f t y tf t f t '=??'=-? (设()f t ''存在且不为零)所确定的函数()y f x =的二阶导数22d y dx .

浙江大学数学分析考研试题

浙江大学2006年攻读硕士研究生入学初试试题 考试科目:数学分析 科目代号:427 注意:所有解答必须写在答题纸上,写在试卷或草稿纸上一律无效! 111(20)1...log ,log 23111lim(...)122n n x n e n n n n →∞=++++-+++++一、分(1)证明数列收敛其中表示以为底的对数;(2)计算2 (15)[,],()()2()lim 0.()k k k k k a b r x f x r f x r f x r f x →∞++--=二、分函数f(x)在闭区间上连续,存在收敛于零的数列使得对任意的, 证明:为线性函数. (15)()(),()h x f x f x 三、分假设函数为处处不可导的连续函数,以此为基础构造连续函数使仅在两点可导,并说明理由。 22222221()sin ,0(20)(,)0,0(1)(,),(,)(2),(,)x y x y x y f x y x y f f x y x y x y f f f x y x y ?++≠?+=??+=? ????????四、分二元函数求 是否在原点连续,在原点是否可微,并说明理由。 0 000 (15)()[,]()1 lim ()()xy y f x a b f x dx a a f x dx f x dx ∞ ∞ ∞-→+>=???五、分在任意区间黎曼可积,收敛,证明: 2222223/21 (15),0,0,0.()x y z xdydz ydzdx zdxdy a b c ax by cz ++=++>>>++??六、分计算 222(15):1cos().V V x y z I ax by cz dxdydz ++==++???七、分计算在单位球上的积分 2()01!(20)(),12(0)n n n f x x x f ∞==--∑八、分设函数证明级数收敛。 (15)()(0)0,'()(),[0,)()0.f x f x f x Af x f x =≤∞=九、分设可微,对于任意的有证明在上注:这是我凭记忆记下来的,有些题目可能不是很准确。希望对大家有用! dragonflier 2006-1-16

数学分析试题及答案解析,(1)

数学分析试题及答案解析,(1) 20xx ---20XX学年度第二学期《数学分析2》A试卷学院班级学号(后两位)姓名题号一二三四五六七八总分核分人得分一. 判断题(每小题3分,共21分)(正确者后面括号内打对勾,否则打叉) 1.若在连续,则在上的不定积分可表为(). 2.若为连续函数,则(). 3. 若绝对收敛,条件收敛,则必然条件收敛(). 4. 若收敛,则必有级数收敛() 5. 若与均在区间I上内闭一致收敛,则也在区间I上内闭一致收敛(). 6. 若数项级数条件收敛,则一定可以经过适当的重排使其发散于正无穷大(). 7. 任何幂级数在其收敛区间上存在任意阶导数,并且逐项求导后得到的新幂级数收敛半径与收敛域与原幂级数相同(). 二. 单项选择题(每小题3分,共15分) 1.若在上可积,则下限函数在上() A.不连续 B. 连续 C.可微 D.不能确定 2. 若在上可积,而在上仅有有限个点处与不相等,则() A. 在上一定不可积; B. 在上一定可积,但是; C. 在上一定可积,并且; D. 在上的可积性不能确定. 3.级数 A.发散 B.绝对收敛C.条件收敛 D. 不确定 4.设为任一项级数,则下列说法正确的是() A.若,则级数一定收敛; B. 若,则级数一定收敛; C. 若,则级数一定收敛;

