当前位置:文档之家› 2019届一轮复习人教版 牛顿运动定律的应用 学案

2019届一轮复习人教版 牛顿运动定律的应用 学案

2019届一轮复习人教版    牛顿运动定律的应用    学案
2019届一轮复习人教版    牛顿运动定律的应用    学案

第4讲牛顿运动定律的应用

考试内容及要求

一、牛顿第一定律

1.历史上对于运动和力关系的认识

(1)亚里士多德的错误观点:必须有力作用在物体上,物体才能运动,即力是维持物体运动的原因.

(2)伽利略:运动不需要力来维持,力是改变物体运动状态的原因.

2.牛顿第一定律

(1)内容:一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态.

(2)意义:牛顿第一定律告诉我们,力是改变物体运动状态的原因,即力是产生加速度的原因.

3.惯性

(1)定义:物体具有保持原来匀速直线运动状态或静止状态的性质.

(2)量度:质量是物体惯性大小的唯一量度,质量大的物体惯性大,质量小的物体惯性小. (3)普遍性:惯性是物体的固有属性,一切物体都有惯性,与物体的运动情况和受力情况无关. 例1 (2017·杭州市期中)如图1所示,舱外的宇航员手握工具随空间站绕地球运动,若某一时刻宇航员将手中的工具相对自己由静止释放,则释放瞬间工具的运动方向是(

)

图1

A .指向地心方向

B .背离地心方向

C .与原运动方向相同

D .与原运动方向相反

答案 C

解析 释放工具的瞬间,由于工具具有惯性,它将保持原来的运动状态,所以释放瞬间工具的运动方向与原来的运动方向相同,故C 正确. 二、牛顿第二定律

1.内容:物体加速度的大小跟它受到的作用力成正比,跟物体的质量成反比,加速度的方向跟作用力的方向相同.

2.表达式:F =ma ,其中力F 的单位为牛顿(N),1 N =1 kg·m/s 2. 3.牛顿第二定律的五个特性

五性??

?????

矢量性→a 与F 方向相同

瞬时性→a 与F 对应同一时刻因果性→F 是产生a 的原因同一性???

??

a 、F 、m 对应同一个物体

a 、F 、m 的单位统一使用国际单位制

独立性→每一个力都可以产生各自的加速度

例2 (2017·湖州市期中)如图2所示,航天员王亚平利用“天宫一号”中的“质量测量仪”

测量航天员聂海胜的质量为74 kg.测量时,聂海胜与轻质支架被王亚平水平拉离初始位置,且处于静止状态,当王亚平松手后,聂海胜与轻质支架受到一个大小为100 N 的水平恒力作用而复位,用光栅测得复位时瞬间速度为1 m/s ,则复位的时间为( )

图2

A .0.74 s

B .0.37 s

C .0.26 s

D .1.35 s

答案 A

解析 根据牛顿第二定律,加速度a =F m =50

37 m/s 2,则复位的时间t =v a =150

37 s =0.74 s ,故选

A.

例3 (2017·浙江省重点中学热身联考)1966年科学家曾在太空中完成了测定质量的实验.如图3,实验时,用双子星号宇宙飞船m 1,去接触正在轨道上运行的火箭组m 2(火箭组的发动机已熄火).接触以后,开动双子星号飞船的推进器,使飞船和火箭组共同加速,测得7 s 内飞船和火箭组的速度变化量为0.91 m /s.若飞船与火箭组接触前开动双子星号飞船的推进器(推进器两次工作状态相同),使飞船加速,测得5 s 内飞船的速度变化量为1.32 m/s.已知双子星号宇宙飞船的质量m 1=3 400 kg ,则火箭组的质量m 2约为( )

图3

A .1 500 kg

B .3 500 kg

C .5 000 kg

D .6 000 kg

答案 B

解析 接触前a 1=Δv 1Δt 1=1.325 m /s 2=0.264 m/s 2

由牛顿第二定律得:F =m 1a 1

接触后a 2=Δv 2Δt =0.91

7 m /s 2=0.13 m/s 2

由牛顿第二定律得:F =(m 1+m 2)a 2 解得:m 2≈3.5×103 kg ,故选B. 三、力学单位制

1.物理公式既确定物理量之间的关系,也确定其单位间的关系.

2.力学中的基本物理量有三个,它们是长度、质量、时间;国际单位制中它们的单位分别为m 、kg 和s ,是基本单位.力学中其余物理量的单位都是根据物理公式推导出来的,为导出单位.基本单位和导出单位一起组成了单位制.

例4 (2017·浙江11月学考·2)在国际单位制中,属于基本量及基本单位的是( ) A .质量,千克 B .能量,焦耳 C .电阻,欧姆 D .电量,库仑

答案 A

解析 基本量有:质量、长度、时间、电流、发光强度、热力学温度、物质的量,所以正确答案为A. 四、牛顿第三定律 1.内容

两个物体之间的作用力和反作用力总是大小相等、方向相反,作用在同一条直线上. 2.相互作用力与平衡力

例5(2018·浙江6月学考·3)如图4所示,船夫用撑杆撑船前行,则()

图4

A.船对人的力小于人对船的力

B.船对水的力大于水对船的力

C.人对撑杆的力与撑杆对人的力大小相等

D.撑杆对河底的力大于河底对撑杆的力

答案 C

解析船对人与人对船,船对水与水对船,人对撑杆的力与撑杆对人的力,撑杆对河底的力与河底对撑杆的力都属于相互作用力,相互作用力总是等大反向的,故选C.

五、牛顿运动定律的综合应用

1.两类动力学问题

(1)从受力情况确定运动情况

如果已知物体的受力情况,可以由牛顿第二定律求出物体的加速度,再通过运动学的规律就可以确定物体的运动情况.

(2)从运动情况确定受力情况

如果已知物体的运动情况,可根据运动学公式求出物体的加速度,再根据牛顿第二定律确定物体所受的力.

特别提醒解决两类动力学基本问题的关键:抓住受力情况和运动情况之间的联系桥梁——加速度.

2.动力学中的多过程问题

任何多过程的复杂物理问题都是由很多的小过程组成,上一过程的末状态是下一过程的初状态,对每一个过程分析后,找出相邻过程的联系点,注意两个过程的连接处,加速度可能突变,但速度不会突变,速度是联系前后两个阶段的桥梁.

例6(2018·金丽衢十二校第二次联考)滑沙是国内新兴的旅游项目,如图5甲所示,即乘坐

滑板从高高的沙山顶自然下滑,随着下滑速度的加快,在有惊无险的瞬间体味到了刺激与快感.其运动可以简化为如图乙所示,一位旅客先后两次从静止下滑,下列v-t图象中实线代表第一次从较低位置滑下,虚线代表第二次从较高的位置滑下,假设斜面和水平地面与滑板之间的动摩擦因数相同,忽略空气阻力,拐弯处速度大小不变,则v-t图象正确的是()

图5

答案 D

解析在斜面上滑板做匀加速运动a1=g sin θ-μg cos θ,在水平地面上滑板做匀减速运动a2=μg,可知两次下滑过程中在斜面上加速度相同,在地面上加速度也相同,第二次到达斜面底端时速度大,故D正确.

例7(2017·浙江省重点中学热身联考)如图6所示为一滑草场的滑道示意图.某条滑道由AB、BC、CD三段组成,其中AB段和BC段与水平面的倾角分别为53°和37°,且这两段长度均为L=28 m.载人滑草车从坡顶A点由静止开始自由下滑,先加速通过AB段,再匀速通过BC段,最后停在水平滑道CD段上的D点.若滑草车与草地之间的动摩擦因数均为μ,不计滑草车在滑道交接处的能量损失,g取10 m/s2,sin 37°=0.6,sin 53°=0.8).求:

图6

(1)滑草车与草地之间的动摩擦因数μ;

(2)滑草车经过B点时的速度大小v B;

(3)滑草车从A点运动至D的时间.

