当前位置:文档之家› 第17章-非线性面板

第17章-非线性面板

第十七章非线性电路简介 学习要点 含有非线性元件的电路称为非线性电路。本章简要介绍非线性电阻元件及含有非线性电阻电路的分析方法。要求理解非线性电阻元件的特性,掌握非线性电路的分析方法—小信号分析法。 内容提要 非线性电阻 1.定义 含有非线性元件的电路称为非线性电路,实际元件都是非线性的,而当其非线性程度比较薄弱时,即可作为线性元件来处理。线性电阻元件的伏安关系满足欧姆定律Ri u=,在i u-平面上是一条通过原点的直线。非线性电阻元件的伏安特性不满足欧姆定律,在i u-平面上不是直线。非线性电阻元件的图形符号如图(a)所示。 (1)若电阻元件两端的电压是其电流的单值函数,这种电阻称为电流控制型的非线性电阻,其伏安关系可表示为 )(i f u=(17-1)它的典型伏安特性如图(b)所示。 } (2)如果通过电阻的电流是其两端电压的单值函数,这种电阻称为电压控制型的非线性电阻,其伏安关系可表示为 ) (u g i=(17-2)它的典型伏安特性如图(c)所示。 2.动态电阻 (c) (a)(b) 图 u

非线性电阻元件在某一工作状况下(如图中P 点)的动态电阻为该点的电压对电流的导数,即 di du R d = 图中P 点的动态电阻正比于tan β(区别于其静态电阻R ,R 正比于tan α)。 3.静态工作点 如图(a )所示电路由线性电阻R 0和直流电压源U 0及一个非线性电阻R 组成(其虚线框也可由复杂网络等效而得)。设非线性电阻的伏安特性如图(b )所示,并可表示为式()。 根据KVL 和KCL ,对此电路列方程有 u i R U +=00 \ 或 i R U u 00-= (17-3) 是虚线方框一侧的伏安特性,如图(b )中直线AB 所示。 直线AB 与伏安特性)(u g i =的交点(U Q ,I Q ),同时满足式(17-3)和式(17-2), 所以有: Q Q U I R U +=00 | )(Q Q U g I = 交点Q (U Q ,I Q )称为电路的静态工作点。由上述分析可知:Q 点可通过图解法(作直线AB 与伏安特性)(u g i =或)(i f u =的交点)或解析法(联立求解i R U u 00-= (b) g (u ) ( (a) 图 图

第二章 电阻电路的等效变换 1、各种电路类型在我没学校了 (1)线性电路:由线性无源元件、线性受控源和独立电源组成的电路,称为线性电路。第十七章介绍非线性电路的分析 (2)电阻电路:如果构成电路的线性无源元件均为线性电阻,电路则称为线性电阻性电路(简称电阻电路)。第二、三、四章介绍电阻电路的分析 (3)直流电路:当电路中的独立电源都是直流电源时,这类电路称为直流电路。电感在直流电路中相当于短路,电容在直流电路中相当于开路。 2、等效变换 (1)一端口 (2)等效的条件:如果两个一端口网络的伏安特性完全相同,则这两个一端口网络等效。 (3)等效变换的特点:对外等效。 3、电阻串并联 (1)电路元件的串并联 (A )串联:两个元件连接在单节点上,称为串联。串联连接的电路元件具有相同的电流。 (B )并联:两个元件连接在一对节点上,称为并联。并联连接的电路元件两端的电压相同。如果认为两个元件并联就是他们并行排列在电路图上,这是错误的,并联连接元件的特点是他们两端的电压相同。 (2)电阻串联:(A )证明 (B )分压公式 (3)电阻并联:(A )证明 (B )分流公式 4、电阻的Y 型连接和?型连接的等效变换 5、电压源、电流源的串联和并联 (1)电压源串联:(A )公式(B )加减号的确定 (2)电流源并联:(A )公式(B )加减号的确定 (3)电压源并联和电流源串联需满足基尔霍夫定律。 6、实际电源的两种电路模型及其等效变换 (1)实际电源的两种电路模型:(A )电路模型,要注意其参考方向(B )对应的实际电源 (2)两种电源电路模型进行等效变换的方法步骤:(A )画出对应的电源电路模型,注意参考方向(B )确定电阻值(C )根据公式s s Ri u =确定电源电路模型中独立源的源电压、 源电流 第二次课

1. 非线性系统的传输特性为:()x y g x be ==其中b 为正的实常数。已知输入()X t 是一个均值为m x ,方 差为 2x σ 的平稳高斯噪声。试求 (1)输出随机信号Y (t )的一维概率密度函数; (2)输出随机信号Y (t )的均值和方差。 作业 2 非线性系统的传输特性为 ()y g x b x ==,b 为正的实常数。已知输入()X t 是一个均值为0方差为1 的平稳高斯噪声。试求 (1)输出随机信号()Y t 的一维概率密度函数; (2)输出随机信号()Y t 的平均功率。 作业 3.单向线性检波器的传输特性为 ||0()00b x x y g x x >?==?≤? 输入()X t 是一个均值0的平稳高斯信号,其相关函数为()x R τ。求检波器输出随机信号()Y t 的均值和方差。 4.设有非线性系统如图所示。输入随机信号()X t 为高斯白噪声,其功率谱密度0()2x N S ω=。若电路本 身热噪声忽略不计,且平方律检波器的输入阻抗为无穷大。试求输出随机信号的自相关函数和功率谱密度函数。 5. 非线性系统的传输特性为 20()00 x e x y g x x ?≥==?

