当前位置:文档之家› 控制理论的经典分析

控制理论的经典分析

控制理论的经典分析
控制理论的经典分析

经典:小孩学走路PK经典控制理论

电源网讯开关电源从理论上来说,是个强病态系统,但经过工程化近似好多问题可以运用经典控制理论来解决。而经典控制理论里面的PID调节,有个脍炙人口,大家耳熟能详的口诀,就是著名的PID调节口诀:

参数整定寻最佳,从小到大顺序查;

先是比例后积分,最后才把微分加;

曲线振荡很频繁,比例度盘要放大;

曲线漂浮绕大弯,比例度盘往小扳;

曲线偏离回复慢,积分时间往下降;

曲线波动周期长,积分时间再加长;

曲线振荡变很快,先把微分降下来;

动差大来波动慢,微分时间要加长;

联想曲线两个波,前高后低4 比1;

一看二调多分析,调节质量不会低。

这是一条所有学过《自动控制理论》的人,都能熟记于心的口诀。小弟不才,原与各位共同讨论这个话题。PID调节,何为P,何为I,何为D?何为零点,何为极点及它们在系统中的影响,让我们在此一一讨论。

所谓P者,即proportion比例环节,作为最基本的控制作用,瞬态反应快,比例增益变大会减小稳态误差增加稳态精度,但会使系统稳定性下降。所谓I者,即integral积分环节,只要还有误差(即残余的控制偏差)存在,积分控制就按部就班地逐渐增加控制作用直到余差消失,所以积分的效果比较缓慢。

所谓D者,即differential环节,微分控制是一种“预见” 型的控制,它测出偏差的瞬时变化率,作为一个有效早期修正信号,在超调量出现前会产生一种校正作用。如果系统的偏差信号变化缓慢或是常数,偏差的导数就很小或者为零,这时微分控制也就失去了意义。微分控制的特点是:尽管实际测量值还比设定值低,但其快速上扬的冲势需要及早加以抑制,否则等到实际值超过设定值再作反应就晚了。但如果作为基本控制使用,微分控制只看趋势不看具体数值所在,最理想的情况是能够把实际值稳定下来,但无法保证稳定在设定值,所以微分控制不能作为基本控制作用。

上述可算是对PID调节的三个工具作用做的总结,如何使用它们,就要引出几个很重要的概念:负反馈、传递函数、零点、极点。

一、何谓自动控制

小时候没见过大世面,高考报志愿的时候,搞不清自动化跟电气工程的差别,看到自动化专业,马上能联想到的是:这边一按按钮,那边机器自动开始工作,然后人就可以一边去泡杯茶,下象棋,两三个小时回

来,再按按钮,机器停止工作,收工,这活又轻松又能拿钱。这种土鳖式的理解,一直持续到大三学习《自动控制原理》。

如果有哪位达人能在我小时候学走路的时候告诉我,小孩子学走路,就是个自动控制的过程,我万万不会有上述幼稚可笑的想法。

举个简单的例子,小孩子去取一个玩具:

设定目标:玩具

控制对象:双脚

执行机构:大脑

这个过程看似简单,其实已经包含了控制系统的所有概念。小孩子去取玩具,设定需要走的路线,然后大脑控制双脚去走这条路线。走的偏了,眼睛反馈给大脑,大脑校正双脚回到正轨;再次偏离正轨,眼睛再次反馈给大脑,大脑再次校正双脚回到正轨.....周而复始,经过一段时间,终于到达玩具所在地,完成任务。这是一个非常完整的自动控制的过程。

由此,我们可见,作为一个完整的自动控制系统,至少需要包括三个元素:

1、控制机构:大脑;这个可理解成控制器

2、执行机构:双脚;这个可理解成被控对象

3、反馈环节:眼睛。这个可理解成测量工具

作为一个完整的自动控制系统,上面三个元素,缺一不可。《自动控制理论》研究的是什么呢?如果《自动控制原理》这门课程,改名为《反馈控制系统》或者《偏差控制系统》,可能会更确切些。《自动控制原理》研究的仅仅是上述三个元素中的两个元素:控制机构和反馈环节,而且这个反馈环节,可以简化为单位负反馈。在这门课程里,被控对象是已知的,即是各种典型环节,最典型的是二阶欠阻尼环节。

事实上,被控对象的确立,同样是个很复杂的过程。涉及到开关电源中,即是开关变换器的建模。而我们所采用的单极点补偿器、单极点单零点补偿器、双极点双零点补偿器,这些统统属于控制机构。在不知道被控对象是啥的前提下,使用这些补偿器,无异于盲人摸象。在自控原理中,建模的过程,被一笔带过,重点研究的是控制机构的设计。

1、经典控制理论与现代控制理论的主要差别

经典控制理论和现代控制理论,同属于自动控制理论的范畴,属于两种截然不同的分析方式。现实生活中,我们更多接触的是物理模型,而自动控制理论,归根结底,是个数学问题。那么,把真实的物理系统理想化之后,即为物理模型,对物理模型进行数学描述,即为数学模型。经典控制理论着重研究系统的输入-

输出特性(即外部描述),现代控制理论不但研究系统的输入-输出关系,而且还研究系统内部各个状态变量,采用状态向量描述(即内部描述)。两种描述,都有时域和频域方法。从广义上讲,现代控制理论的应用层面更宽,而经典控制理论的应用领域相对狭窄,仅仅用于线性时不变定常连续系统。

2、传递函数

那么怎么把一个物理模型,描述出数学模型,很简单,就是利用了传递函数。任何一个线性定常连续系统,都可以用一个线性常微分方程描述。把输出量的微分线性组合放在方程等式左边,输入量的微分线性组合放在方程右边,等号两边分别取拉普拉斯变换,就得到了我们的传递函数模型。

通过拉普拉斯变换,线性微分方程转换成了代数方程,传递函数表达了一个系统输入-输出的关系,一旦系统给定,传递函数就不会变化,即传递函数不受输入和输出的变化影响。传递函数又可定义为初始条件为零的线性定常系统输出量的s变换与输入量的s变换之比。传递函数的局限在于,它只能反映系统的外部特性,即输入-输出的特性,因此传递函数模型也常被称为“黑箱”模型,我们只能看到由它引起的外部变化,并不能解决系统内部的一些问题和矛盾。要解决这个问题就要用状态空间模型和现代控制理论,因此状态空间模型又称“白箱”模型,我们可以清晰看到它的内部结构,以便对系统进行优化和完善。

3、经典控制理论研究的核心内容

已知一个系统的传递函数,这个系统的动态性能从最根本上讲取决于什么,这些决定因素是如何影响系统性能的。这个问题其实是经典控制理论最最核心的问题,经典控制理论所有的研究方法都是基于这个问题展开的。