答案 (1)0.75 (2)14 m/s (3)7.87 s 解析 (1)BC 段:mg sin 37°-μmg cos 37°=0 解得μ=0.75

(2)AB 段,由牛顿第二定律得:ma 1=mg sin 53°-μmg cos 53° v B 2=2a 1L 解得v B =14 m/s (3)AB 段t 1=v B

a 1=4 s

BC 段t 2=L

v B =2 s

CD 段ma 3=μmg t 3=v B

a 3

≈1.87 s

故t =t 1+t 2+t 3=7.87 s. 六、超重与失重 对超重与失重的理解

例8 (2018·台州市月考)萧山区某中学举行了秋季运动会,如图7所示是小明同学参加跳高决赛的现场,他以背越式跳过1.65 m 的高度拿到了本届校运会的亚军,为班级争了光.若忽

略空气阻力,则下列说法正确的是()

图7

A.小明在下降过程中处于失重状态

B.小明脚离地起跳以后在上升过程中处于超重状态

C.小明起跳时地面对他的支持力等于他的重力

D.小明越过横杆以后在下降过程中重力消失了

答案 A

解析小明在下降过程中只受重力的作用,有向下的重力加速度,处于完全失重状态,故A 正确;脚离地起跳以后在上升过程中,小明只受重力的作用,有向下的重力加速度,处于完全失重状态,故B错误;小明起跳的初始阶段加速度的方向向上,所以地面对他的支持力大于他的重力,故C错误;小明越过横杆以后在下降过程中,他的重力保持不变,并没有消失,故D错误.

1.(2017·浙江学考模拟)如图8所示,甲、乙两位同学坐在匀速运动的列车上,列车的运动方向与乙的朝向相同.在他们之间的水平桌面上放有一个鸡蛋,鸡蛋相对列车静止.当列车紧急刹车时,他们观察到的现象是()

图8

A.鸡蛋向甲运动

B.鸡蛋向乙运动

C.鸡蛋静止不动

D.鸡蛋在原位置转动

答案 A

解析由于惯性,鸡蛋在列车紧急刹车时继续向前即向甲运动,故A正确.2.(2018·台州中学第四次统练)物理是一门实验性学科,要用到很多测量仪器,下列哪种仪器测量的不是国际单位制中的基本量()

答案 C

3.(2018·宁波市第一学期期末联考)女子十米台跳水比赛中,运动员从跳台斜向上跳起,一段时间后落入水中,如图9所示,不计空气阻力,下列说法正确的是()

图9

A.她在空中上升过程中处于超重状态

B.她在空中下落过程中做自由落体运动

C.她即将入水时的速度为整个跳水过程中的最大速度

D.入水过程中,水对她的作用力大小等于她对水的作用力大小

答案 D

解析人在上升过程中只受到重力,处于失重状态,A错误;在最高点有水平速度,B错误;入水后当重力等于人受到的水的作用力时,速度最大,C错误;根据牛顿第三定律可知,D 正确.

4.(2018·浙江6月学考·14)雨滴大约在1.5 km左右的高空形成并开始下落,落到地面的速度一般不超过8 m/s.若雨滴沿直线下落,则其下落过程()

A .做自由落体运动

B .加速度逐渐增大

C .总时间约为17 s

D .加速度小于重力加速度 答案 D

解析 雨滴在下落过程中,由于空气阻力作用,且空气阻力随速度变大而变大,因此下落过程中加速度逐渐减小,直到当重力等于空气阻力时,即加速度为零时,雨滴下落速度达到最大值,因此下落过程中,不能视为自由落体运动,下落时间也无法求解,所以正确答案为D. 5.(2017·浙江4月学考·19)如图10所示,游船从某码头沿直线行驶到湖对岸,小明对过程进行观测并记录数据如下表:

图10

(1)求游船匀加速运动过程中加速度大小a 1及位移大小x 1;

(2)若游船和游客的总质量M =8 000 kg ,求游船匀减速运动过程中所受的合力大小F ; (3)求游船在整个行驶过程中的平均速度大小. 答案 (1)0.105 m /s 2 84 m (2)400 N (3)3.86 m/s 解析 (1)由运动学公式知a 1=Δv

Δt =0.105 m/s 2

位移x 1=1

2

a 1t 12=84 m

(2)匀减速运动过程中加速度大小

a 2=|v 1-v |t 3

=0.05 m/s 2

由牛顿第二定律得F =Ma 2=400 N (3)总位移x =x 1+v t 2+v +v 1

2t 3=2 780 m

平均速度大小v =x

t

≈3.86 m/s.

一、选择题

1.(2018·浙江6月学考·1)下列属于国际单位制中基本单位符号的是( ) A .m /s B .kg C .m/s 2 D .kg·m/s 2 答案 B

2.(2018·浙江4月学考·8)如图1所示,小芳在体重计上完成下蹲动作.下列F -t 图象能反映体重计示数随时间变化的是( )

图1

答案 C

解析 体重计的读数与人所受的支持力大小相等,下蹲过程人的速度从0开始最后又回到0,

因此人先加速运动后减速运动,加速度方向先向下后向上,即先失重后超重,所以支持力先小于重力,后大于重力,因此选C.

3.(2017·台州市临海杜桥中学月考)如图2,鸟沿虚线斜向上加速飞行,空气对其作用力可能是()

图2

A.F1B.F2

C.F3D.F4

答案 B

解析小鸟沿虚线斜向上加速飞行,说明合外力方向沿虚线斜向上,小鸟受两个力的作用,即空气的作用力和重力,重力的方向竖直向下,空气的作用力可能沿F2方向,不可能沿F1、F3、F4方向,故选B.

4.如图3所示,小文同学在电梯中体验加速上升和加速下降的过程,这两个过程()

图3

A.都是超重过程

B.都是失重过程

C.加速上升是失重过程,加速下降是超重过程

D.加速上升是超重过程,加速下降是失重过程

答案 D

解析加速上升时加速度方向向上,故支持力大于重力,为超重;加速下降时加速度方向向下,支持力小于重力,为失重,故D正确.

5.(2018·台州中学第一次统练)如图4所示是我国首次立式风洞跳伞实验,风洞喷出竖直向上

的气流将实验者加速向上“托起”.此过程中()

A.人受到的重力和气流对人的作用力是一对作用力与反作用力

B.人处于失重状态

C.人受到的重力大小等于气流对人的作用力大小

D.气流对人的作用力等于人对气流的作用力

答案 D

解析气流对人的作用力与人对气流的作用力是一对作用力和反作用力,大小相等,A错误,D正确;人加速向上运动,气流对人的作用力大于人的重力,C错误;人加速上升,处于超重状态,B错误.

6.(2018·温州市适应性模拟)2017年6月5日起,温州司乘人员(包括后排)不系安全带都将被罚款.假定某次紧急刹车时,由于安全带的作用,质量为70 kg的乘员获得大小约为6 m/s2的加速度,则安全带对乘员的作用力约为()

A.200 N B.420 N

C.600 N D.800 N

答案 B

解析由F=ma得安全带对乘员的作用力约为420 N,故B正确.

7.(2018·丽水、衢州、湖州三地市教学质量检测)如图5所示,汽车里有一水平放置的硅胶魔力贴,魔力贴上放置一质量为m的小花瓶.若汽车在水平公路上向前做匀加速直线运动,则以下说法正确的是()

图5

A.小花瓶受到的静摩擦力水平向前

B.小花瓶受到的静摩擦力不断增大

C.小花瓶所受的合力为零

D.魔力贴对小花瓶的作用力为mg

答案 A

解析小花瓶随汽车一起向前做匀加速直线运动,根据牛顿第二定律知小花瓶所受合力恒定且等于静摩擦力F f,方向水平向前,故A正确,B、C错误;魔力贴对小花瓶的作用力大小为F f2+(mg)2,故D错误.

8.如图6所示,用弹簧秤水平拉水平桌面上的物块,下列说法正确的是()

图6

A.物块一定受到2个力的作用

B.弹簧秤对手和对物块的力是一对作用力和反作用力

C.若物块静止,是因为弹簧秤的拉力小于桌面对物块的摩擦力

D.若物块静止,是因为弹簧秤的拉力等于桌面对物块的摩擦力

答案 D

9.(2017·台州市通测)如图7所示,一人站在电梯中的体重计上,随电梯一起运动.下列各种情况中,体重计的示数最大的是(g取10 m/s2)()

图7

A.电梯匀减速上升,加速度的大小为1.0 m/s2

B.电梯匀加速上升,加速度的大小为1.0 m/s2

C.电梯匀减速下降,加速度的大小为0.5 m/s2

D.电梯匀加速下降,加速度的大小为0.5 m/s2

答案 B

解析设人的质量为m,电梯匀减速上升,加速度向下,由牛顿第二定律得:

mg-F1=ma1,解得F1=m(g-a1)=9m.

电梯匀加速上升,加速度向上,由牛顿第二定律得:

F2-mg=ma2,解得F2=m(g+a2)=11m.

电梯匀减速下降,加速度向上,由牛顿第二定律得:

F3-mg=ma3,解得F3=m(g+a3)=10.5m.

电梯匀加速下降,加速度向下,由牛顿第二定律得:

mg-F4=ma4,解得F4=m(g-a4)=9.5m.