作业 7.设非线性系统的传输特性为2 y x =。若输入随机信号()X t 是0均值单位方差,相关系数为()r τ的高斯平稳过程,求输出()y t 的一维概率密度函数和二维概率密度函数。 8. 设非线性系统的传输特性y x =。若输入随机信号()X t 是0均值单位方差,相关系数为()r τ的高斯平稳过程,求输出()y t 的均值和自相关函数。 作业 9. 设非线性系统的传输特性y x =。若输入随机信号()X t 是0均值的高斯平稳过程,求输出低频直流功率、低频总功率和低频起伏功率。 10. 一般说来,信号和噪声同时作用于非线性系统的输入端,其输出功率有三部分组成: 0()s Ω---信号自身所得到的输出平均功率 0()N Ω---噪声自身所得到的输出平均功率 0()SN Ω---信号与噪声得到的输出平均功率 对于通信系统中的非线性系统,计算输出信噪比的公式为: 0000 ()()()s N SN S N Ω??= ?Ω+Ω?? 对于通信系统中的非线性系统,计算输出信噪比的公式为: 000 0()()()s SN N S N Ω+Ω??= ?Ω?? 设窄带中放的幅频特性为: 0,()0,K H ωωωω?±≤?=?? 其他 其输入为()()t t S t N t +,其中信号0()(1)sin t S t A t ξω=+,ξ是(-1,1)间均匀分布的随机变量。()t N t 是单边功率谱密度为0N 的白噪声。求()()t t S t N t +通过窄带中放,再通过包络检波,输出信号的信噪比。 11. 设窄带中放的幅频特性为: 0,()0,K H ωωωω?±≤?=?? 其他 其输入为()()t t S t N t +,其中信号0()sin t S t A t ω=,ξ是(-1,1)间均匀分布的随机变量。()t N t 是单边功率谱密度为0N 的白噪声。求()()t t S t N t +通过窄带中放,再通过平方率检波器,输出信号的信噪比。 12. 设3 ()()()Y t X t X t =+,若()X t 是理想白噪声,求()Y t 的自相关函数。

第十讲经典面板数据模型 一、面板数据(panel data) 一维数据: 时间序列数据(cross section data):变量在时间维度上的数据截面数据(time series data):变量在截面空间维度上的数据)。 二维数据: 面板数据(同时在时间和截面空间上取得的,也称时间序列截面数据(time series and cross section data)或混合数据(pool data)。 面板数据=截面数据+时间序列数据。

面板数据用双下标变量表示。例如 y i t, i = 1, 2, …, N; t = 1, 2, …, T N表示面板数据中含有N个个体。T表示时间序列的最大长度。若固定t不变,y i ., ( i = 1, 2, …, N)是随机变量在横截面上的N个数据;若固定i不变,y. t, (t = 1, 2, …, T)是纵剖面上的一个时间序列(个体)。 平衡面板数据(balanced panel data)。 非平衡面板数据(unbalanced panel data)。 例1998-2002年中国东北、华北、华东15个省级地区的居民家庭人均消费(不变价格)和人均收入数据见表1。人均消费和收入两个面板数据都是平衡面板数据,各有15个个体。

表1.中国部分省级地区的居民数据(不变价格,元)

二、面板数据模型及其作用 1.经典面板数据模型 建立在古典假定基础上的线性面板数据模型. 2.非经典面板数据模型 (1)非平稳时间序列问题的面板数据模型(面板数据协整模型) (2)非线性面板数据模型(如面板数据logit模型, 面板数据计数模型模型) (3)其他模型(如面板数据分位数回归模型) 3.面板数据模型作用 (1)描述个体行为差异。

第二章电路的分析方法 电路分析是指在已知电路构和元件参数的情况下,求出某些支路的电压、电流。分析和计算电路可以应用欧姆定律和基尔霍夫定律,但往往由于电路复杂,计算手续十分繁琐。为此,要根据电路的构特点去寻找分析和计算的简便方法。 2.1 支路电流法 支路电流法是分析复杂电路的的基本方法。它以各支路电流为待求的未知量,应用基尔霍夫定律(KCL 和KVL )和欧姆定律对结点、回路分别列出电流、电压方程,然后解出各支路电流。下面通过具体实例说明支路电流法的求解规律。 例2-1】试用支路电流法求如图2-1 所示电路中各支路电流。已知U S1 130V ,U S2 117V ,R1 1 ,R2 0.6 ,R 24 。【解】该电路有3 条支路(b=3),2个结 点(n=2),3 个回路(L=3 )。先假定各支路电流的参 考方向和回路的绕行方向如图所示。因为有3 条支路则 有3 个未知电流,需列出3 个独立方程,才能解得3 个未知量。根据KCL 分别对点A、B 列出的方程实际上是 相同的,即结点A、B 中只有一个结点电流方程是独立 的,因此对具有两个结点的电路,只能列出一个独立的 KCL 方程。 再应用KVL 列回路电压方程,每一个方程中至少要包含一条未曾使用过的支路(即没有列过方程的支路)的电流或电压,因此只能列出两个独立的回路电压方程。根据以上分析,可列出3 个独立方程如下: 结点A I1 I2 I 0 回路ⅠI1R1 I2R2 U S1 U S2 回路ⅡI2 R2 IR U S2 I1 10A, I2 5A, I=5A 联立以上3 个方程求解,代入数据解得支路电流 通过以上实例可以总出支路电流法的解题步骤是: 1.假定各支路电流的参考方向,若有n个点,根据KCL 列出(n-1)个结点电流方程。 2.若有b 条支路,根据KVL 列(b-n+1)个回路电压方程。为了计算方便,通常选网孔作为回路。