给定一个传递函数G(s),决定系统性能的最根本因素就是系统的零点和极点在复平面上的分布情况,其中起决定性作用的是极点的分布,它决定了系统是否是稳定的,是否有震荡,震荡的频率和幅度等等系统最关键的东西,零点的存在起的是一种调节作用,要么是锦上添花,要么是雪上加霜。学习经典控制理论,最终目的是学会如何根据各种被控对象来设计合适的控制器,但从上面的意义上来讲,设计控制器最终目的就是为了把整个系统的零点和极点控制在我们希望的区域或范围内。

4、经典控制理论的分析方法

经典控制理论,概括来讲,有三种分析方法:时域分析、根轨迹分析、频域分析。那么PID调节,属于哪种分析方式呢?属于时域分析。很多人可能不太理解这样的观点。PID,含有零点、含有极点,零极点的概念,在频域分析法中同样存在,应该属于频域分析。

频域分析与时域分析的主要差别在于:

1)、时域分析法,研究的是系统的闭环传递函数,里面的零极点,也都是闭环零极点。频域分析的研究对象是开环传递函数,里面的零极点都是开环零极点。而经典控制理论研究的内容,是闭环零极点,所以我们可以说,频域分析法是一种间接分析法,时域分析法是三种分析法中最直接最直观的方法。

2)、拉普拉斯算子的不同。时域分析法中的s算子,是个复数,因此也常被称为复频域分析法。而频域分析法中的s算子,则是个纯虚数。时域分析法的核心内容,就是对一个系统施加阶跃信号,从它的阶跃响应,来判断系统的性能。

一个系统的阶跃响应(step):

(1)、如果系统传递函数G(s)所有极点都具有负实部,那么这个系统无论如何都是稳定的(输出有一个最终的恒定)

(2)、传递函数G(s)只要有一个极点具有正实部,这个系统都是不稳定或者发散的。

(3)、如果传递函数G(s)的极点存在复数根,那么系统的输出将存在震荡。复根离实轴越远震荡越厉害,离虚轴越远震荡衰减越快。反之,如果传递函数G(s)不存在复数根,则不存在震荡。例如系统一传递函数为G(s)_1=(4s+2)/[(s+1)(s+2)],系统二的传递函数为G(s)_2=(1.5s+2)/[(s+1)(s+2)],它们具有相同的极点,但零点不同。它们在时域上拉氏反变换分别为:g(t)_1=6*exp(-2*t)-2*exp(-t),

g(t)_2=exp(-2*t)+1/2*exp(-t)。

PID调节,作为工业上最普遍采用的一种调控方式,P向来都是不可缺少的。

P环节是整个PID调节的灵魂,I和D作为它的点缀存在,三个环节中,可以没有I,也可以没有D,但不可以没有P。I和D,从来都是伴随P的存在而存在,不可能单独存在而起到调节作用。我们可以见到P调节,见到PD调节(比例微分调节),见到PI调节(比例积分调节),从来不会见到I调节、D调节或者ID调节。把P比作皮的话,I和D就是毛。皮之不存,毛将焉附?(电源网原创转载请注明出处)

经典控制理论和现代控制理论的区别和联系

1.经典控制理论和现代控制理论的区别和联系 区别: (1)研究对象方面:经典控制系统一般局限于单输入单输出,线性定常系统。严格的说,理想的线性系统在实际中并不存在。实际的物理系统,由于组成系统的非线性元件的存在,可以说都是非线性系统。但是,在系统非线性不严重的情况时,某些条件下可以近似成线性。所以,实际中很多的系统都能用经典控制系统来研究。所以,经典控制理论在系统的分析研究中发挥着巨大的作用。 现代控制理论相对于经典控制理论,应用的范围更广。现代控制理论不仅适用于单输入单输出系统,还可以研究多输入多输出系统;不仅可以分析线性系统,还可以分析非线性系统;不仅可以分析定常系统,还可以分析时变系统。 (2)数学建模方面:微分方程(适用于连续系统)和差分方程(适用于离散系统)是描述和分析控制系统的基本方法。然而,求解高阶和复杂的微分和差分方程较为繁琐,甚至难以求出具体的系统表达式。所以,通过其它的数学模型来描述系统。 经典控制理论是频域的方法,主要以根轨迹法和频域分析法为主要的分析、设计工具。因此,经典控制理论是以传递函数(零初始状态下,输出与输入Laplace变换之比)为数学模型。传递函数适用于单输入单输出线性定常系统,能方便的处理这一类系统频率法或瞬态响应的分析和设计。然而对于多信号、非线性和时变系统,传递函数这种数学模型就无能为力了。传递函数只能反应系统的外部特性,即输入与输出的关系,而不能反应系统内部的动态变化特性。 现代控制理论则主要状态空间为描述系统的模型。状态空间模型是用一阶微分方程组来描述系统的方法,能够反应出系统内部的独立变量的变化关系,是对系统的一种完全描述。状态空间描述法不仅可以描述单输入单输出线性定常系统,还可以描述多输入多输出的非线性时变系统。另外状态空间分析法还可以用计算机分析系统。 (3)应用领域方面:由于经典控制理论发展的比较早,相对而言理论比较成熟,并且生产生活中很多过程都可近似看为线性定常系统,所以经典控制理论应用的比较广泛。 现代控制理论是在经典控制理论基础上发展而来的,对于研究复杂系统较为方便。并且现代控制理论可以借助计算机分析和设计系统,所以有其独特的优越性。 联系:(1)虽然现代控制理论的适用范围更多,但并不能定性的说现代控制理论更优于经典控制理论。我们要根据具体研究对象,选择合适的理论进行分析,这样才能是分析的更简便,工作量较小 (2)两种控制理论在工业生产、环境保护、航空航天等领域发挥着巨大的作用。 (3)两种理论有其各自的特点,所以在对系统进行分析与设计时,要根据系统的特征选取

自动控制原理论文

自动控制 摘要:综述了自动控制理论的发展情况,指出自动控制理论所经历的三个发展阶段,即经典控制理论、现代控制理论和智能控制理论。最后指出,各种控制理论的复合能够取长补短,是控制理论的发展方向。 自动控制理论是自动控制科学的核心。自动控制理论自创立至今已经过了三代的发展:第一代为20世纪初开始形成并于50年代趋于成熟的经典反馈控制理论;第二代为50、60年代在线性代数的数学基础上发展起来的现代控制理论;第三代为60年代中期即已萌芽,在发展过程中综合了人工智能、自动控制、运筹学、信息论等多学科的最新成果并在此基础上形成的智能控制理论。经典控制理论(本质上是频域方法)和现代控制理论(本质上是时域方法)都是建立在控制对象精确模型上的控制理论,而实际上的工业生产系统中的控制对象和过程大多具有非线性、时变性、变结构、不确定性、多层次、多因素等特点,难以建立精确的数学模型。因此,自动控制专家和学者希望能从要解决问题领域的知识出发,利用熟练操作者的丰富经验、思维和判断能力,来实现对上述复杂系统的控制,这就是基于知识的不依赖于精确的数学模型的智能控制。本文将对经典控制理论、现代控制理论和智能控制理论的发展情况及基本内容进行介绍。 1自动控制理论发展概述 自动控制是指使用自动化仪器仪表或自动控制装置代替人 自动地对仪器设备或工业生产过程进行控制,使之达到预期的状态或性能指标。对传统的工业生产过程采用自动控制技术,可以有效提高产品的质量和企业的经济效益。对一些恶劣环境下的控制操作,自动控制显得尤其重要。 自动控制理论是和人类社会发展密切联系的一门学科,是自动控制科学的核心。自从19世纪M ax we ll对具有调速器的蒸汽发动机系统进行线性常微分方程描述及稳定性分析以来,经过20世纪初Ny qu i s t,B od e,Ha rr is,Ev ans,W ie nn er,Ni cho l s等人的杰出贡献,终于形成了经典反馈控制理论基础,并于50年代趋于成熟。经典控制理论的特点是以传递函数为数学工具,采用频域方法,主要研究“单输入—单输出”线性定常控制系统的分析和设计,但它存在着一定的局限性,即对“多输入—多输出”系统不宜用经典控制理论解决,特别是对非线性、时变系统更