10.如图8所示,质量为m的物体放在质量为M、倾角为θ的斜面体上,斜面体置于粗糙的水平地面上,用平行于斜面向下的力F拉物体使其沿斜面向下匀速运动,斜面体始终静止,重力加速度为g,则下列说法正确的是()

图8

A.地面对斜面体的摩擦力大小为F cos θ

B.地面对斜面体的支持力为(M+m)g

C.物体对斜面体的摩擦力的大小为F

D.斜面体对物体的作用力竖直向上

答案 A

解析由于斜面体和物体都处于平衡状态,将斜面体和物体看成一个整体,由受力情况可得:地面对斜面体的摩擦力大小为F cos θ,地面对斜面体的支持力大小为(M+m)g+F sin θ,故A 对,B错;隔离物体进行受力分析,斜面体对物体的摩擦力大小为F+mg sin θ,由牛顿第三定律,物体对斜面体的摩擦力大小为F+mg sin θ,故C错;将斜面体作为施力物体,则斜面体对物体的作用力即为物体受到的支持力与摩擦力的合力,由力的合成可知斜面体对物体的作用力与物体的重力和F的合力大小相等、方向相反,故斜面体对物体的作用力不在竖直方向上,D错.

11.(2017·嘉兴市基础测试)建造房屋时,一般保持底边L不变,要设计好屋顶的倾角θ,以便下雨时落在屋顶的雨滴能尽快地滑离屋顶,其简化模型如图9.设雨滴下滑时可视为无初速度、

无摩擦的运动,从顶端O下滑到屋檐M的时间为t,到达M点时的速度为v,则()

图9

A.θ越大,v越大B.θ越小,v越大

C.θ越大,t越大D.θ越小,t越大

答案 A

解析由牛顿第二定律和运动学规律得

L

2cos θ=1

2g sin θ·t

2,v2=2g sin θ·L

2cos θ

解得t=

2L

g sin 2θ,v=gL tan θ,

分析表达式可得A选项正确.

12.(2018·温州市期末)利用传感器和计算机可以研究力的大小变化的情况.实验时某消防员从平台上自由下落,在t1时刻双脚触地,他顺势弯曲双腿.计算机显示消防员双脚触地后的过程中,他受到地面支持力F随时间t变化的图象如图10所示.根据图象提供的信息,以下判断正确的是()

图10

A.在t1至t2时间内,消防员做减速运动

B.在t2至t3时间内,消防员处于失重状态

C.t2时刻,消防员的速度达到最大

D.t3时刻,消防员的速度达到最大

答案 C

解析在t1至t2时间内,支持力的大小小于重力,加速度方向向下,消防员在加速下降,A

选项错误;在t 2至t 3时间内,支持力的大小大于重力,加速度方向向上,消防员处于超重状态,B 选项错误;t 2时刻之前消防员做加速运动,而此后消防员做减速运动,故t 2时刻消防员的速度达到最大,故C 选项正确,D 选项错误. 二、非选择题

13.(2018·台州中学第四次统练)如图11所示,经过专业训练的杂技运动员进行爬杆表演,运动员爬上8 m 高的固定竖直金属杆,然后双腿夹紧金属杆倒立,头顶离地面7 m 高,运动员通过双腿对金属杆施加不同的压力来控制身体的运动情况.假设运动员保持如图姿势,从静止开始先匀加速下滑3 m ,速度达到4 m /s 时开始匀减速下滑,当运动员头顶刚要接触地面时,速度恰好减为零,设运动员质量为50 kg.(空气阻力不计,g 取10 m/s 2)求:

图11

(1)运动员匀加速下滑时的加速度大小; (2)运动员匀减速下滑时所受摩擦力的大小; (3)运动员完成全程所需的总时间. 答案 (1)8

3

m/s 2 (2)600 N (3)3.5 s

解析 (1)运动员匀加速下滑时,由运动学公式得: v 2=2a 1x 1

代入数据得:a 1=8

3 m/s 2

(2)运动员匀减速下滑时v 2=2a 2x 2 a 2=2 m/s 2

由牛顿第二定律得:F f -mg =ma 2 解得F f =600 N

(3)由运动学公式得:v =a 1t 1 v =a 2t 2 t =t 1+t 2 解得t =3.5 s

14.(2016·浙江4月选考·19)如图12是上海中心大厦,小明乘坐大厦快速电梯,从底层到达第119层观光平台仅用时55 s .若电梯先以加速度a 1做匀加速运动,达到最大速度18 m /s.然后以最大速度匀速运动,最后以加速度a 2做匀减速运动恰好到达观光平台.假定观光平台高度为549 m ,取g =10 m/s 2.

图12

(1)若电梯经过20 s 匀加速达到最大速度,求加速度a 1的大小及上升高度h ;

(2)在(1)问中的匀加速上升过程中,若小明的质量为60 kg ,求小明对电梯地板的压力; (3)求电梯匀速运动的时间.

答案 (1)0.9 m/s 2 180 m (2)654 N ,方向竖直向下 (3)6 s 解析 (1)由运动学公式可得 a 1=v m t 1=18

20 m /s 2=0.9 m/s 2

h =12a 1t 12=1

2

×0.9×202 m =180 m (2)对小明受力分析,根据牛顿第二定律可得 F N -mg =ma 1

则F N =mg +ma 1=654 N 根据牛顿第三定律得:

高考物理牛顿运动定律的应用练习题及答案

高考物理牛顿运动定律的应用练习题及答案 一、高中物理精讲专题测试牛顿运动定律的应用 1.如图所示,倾角α=30°的足够长传送带上有一长L=1.0m ,质量M=0.5kg 的薄木板,木板的最右端叠放质量为m=0.3kg 的小木块.对木板施加一沿传送带向上的恒力F ,同时让传送带逆时针转动,运行速度v=1.0m/s 。已知木板与物块间动摩擦因数μ1=3 ,木板与传送带间的动摩擦因数μ2= 3 4 ,取g=10m/s 2,最大静摩擦力等于滑动摩擦力。 (1)若在恒力F 作用下,薄木板保持静止不动,通过计算判定小木块所处的状态; (2)若小木块和薄木板相对静止,一起沿传送带向上滑动,求所施恒力的最大值F m ; (3)若F=10N ,木板与物块经过多长时间分离?分离前的这段时间内,木板、木块、传送带组成系统产生的热量Q 。 【答案】(1)木块处于静止状态;(2)9.0N (3)1s 12J 【解析】 【详解】 (1)对小木块受力分析如图甲: 木块重力沿斜面的分力:1 sin 2 mg mg α= 斜面对木块的最大静摩擦力:13 cos 4 m f mg mg μα== 由于:sin m f mg α> 所以,小木块处于静止状态; (2)设小木块恰好不相对木板滑动的加速度为a ,小木块受力如图乙所示,则 1cos sin mg mg ma μαα-=

木板受力如图丙所示,则:()21sin cos cos m F Mg M m g mg Ma αμαμα--+-= 解得:()9 9.0N 8 m F M m g = += (3)因为F=10N>9N ,所以两者发生相对滑动 对小木块有:2 1cos sin 2.5m/s a g g μαα=-= 对长木棒受力如图丙所示 ()21sin cos cos F Mg M m g mg Ma αμαμα--+-'= 解得24.5m/s a =' 由几何关系有:221122 L a t at =-' 解得1t s = 全过程中产生的热量有两处,则 ()2121231cos cos 2Q Q Q mgL M m g vt a t μαμα?? =+=+++ ??? 解得:12J Q =。 2.如图所示,有1、2、3三个质量均为m =1kg 的物体,物体2与物体3通过不可伸长轻绳连接,跨过光滑的定滑轮,设长板2到定滑轮足够远,物体3离地面高H =5.75m , 物体1与长板2之间的动摩擦因数μ=O .2.长板2在光滑的桌面上从静止开始释放,同时物体1(视为质点)在长板2的左端以v =4m/s 的初速度开始运动,运动过程中恰好没有从长板2的右端掉下.(取g =10m/s2)求: (1)长板2开始运动时的加速度大小;