D. 若,则级数一定发散; 5.关于幂级数的说法正确的是() A. 在收敛区间上各点 是绝对收敛的; B. 在收敛域上各点是绝对收敛的; C. 的和函数在收敛域上各点存在各阶导数; D. 在收敛域上是绝对并且一致收敛的; 三.计算与求值(每小题5分,共10分) 1. 2. 四. 判断敛散性(每小题5分,共15分) 1. 2. 3. 五. 判别在数集D上的一致收敛性(每小题5分,共 10分) 1. 2. 六.已知一圆柱体的的半径为 R,经过圆柱下底圆直径线并保持与底圆面角向斜上方切割,求从圆 柱体上切下的这块立体的体积。(本题满10分)七. 将一 等腰三角形铁板倒立竖直置于水中(即底边在上),且上底边距水表 面距离为10米,已知三角形底边长为20米,高为10米,求该三角 形铁板所受的静压力。(本题满分10分) 八. 证明:函 数在上连续,且有连续的导函数.(本题满分9分) 20xx ---20XX 学年度第二学期《数学分析2》B卷答案学院班级 学号(后两位)姓名题号一二三四五六七八 总分核分人得分一、判断题(每小题3分,共21分, 正确者括号内打对勾,否则打叉) 1.? 2.? 3.? 4. ? 5. ? 6. ? 7. ?二.单项选择题(每小题3分,共15分) 1. B ; 2. C ; 3.A ; 4.D; 5.B 三.求值与计算题(每小题5分,共 10分) 1. 解:由于-------------------------3分而 ---------------------------------4分故由数列极限的迫敛性

上海财经大学 数学分析 测试题 (大一)

《数学分析》考试题 一、(满分10分,每小题2分)单项选择题: 1、{n a }、{n b }和{n c }是三个数列,且存在N,? n>N 时有≤n a ≤n b n c , ( ) A. {n a }和{n b }都收敛时,{n c }收敛; B. {n a }和{n b }都发散时,{n c }发散; C. {n a }和{n b }都有界时,{n c }有界; D. {n b }有界时,{n a }和{n c }都有界; 2、=)(x f ??? ????>+=<,0 ,2.( ,0 ,0, ,sin x x k x k x x kx 为常数) 函数 )(x f 在 点00=x 必 ( ) A.左连续; B. 右连续 C. 连续 D. 不连续 3、''f (0x )在点00=x 必 ( ) A. x x f x x f x ?-?+→?)()(lim 02020 ; B. ' 000)()(lim ??? ? ???-?+→?x x f x x f x ; C. '000)()(lim ???? ???-?+→?x x f x x f x ; D. x x f x x f x ?-?+→?)()(lim 0'0'0 ; 4、设函数)(x f 在闭区间[b a ,]上连续,在开区间(b a ,)内可微,但≠)(a f )(b f 。则 ( ) A. ∈?ξ(b a ,),使0)('=ξf ; B. ∈?ξ(b a ,),使0)('≠ξf ; C. ∈?x (b a ,),使0)('≠x f ; D.当)(b f >)(a f 时,对∈?x (b a ,),有)('x f >0 ; 5、设在区间Ⅰ上有?+=c x F dx x f )()(, ?+=c x G dx x g )()(。则在Ⅰ上有 ( ) A. ?=)()()()(x G x F dx x g x f ; B. c x G x F dx x g x f +=?)()()()( ; C. ?+=+c x G x F dx x F x g dx x G x f )()()]()()()([ ;