经典控制理论

1、经典控制理论与现代控制理论的主要差别。 经典控制理论和现代控制理论,同属于自动控制理论的范畴,属于两种截然不同的分析方式。现实生活中,我们更多接触的是物理模型,而自动控制理论,归根结底,是个数学问题。那么,把真实的物理系统理想化之后,即为物理模型,对物理模型进行数学描述,即为数学模型。经典控制理论着重研究系统的输入-输出特性(即外部描述),现代控制理论不但研究系统的输入-输出关系,而且还研究系统内部各个状态变量,采用状态向量描述(即内部描述)。两种描述,都有时域和频域方法。从广义上讲,现代控制理论的应用层面更宽,而经典控制理论的应用领域相对狭窄,仅仅用线性时不变定常连续系统。 2、传递函数 那么怎么把一个物理模型,描述出数学模型,很简单,就是利用了传递函数。任何一个线性定常连续系统,都可以用一个线性常微分方程描述。把输出量的微分线性组合放在方程等式左边,输入量的微分线性组合放在方程右边,等号两边分别取拉普拉斯变换,就得到了我们的传递函数模型。通过拉普拉斯变换,线性微分方程转换成了代数方程,传递函数表达了一个系统输入-输出的关系,一旦系统给定,传递函数就不会变化,即传递函数不受输入和输出的变化影响。传递函数又可定义为初始条件为零的线性定常系统输出量的s变换与输入量的s变换之比。传递函数的局限在于,它只能反映系统的外部特性,即输入-输出的特性,因此传递函数模型也常被称为“黑箱”模型,我们只能看到由它引起的外部变化,并不能解决系统内部的一些问题和矛盾。要解决这个问题就要用状态空间模型和现代控制理论,因此状态空间模型又称“白箱”模型,我们可以清晰看到它的内部结构,以便对系统进行优化和完善。 3、经典控制理论研究的核心内容。 已知一个系统的传递函数,这个系统的动态性能从最根本上讲取决于什么,这些决定因素是如何影响系统性能的。这个问题其实是经典控制理论最最核心的问题,经典控制理论所有的研究方法都是基于这个问题展开的。给定一个传递函数G(s),决定系统性能的最根本因素就是系统的零点和极点在复平面上的分布情况,其中起决定性作用的是极点的分布,它决定了系统是否是稳定的,是否有震荡,震荡的频率和幅度等等系统最关键的东西,零点的存在起的是一种调节作用,要么是锦上添花,要么是雪上加霜。学习经典控制理论,最终目的是学会如何根据各种被控对象来设计合适的控制器,但从上面的意义上来讲,设计控制器最终目的就是为了把整个系统的零点和极点控制在我们希望的区域或范围内(被控变量的可控性)。 4、经典控制理论的分析方法 经典控制理论,概括来讲,有三种分析方法:时域分析、根轨迹分析、频域分析。 那么PID调节,属于哪种分析方式呢?属于时域分析。很多人可能不太理解这样的观点。PID,含有零点、含有极点,零极点的概念,在频域分析法中同样存在,应该属于频域分析。

过程自动化中经典控制理论的指导意义

过程自动化中经典控制理论的指导意义 ——郝庆超董延凯 自动化已深入到各个领域,大到军事,航天,小的楼宇电梯。而在中国社会主义建设的现今阶段,过程自动化控制在工业生产领域,不断的发挥着提高效率,控制质量,节约成本等重要作用,已经成为除“工艺”,“电气”等之外,不可或缺的生产保障范围。 就生产过程自动化而言,整体上可分为三大环节,即“过程检测(Process Detection)”、“过程控制系统(Process Control System)”、“过程控制装置(Process Control Devices)”。此三大环节工作内容,即为过程检测装置把实际的现场的工程量检测出来,即当前的压力、流量、温度等,转换成为控制系统环节可以识别的电信号,并传送给控制系统;过程控制系统环节接收到由过程检测装置传输来的信号,一则显示该信号的工程值,反应当前现场的实际情况,一则根据此信号值,经过相关的计算,将结果转换为过程控制装置(即现场控制阀门或电机等)可以识别的电信号,传送给过程控制装置;过程控制装置根据过程控制系统传输来的电信号,修正其执行机构的执行量大小,进而影响现场的实际情况,而该实际情况又重新被过程检测装置识别,再转换传送给过程控制系统,等等,周而复始形成整套循环,此为过程控制自动化中,大的闭环控制系统。该闭环控制系统,又是由或多或少的多个小的开环或闭环控制系统组成,根据生产需要,其规模、内容、精度及相关设备的性能,也不尽相同。但归咎其理论,都基于经典控制理论基础为原则和依据。 如果把过程自动化系统比作是人,过程检测装置相当于人的眼睛、鼻子等感官,其工作原理是基于一些基本的和非基本的物理化学性质等,检测现场情况。过程控制装置相当于人的四肢,根据要求执行各种动作。而过程控制系统,则相当于人的大脑,分析和计算各种信息,并发出各种命令。从原来的二型及三型盘装仪表,到现在的PLC(可编程控制器)、DCS (集中分散控制系统)等,其工作的理念和工作方式是极为复杂的,也正应为此,经典控制理论在过程控制系统中,也是体现的最为明显的。 那么,何为经典控制理论? 一般来看,自动控制理论分为“经典控制理论”和“现代控制理论”两大部分,经典控制理论主要以传递函数为基础,研究单输入单输出(SISO)自动控制系统的分析和设计问题。而现代控制理论则主要是以状态空间法为基础,研究多输入多输出(MIMO)及变参数、非线性控制系统的分析设计问题。二者是自动控制理论发展的两个阶段,但是它们又是相互影响和促进的,现代控制理论也不能看做是经典控制理论的延续和推广,其采用的数学工具、理论基础、研究方法、研究对象都有着明显区别。而在生产过程自动化领域里,控制系统主要是以数学模型和函数为基础,研究SISO系统,表面上看,有多输入多输出,而其输入多以计算变参数及补偿的方式出现,主要的输入对象,即控制对象是单一的,输出也多为一输出一控制。因此,按照生产过程自动化的特点,用经典控制理论研究其分析和设计的实际问题,是相对最合适的。 在自动控制系统中,有三大基本要求,即稳定性、精确性和快速性。此三大基本要求直接影响了生产过程中的安全和效率。而在实际的应用中,我们在各个过程控制系统中,可以通过其他的方式来判断系统该回路的稳定性、速度和准确度。那么,对于实际的应用中,我们研究经典控制理论的方式和指导意义又是什么呢?如何根据其数学特点来分析过程自动化控制中的问题呢?我们可以通过比较典型的实际应用问题,来说明这一点。 按照实际的过程生产特点,无论是化工,电力,冶金,制药,其过程自动化系统中,应用比较广泛的,是单回路控制系统,即单一的PID控制。那么就此,我们结合经典控制理论,来研究一下单回路PID的控制的实际应用。