《牛顿运动定律的运用》教案

牛顿运动定律的应用 教学目标 一、 知识目标 1. 知道运用牛顿运动定律解题的方法 2. 进一步学习对物体进行正确的受力分析 二、 能力目标 1. 培养学生分析问题和总结归纳的能力 2. 培养学生运用所学知识解决实际问题的能力 三、 德育目标 1. 培养学生形成积极思维,解题规范的良好习惯 教学重点 应用牛顿运动定律解决的两类力学问题及这两类问题的基本方法 教学难点 应用牛顿运动定律解题的基本思路和方法 教学方法 实例分析发归纳法讲练结合法 教学过程 一、 导入新课 通过前面几节课的学习,我们已学习了牛顿运动定律,本节课我们就来学习怎样运用牛顿运动定律解决动力学问题。 二、 新课教学 (一)、牛顿运动定律解答的两类问题 1.牛顿运动定律确定了运动和力的关系,使我们能够把物体的受力情况和运动情况联系起来,由此用牛顿运动定律解决的问题可分为两类: a.已知物体的受力情况,确定物体的运动情况。 b.已知物体的运动情况,求解物体的受力情况 2.用投影片概括用牛顿运动定律解决两类问题的基本思路 已知物体的受力情况???→?=ma F 据 求得a ?→?据t v v s as v v at v v at v s t t t ......2210202020可求得???? ?????=-?→?+=+= 已知物体的运动情况???→?????→?=???????=-+=+=ma F as v v at v s at v v a t t 据据求得2221022 00求得物体的受力情况 3.总结 由上分析知,无论是哪种类型的题目,物体的加速度都是核心,是联结力和运动的桥梁。 (二)已知物体的受力情况,求解物体的运动情况

牛顿运动定律的应用学案

牛顿运动定律的应用学案 一.学习目标: 能用牛顿运动定律解决两类主要问题:已知物体的受力情况确定物体的运动情况、已知物体的运动情况确定受力情况。同时能够掌握应用牛顿运动定律解决问题的基本思路和方法,初步体会牛顿运动定律对社会发展的影响,建立应用科学知识解决实际问题的意识。 二.重点难点 能够灵活的选择和应用解题方法来处理牛顿运动定律相关问题。 三.课前检测 1.牛顿第二定律的内容? 四.课堂练习习题 1.(多选)如图所示,表示某小球所受的合力与时间关系,各段的合力大小相同,作用时间相同, 设小球从静止开始运动,由此可以判定( ) A.小球向前运动,再返回停止 B.小球向前运动,再返回不会停止 C.小球始终向前运动 D.小球在4秒末速度为0 2.放在水平地面上的一物块,受到方向不变的水平推力F的作用,力F的大小与时间t的关系和物块速度v与时间t的关系如图所示. 取重力加速度g=10 m/s2. 试利用两图线求 (1)物块在运动过程中受到滑动摩擦力大小; (2)物块在3~6s的加速度大小; (3)物块与地面间的动摩擦因数.

3.一物体以初速度20m/s自倾角为37°的斜面向上滑动,2.5秒后速度为零, (1)求斜面与物体间的动摩擦因数。 (g=10m/s2) (2)若它又滑下,最终到达斜面底端,又要用去多长时间? 4.质量为m=4 kg的小物块在一个平行于斜面的拉力F=40N的作用下,从静止开始沿斜面向上滑动,如图8所示。已知斜面的倾角α=37°,物块与斜面间的动摩擦因数μ=0.25,斜面足够长,力F作用5s后立即撤去,求: (1)力F作用时合力和加速度为多少? (2)前5 s内物块的位移大小及物块在5 s末的速率;8 (3)撤去外力后向上滑行多长时间? (4)撤去外力F后4 s末物块的速度。 5.某研究性学习小组利用力传感器研究小球与竖直挡板间的作用力,实验装置如图所示,已知斜面倾角为45°,光滑小球的质量m=3 kg,力传感器固定在竖直挡板上。求:(g=10 m/s2) (1)当整个装置静止时,力传感器的示数。 (3)当整个装置向右做匀加速直线运动时,力传 感器示数为36 N,此时装置的加速度大小。 (2)某次整个装置在水平方向做匀加速直线运动时,加速度为10m/s2?力传感器示数为多少?

牛顿运动定律教案

§ 3—3 牛顿运动定律的综合应用 勉县一中张华【考纲分析】“牛顿运动定律的应用”要求为II类,是高考必考的21个考点之一。超重和失重要求 为I类,也是考试的高频考点。由于整合了物体的受力分析和运动状态分析,使得本节成为高考的热点和必考内容。受力分析和运动状态分析,是解决物理问题的两种基本方法。并且,本单元的学习既是后继“动能”和“动量”等复杂物理过程分析的基础,也是解决“带电粒子在电场、磁场中运动”等问题的基本方法。 【学情分析】由于本部分知识对分析、综合和解决实际问题的能力要求高,不少同学在此感到困惑,疑难较多,主要反映在研究对象的选择和物理过程的分析上及规范解答上。 【教学目标】 一、知识与技能 1.超重和失重的的概念及实质; 2?用整体法和隔离法处理简单的连接体问题; 3?针对计算题分析、规范解答、列得分点方程加强训练。 二、过程与方法 掌握应用牛顿运动定律解决问题的基本思路和方法,学会用牛顿运动定律和运动学公式解决力学问题。 三、情感态度与价值观 通过相关问题的分析和解决,培养学生的思维严谨和科学精神。 【教学重点】整体法和隔离法的选取。 【教学难点】物体受力情况和运动状态的分析;处理实际问题时“物理模型”和“物理情景”的建立。 【教学方法】分析法、讨论法、图示法。 【课时计划】3课时 教学过程: 第1课时超重失重连接体问题 一.复习回顾: 上一节复习过的牛顿第二定律讲过和做过的典型题型都有哪些? 二.本节考点梳理: 考点1超重和失重 1.视重 (1)当物体挂在弹簧测力计下或放在水平台秤上时,弹簧测力计或台秤的示数称为视重。 (2)视重大小等于弹簧测力计所受物体的拉力或台秤所受物体的压力。 2.超重和失重: 定义:物体对悬挂物的拉力(或对支持物的压力)大于物体所受重力的现象。 超重』条件:物体具有竖直向上的加速度。 原理式:F-mg=ma 所以F=m(g+a)>mg '-运动形式:加速上升或减速下降。 屜义:物体对悬挂物的拉力(或对支持物的压力)小于物体所受重力的现象。失重Y 条件:物体具有竖直向下的加速度。 原理式:mg_F =ma 所以F=m(g_a)

高考物理牛顿运动定律的应用专题训练答案及解析

高考物理牛顿运动定律的应用专题训练答案及解析 一、高中物理精讲专题测试牛顿运动定律的应用 1.一长木板置于粗糙水平地面上,木板左端放置一小物块,在木板右方有一墙壁,木板右端与墙壁的距离为4.5m ,如图(a )所示.0t =时刻开始,小物块与木板一起以共同速度向右运动,直至1t s =时木板与墙壁碰撞(碰撞时间极短).碰撞前后木板速度大小不变,方向相反;运动过程中小物块始终未离开木板.已知碰撞后1s 时间内小物块的v t -图线如图(b )所示.木板的质量是小物块质量的15倍,重力加速度大小g 取10m/s 2.求 (1)木板与地面间的动摩擦因数1μ及小物块与木板间的动摩擦因数2μ; (2)木板的最小长度; (3)木板右端离墙壁的最终距离. 【答案】(1)10.1μ=20.4μ=(2)6m (3)6.5m 【解析】 (1)根据图像可以判定碰撞前木块与木板共同速度为v 4m/s = 碰撞后木板速度水平向左,大小也是v 4m/s = 木块受到滑动摩擦力而向右做匀减速,根据牛顿第二定律有24/0/1m s m s g s μ-= 解得20.4μ= 木板与墙壁碰撞前,匀减速运动时间1t s =,位移 4.5x m =,末速度v 4m/s = 其逆运动则为匀加速直线运动可得212 x vt at =+ 带入可得21/a m s = 木块和木板整体受力分析,滑动摩擦力提供合外力,即1g a μ= 可得10.1μ= (2)碰撞后,木板向左匀减速,依据牛顿第二定律有121()M m g mg Ma μμ++= 可得214 /3 a m s = 对滑块,则有加速度2 24/a m s = 滑块速度先减小到0,此时碰后时间为11t s = 此时,木板向左的位移为2111111023x vt a t m =- =末速度18 /3 v m s =