二阶非线性动态电路分析 题目: 二阶非线性电路如图1,R=10Ω,i=?+32.0?,C=0.25×210-F,C U (-0)=2V.求C U (t)(t>0),并画出t>0时?-C U 的相图。 图1.二阶非线性电路 理论分析: 解:取?与C U 为状态变量,t>0时: 32.0-??-=-==i i dt du C C c => 380-400??-=dt du c 32.0???R R U Ri U u dt d C C L --=-== => 3210???--=C U dt d Matlab 求解: 此非线性动态电路难求解析解,因此利用Matlab 做数值求解,得到响应在离散时刻的近似值,再根据此离散值做出响应相关图像。 Matlab 求解的原理是利用ode45函数解微分方程组。ode45表示采用四阶,五阶runge-kutta 单步算法。ode45函数语法为[T,Y] = ode45(odefun, tspan,y0),这里tspan 选择0到2.5s ,初值C U =2,?=0。 首先写一个函数M 文件列出待求解方程组如下: function dy=rlc(t,y) dy=zeros(2,1) dy(1)=-400*y(2)-80*y(2)^3 dy(2)=y(1)-10*y(2)-2*y(2)^3 end 在命令行输入[t,y]=ode45(@rlc,[0 2.5],[2 0]),可求出响应C U (t )、?(t )数值解。 在命令行输入: plot(t,y(:,1)) grid on 数值解

title('Uc-t曲线') xlabel('t') ylabel('Uc') 可得到Uc(t)曲线。可以更直观的观查Uc随时间的变化。 图2 Uc响应曲线同理可得到?(t)图像如图3所示: 图3 ψ-t曲线 同理可得到?-Uc相图如图4所示。 图4 ?-Uc相图

第十七章 非线性电路简介 17.1 学习要点 含有非线性元件的电路称为非线性电路。本章简要介绍非线性电阻元件及含有非线性电阻电路的分析方法。要求理解非线性电阻元件的特性,掌握非线性电路的分析方法—小信号分析法。 17.2 内容提要 17.2.1 非线性电阻 1.定义 含有非线性元件的电路称为非线性电路,实际元件都是非线性的,而当其非线性程度比较薄弱时,即可作为线性元件来处理。线性电阻元件的伏安关系满足欧姆定律 Ri u =,在i u -平面上是一条通过原点的直线。非线性电阻元件的伏安特性不满足欧姆定律,在i u -平面上不是直线。非线性电阻元件的图形符号如图17.1(a )所示。 (1)若电阻元件两端的电压是其电流的单值函数,这种电阻称为电流控制型的非线性电阻,其伏安关系可表示为 )(i f u = (17-1) 它的典型伏安特性如图17.1(b )所示。 (2)如果通过电阻的电流是其两端电压的单值函数,这种电阻称为电压控制型的非线性电阻,其伏安关系可表示为 )(u g i = (17-2) 它的典型伏安特性如图17.1(c )所示。 2.动态电阻 非线性电阻元件在某一工作状况下(如图17.2中P 点)的动态电阻为该点的电 (c) (a) (b) i 图17.1 u i u 0

压对电流的导数,即 di du R d = 图17.2中P 点的动态电阻正比于tan β(区别于其静态电阻R ,R 正比于tan α)。 3.静态工作点 如图17.3(a )所示电路由线性电阻R 0和直流电压源U 0及一个非线性电阻R 组成(其虚线框也可由复杂网络等效而得)。设非线性电阻的伏安特性如图17.3(b )所示,并可表示为式(17.2)。 根据KVL 和KCL ,对此电路列方程有 u i R U +=00 或 i R U u 00-= (17-3) 是虚线方框一侧的伏安特性,如图17.3(b )中直线AB 所示。 直线AB 与伏安特性)(u g i =的交点(U Q ,I Q ),同时满足式(17-3)和式(17-2), 所以有: Q Q U I R U +=00 )(Q Q U g I = 交点Q (U Q ,I Q )称为电路的静态工作点。由上述分析可知:Q 点可通过图解法(作直线AB 与伏安特性)(u g i =或)(i f u =的交点)或解析法(联立求解i R U u 00-=及非线性电阻的伏安特性式)求出。 + (b) 1' B i - (U Q ,I Q ) R U A 1 i =g (u ) - R 0 Q + O (a) u U 0 R u i U 0 图17.3 u α i β O P 图17.2