关于模糊控制理论的综述

物理与电子工程学院 《人工智能》 课程设计报告 课题名称关于模糊控制理论的综述 专业自动化 班级 11级3班 学生姓名郑艳伟 学号 指导教师崔明月 成绩 2014年6月18日

关于模糊控制理论的综述 摘要:模糊控制方法是智能控制的重要组成部分,本文简要回顾了模糊控 制理论的发展,详细介绍了模糊控制理论的原理和模糊控制器的设计步骤, 分析了模糊控制理论的优缺点以及模糊控制需要完善或继续研究的内容,根 据各种模糊控制器的不同特点,对模糊控制在电力系统中的应用进行了分 类,并分析了各类模糊控制器的应用效能.最后,展望了模糊控制的发展趋 势与动态. 关键词:模糊控制;模糊控制理论;模糊控制系统;模糊控制理论的发展模糊控制是以模糊集理论、模糊语言变量和模糊控制逻辑推理为基础的一种智能控制方法,从行为上模拟人的思维方式,对难建模的对象实施模糊推理和决策的一种控制方法.模糊控制作为智能领域中最具有实际意义的一种控制方法,已经在工业控制领域、电力系统、家用电器自动化等领域中解决了很多的问题,引起了越来越多的工程技术人员的兴趣. 模糊控制系统简介 模糊控制系统是以模糊集合论、模糊语言变量和模糊逻辑推理为基础的一种计算机数字控制技术.1965年美国的扎德[1]创立了模糊集合论, 1973 年, 他给出了模糊逻辑控制的定义和相关的定理.1974 年英国的Mamdani 首先用模糊控制语句组成模糊控制器,并把它用于锅炉和蒸汽机的控制, 在实验室获得成功, 这一开拓性的工作标志着模糊控制论的诞生. 模糊控制系统主要是模拟人的思维、推理和判断的一种控制方法, 它将人的经验、常识等用自然语言的形式表达出来, 建立一种适用于计算机处理的输入输出过程模型, 是智能控制的一个重要研究领域.从信息技术的观点来看, 模糊控制是一种基于规则的专家系统.从控制系统技术的观点来看, 模糊控制是一种普遍的非线性特征域控制器. 相对传统控制, 包括经典控制理论与现代控制理论.模糊控制能避开对象的数学模型(如状态方程或传递函数等) , 它力图对人们关于某个控制问题的成功与失败和经验进行加工, 总结出知识, 从中提炼出控制规则, 用一系列多维模糊条件语句构造系统的模糊语言变量模型, 应用CRI 等各类模糊推理方法,

现代控制理论----综述论文-2015

2015级硕士期末论文《现代控制理论综述》 课程现代控制理论姓名 学号 专业 2016 年1 月 4 日

经典控制理论与现代控制理论的差异 现代控制理论是建立在状态空间法基础上的一种控制理论,是自动控制理论的一个主要组成部分。在现代控制理论中,对控制系统的分析和设计主要是通过对系统的状态变量的描述来进行的,基本的方法是时间域方法。现代控制理论比经典控制理论所能处理的控制问题要广泛得多,包括线性系统和非线性系统,定常系统和时变系统,单变量系统和多变量系统。它所采用的方法和算法也更适合于在数字计算机上进行。现代控制理论还为设计和构造具有指定的性能指标的最优控制系统提供了可能性。现代控制理论的名称是在1960年以后开始出现的,用以区别当时已经相当成熟并在后来被称为经典控制理论的那些方法。现代控制理论已在航空航天技术、军事技术、通信系统、生产过程等方面得到广泛的应用。现代控制理论的某些概念和方法,还被应用于人口控制、交通管理、生态系统、经济系统等的研究中。 现代控制理论是在20世纪50年代中期迅速兴起的空间技术的推动下发展起来的。空间技术的发展迫切要求建立新的控制原理,以解决诸如把宇宙火箭和人造卫星用最少燃料或最短时间准确地发射到预定轨道一类的控制问题。这类控

制问题十分复杂,采用经典控制理论难以解决。1958年,苏联科学家Л.С.庞特里亚金提出了名为极大值原理的综合控制系统的新方法。在这之前,美国学者R.贝尔曼于1954年创立了动态规划,并在1956年应用于控制过程。他们的研究成果解决了空间技术中出现的复杂控制问题,并开拓了控制理论中最优控制理论这一新的领域。1960~1961年,美国学者R.E.卡尔曼和R.S.布什建立了卡尔曼-布什滤波理论,因而有可能有效地考虑控制问题中所存在的随机噪声的影响,把控制理论的研究范围扩大,包括了更为复杂的控制问题。几乎在同一时期内,贝尔曼、卡尔曼等人把状态空间法系统地引入控制理论中。状态空间法对揭示和认识控制系统的许多重要特性具有关键的作用。其中能控性和能观测性尤为重要,成为控制理论两个最基本的概念。到60年代初,一套以状态空间法、极大值原理、动态规划、卡尔曼-布什滤波为基础的分析和设计控制系统的新的原理和方法已经确立,这标志着现代控制理论的形成。 现代控制理论所包含的学科内容十分广泛,主要的方面有:线性系统理论、非线性系统理论、最优控制理论、随机控制理论和适应控制理论。 线性系统理论是现代控制理论中最为基本和比较成熟的一个分支,着重于研究线性系统中状态的控制和观测问题,其基本的分析和综合方法是状态空间法。按所采用的数学工具,线性系统理论通常分成为三个学派:基于几何概念和方法的几何理论,代表人物是W.M.旺纳姆;基于抽象代数方法的代数理论,代表人物是R.E.卡尔曼;基于复变量方法的频域理论,代表人物是H.H.罗森布罗克。 非线性系统理论的分析和综合理论尚不完善。研究领域主要还限于系统的运动稳定性、双线性系统的控制和观测问题、非线性反馈问题等。更一般的非线性系统理论还有待建立。从70年代中期以来,由微分几何理论得出的某些方法对