高中物理牛顿运动定律的应用模拟试题含解析

高中物理牛顿运动定律的应用模拟试题含解析 一、高中物理精讲专题测试牛顿运动定律的应用 1.某智能分拣装置如图所示,A为包裹箱,BC为传送带.传送带保持静止,包裹P 以初速度v0滑上传送带,当P滑至传送带底端时,该包裹经系统扫描检测,发现不应由A收纳,则被拦停在B处,且系统启动传送带轮转动,将包裹送回C处.已知v0=3m/s,包裹P 与传送带间的动摩擦因数μ=0.8,传送带与水平方向夹角θ=37o,传送带BC长度L=10m,重力加速度g=10m/s2,sin37o=0.6,cos37o=0.8,求: (1)包裹P沿传送带下滑过程中的加速度大小和方向; (2)包裹P到达B时的速度大小; (3)若传送带匀速转动速度v=2m/s,包裹P经多长时间从B处由静止被送回到C处;(4)若传送带从静止开始以加速度a加速转动,请写出包裹P送回C处的速度v c与a的关系式,并画出v c2-a图象. 【答案】(1)0.4m/s2 方向:沿传送带向上(2)1m/s(3)7.5s (4) 2 2 2 200.4/ 80.4/ c a a m s v a m s ?< =? ≥ ? () () 如图所示: 【解析】 【分析】 先根据牛顿第二定律求出包裹的加速度,再由速度时间公式求包裹加速至速度等于传送带速度的时间,由位移公式求出匀加速的位移,再求匀速运动的时间,从而求得总时间,这是解决传送带时间问题的基本思路,最后对加速度a进行讨论分析得到v c2-a的关系,从而画出图像。 【详解】

(1)包裹下滑时根据牛顿第二定律有:1sin cos mg mg ma θμθ-= 代入数据得:2 10.4/a m s =-,方向:沿传送带向上; (2)包裹P 沿传送带由B 到C 过程中根据速度与位移关系可知:220 L=2v v a - 代入数据得:1/v m s =; (3)包裹P 向上匀加速运动根据牛顿第二定律有:2cos sin mg mg ma μθθ-= 得2 20.4/a m s = 当包裹P 的速度达到传送带的速度所用时间为:12250.4 v t s s a = == 速度从零增加到等于传送带速度时通过的位移有:2245220.4 v x m m a = ==? 因为x

牛顿运动定律学案一

§4.1 《牛顿第一、第三定律》复习学案 【学习目标】 1.理解牛顿第一定律的内容和意义。 2.知道什么是惯性,会正确解释有关惯性问题。 3.知道作用力和反作用力的概念,理解牛顿第三定律的确切含义。 【课前复习】 一、牛顿第一定律 1.牛顿第一定律的内容:一切物体总保持状态或状态,直到有迫使它改变这种状态为止。 2.牛顿第一定律的理解: (1)牛顿第一定律不是由实验直接总结出来的规律,它是牛顿以的理想实验为基础,在总结前人的研究成果、加之丰富的想象而推理得出的一条理想条件下的规律。(2)牛顿第一定律成立的条件是,是理想条件下物体所遵从的规律,在实际情况中,物体所受合外力为零与物体不受任何外力作用是等效的。 (3)牛顿第一定律的意义在于 ①它揭示了一切物体都具有的一种基本属性惯性。 ②它揭示了运动和力的关系:力是的原因,而不是产生运动的原因,也不是维持物体运动的原因,即力是产生加速度的原因。 3.惯性 (1)定义:。 (2)对惯性的理解: ①惯性是物体的固有属性,即一切物体都有惯性,与物体的受力情况及运动状态无关 ②是物体惯性大小的量度,质量大的物体惯性大,质量小的物体惯性小。 ③物体的惯性总是以保持“原状”和反抗“改变”两种形式表现出来:当物体不受外力作用时,惯性表现为保持原运动状态不变,即反抗加速度产生,而在外力一定时,质量越大运动状态越难改变,加速度越小。 ④惯性不是力,惯性是物体具有的保持或状态的性质,力是物体对物体的作用,惯性和力是两个不同的概念。 二、牛顿第三定律 1.内容:。 2.理解 (1)物体各种形式的作用都是相互的,作用力与反作用力总是产生、变化,同时消失、无先后之分。 (2)作用力与反作用力总是大小相等、方向相反、作用在同一条直线上。 (3)作用力与反作用力是性质的力。 (4)作用力与反作用力是分别作用在物体上的,既不能合成,也不能抵消,分别作用在各自的物体上产生各自的作用效果。

高一物理《牛顿运动定律的应用》教案

高一物理《牛顿运动定律的应用》教案高一物理《牛顿运动定律的应用》教案 教学目标 1、知识目标: (1)能结合物体的运动情况进行受力分析. (2)掌握应用牛顿运动定律解决问题的基本思路和方法,学会用牛顿运动定律和运动学公式解决力学问题. 2、能力目标:培养学生审题能力、分析能力、利用数学解决问题能力、表述能力. 3、情感目标:培养严谨的科学态度,养成良好的思维习惯. 教学建议 教材分析 本节主要通过对典型例题的分析,帮助学生掌握处理动力学两类问题的思路和方法.这两类问题是:已知物体的受力情况,求解物体的运动情况;已知物体的运动情况,求解物体的受力. 教法建议 1、总结受力分析的方法,让学生能够正确、快速的对研究对象进行受力分析. 2、强调解决动力学问题的一般步骤是:确定研究对象;分析物体的受力情况和运动情况;列方程求解;对结果的合理性讨论.要让学生逐步习惯于对问题先作定性和半定量分析,弄清问题的物理情景后再

动笔算,并养成画情景图的好习惯. 3、根据学生的实际情况,对这部分内容分层次要求,即解决两类基本问题——→解决斜面问题——→较简单的连接体问题,建议该节内容用2-3节课完成. 教学设计示例 教学重点:物体的受力分析;应用牛顿运动定律解决两类问题的方法和思路. 教学难点:物体的受力分析;如何正确运用力和运动关系处理问题. 示例: 一、受力分析方法小结 通过基本练习,小结受力分析方法.(让学生说,老师必要时补充) 1、练习:请对下例四幅图中的A、B物体进行受力分析. 答案: 2、受力分析方法小结 (1)明确研究对象,把它从周围物体中隔离出来; (2)按重力、弹力、摩擦力、外力顺序进行受力分析; (3)注意:分析各力的依据和方法:产生条件;物体所受合外力与加速度方向相同;分析静摩擦力可用假设光滑法. 不多力、不丢力的方法:绕物一周分析受力;每分析一力均有施力物体;合力、分力不要重复分析,只保留实际受到的力. 二、动力学的两类基本问题

【物理】物理牛顿运动定律的应用练习题

【物理】物理牛顿运动定律的应用练习题 一、高中物理精讲专题测试牛顿运动定律的应用 1.如图,质量为m =lkg 的滑块,在水平力作用下静止在倾角为θ=37°的光滑斜面上,离斜面末端B 的高度h =0. 2m ,滑块经过B 位置滑上皮带时无机械能损失,传送带的运行速度为v 0=3m/s ,长为L =1m .今将水平力撤去,当滑块滑 到传送带右端C 时,恰好与传送带速度相同.g 取l0m/s 2.求: (1)水平作用力F 的大小;(已知sin37°=0.6 cos37°=0.8) (2)滑块滑到B 点的速度v 和传送带的动摩擦因数μ; (3)滑块在传送带上滑行的整个过程中产生的热量. 【答案】(1)7.5N (2)0.25(3)0.5J 【解析】 【分析】 【详解】 (1)滑块受到水平推力F . 重力mg 和支持力F N 而处于平衡状态,由平衡条件可知,水平推力F=mg tan θ, 代入数据得: F =7.5N. (2)设滑块从高为h 处下滑,到达斜面底端速度为v ,下滑过程机械能守恒, 故有: mgh = 212 mv 解得 v 2gh ; 滑块滑上传送带时的速度小于传送带速度,则滑块在传送带上由于受到向右的滑动摩擦力而做匀加速运动; 根据动能定理有: μmgL = 2201122 mv mv 代入数据得: μ=0.25 (3)设滑块在传送带上运动的时间为t ,则t 时间内传送带的位移为: x=v 0t 对物体有: v 0=v ?at

ma=μmg 滑块相对传送带滑动的位移为: △x=L?x 相对滑动产生的热量为: Q=μmg△x 代值解得: Q=0.5J 【点睛】 对滑块受力分析,由共点力的平衡条件可得出水平作用力的大小;根据机械能守恒可求滑块滑上传送带上时的速度;由动能定理可求得动摩擦因数;热量与滑块和传送带间的相对位移成正比,即Q=fs,由运动学公式求得传送带通过的位移,即可求得相对位移. 2.如图,有一质量为M=2kg的平板车静止在光滑的水平地面上,现有质量均为m=1kg的小物块A和B(均可视为质点),由车上P处开始,A以初速度=2m/s向左运动,同时B 以=4m/s向右运动,最终A、B两物块恰好停在小车两端没有脱离小车,两物块与小车间的动摩擦因数都为μ=0.1,取,求: (1)开始时B离小车右端的距离; (2)从A、B开始运动计时,经t=6s小车离原位置的距离。 【答案】(1)B离右端距离(2)小车在6s内向右走的总距离: 【解析】(1)设最后达到共同速度v,整个系统动量守恒,能量守恒 解得:, A离左端距离,运动到左端历时,在A运动至左端前,木板静止 ,, 解得 B离右端距离 (2)从开始到达共速历时,,, 解得 小车在前静止,在至之间以a向右加速: 小车向右走位移