数学分析3期末测试卷

2012 –2013学年第一学期期末考试题 11数学教育《数学分析》(三) 一、单项选择(将正确答案的序号填在括号内,每题2分,共20分) 1. 下列数项级数中收敛的是 ( ) A. 211 n n ∞ =∑; B. 2 1n n n ∞ =+∑; C. 1 1 n n ∞ =∑; D. 0 1 23n n n ∞ =++∑. 2. 下列数项级数中绝对收敛的是 ( ) A. 1(1)n n n ∞ =-∑ B. 1n n n ∞=1n n n n ∞= D. 1 sin n n n ∞ =∑ 3.函数项级数1n n x n ∞ =∑的收敛域是 ( ) A. (1,1)- B. (1,1]- C. [1,1)- D. [1,1]- 4.幂级数0 21n n n x n ∞ =+∑的收敛半径是 ( ) . A B C D 1 .2 .1 .02 5. 下列各区域中,是开区域的是 ( ) 2. {(,)|}A x y x y > . {(,)|||1}B x y xy ≤ 22.{(,)|14}C x y x y <+≤ .{(,)|1}D x y x y +≥ 6.点集11{,|}E n N n n ?? =∈ ??? 的聚点是 ( ) A. ){0,0} B.()0,0 C. 0,0 D.{}{}0,0 7.点函数()f P 在0P 连续,是()f P 在0P 存在偏导数 ( ) A.必要条件 B.充分条件 C.充要条件 D.既不充分也不必要 条件 8. 函数(,)f x y 在()00,x y 可微,则(,)f x y 在()00,x y 不一定 ( ) A.偏导数连续 B.连续 C. 偏导数存在 D. 存在方向导数 9. 设函数)()(y v x u z =,则 z x ??等于 ( ) A. ()()u x v y x y ???? B. ()()du x v y dx y ?? C. () ()du x v y dx D. ()()u x v y x y ??+?? 10. 函数(,)f x y 在()00,x y 可微的充分必要条件是 ( ) A. 偏导数连续; B. 偏导数存在; C.存在切平面; D. 存在方向导数. 二、填空题(将正确答案填在横线上,每题2分,共20分) 11. 若数项级数1 1n p n n ∞ =-∑() 绝对收敛,则p 的取值范围是 ; 12. 幂级数0(1)n n n x ∞ =+∑的和函数是 ; 13.幂级数2 01 (1)n n x n ∞ =-∑ 的收敛域是 . ; 14.平面点集22{(,)|14}E x y x y =<+≤的内点是_________ ___ __ _______; 15.函数33(,)3f x y x y xy =+-的极值点是 ______________________. 16.曲面221z x y =+-在点(2,1,4)的切平面是 ______________________ 17.函数y z x =,则 z y ?=? ______________________; 18.函数u xyz =在(1,1,1)沿方向(cos ,cos ,cos )l αβγ= 的方向导数是 ___________; 19.设cos sin x r y r ? ?=??=?,则 x x r y y r ?? ????=???? ; 20.若22arctan y x y x +=,则dy dx =______________________。 三、判断题(请在你认为正确的题后的括号内打“√”,错误的打“×”,每题 1分,共10 题号 一 二 三 四 五 总分 复核人 分值 20 20 10 32 18 100 得分 评卷人 得分 得分 得分

数学分析期末考试题1、2(第二份有答案)

一、 判断题(每小题2分,共20分) 1.开域是非空连通开集,闭域是非空连通闭集. ( ) 2.当二元函数的重极限与两个累次极限都存在时,三者必相等. ( ) 3.连续函数的全增量等于偏增量之和. ( ) 4. xy y x f =),(在原点不可微. ( ) 5.若),(),(y x f y x f yx xy 与都存在,则),(),(y x f y x f yx xy =. ( ) 6. dy y x xy y ) 1(sin 2 1 +? +∞ 在)1,0(内不一致收敛. ( ) 7.平面图形都是可求面积的. ( ) 8.学过的各种积分都可以以一种统一的形式来定义. ( ) 9.第二型曲面积分也有与之相对应的“积分中值定理”. ( ) 10.二重积分定义中分割T 的细度 T 不能用}{max 1i n i σ?≤≤来代替. ( ) 二、 填空题(每小题3分,共15分) 1.设)sin(y x e z xy +=,则其全微分=dz . 2.设 3 2),,(yz xy z y x f +=,则f 在点)1,1,2(0-P 处的梯度= )(0P grad . 3.设L 为沿抛物线 22x y =,从)0,0(O 到)2,1(B 的一段,则?=+L ydx xdy . 4.边长为a 密度为b 的立方体关于其任一棱的转动惯量等于 . 5.曲面2732 22=-+z y x 在点(3,1,1)处的法线方程为 . 三、计算题(每小题5分,共20分) 1.求极限 xy y x y x )(lim 22) 0,0(),(+→. 2. 设),(y x z z =是由方程z e z y x =++所确定的隐函数,求xy z . 3.设 ]1,0[]1,0[?=A ,求??++=A y x ydxdy I 2 322)1( . 4.计算抛物线) 0()(2 >=+a ax y x 与x 轴所围的面积.