鲁棒控制理论综述

鲁棒控制理论综述 作者学号: 摘要:本文首先介绍鲁棒控制理论涉及的两个基本概念(不确定性和鲁棒)和发展过程,然 H控制理论,最后指出鲁棒控制研后叙述鲁棒控制理论中两种主要研究方法:μ理论、∞ 究的问题和扩展方向。 H控制理论 关键词:鲁棒控制理论,μ理论,∞ 一、引言 自从系统控制(Systems and Control)作为一门独立的学科出现,对于系统鲁棒性的研究也就出现了。这是由这门学科的特色和研究对象决定的。对于世界上的任何系统。由于系统本身复杂性或是人们对其认识的不全面,在系统建立模型时,很难用数学语言完全描述刻画。在这样的背景下,鲁棒性的研究也就自然而然地出现了。 二、不确定性与鲁棒 1、不确定性 谈到系统的鲁棒性,必然会涉及系统的不确定性。由于控制系统的控制性能在很大程度上取决于所建立的系统模型的精确性,然而,由于种种原因实际被控对象与所建立的模型之间总存在着一定的差异,这种差异就是控制系统设计所面临的不确定性。这种不确定性通常分为两类:系统内部的不确定性和系统外部的不确定性。这样,就需要一种能克服不确定性影响的控制系统设计理论。这就是鲁棒控制所要研究的课题。 2、鲁棒 “鲁棒”一词来自英文单词“robust”的音译,其含义是“强壮”或“强健”。所谓鲁棒性(robustness),是指一个反馈控制系统在某一特定的不确定性条件下具有使稳定性、渐近调节和动态特性这三方面保持不变的特性,即这一反馈控制系统具有承受这一类不确定性的能力。具有鲁棒性的控制系统称为鲁棒控制系统。在工程实际控制问题中,系统的不确定性一般是有界的,在鲁棒控制系统的设计中,先假定不确定性是在一个可能的范围内变化,然后在这个可能的变化范围内进行控制器设计。鲁棒控制系统设计的思想是:在掌握不确定性变化范围的前提下,在这个界限范围内进行最坏情况下的控制系统设计。因此,如果设计的控制系统在最坏的情况下具有鲁棒性,那么在其他情况下也具有鲁棒性。 三、发展历程 鲁棒控制系统设计思想最早可以追溯到1927年Black针对具有摄动的精确系统的大增益反馈设计。由于当时不知道反馈增益和控制系统稳定性之间的确切关系,所以设计出来的控制系统往往是动态不稳定的。早期的鲁棒研究主要集中在Bode图,1932年Nyquist提出了基于Nyquist曲线的频域稳定性判据,使得反馈增益和控制系统稳定性之间的关系明朗化。1945年Bode讨论了单输入单输出(SISO)反馈系统的鲁棒性,提出了利用幅值和相位稳定裕度来得到系统能容许的不确定范围。这些方法主要用于单输入单输出系统而且这些关于鲁棒控制的早期研究主要局限于系统的不确定性是微小的参数摄动情形,尚属灵敏度分析的范畴,从数学上说是无穷小分析思想,并且只是停留在理论上。20世纪六七十年代,鲁棒控制只是将SISO系统的灵敏度分析结果向MIMIO进行了初步的推广[1],与此同时,状态空间理论引入控制论后,系统控制取得了很大的发展,鲁棒问题也显得更加重要,其中就要提到两篇对现代鲁棒控制理论的建立有重要影响的文章:一篇是Zames在1963年关于小增益定理的论文[2],另一篇是1964年Kalman关于单入单输出系统LQ调节器稳定裕量分析的研究报告[3]。鲁棒控制这一术语第一次在论文中出现是在1971年Davion的论文[4],而首先将鲁棒控制写进论文标题的是Pearson等人于1974年发表的论文[5]。当然,鲁棒控制能够

自动控制理论的发展及其应用综述

自动控制理论的发展及其应用综述 黄佳彬 3120101224 20世纪40年代,控制论这门学科开始发展,其标志为维纳于1948年出版了自动控制学科史上的名著《控制论,或动物和机器的控制和通信》(Cybernetics,or control and communication in the animal and machine)。控制论思想的提出为现代科学研究提供了新的思想和方法,同时书中的一些新颖的思想和观点吸引了无数学者,令其在自己研究的领域引进控制论。随着研究队伍的庞大,控制论形成了多个分支,其中主要的几个分支有生物控制论,工程控制论,军事控制论,社会、经济控制论,自然控制论。这里我们主要对工程控制论进行研究。 1.自动控制理论的发展 工程控制论的概念最早由钱学森引入,当时有两种控制理论思想,一种基于时间域微分方程,另一种基于系统的频率特性。这两种思想即为经典控制理论,主要研究的是单输入-单输出的控制系统,同时利用分析法与实验验证法这两种方法对某个控制系统进行数学建模,由此可以获得系统各元部件之间的信号传递关系的形象表示。 由于经典控制理论的建立基于传递函数和频率特性,是对系统的外部描述。同时经典控制理论主要研究单输入单输出系统,无法解决现实工程应用中多输入多输出系统的问题,而且经典控制理论只对线性时不变系统进行讨论,存在不少的局限性,由此,现代控制理论逐渐发展起来。 现代控制理论是从线性代数的理论研究上得来的,本质是“时域法”,即基于状态空间模型在时域对系统进行分析和设计,并且引入“状态”这一概念,用“状态变量”和“状态方程”描述系统,以此来反应系统的内在本质和特性。现代控制理论研究的内容主要有三方面:多变量线性系统理论、最优控制理论以及最优估计与系统辨识理论,这些研究从理论上解决了许多复杂的系统控制问题,但是随着发展,实际生产系统的规模越来越大,控制对象、控制器、控制任务和目的也更为复杂,导致现代控制理论的成果并未有在实际中很好的应用。 智能控制的概念最早是在20世纪70年代由傅京孙教授提出,这一概念最早是为解决经典控制理论和现代控制理论在实际应用上面临的问题而寻求的新出路,也是人工智能与自动控制交叉的产物。1977年,美国学者Saridis在原本的