导学案:牛顿运动定律的应用

专题:牛顿运动定律的应用导学案 二、两类动力学问题 1、已知受力求运动 例题1:(2019学考)一个质量m=4Kg的木箱静止放置在水平地面上,某同学用F=18N的水平推力推动木箱做匀加速直线运动,已知木箱与地面之间的动摩擦因数为0.3,重力加速度g=10m/s2。求: (1)木箱受到的滑动摩擦力大小; (2)木箱运动的加速度大小; (3)木箱在2s末的速度大小。 变式1:上题若将力F改为20N,求:木箱在5s末的位移大小。 2、已知运动求受力 例题2:(2019学考)某人驾驶一辆新型电动汽车在水平路面上从静止开始做匀加速直线运动,汽车行驶了5s时速度达到10m/s。若人与汽车的总质量m=800kg,汽车所受阻力为F阻=160N。求: (1)汽车的加速度大小a; (2)汽车的牵引力大小F; (3)汽车牵引力的反作用作用在哪个物体上? 变式2:上题5s时撤除牵引力(汽车所受阻力不变),求: (1)汽车加速度大小; (2)汽车经多长时间停止运动? (3)撤去牵引力后汽车的还能运动多远? 小结: 课后巩固练习: 1、(2019学)一个质量m=10kg的物体静止在水平地面上,在F=20N的水平恒力作用下开始运动,重力加速度g=10m/s2。 (1)若水平面光滑,求物体加速度大小和2秒末的速度大小; (2)若水平面粗糙,且物体与水平面间的动摩擦因数为0.1,求物体加速度大小。 2、(2019学)一个滑雪者,质量m=70kg,从静止开始沿山坡匀加速滑下,已知滑雪者运动的加速度大小为4m/s2,山坡可看成充足长的斜面。 (1)求滑雪者在2s末的速度大小v; (2)求滑雪者受到的合力大小;

《牛顿运动定律》教案完美版

第四章牛顿运动定律 一、牛顿第一定律 [要点] 1.伽利略的成功在于把“明明白白的实验事实和清清楚楚的逻辑推理结合在一起”,物理学从此走上了正确的轨道。 2.力与运动的关系。(1)历史上错误的认识是“运动必须有力来维持” (2)正确的认识是“运动不需要力来维持,力是改变物体运动状态的原因”。 3.对伽利略的理想实验的理解。这个实验的事实依据是运动物体撤去推力后没有立即停止运动,而是运动一段距离后再停止的,摩擦力越小物体运动的距离越长。抓住这些事实依据的本质属性,并作出合理化的推理,这就是伽利略的高明之处,我们要学习的就是这种思维方法。 4.对“改变物体运动状态”的理解——运动状态的改变就是指速度的改变,速度的改变包括速度大小和速度方向的改变,速度改变就意味着存在加速度。 5.维持自己的运动状态不变是一切物体的本质属性,这一本质属性就是惯性。揭示物体的这一本质属性是牛顿第一定律的伟大贡献之一。 惯性:物体具有保持静止状态或匀速直线运动状态的性质叫做惯性。一切物体都具有惯性。 6.牛顿第一定律的内容:切物体在没有受到外力的作用时,总保静止状态或匀速直线运动状态。(1)“一切物体总保持匀速直线运动或者静止状态”——这句话的意思就是说一切物体都有惯性。(2)“除非作用在它上面的力迫使它改变这种状态”——这句话的意思就是外力是产生加速度的原因。 7.任何物理规律都有适用范围,牛顿运动定律只适用于惯性参照系。 8.质量是惯性大小的量度。 二、实验:探究加速度与力、质量的关系 [要点] 1.实验目的:探究加速度与外力、质量三者的关系。这个探究目的是在以下两个定性研究的基础上建立起来的。 (1)小汽车和载重汽车的速度变化量相同时,小汽车用的时间短,说明加速度的大小与物体的质量有关。 (2)竞赛用的小汽车与普通小轿车质量相仿,但竞赛用的小车能获得巨大的牵引力,所以速度的变化比普通小轿车快,说明加速度的大小与外力有关。 2.实验思路:本实验的基本思路是采用控制变量法。 (1)保持物体的质量不变,测量物体在不同外力作用下的加速度,探究加速度与外力的关系。探究的方法采用根据实验数据绘制图象的方法,也可以彩比较的方法,看不同的外力与由此外力产生的加速度的比值有何关系。 (2)保持物体所受的力相同,测量不同质量的物体在该力作用下的加速度,探究加速度与力的关系。探究的方法采用根据实验数据绘制图象的方法。 3.实验方案:本实验要测量的物理量有质量、加速度和外力。测量质量用天平,需要研究的是怎样测量加速度和外力。 (1)测量加速度的方案:采用较多的方案是使用打点计时器,根据连续相等的时间T内的位移之差Δx=a T2求出加速度。条件许可也可以采用气垫导轨和光电门。教材的参考案例效果也比较好。(2)提供并且测量物体所受的外力的方案:由于我们上述测量加速度的方案只能适用于匀变速直线运动,所以我们必须给物体提供一个恒定的外力,并且要测量这个外力。教材的参考案例提供的外力比较容易测量,采用这种方法是不错的选择。 4.对实验结果的分析是本实验的关键。如果根据实验数据描出的a-F图象和a-1/m图象都非常接

牛顿运动定律的应用

第3讲牛顿运动定律的应用 ★考情直播 1.考纲解读 考纲内容能力要求考向定位 1.牛顿定律的应用 2.超重与失重 3.力学单位制1.能利用牛顿第二定 律求解已知受力求运 动和已知运动求受力 的两类动力学问题 2.了解超重、失重现 象,掌握超重、失重、 完全失重的本质 3.了解基本单位和导 出单位,了解国际单 位制 牛顿第二定律的应 用在近几年高考中出 现的频率较高,属于 Ⅱ级要求,主要涉及 到两种典型的动力学 问题,特别是传送带、 相对滑动的系统、弹 簧等问题更是命题的 重点.这些问题都能 很好的考查考试的思 维能力和综合分析能 力. 考点一已知受力求运动 [特别提醒] 已知物体的受力情况求物体运动情况:首先要确定研究对象,对物体进行受力分析,作出受力图,建立坐标系,进行力的正交分解,然后根据牛顿第二定律求加速度a,再根据运动学公式求运动中的某一物理量. 一轻质光滑的定滑轮,一条不可伸长的轻

绳绕过定滑轮分别与物块A 、B 相连,细绳处于伸直状态,物块A 和B 的质量分别为m A =8kg 和m B =2kg ,物块A 与水平桌面间的动摩擦因数μ=0.1,物块B 距地面的高度h =0.15m.桌面上部分的绳足够长.现将物块B 从h 高处由静止释放,直到A 停止运动.求A 在水平桌面上运动的时间.(g=10m/s 2) [解析]对B 研究,由牛顿第二定律得m B g-T=m B a 1 同理,对A :T-f =m A a 1 A N f μ= 0=-g m N A A 代入数值解得21/2.1s m a = B 做匀加速直线运2112 1t a h =;11t a v = 解得s t 5.01= s m v /6.0= B 落地后,A 在摩擦力作用下做匀减速运动2a m f A = ;2 1a v t = 解得:s t 6.02= s t t t 1.121=+= [方法技巧] 本题特别应注意研究对象和研究过程的选取,在B 着地之前,B 处于失重状态,千万不可认为A 所受绳子的拉力和B 的重力相等.当然B 着地之前,我们也可以把A 、B 视为一整体,根据牛顿第二定律求加速度,同学们不妨一试. 考点二 已知运动求受力 [例2]某航空公司的一架客机,在正常航线上作水平飞行时,由于突然受到强大垂直气流的作用,使飞机在10s内高度下降1700m造成众多