第37卷第4期 财经研究 V o l 37N o 4 2011年4月Journal of Finance and Eco no mics A pr 2011 城市化对房价的影响:线性还是非线性? 基于四种面板数据回归模型的实证分析 骆永民 (安徽工业大学经济学院,安徽马鞍山243032) 摘 要:文章从线性和非线性两个角度分析了中国城市化进程对房价的影响。通过对各省历年房价和城市化的核密度估计空间分布分析,发现城市化和房价之间存在明显的正相关性,并且各省份的城市化和房价水平存在 双峰 分布特征和空间相关性。这说明在分析城市化对房价的影响时应考虑可能的门限效应和空间溢出效应这两种非线性关系。据此,文章基于中国30个省份1998-2009年的面板数据,使用普通面板回归、空间面板回归、门限面板回归和平滑门限面板回归这四种模型进行分析发现,城市化水平对本地区和相邻地区的房价均具有显著的促进作用,且在经济增长水平较高、人力资本集聚的地区,城市化对房价的促进作用更加显著。 关键词:城市化;房价;线性;非线性;面板数据回归模型 中图分类号:F293 3 文献标识码:A 文章编号:1001 9952(2011)04 0135 10 收稿日期:2010 12 08 基金项目:教育部人文社会科学研究青年基金项目(10YJ C790186) 作者简介:骆永民(1981-),男,安徽蚌埠人,安徽工业大学经济学院副教授。 一、引 言 2011年新年伊始,政府相继出台了一系列抑制房价快速上涨的政策。其中影响较大的有以下几条:(1)二套房贷款首付比例不得低于60%,同时贷款利率不得低于基准利率的1 1倍;(2)上海和重庆从1月28日起开征个人住房房产税,与此同时财政部、国税总局、住建部相关负责人表示,条件成熟时将在全国范围内对个人拥有的住房征收房产税;(3)各直辖市、计划单列市、省会城市和房价过高、上涨过快的城市,在一定时期内要从严制定和执行住房限购措施;(4)各地要增加土地有效供应,落实保障性住房、棚户区改造住房和中小套型普通商品住房用地不低于住房建设用地供应总量70%的要求。总结上述政策,政府旨在通过提高利率、开征住房房产税、限购以及增加土地和保障性住房供应等政策抑制房价的快速上涨。从相关实证研究看,提高利率(黄忠华等,2008;况伟大,2010)、增加土地和保障房供应(况伟大,2005;温海珍等, 135

前者是电阻的决定式,说明电阻和哪些因素有关,后者是定义式,提供了测量电阻的手段,并不能说明R 与U 成正比与I 成反比。 测量电路 测量电路有两种方法:电流表内接法和电流表外接法. 甲图中:1X V X X X X V V R R R U R R R I R R R = ==++外<,误差ΔR=R 外-R X =2 X X V R R R - + 乙图中: X A X U R R R R I = =+内>, 误差ΔR=R 内-R X =R A 确定内接法还是外接法,有三种方法: a .直接比较法:当R x >>R A 时用内接法,当R x <

伏安特性曲线不是直线,这样的元件叫非线性元件。 2、串联电路和并联电路:串联,,并联:①几个相同的电阻并联,总电阻为一个电阻的几分之一; ②若不同的电阻并联,总电阻小于其中最小的电阻; ③若某一支路的电阻增大,则总电阻也随之增大; ④若并联的支路增多时,总电阻将减小;(5)当一个大电阻与一个小电阻并联时,总电阻接近小电阻。 分压式与限流式接法: 名称/电路图 (限流电路) (分压电路) 电流调节范围 R U I R R U R ≤≤+0 R U I R ≤ ≤0 电压调节范围 U U U R R R R ≤≤+0 U U R ≤≤0 效果比较 0R R R U U R +=U R R R U R 0 += R R R R R U U R R R U b a b a b R ++= = +并并 当R>>R 0调节效果相当差,一般适用 于R 与R 0相差不多时 缺点 调节范围小,在R>>R 0时,调节效果差 电路结构较复杂,在用电器正常工作时,电路消耗的功率较大,在R<>R 0时,调节效果相当好 1.在下面三种情况下必须选择分压接法: a .要使某部分电路的电压或电流从零开始连续调节,只有滑动变阻器分压接法的电路才能满足(如测定导体的伏安特性、校对改装后的电表等电路) b 如果实验所提供的电压表、电流表量程或电阻元件允许最大电流较小,采用限流接法时,无论怎样调节,电路中实际电流电压都会超过电表量程或电阻元件允许的最大电流电压为了保证电表和电阻元件免受损坏,必须采用滑动变阻器分压接法连接电路. c 伏安法测电阻实验中,若所用的变阻器阻值小于待测电阻阻值,若采用限流接法时,即使变阻器触头从一端滑至另一端,待测电阻上的电流(电压)变化小,这不利于多次测量求平均值或用图像法处理数据,为了变阻器远小于待测电阻阻值的情况下能大范围地调节待测电阻上的电流(电压)应选择滑动变阻器的分压接法。 几点说明: ⑴对实验器材和装置的选择,应遵循的几条主要原则: ①安全性原则 ②准确性原则 ③方便性原则 ④经济性原则