控制理论发展历史

控制理论发展历史综述 一:20世纪40年代末-50年代的经典控制理论时期,着重解决单输入单输出系统的控制问题,主要数学工具是微分方程、拉氏变换、传递函数;主要方法是时域法、频域法、根轨迹法;主要问题是系统的稳、准、快。 二:20世纪60年代的现代控制理论时期,着重解决多输入多输出系统的控制问题,主要数学工具是以此为峰方程组、矩阵论、状态空间法主要方法是变分法、极大值原理、动态规划理论;重点是最优控制、随即控制、自适应控制;核心控制装置是电子计算机。 三:20世纪70年代之后的先进控制理时期,先进控制理论是现代控制理论的发展和延伸。先进控制理论内容丰富、涵盖面最广,包括自适应控制、鲁棒控制、模糊控制、人工神经网络控制等。 经典控制理论 经典控制理论适用于单输入、单输出的线性定常(参数不随时间而变)系统。 发展过程 1.原始阶段 中国,两千年前我国发明的指南车:一种开环自动调节系统,它利用差速齿轮原理,利用齿轮传动系统,根据车轮的转动,由车上木人指示方向。不论车子转向何方,木人的手始终指向南方,“车虽回运而手常指南”。 2.起步阶段 人类社会发展,有一个点把人类社会的发展分成两大部分,那就是工业革命。18世纪中叶之前,不管你什么怎么划分人类社会也好(农业牧业手工业),社会的发展始终离不开人力,就是必须得有人亲自去做。18世纪中叶之后,机器的出现,使得以机器取代了人力,所以称之为革命。然后机器的出现变革了人类的整个历史,直至现代社会文明的如此进步。工业革命的开始的标志为哈格里夫斯发明的珍妮纺纱机,而工业革命的标志是瓦特改良蒸汽机,为什么扯这么多?如果机器不能控制,那和工具又有什么区别?所以工业革命的标志是瓦特改良蒸汽机。钱学森也在最新一版的工程控制论中提到技术革命。 1769年,控制思想首次应用于工业控制的是瓦特,发明用来控制蒸汽机转速的飞球离心控制器。以后人们曾经试图改善调速器的准确性,却常常导致系统产生振荡。 1868年以前,这一百年来,自动控制装置的设计还出于“直觉”阶段,没有系统的理论指导,因此在控制系统的各项性能(稳、准、快)的协调方面经常出现问题。实践中出现的问题,促使科学家们从理论上进行探索研究。19世纪后半叶许多科学家开始基于理论来研究控制。 1868年,麦克斯韦(J.C. Maxwell)通过对瓦特的调速器建立起线性常微分方程,解释了瓦特蒸汽机速度控制系统中出现的剧烈振荡的不稳定问题,提出了简单的稳定性代数判据,开辟了用数学方法研究控制系统的途径。 1877年,劳斯(E.J.Routh)提出了不直接求解系统微分方程的根的稳定性判据。 1895年,霍尔维茨(A.Hurwitz)也独立提出了类似的霍尔维茨稳定性判据。 他俩把麦克斯韦的思想扩展到高阶微分方程描述的更复杂的系统中,各自提出了直接根据代数方程的系数判别系统稳定性的准则两个著名的稳定性判据—劳斯判据和霍尔维茨判据。这些方法基本上满足了20世纪初期控制工程师的需要,奠定了经典控制理论中时域分析法的基础。 3.发展阶段 早期的控制的目的是防止不稳定,控制目的比较单一,于是劳斯和霍尔维茨的代数稳定判据在相当一个历史时期里基本满足了控制工程师的需要。直至二战前后,这种情况才发生了改变。战争的发生某种意义上也是有好处的,比如推动的科技的发展这方面。战争武器的 1 / 4

现代控制理论综述论文

论文题目:现代控制理论综述 摘要 本文是对现代控制理论课程的完整综述,现代控制理论的主要内容包括控制系统的状态空间表达式及其解,线性控制系统的能控性和能观性,稳定性与李雅普诺夫方法,线性定常系统的综合以及最优控制理论等部分。本文通过对控制理论各部分的阐述,构出了现代控制理论的主要框架及各部门的基本内容。 关键词:现代控制;状态方程;稳定性;最优控制;

Abstract This article is a complete review of modern control theory course, the main contents of the modern control theory, including the control system of the state space expression and its solution, the controllability of linear control systems and can view, stability and Lyapunov method, the synthesis of linear time-invariant system and optimal control theory. This article through to all parts of the control theory, compose the main framework of modern control theory and the basic content of each department. Keywords: Modern control; State equation;Stability;Optimal control

线性系统理论综述

线性系统理论课程大作业论文线性系统理论综述及其应用

这学期学习的线性系统理论属于系统控制理论的一个最为基本和成熟发展的分支,主要包括以下内容:介绍采用系统理论解决工程问题的一般步骤,明确建模、分析、综合在解决实际问题中的作用,并重点介绍线性系统模型的特征和分析方法;介绍系统的状态空间描述,结余状态空间方法的分析和系统结构特征和结构的规范分解以及状态反馈及其性质等。 一.线性系统理论研究内容综述 系统是系统控制理论所要研究的对象,从系统控制理论的角度,通常将系统定义为由相互关联和相互制约的若干部分组成的具有特定功能的整体。 动态系统是运动规律按照确定规律或者确定的统计的规律岁时间演化的一类系统,动态系统的行为由各类变量间的关系来表征,系统的变量可以分为三种形式,一类是反映外部对系统的影响或者作用的输入变量组,如控制、投入、扰动等;二是表征系统状态行为的内部状态变量组;三是反映系统外部作用或影响的输入变量组如响应,产出。表征系统动态的过程的数学描述具有两类基本形式,一是系统的内部描述,另一组是输入变量对状态变量的组的动态影响。从机制的角度来看,动态系统可被分类为连续系统变量动态系统和离散事件动态系统;从特征的角度,动态系统可分别分类为线性系统和非线性系统,参数集成系统和分布参数系统;从作用时间类型角度,动态系统可被称为连续时间系统和离散时间系统。 线性系统理论是系统控制理论最为成熟和最为基础的分支。他是现代控制理论的一个重要组成部分,也是对经典控制理论的延申。现代控制理论主要是着重研究现性状态的运动规律和改变这种规律的可能性和方法。线性系统的理论和方法是建立在建模的基础上。在建模的基础上,可以进一步把线性系统的理论进一步区分为“分析理论”和“综合理论”。分析理论分为定量分析和定性分析,定量分析是着重于研究对系统性能和控制具有重要意义的结构特性。系统综合理论是建立在分析的基础上,系统综合目的是使系统的性能达到期望的指标或实现最优化。 线性系统理论的研究对象为线性系统,线性系统为最为简单和最为基本的一类动态系统。线性系统理论是系统控制理论中最为充分、发展最为成熟和应用最为广泛的一个开支。线性系统的的一个基本特征是其模型满足线性叠加原理。对于线性系统的研究也可以进一步分为线性是不变系统和线性时不变系统两类。对系统进行建模也是控制理论中具有重要的作用。对系统建模的作用多样性和基本型、途径以及系统的建模的准则=====系统建模的简单性和分析的结果的准确性之间做出适当的折中。 线性控制理论在1960年前后开始了从经典控制理论到现代理论的过渡。反应这种过渡的重要标志成果是,卡尔曼把在分析力学中广为采用的状态空间描