牛顿运动定律习题课导学案

牛顿运动定律习题课 【学习目标】 能够用牛顿三大定律解释相关现象和处理相关问题 【学习重点】:理解、熟练掌握牛顿第二定律及应用。 【学习难点】:(1)准确理解力和运动的关系。 (2)通过运动情况判断物体受力。 (3)熟练应用牛顿定律 【方法指导】自主探究、交流讨论、自主归纳 学习过程:自主学习:(看书回答) 一、基础知识1、牛顿第一定律: ,牛顿第一定律定义了力:物体的运动不需要力来维持,力是改变运动状态的原因。 2、牛顿第二定律: ,牛顿第二定律确定了运动和力的关系,使我们能够把物体的运动情况与物体的受力情况联系起来。 3、牛顿第三定律: ,牛顿第三定律说明了作用力与反作用力之间的关系,把相互作用的几个物体联系起来了。 二、基本题型: 类型一:从物体的受力情况确定物体的运动情况 已知物体的受力情况,能够由牛顿第二定律求出物体的________,再通过_______规律确定物体的运动情况。 类型二:从运动情况确定受力情况 已知物体的运动情况,根据________公式求出物体的加速度,于是就能够由牛顿第二定律确定物体所受的___________。 类型三:平衡类问题 可先对物体实行受力分析,根据__力的合成___法则,可转化成二力模型、三力模型、四力模型来处理。 合作探究一 三、解题要点:(1)分析流程图 强调:抓住 力 和 运动 之间的桥梁——加速度,受力分析和运动分析是基础, (2)基本步骤: 四、基本方法:正交分解、整体法、隔离法、三角形法等 五、典型例题 合作探究二 力的合成分解 受力情况 F 1、F 2…… F 合 a 受力情况 v 0、v t 、s 、t F 合=ma 运动学公式

大学物理 第二章牛顿运动定律教案()

第二章牛顿运动定律 教学要求: * 理解力、质量、惯性参考系等概念; * 掌握牛顿三定律及其适用条件,能熟练地用牛顿第二定律求解力学中的两大类问题; * 了解自然力与常见力; * 了解物理量的量纲。 教学内容(学时:2学时): §2-1 牛顿运动定律 §2-2 物理量的单位和量纲 §2-3 自然力与常见力 §2-4 牛顿运动定律的应用 §2-5 非惯性系中的力学问题 * 教学重点: * 掌握牛顿三定律及其适用条件;* 牛顿运动定律的应用(难点:牛顿二定律微分形式)。 作业: 2—03)、2—06)、2—08)、

2—13)、2—15)、2—17)。 ----------------------------------------------------------------------- §2–1 牛顿运动定律 一牛顿运动定律 1.牛顿第一定律(惯性定律) 任何物体都要保持其静止或匀速直线运动的状态,直到外力加于其上迫使它改变运动状态为止。 讨论: (1)肯定了力的概念 从起源看:力是物体间的相互作用。 从效果看:力是改变运动状态的原因,即力是产生加速度的原因。(2)说明了物体具有保持原有运动状态的特性------惯性。 (3)牛顿第一定律中所谈到的物体,实际上指的是质点。

即这里只涉及平动而不涉及 转动,在(2)中所说的惯性指 的是平动的惯性。 (4)牛顿第一定律是大量直观经验和实验事实的抽象概括,不能用实验直接证明。 原因是不受其它物体作用的孤立物体是不存在的。 (5)牛顿第一定律不是对任何参考系都适用。 牛顿第一定律谈到了静止和匀速直线运动,由于运动描述的相对性,必然涉及参考系问题。 例:甲看到物体A静止,乙看到物体A以加速度a向后运动。

2020高考物理一轮复习第三章第3讲牛顿运动定律综合应用学案(含解析)

第3讲 牛顿运动定律综合应用 主干梳理 对点激活 知识点 连接体问题 Ⅱ 1.连接体 多个相互关联的物体连接(叠放、并排或由绳子、细杆联系)在一起构成的□01物体系统称为连接体。 2.外力与内力 (1)外力:系统□ 02之外的物体对系统的作用力。 (2)内力:系统□03内各物体间的相互作用力。 3.整体法和隔离法 (1)整体法:把□ 04加速度相同的物体看做一个整体来研究的方法。 (2)隔离法:求□05系统内物体间的相互作用时,把一个物体隔离出来单独研究的方法。 知识点 临界极值问题 Ⅱ 1.临界或极值条件的标志 (1)有些题目中有“刚好”“恰好”“正好”等字眼,即表明题述的过程存在着□01临界点。 (2)若题目中有“取值范围”“多长时间”“多大距离”等词语,表明题述的过程存在着“起止点”,而这些起止点往往对应□ 02临界状态。 (3)若题目中有“最大”“最小”“至多”“至少”等字眼,表明题述的过程存在着极值,这个极值点往往是临界点。 (4)若题目要求“最终加速度”“稳定速度”等,即是求收尾加速度或收尾速度。 2.四种典型的临界条件 (1)接触与脱离的临界条件:两物体相接触或脱离,临界条件是□03弹力F N =0。 (2)相对滑动的临界条件:两物体相接触且相对静止时,常存在着静摩擦力,则相对滑动的临界条件是□ 04静摩擦力达到最大值。 (3)绳子断裂与松弛的临界条件:绳子所能承受的张力是有限度的,绳子断与不断的临界条件是绳中张力等于□05它所能承受的最大张力,绳子松弛的临界条件是□06F T =0。 (4)加速度变化时,速度达到最值的临界条件:速度达到最大的临界条件是□07a =0,速度为0的临界条件是a 达到□ 08最大。 知识点 多过程问题 Ⅱ 1.多过程问题 很多动力学问题中涉及物体有两个或多个连续的运动过程,在物体不同的运动阶段,物体的□01运动情况和□02受力情况都发生了变化,这类问题称为牛顿运动定律中的多过程问题。

高中牛顿运动定律复习学案教案

《牛顿运动定律》复习学案 一.选择题 1.?以下关于物体运动状态的改变的说法,正确的是 A.?速度大小不变,运动状态就不变 B.?速度方向不变,运动状态就不变 C.?只有速度的大小和方向都变了,才能说运动状态改变了 D.?只要速度的大小或方向有一个变了,运动状态就发生了改变 2.?下面作个说法中正确的是 A.当物体的运动状态发生变化时,它一定受到外力作用 B.?静止或作匀速直线运动的物体,一定不受外力的作用 C.?当物体的速度等于零时,它一定处于平衡状态 D.物体的运动方向一定是它所受的合外力的方向 3.?下列说法中正确的是 A.子弹离开枪口飞出时速度大,力很大,飞行一段时间后速度小,力也就小了 B.作匀速直线运动的物体,所受的合外力一定是零 C.?运动得很快的汽车不容易停下来,是因为汽车运动得越快,惯性越大 D.子弹在空中飞行时受到三个力作用:重力、空气阻力、向前运动的力 4.?关于作用力和反作用力,下列说法中正确的是 A.地球对重物的作用力比重物对地球的作用力大 B.两个物体都外于平衡状态时,作用力与反作用力的大小才相等 C.一个作用力和它的反作用力的合力为零 D.作用力与反作用力总相同性质的力 5.当书本A静止于桌面B上时,下列说法中正确的是 A.A对B的正压力等于A的重力,这两个力是平衡力 B.?B对A的支持力等于A的重力,这两个力是作用力与反作用力 C.?B对A的支持力等于A的重力,这两个力是平衡力 D.?B对A的支持力等于A的重力,这两个力是平衡力 6.马拉车加速前进,则 A.?马拉车的力一定大于车拉马的力B.?马拉车的力可能小于车拉马的力 C.?马拉车的力一定等于车拉马的力 D.?马拉车的力等于车拉马的力跟地面与车的摩擦力之和 7.有关超重和失重,以下说法中正确的是() A.物体处于超重状态时,所受重力增大,处于失重状态时,所受重力减小 B.斜上抛的木箱中的物体处于完全失重状态 C.在沿竖直方向运动的升降机中出现失重现象时,升降机必定处于下降过程 D.在月球表面行走的人处于失重状态 8.如图2所示,一个自由下落的小球,从它接触弹簧开始到弹簧压缩到最短 的过程中,小球的速度和所受合外力的变化情况为() A、速度一直变小直到零 B、速度先变大,然后变小直到为零 C、合外力一直变小,方向向上 D、合外力先变小后变大,方向先向下后向上 图2