6-1 为什么调幅,检波和混频都必须利用电子器件的非线性特性才能实现它们之间各有何异同之处 分析 非线性器件可以产生新的频率分量,而调幅,检波和混频都为了产生新的频率分量。调幅、检波和混频不同点是输入的信号不同,输出的滤波器不同。 解 由于调幅、检波和混频均属于频率变换,即输出信号中产生了新的频率分量,而线性器件不可能产生新的频率分量,只有利用非线性器件才能完成频率变换的功能。调幅、检波和混频三者相同之处是都属于线性频率变换,即实现频谱搬移,它们实现的原理框图都可用下图表示。 非线性器件都可采用乘法器。调幅、检波和混频不同点是输入的信号不同,输出的滤波器不同。调幅输入的是调制信号()v t Ω和载波()o v t ,即1v =()v t Ω,2v =()o v t ,滤波器是中心频率为载波频率ω0的带通滤波器。检波输入的是已调制的中频信号 ()i v t 和本地振荡信号()o v t ,即1v = ()i v t ,2v =()o v t ,滤波器是RC 低通滤波器。混频 输入的是已调制信号vs(t)和本地振荡信号()o v t ,即1v =()s v t ,2v =()o v t ,滤波器是中心频率为中频频率ωi 的带通滤波器。

6-2 为什么调幅系数m a 不能大于1 分析 调幅系数大于1,会产生过量调制。 解 若调幅系数ma>1,调幅波产生过量调制。如下图所示,该信号传送到接收端经包络检波后使解调出的调制信号产生严重的失真。 6-3 试画下列调幅信号的频谱图,确定信号带宽,并计算在单位电阻上产生的信号功率。 (1) )V )(t (102cos )t 32002cos 1.0t 4002cos 2.01(20)t (6?π?π+?π+=v (2) )V (t 102cos t 6280cos 4)t (6?π=v 分析 根据信号带宽公式和信号功率即可求得。 解(1)6 ()20(10.2cos 24000.1cos 23200)cos 210()()t t t t V υπππ=+?+??的信号频谱图如下图所示。 t

第二讲 面板数据线性回归模型估计、检验和应用 第一节 单因素误差面板数据线性回归模型 对于面板数据y i 和X i ,称 it it it y αε′=++X βit i it u εξ=+ 1,,; 1,,i N t T =="" 为单因素误差面板数据线性回归模型,其中,i ξ表示不可观测的个体特殊效应,it u 表示剩余的随机扰动。 案例:Grunfeld(1958)建立了下面的投资方程: 12it it it it I F C αββε=+++ 这里,I it 表示对第i 个企业在t 年的实际总投资,F it 表示企业的实际价值(即公开出售的股份),C it 表示资本存量的实际价值。案例中的数据是来源于10个大型的美国制造业公司1935-1954共20年的面板数据。 在EViews6中设定面板数据(GRUNFELD.wf1) Eviews6 中建立面板数据 EViews 中建立单因素固定效应模型

1.1 混合回归模型 1 面板数据混合回归模型 假设1 ε ~ N (0, σ2I NT ) 对于面板数据y i 和X i ,无约束的线性回归模型是 y i = Z i δi + εi i =1, 2, … , N (4.1) 其中' i y = ( y i 1, … , y iT ),Z i = [ ιT , X i ]并且X i 是T×K 的,' i δ是1×(K +1)的,εi 是T×1的。 注意:各个体的回归系数δi 是不同的。 如果面板数据可混合,则得到有约束模型 y = Z δ + ε (4.2) 其中Z ′ = (' 1Z ,' 2Z , … ,'N Z ),u ′ = ('1ε,'2ε, … ,' N ε)。 2 混合回归模型的估计 当满足可混合回归假设时, ()1''?Z Z Z Y ?=δ 在假设1下,对于Grunfeld 数据,基于EViews6建立的混合回归模型 3 面板数据的可混合性检验 假设检验原理:基于OLS/ML 估计,对约束条件的检验。 (1) 面板数据可混合的检验 推断面板数据可混合的零假设是: 1 H :对于所有的i 都有δi = δ. 检验约束条件的统计量是Chow 检验的F 统计量

第三讲 面板数据线性回归模型估计、检验和应用 单因素误差面板数据线性回归模型 对于面板数据y i 和X i ,称 it it it y u α′=++X βit i it u v μ=+ 1,,;1,,i N t T =="" 为单因素误差面板数据线性回归模型,其中,i μ表示不可观测的个体特殊效应,it v 表示剩余的随机扰动。 案例:Grunfeld(1958)建立了下面的投资方程: 12it it it it I F C u αββ=+++ 这里,I it 表示对第i 个企业在t 年的实际总投资,F it 表示企业的实际价值(即公开出售的股份),C it 表示资本存量的实际价值。案例中的数据是来源于10个大型的美国制造业公司1935-1954共20年的面板数据。 在Stata 中设定面板数据(GRUNFELD.dta ) . xtset FN YR panel variable: FN (strongly balanced) time variable: YR, 1935 to 1954 delta: 1 unit 混合回归模型 假设1 u ~ N (0, σ2I NT ) 对于面板数据y i 和X i ,无约束的线性回归模型是 y i = Z i δi + u i i =1, 2, … , N (4.1) 其中'i y = ( y i 1, … , y iT ),Z i = [ ιT , X i ]并且X i 是T×K 的,'i δ是1×(K +1)的,u i 是T×1的。 注意:各个体的回归系数δi 是不同的。 如果面板数据可混合,则得到有约束模型 y = Z δ + u (4.2) 其中Z ′ = ('1Z ,'2Z , … ,'N Z ),u ′ = ('1u ,'2u , … ,' N u )。 在假设1下,对于Grunfeld 数据,建立的混合回归模型 Stata 命令:. regress I F C