经典控制理论考试试题

经典控制理论习题解答 第一章考试题库 1、重庆三峡学院04至05学年度第2 期 自动控制原理课程考试试题册A卷(02级电信) 一、填空(本题共20 分,共10小题,每题各2 分) l.自动控制是。2.反馈控制的基本原理是。3.一个反馈控制系统通常由、、、、、等几个部分组成。 4.按给定量的运动规律,控制系统可分为、、。5.系统的频率特性是指。6.一个设计性能良好的控制系统,应当满足、、三个方面的要求。7.根轨迹的模值方程为 ,相角方程为。8.非线性特性的描述函数定义为。9.对于高阶系统,系统主导极点是指。10.采样系统的脉冲传递函数定义为:。二、(本题共15 分) 某工业过程温度控制系统如图所示,电位器上设定的电压u r是系统的输入量,箱体内液体的实际温度θ为输出量,插入箱体内的热电偶的输出Uθ与θ成正比。试分析该系统的工作原理并画出方框图。 二、(本题共15分)测得某二阶系统的单位阶跃响应c(t)如图所示,已知该系统具有单位负反馈,试确 定其开环传递函数。

四、(本题共15 分,共2小题) 1)设某系统的特征方程式为:,试用劳斯稳定判据判别系统的稳定性。2)下图表示开环传递函数G(s)的奈奎斯待图,P为G(s)的正实部极点数目,判定闭环系统的稳定性。 (a)(b) 五、(本题共15分)已知最小相位开环系统的渐近对数幅频特性如图所示。试求取系统的开环传递函数。 六、(本题共20分)已知单位反馈系统的开环传递函数为: 试设计一个串联超前校正环节,使系统的相角裕量不小于45度,截止频率不低于50rad/s。

自动控制原理课程考试试题A卷评分标准 一、(本题共20 分,共10小题,每题各2 分) 1、在没有人直接干预的情况下,通过控制装置使被控对象或过程自动按照预定的规律运行,使之达到一 定的状态和性能。 2、检测误差,用于纠正误差。 3、控制器、测量装置、比较装置、参考输入变换装置、执行机构、被控对象。 4、随动控制系统、定值控制系统、程序控制系统 5、线性定常系统,在正弦信号作用下,输出的稳态分量与输入的复数比。 6、稳定性、快速性、准确性 7、 8、 9、有一个或两个闭环极点距离虚轴最近,这些极点在该高阶系统时间响应中起主导作用,而其它极点距离虚轴较远,可以近似忽略。 10、G(Z)=C(Z)/R(Z)。 二、(本题共15 分) 三、(本题共15 分) 四、(本题共15 分) 1)不稳定, 2)(a)不稳定、(b)不稳定 五、(本题共15 分) 六、(本题共20 分)

经典控制理论和现代控制理论的区别和联系

1.经典控制理论与现代控制理论的区别与联系 区别: (1)研究对象方面:经典控制系统一般局限于单输入单输出,线性定常系统。严格的说,理想的线性系统在实际中并不存在。实际的物理系统,由于组成系统的非线性元件的存在,可以说都就是非线性系统。但就是,在系统非线性不严重的情况时,某些条件下可以近似成线性。所以,实际中很多的系统都能用经典控制系统来研究。所以,经典控制理论在系统的分析研究中发挥着巨大的作用。 现代控制理论相对于经典控制理论,应用的范围更广。现代控制理论不仅适用于单输入单输出系统,还可以研究多输入多输出系统;不仅可以分析线性系统,还可以分析非线性系统; 不仅可以分析定常系统,还可以分析时变系统。 (2)数学建模方面:微分方程(适用于连续系统)与差分方程(适用于离散系统)就是描述与分析控制系统的基本方法。然而,求解高阶与复杂的微分与差分方程较为繁琐,甚至难以求出具体的系统表达式。所以,通过其它的数学模型来描述系统。 经典控制理论就是频域的方法,主要以根轨迹法与频域分析法为主要的分析、设计工具。因此,经典控制理论就是以传递函数(零初始状态下,输出与输入Laplace变换之比)为数学模型。传递函数适用于单输入单输出线性定常系统,能方便的处理这一类系统频率法或瞬态响应的分析与设计。然而对于多信号、非线性与时变系统,传递函数这种数学模型就无能为力了。传递函数只能反应系统的外部特性,即输入与输出的关系,而不能反应系统内部的动态变化特性。 现代控制理论则主要状态空间为描述系统的模型。状态空间模型就是用一阶微分方程组来描述系统的方法,能够反应出系统内部的独立变量的变化关系,就是对系统的一种完全描述。状态空间描述法不仅可以描述单输入单输出线性定常系统,还可以描述多输入多输出的非线性时变系统。另外状态空间分析法还可以用计算机分析系统。 (3)应用领域方面:由于经典控制理论发展的比较早,相对而言理论比较成熟,并且生产生活中很多过程都可近似瞧为线性定常系统,所以经典控制理论应用的比较广泛。 现代控制理论就是在经典控制理论基础上发展而来的,对于研究复杂系统较为方便。并且现代控制理论可以借助计算机分析与设计系统,所以有其独特的优越性。 联系:(1)虽然现代控制理论的适用范围更多,但并不能定性的说现代控制理论更优于经典控制理论。我们要根据具体研究对象,选择合适的理论进行分析,这样才能就是分析的更简便,工作量较小 (2)两种控制理论在工业生产、环境保护、航空航天等领域发挥着巨大的作用。 (3)两种理论有其各自的特点,所以在对系统进行分析与设计时,要根据系统的特征选取与就

经典控制理论和现代控制理论区别和联系

1.经典控制理论和现代控制理论的区别和联系区别: (1)研究对象方面:经典控制系统一般局限于单输入单输出,线性定常系统。严格的说,理想的线性系统在实际中并不存在。实际的物理系统,由于组成系统的非线性元件的存在,可以说都是非线性系统。但是,在系统非线性不严重的情况时,某些条件下可以近似成线性。所以,实际中很多的系统都能用经典控制系统来研究。所以,经典控制理论在系统的分析研究中发挥着巨大的作用。 现代控制理论相对于经典控制理论,应用的范围更广。现代控制理论不仅适用于单输入单输出系统,还可以研究多输入多输出系统;不仅可以分析线性系统,还可以分析非线性系统;不仅可以分析定常系统,还可以分析时变系统。 (2)数学建模方面:微分方程(适用于连续系统)和差分方程(适用于离散系统)是描述和分析控制系统的基本方法。然而,求解高阶和复杂的微分和差分方程较为繁琐,甚至难以求出具体的系统表达式。所以,通过其它的数学模型来描述系统。 经典控制理论是频域的方法,主要以根轨迹法和频域分析法为主要的分析、设计工具。因此,经典控制理论是以传递函数(零初始状态下,输出与输入Laplace变换之比)为数学模型。传递函数适用于单输入单输出线性定常系统,能方便的处理这一类系统频率法或瞬态响应的分析和设计。然而对于多信号、非线性和时变系统,传递函数这种数学模型就无能为力了。传递函数只能反应系统的外部特性,即输入与输出的关系,而不能反应系统内部的动态变化特性。 现代控制理论则主要状态空间为描述系统的模型。状态空间模型是用一阶微分方程组来描述系统的方法,能够反应出系统内部的独立变量的变化关系,是对系统的一种完全描述。状态空间描述法不仅可以描述单输入单输出线性定常系统,还可以描述多输入多输出的非线性时变系统。另外状态空间分析法还可以用计算机分析系统。 (3)应用领域方面:由于经典控制理论发展的比较早,相对而言理论比较成熟,并且生产生活中很多过程都可近似看为线性定常系统,所以经典控制理论应用的比较广泛。 现代控制理论是在经典控制理论基础上发展而来的,对于研究复杂系统较为方便。并且现代控制理论可以借助计算机分析和设计系统,所以有其独特的优越性。 联系:(1)虽然现代控制理论的适用范围更多,但并不能定性的说现代控制理论更优于经典控制理论。我们要根据具体研究对象,选择合适的理论进行分析,这样才能是分析的更简便,工作量较小 (2)两种控制理论在工业生产、环境保护、航空航天等领域发挥着巨大的作用。 (3)两种理论有其各自的特点,所以在对系统进行分析与设计时,要根据系统的特征选取