牛顿运动定律优秀教案教学提纲

牛顿运动第一定律 教学目的: 1.知道亚里士多德、伽利略等对力和运动的关系的不同认识,了解伽利略的理想实验及其推理和结论,认识理想实验是科学研究的重要方法; 2.理解牛顿第一定律的内容和意义; 3.掌握惯性的概念,会应用惯性解释自然现象; 4.通过问题的分析和研究感悟科学研究的方法和规律。 重点难点:牛顿第一定律的理解和应用 教材处理:将教材第一节部分内容渗透到牛顿运动第一定律的教学过程中,并且在本章的教学过程中不断渗透其思想方法,通过不断深入的理性思维引导,提升感悟认识。 课型:规律建立课 教学方法:以讲授为主,调动学生观察与思维体验 手段:利用手边的钥匙做演示实验,多媒体辅助教学 教学过程 引入: 公共汽车急剎车, 一位男士踩到了一位女士, 女士很生气说:”瞧你这德性.”男士回答:”不是德性, 是惯性.”老师提问:”什么是惯性呢?” 教师演示实验,学生观察实验——引导学生体会、思考力与运动的关系:使一串钥匙:竖直上抛、使其摆动、使其圆周运动, 提出思考问题:为什么小球的运动过程不一样? 学生观察后绝大多数答案:小球受力情况不同。 教师变换条件,演示实验,学生观察实验——引导学生思考,感悟力不是决定具体运动形式唯一因素。 使同一串钥匙落体、上抛、平抛、斜抛 问题:小球受力情况是否相同? 答案:均只受重力 问题:为什么小球的运动过程不一样? 学生对比两次实验,深刻思考反思,有学生说到有惯性! 教师肯定,并且强调初始状态不同。 教师引出新课题: 运动学(kinematics) ——只研究物体怎样运用而不涉及运用与力的关系的理论; 动力学(dynamics) ——研究运动和力的关系的理论。 教师调动学生: 让我们走进牛顿的世界

《牛顿运动定律》章末复习教学设计与反思

《牛顿运动定律》章末复习教学设计与反思 一、教材分析 本章是在前面对运动和力分别研究的基础上的延伸——研究力和运动的关系,建立起牛顿运动定律。牛顿运动定律是动力学的基础,是力学中也是整个物理学的基本规律,正确地理解惯性概念,理解物体间的相互作用的规律,熟练地运用牛顿第二定律解决问题,是本章的学习要求,也为进一步学习今后的知识,提高分析解决问题的能力奠定基础。 本章还涉及到了许多重要的研究方法,如:在牛顿第一定律的研究中采用的理想实验法;牛顿第二定律中的控制变量法;运用牛顿第二定律处理问题时常用的整体法与隔离法,以及单位的规定方法,单位制的创建等。对这些方法要认真体会、理解,以提高认知的境界。 为了更扎实地理解牛顿第二定律,本章第二节安排了实验:探究加速度与力、质量的关系,并提供了参考案例,实验操作方便,规律性强,结论容易获得,控制变量法在此得到了实践。第五节牛顿第三定律的研究引入了传感器并与现代科技产物计算机进行有机的组合,现代科技气息浓厚,实验效果很好。物理知识来源于生活,最终应用于生活,本章的后两节就是牛顿运动定律的简单应用。 二、教学重点: 1、理解力和运动的关系。

2、理解牛顿第一定律,知道质量是物体惯性大小的量度。 3、牛顿第二定律的内容,会用正交分解法和牛顿第二定律解决实际问题。 4、物理公式既确定物理量之间的关系,又确定物理量单位间的关系;基本单位、导出单位和单位制;国际单位制中力学的三个基本单位;单位制在物理学中的重要意义。 5、通过对具体实例的观察和演示实验,认识力的作用是相互的;能找出某个力对应的反作用力,掌握牛顿第三定律的内容,运用牛顿第三定律解释生活中的有关问题。 6、动力学两类基本问题求解基本思路和一般步骤。 7、共点力平衡条件的应用;应用牛顿运动定律解决超、失重问题。 三、教学难点: 1、“不易测量的物理量转化为可测物理量”的实验方法,会对实验误差作初步分析。 2、加速度与物体所受的合力之间的关系(正比性、同体性、瞬时性和矢量性)。 3、利用物理公式得出单位之间的关系;根据物理量单位之间的关系,判断运算表达式是否错误。 4、运用牛顿第三定律解决受力分析中的相互作用力问题;区分平衡力和作用力与反作用力。

高中物理 第四章牛顿运动定律(复习)教案 新人教版必修1高一

第四章牛顿运动定律(复习)教案 ★新课标要求 1、通过实验,探究加速度与质量、物体受力之间的关系。 2、理解牛顿运动定律,用牛顿运动定律解释生活中的有关问题。 3、通过实验认识超重和失重。 4、认识单位制在物理学中的重要意义。知道国际单位制中的力学单位。 ★复习重点 牛顿运动定律的应用 ★教学难点 牛顿运动定律的应用、受力分析。 ★教学方法 复习提问、讲练结合。 ★教学过程 (一)投影全章知识脉络,构建知识体系 (二)本章复习思路突破 Ⅰ物理思维方法 l、理想实验法:它是人们在思想中塑造的理想过程,是一种逻辑推理的思维过程和理论研究的重要思想方法。“理想实验”不同于科学实验,它是在真实的科学实验的基础上,抓主要矛盾,忽略次要矛盾,对实际过程作出更深层次的抽象思维过程。 惯性定律的得出,就是理想实验的一个重要结论。 2、控制变量法:这是物理学上常用的研究方法,在研究三个物理量之间的关系时,先让其中一个量不变,研究另外两个量之间的关系,最后总结三个量之间的关系。在研究牛顿第二定律,确定F、m、a三者关系时,就是采用的这种方法。 3、整体法:这是物理学上的一种常用的思维方法,整体法是把几个物体组成的系统作为一个整体来分析,隔离法是把系统中的某个物体单独拿出来研究。将两种方法相结合灵活运用,将有助于简便解题。 Ⅱ基本解题思路 应用牛顿运动定律解题的一般步骤 1、认真分析题意,明确已知条件和所求量。 2、选取研究对象。所选取的研究对象可以是一个物体,也可以是几个物体组成的整体.同一题目,根据题意和解题需要也可以先后选取不同的研究对象。 3、分析研究对象的受力情况和运动情况。

4、当研究对象所受的外力不在一条直线上时,如果物体只受两个力,可以用平行四边形定则求其合力;如果物体受力较多,一般把它们正交分解到两个方向上去分别求合力;如果物体做直线运动,一般把各个力分解到沿运动方向和垂直运动的方向上。 5、根据牛顿第二定律和运动学公式列方程,物体所受外力、加速度、速度等都可根据规定的正方向按正、负值代入公式,按代数和进行运算。 6、求解方程,检验结果,必要时对结果进行讨论。 (三)知识要点追踪 Ⅰ 物体的受力分析 物体受力分析是力学知识中的基础,也是其重要内容。正确分析物体的受力情况,是研究力学问题的关键,是必须掌握的基本功。 对物体进行受力分析,主要依据力的概念,分析物体所受到的其他物体的作用。具体方法如下: 1、明确研究对象,即首先要确定要分析哪个物体的受力情况。 2、隔离分析:将研究对象从周围环境中隔离出来,分析周围物体对它都施加了哪些作用。 3、按一定顺序分析:先重力,后接触力(弹力、摩擦力)。其中重力是非接触力,容易遗漏,应先分析;弹力和摩擦力的有无要依据其产生的条件认真分析。 4、画好受力分析图。要按顺序检查受力分析是否全面,做到不“多力”也不“少力”。 Ⅱ 动力学的两类基本问题 1、知道物体的受力情况确定物体的运动情况 2、知道物体的运动情况确定物体的受力情况 3、两类动力学问题的解题思路图解 注:我们遇到的问题中,物体受力情况一般不变,即受恒力作用,物体做匀变速直线运动,故常用的运动学公式为匀变速直线运动公式,如 2220000/21,,2,22 t v v x v v at x v t at v v ax v v t +=+=+-====等 (四)本章专题剖析 [例1]把一个质量是2kg 的物块放在水平面上,用12 N 的水平拉力使物体从静止开始 运动,物块与水平面的动摩擦因数为0.2,物块运动2 s 末撤去拉力,g 取10m/s 2.求: (1)2s 末物块的瞬时速度. (2)此后物块在水平面上还能滑行的最大距离. 解析:(1)前2秒内,有F - f =ma 1,f =μΝ, F N =mg ,则 m/s 8,,m/s 41121===-=t a v m mg F a μ 牛顿第二定律 加速度a 运动学公式 运动情况 第一类问题 受力情况 加速度a 另一类问题 牛顿第二定律 运动学公式

相关主题
文本预览
相关文档 最新文档