第17章习题非线性 电路

第十七章非线性电路简介 17.1 学习要点 含有非线性元件的电路称为非线性电路。本章简要介绍非线性电阻元件及含有非线性电阻电路的分析方法。要求理解非线性电阻元件的特性,掌握非线性电路的分析方法—小信号分析法。 17.2 内容提要 17.2.1 非线性电阻 1.定义 含有非线性元件的电路称为非线性电路,实际元件都是非线性的,而当其非线性程度比较薄弱时,即可作为线性元件来处理。线性电阻元件的伏安关系满足欧姆定律Ri u=,在i u-平面上是一条通过原点的直线。非线性电阻元件的伏安特性不满足欧姆定律,在i u-平面上不是直线。非线性电阻元件的图形符号如图17.1(a)所示。 (1)若电阻元件两端的电压是其电流的单值函数,这种电阻称为电流控制型的非线性电阻,其伏安关系可表示为 )(i f u=(17-1)它的典型伏安特性如图17.1(b)所示。 (2)如果通过电阻的电流是其两端电压的单值函数,这种电阻称为电压控制型的非线性电阻,其伏安关系可表示为 ) (u g i=(17-2)它的典型伏安特性如图17.1(c)所示。 2.动态电阻 (c) (a)(b) 图17.1

非线性电阻元件在某一工作状况下(如图17.2中P 点)的动态电阻为该点的电压对电流的导数,即 di du R d = 图17.2中P 点的动态电阻正比于tan β(区别于其静态电阻R ,R 正比于tan α)。 3.静态工作点 如图17.3(a )所示电路由线性电阻R 0和直流电压源U 0及一个非线性电阻R 组成(其虚线框也可由复杂网络等效而得)。设非线性电阻的伏安特性如图17.3(b )所示,并可表示为式(17.2)。 根据KVL 和KCL ,对此电路列方程有 u i R U +=00 或 i R U u 00-= (17-3) 是虚线方框一侧的伏安特性,如图17.3(b )中直线AB 所示。 直线AB 与伏安特性)(u g i =的交点(U Q ,I Q ),同时满足式(17-3)和式(17-2), 所以有: Q Q U I R U +=00 )(Q Q U g I = ) g (u ) (a ) 0图17.3 图17.2

第二章电路的分析方法 本章以电阻电路为例,依据电路的基本定律,主要讨论了支路电流法、弥尔曼定理等电路的分析方法以及线性电路的两个基本定理:叠加定理和戴维宁定理。 1.线性电路的基本分析方法 包括支路电流法和节点电压法等。 (1)支路电流法:以支路电流为未知量,根据基尔霍夫电流定律(KCL)和电压定律(KVL)列出所需的方程组,从中求解各支路电流,进而求解各元件的电压及功率。适用于支路较少的电路计算。 (2)节点电压法:在电路中任选一个结点作参考节点,其它节点与参考节点之间的电压称为节点电压。以节点电压作为未知量,列写节点电压的方程,求解节点电压,然后用欧姆定理求出支路电流。本章只讨论电路中仅有两个节点的情况,此时的节点电压法称为弥尔曼定理。 2 .线性电路的基本定理 包括叠加定理、戴维宁定理与诺顿定理,是分析线性电路的重要定理,也适用于交流电路。 (1)叠加定理:在由多个电源共同作用的线性电路中,任一支路电压(或电流)等于各个电源分别单独作用时在该支路上产生的电压(或电流)的叠加(代数和)。 ①“除源”方法 (a)电压源不作用:电压源短路即可。 (b)电流源不作用:电流源开路即可。 ②叠加定理只适用于电压、电流的叠加,对功率不满足。 (2)等效电源定理 包括戴维宁定理和诺顿定理。它们将一个复杂的线性有源二端网络等效为一个电压源形式或电流源形式的简单电路。在分析复杂电路某一支路时有重要意义。 ①戴维宁定理:任何一个线性含源的二端网络,对外电路来说,可以用一个理想电压源和一个电阻的串联组合来等效代替,其中理想电压源的电压等于含源二端网络的开路电压,电阻等于该二端网络中全部独立电源置零以后的等效电阻。 ②诺顿定理:任何一个线性含源的二端网络,对外电路来说,可以用一个理想电流源和一个电阻的并联组合来等效代替。此理想电流源的电流等于含源二端网络的短路电流,电阻等于该二端网络中全部独立电源置零以后的等效电阻。 3 .含受控源电路的分析 对含有受控源的电路,根据受控源的特点,选择相应的电路的分析方法进行分析。 4.非线性电阻电路分析