最新2003年浙江大学数学分析试题答案

2003年浙江大学数学分析试题答案

2003年浙江大学数学分析试题答案 一、,,0N ?>?ε当N n >时,ε<->>?m n a a N n N m ,, 证明:该数列一定是有界数列,有界数列必有收敛子列}{k n a , a a k n k =∞ →lim , 所以, ε2<-+-≤-a a a a a a k k n n n n 二 、,,0N ?>?ε当N x >时,ε<-)()(x g x f ,,0,01>?>?δε当1'''δ<-x x 时, ε<-)''()'(x f x f 对上述,0>ε当N x x >'','时,且1'''δ<-x x ε3)''()'()''()''()'()'()''()'(<-+-+-≤-x f x f x f x g x g x f x g x g 当N x x <'','时,由闭区间上的连续函数一定一致收敛,所以 ,0,02>?>?δε2'''δ<-x x 时ε<-)''()'(x g x g ,当'''x N x <<时,由闭区间上的连 续函数一定一致收敛,在 ],['','22δδ+-∈N N x x 时,ε<-)''()'(x g x g ,取 },m in{21δδδ=即可。 三、由,0)('',0)('<>x f a f 得,0)('a f ,所 以)(x f 必有零点,又)(x f 递减,所以有且仅有一个零点。 四、? ?==1 0,)(1)()(x dt t f x dt xt f x ?2 )()()('x dt t f x x f x x ? -= ?, 2 2)(lim )(lim ) (lim )0('0 2 A x x f x dt t f x x x x x x ====→→→???, 2 )(lim ) (lim )() (lim )('lim 2 002 00A x dt t f x x f x dt t f x x f x x x x x x x = -=-=? ? →→→→?,)('x ?在0=x 连续。 五、当k m ≠时,不妨设k m <,

数学分析试题及答案

(二十一)数学分析期终考试题 一 叙述题:(每小题5分,共15分) 1 开集和闭集 2 函数项级数的逐项求导定理 3 Riemann 可积的充分必要条件 二 计算题:(每小题7分,共35分) 1、 ? -9 1 31dx x x 2、求)0()(2 2 2 b a b b y x ≤<=-+绕x 轴旋转而成的几何体的体积 3、求幂级数 n n n x n ∑∞ =+1 2)11(的收敛半径和收敛域 4、1 1lim 2 2220 0-+++→→y x y x y x 5、2 2 ),,(yz xy x z y x f ++=,l 为从点P 0(2,-1,2)到点(-1,1,2)的方向, 求f l (P 0) 三 讨论与验证题:(每小题10分,共30分) 1、已知?? ???==≠+++=0 ,0001sin )(),(222 2 2 2y x y x y x y x y x f ,验证函数的偏导数在原点不连续, 但它在该点可微 2、讨论级数∑∞ =-+1 2211 ln n n n 的敛散性。 3、讨论函数项级数]1,1[)1( 1 1 -∈+-∑∞ =+x n x n x n n n 的一致收敛性。 四 证明题:(每小题10分,共20分) 1 若 ? +∞ a dx x f )(收敛,且f (x )在[a ,+∞)上一致连续函数,则有0)(lim =+∞ →x f x 2 设二元函数),(y x f 在开集2R D ? 内对于变量x 是连续的,对于变量y 满足Lipschitz 条件: ''''''),(),(y y L y x f y x f -≤-其中L D y x y x ,),(),,('''∈为常数证明),(y x f 在D 内连续。 参考答案 一、1、若集合S 中的每个点都是它的内点,则称集合S 为开集;若集合S 中包含了它的所有的聚点,则称集合S 为闭集。

相关主题
文本预览
相关文档 最新文档