现代控制理论综述论文2015

2015级硕士期末论文 《现代控制理论综述》 课程现代控制理论 姓名 学号 专业 2016 年1 月 4 日 经典控制理论与现代控制理论的差异 现代控制理论是建立在状态空间法基础上的一种控制理论,是自动控制理论的一个主要组成部分。在现代控制理论中,对控制系统的分析和设计主要是通过对系统的状态变量的描述来进行的,基本的方法是时间域方法。现代控制理论比经典控制理论所能处理的控制问题要广泛得多,包括线性系统和非线性系统,定常系统和时变系统,单变量系统和多变量系统。它所采用的方法和算法也更适合于在数字计算机上进行。现代控制理论还为设计和构造具有指定的性能指标的最优控制系统提供了可能性。现代控制理论的名称是在1960年以后开始出现的,用以区别当时已经相当成熟并在后来被称为经典控制理论的那些方法。现代控制理论已在航空航天技术、军事技术、通信系统、生产过程等方面得到广泛的应用。现代控制理论的某些概念和方法,还被应用于人口控制、交通管理、生态系统、经济系统等的研究中。现代控制理论是在20世纪50年代中期迅速兴起的空间技术的推动下发展起来的。空间技术的发展迫切要求建立新的控制原理,以解决诸如把宇宙火箭和人造卫星用最少燃料或最短时间准确地发射到预定轨道一类的控制问题。这类控制问题十分复杂,采用经典控制理论难以解决。1958年,苏联科学家Л.С.庞特里亚金提出了名为极大值原理的综合控制系统的新方法。在这之前,美国学者R.贝尔曼于1954年创立了动态规划,并在1956年应用于控制过程。他们的研究成果解决了空间技术中出现的复杂控制问题,并开拓了控制理论中最优控制理论这一新的领域。1960~1961年,美国学者R.E.卡尔曼和R.S.布什建立了卡尔曼-布什滤波理论,因而有可能有效地考虑控制问题中所存在的随机噪声的影响,把控制理论的研究范围扩大,包括了更为复杂的控制问题。几乎在同一时期内,贝尔曼、卡尔曼等人把状态空间法系统地引入控制理论中。状态空间法对揭示和认识控制系统的许多重要特性具有关键的作用。其中能控性和能观测性尤为重要,成为控制理论两个最基本的概念。到60年代初,一套以状态空间法、极大值原理、动态规划、卡尔曼-布什滤波为基础的分析和设计控制系统的新的原理和方法已经确立,这标志着现代控制理论的形成。 现代控制理论所包含的学科内容十分广泛,主要的方面有:线性系统理论、非线性系统理论、最优控制理论、随机控制理论和适应控制理论。 线性系统理论是现代控制理论中最为基本和比较成熟的一个分支,着重于研究线性系统中状态的控制和观测问题,其基本的分析和综合方法是状态空间法。按所采用的数学工具,线性系统理论通常分成为三个学派:基于几何概念和方法的几何理论,代表人物是W.M.旺纳姆;基于抽象代数方法的代数理论,代表人物是R.E.卡尔曼;基于复变量方法的频域理论,代表人物是H.H.罗森布罗克。 非线性系统理论的分析和综合理论尚不完善。研究领域主要还限于系统的运动稳定性、双线性系统的控制和观测问题、非线性反馈问题等。更一般的非线性系统理论还有待建立。从70年代中期以来,由微分几何理论得出的某些方法对分析某些类型的非线性系统提供了有力的理论工具。 最优控制理论是设计最优控制系统的理论基础,主要研究受控系统在指定性能指标实现最优

控制理论综述及其发展方向

控制理论的综述及发展方向 1 控制理论的产生 控制理论作为一门学科,它的真正应用开始于工业革命时期,即1788年瓦特发明蒸汽机飞球调速器。该种采用机械式调节原理实现的蒸汽机速度自动控制是自动化应用的第一个里程碑。二次大战前,控制系统的设计因为缺乏系统的理论指导而多采用试凑法,二次大战期间,由于建造飞机自动驾驶仪、雷达跟踪系统、火炮瞄准系统等军事设备的需要,推动了控制理论的飞跃发展。1948年美国数学家维纳总结了前人的成果,认为世界存在3大要素:物质、能量、信息,发表了著名的《控制论》,书中论述了控制理论的一般方法,推广了反馈的概念,从而基本上确立了控制理论这门学科[1]。 2 控制理论的分类 控制理论的发展分为经典控制理论阶段、现代控制理论阶段及大系统智能控制理论阶段,下面将详细介绍各个控制理论的特点及优缺点[2]。 2.1 经典控制理论 自动控制理论中建立在频率响应法和根轨迹法基础上的一个分支。经典控制理论的研究对象是单输入、单输出的自动控制系统,特别是线性定常系统。经典控制理论的特点是以输入输出特性(主要是传递函数)为系统数学模型,采用频率响应法和根轨迹法这些图解分析方法,分析系统性能和设计控制装置。经典控制理论的数学基础是拉普拉斯变换,占主导地位的分析和综合方法是频率域方法。[3] 经典控制理论主要用于解决反馈控制系统中控制器的分析与设计的问题。如图1所示为反馈控制系统的简化原理框图。 图1 反馈控制系统简化原理框图 典型的经典控制理论包括PID控制、Smith控制、解耦控制、串级控制等。常接触到的系统,如机床和轧钢机中常用的调速系统、发电机的自动调节系统以及冶炼炉的温度自动控制系统等,这些系统均被当作单输入—单输出的线性定常系统来处理。如果把某个干扰考虑在内,也只是将它们进行线性叠加而已。解决上述问题时,采用频率法、根轨迹法、奈氏稳定判据、期望对数频率特性综合等

相关主题
文本预览
相关文档 最新文档