第六章习题答案 6.1 在题图6.1所示调谐放大器中,工作频率f o =10.7MHz,L 1-3=4μH,Q o =100, N 1-3=20匝, N 2-3=5匝, N 4-5=5匝,晶体管3DG39在f o =10.7MHz 时测得g ie =2860μS,C ie =18pF, g oe =200μS, C oe =7pF,|y fe |= 45mS,y re =0,试求放大器的电压增益A vo 和通频带BW 。 解: 25.020 5 3 ~13~21== =N N P , 25.02053~15~42== =N N P 总电容pF 4.55)L *)f 2/((1C 20==∑π LC 振荡回路电容pF 8.53C p C p C C ie 22oe 21=--=∑ LC 振荡回路固有谐振频率'0f ==10.85(MHz) 固有损耗电导:''6 00036.710()0011g S Q L 2Q f L ωπ-= = =? 2226 2661200.2520010 0.2528601036.7100.228()oe ie G P g P g g mS ---∑=++=??+??+?= 116.32L 0Q G L ω∑== )KHz (6563 .167 .10Q f B L 0W === , 1210 228.0104525.025.0G |y |P P A 6 3fe 210 V -=????-=-=--∑ 注:由上述计算可以看出,'0f 和0f 相差不大,即部分接入后对谐振频率影响较小,但概念要清楚。另外,这里给出了fe y (即认为是m g )不要通过EQ I 来计算m g 。 6.2 题图6.2是某中放单级电路图。已知工作频率f o =30MHz,回路电感L =1.5μH, Q o =100,N 1/N 2=4,C 1~C 4均为耦合电容和旁路电容。晶体管在工作条件下的y 参数为 ie (2.8j3.5)mS y =+; re 0y ≈ fe (36j27)mS y =- oe (0.2j2)mS y =+ 试解答下列问题: (1) 画出放大器y 参数等效电路; (2) 求回路谐振电导g Σ; (3) 求回路总电容C Σ; (4) 求放大器电压增益A vo 和通频带BW ; (5) 当电路工作温度或电源电压变化时, A vo 和BW 是否变化? i V o V C 2

第2章习题答案 2.1.1 选择题 (1)在图2-73所示电路中,发出功率的元件是__A___。 (A)仅是5V的电源(B)仅是2V的电源 (C)仅是电流源(D)电压源和电流源都发出功率 (E)条件不足 图2-73题2.1.1(1)图图2-74题2.1.1(2)图 (2)在图2-74所示电路中,当增大时,恒流源两端的电压U__B___。 (A)不变(B)升高(C)降低 (3)在图2-75所示电路中,当开关S闭合后,P点的电位__B___。 (A)不变(B)升高(C)为零 (4)在图2-76所示电路中,对负载电阻R而言,点画线框中的电路可用一个等效电源代替,该等效电源是__C___。 (A)理想电压源(B)理想电流源(C)不能确定 图2-75题2.1.1(3)图图2-76题2.1.1(4)图 (5) 实验测的某有源二端线性网络的开路电压为10V,当外接3Ω的电阻时,其端电压为6V,则该网络的戴维南等效电压的参数为(C)。 (a)U S=6V,R0=3Ω (b)U S=8V,R0=3Ω (c)U S=10V,R0=2Ω (6) 实验测得某有源二端线性网络的开路电压为6V,短路电流为3A。当外接电阻为4Ω时,流过该电阻的电流I为( A )。 (a)1A(b)2A(c)3A

(7) 在图2-77所示电路中,已知U S1=4V,U S2=4V,当U S2单独作用时,电阻R中的电流为1MA,那么当U S1单独作用时,电压U AB是(A) (A)1V (B)3V (C)-3V 图2-77题2.1.1(7)图 (8)一个具有几个结点,b条支路的电路,其独立的KVL方程为(B) a)(n-1)个 b)(b-n+1)个 (9)一个具有几个结点,b条支路的电路,要确定全部支路电流,最少要测量(B) a)(n-1)次 b)(b-n+1)次 (10)一个具有n个结点,b条支路的电路,要确定全部支路电压,最少要测量(A) a)(n-1)次 b)(b-n+1)次 (11)电阻并联时,电阻值越大的电阻:(A) a)消耗功率越小; b)消耗功率越大。 (12)两个电阻并联时,电阻值,越小的电阻(B) a)该支路分得的电流愈小; b)该支路分得的电流愈大。 (13)电路如图2-78所示,ab端的等效电阻R ab=(B) a)2.4 b)2 (14)电路如图2-79所示,已知U AB=6V,已知R1与R2消耗功率之比为1:2,则电阻R1,R2分别为(A) a)2 ,4 b)4 ,8 图2-78题2.1.1(13)图图2-79题2.1.1(14)图

第17章非线性电路 17.1 复习笔记 一、非线性电阻 若电阻元件的伏安关系为非线性的,即称为非线性电阻元件。图形符号及伏安函数关系如图17-1-1和图17-1-2所示。 图17-1-1 非线性电阻符号 图17-1-2 伏安特性(流控电阻) 1.非线性电阻元件分类 (1)流控型电阻,u=g(i); (2)压控型电阻,i=f(u); (3)既是流控又是压控型的电阻(单调型),u=g(i),i=f(u);

(4)既不是流控型又不是压控型的电阻。 2.静态电阻与动态电阻(如图17-1-3所示) 静态电阻 R=u/i=tanα 动态电阻 动态电导 图17-1-3 3.非线性电阻的串联与并联 若串联的非线性电阻均为流控型,如u1=g1(i),u2=g2(i),则等效非线性电阻的伏

安特性为 u=u1+u2=g1(i)+g2(i)(流控型) 若并联的非线性电阻均为压控型的,如i1=f1(u),i2=f2(u),则等效非线性电阻的伏安特性为 i=i1+i2=f1(u)+f2(u)(压控型) 二、非线性电容 若电容元件的库伏关系为非线性的,则称为非线性电容元件。电路符号如图17-1-4所示。 图17-1-4 1.非线性电容元件分类 (1)压控型电容元件,q=f(u); (2)荷控型电容元件,u=g(q); (3)单调型电容元件。 2.参数 静态电容

动态电容 三、非线性电感 若电感元件的韦安关系为非线性的,即称为非线性电感元件,电路符号如图17-1-5所示。 图17-1-5 1.非线性电感元件分类 (1)流控型电感元件,ψ=f(i); (2)磁控型电感元件,i=g(ψ); (3)单调型电感元件。 2.参数 静态电感

第17章 非线性电阻电路 §17-1 非线性电阻 若一个二端元件的伏安关系由u -i 平面上一条非线性曲线表示时称为非线性电阻。 一、 电压控制型: ()i f u = 隧道二极管 12i u i i i u i <<是的单值函数时是的多值函数 二、电流控制型: ()u g i = 12u i u u u i u <<充气二极管 为的单值函数当时为的多值函数 三、单调型: ()i f u = ()u g i = 如普通二极管。 u i i i i i i 0 21

§17-2 仅含一个非线性电阻的电路分析 一、图解法 一个有源线性二端网络两端接一非线性电阻组成的电路如下图所示。这样的电路可以用“曲线相交法”来求出电路中电流i 和电压u 。 交点Q 称为电路的静态工作点,在电子电路中直线常称为负载线。 二、解析法 2::0.13:i u u u =+例1已知非线性电阻的伏安关系为求和i 解: 22121220.13 2.5201 20.130.769V 20V 0.846A 32A u u i u u i u u u u i i ?++=? +?=??=+?==?== 对于非线性电阻电路,若对解无约束条件,则可能为多解问题,一定要求出所有解;若有约 束条件,仅需求满足约束条件的解。 ) 22Ω

2 2::1:u i i u =?+例已知非线性电阻的伏安关系为求和i 解: 23201i u u i i ?++=???=?+? 223210 20 i i i i i ?++?+=+?= 1212 1A 2A 1V 7V i i u u ==????? ==?? 若要求线性部分的电压或电流,则可将非线性电阻用所求得的电压(电流)作为电压源 (电流源)的电压(电流)值,利用线性电路的方法求解线性部分的电压(电流)。 例如,若要求2A 电流源两端的电压i U , 则有 1211121(2)75i i U V U V =×+==×?+= §17-3 小信号分析法 一、静态电阻和动态电阻 0 1 g ||d d Q Q U R I R di du d R di 静态电阻动态电阻 二、小信号分析的前提 1V i 0 i )u ) R

h 第十讲经典面板数据模型 一、面板数据(panel data) 一维数据: 时间序列数据(cross section data):变量在时间维度上的数据 截面数据(time series data):变量在截面空间维度上的数据)。 二维数据: h

h 面板数据(同时在时间和截面空间上取得的,也称时间序列截面数据(time series and cross section data)或混合数据(pool data)。 面板数据=截面数据+时间序列数据。 面板数据用双下标变量表示。例如 y i t, i = 1, 2, …, N; t = 1, 2, …, T N表示面板数据中含有N个个体。T表示时间序列的最大长度。若固定t不变,y i ., ( i = 1, 2, …, N)是随机变量在横截面上的N个数据;若固定i不变,y. t, (t = 1, 2, …, T)是纵剖面 h

h 上的 h

h 一个时间序列(个体)。 平衡面板数据(balanced panel data)。 非平衡面板数据(unbalanced panel data)。 例1998-2002年中国东北、华北、华东15个省级地区的居民家庭人均消费(不变价格)和人均收入数据见表1。人均消费和收入两个面板数据都是平衡面板数据,各有15个个体。 表1.中国部分省级地区的居民数据(不变价格,元) h

h AH(安徽)3777 3990 4204 4495 4784 4770 5179 5257 5641 6093 BJ(北京)6807 7454 8206 8654 10473 8273 9128 10000 11230 12692 FJ(福建)5197 5315 5523 6094 6665 6505 6922 7279 8423 9236 HB(河北)3897 4104 4362 4457 5120 5167 5469 5678 5955 6747 HLJ(黑龙江)3290 3597 3891 4159 4494 4251 4747 4998 5383 6144 JL(吉林)3478 3736 4078 4282 4999 4241 4571 4878 5272 6292 JS(江苏)4919 5077 5318 5489 6091 6054 6624 6793 7317 8244 JX(江西)3234 3532 3613 3914 4545 4209 4788 5088 5534 6329 h

相关主题
文本预览
相关文档 最新文档