当前位置:文档之家› 经典控制理论综述

经典控制理论综述

经典控制理论综述
经典控制理论综述

经典控制理论综述

07020108 裴璐1.经典控制理论的定义

经典控制理论是自动控制理论中建立在频率响应法和根轨迹法基础上的一个分支。经典控制理论的研究对象是单输入、单输出的自动控制系统,特别是线性定常系统。经典控制理论的特点是以输入输出特性(主要是传递函数)为系统数学模型,采用频率响应法和根轨迹法这些图解分析方法,分析系统性能和设计控制装置。经典控制理论的数学基础是拉普拉斯变换,占主导地位的分析和综合方法是频率域方法。经典控制理论主要研究系统运动的稳定性、时间域和频率域中系统的运动特性、控制系统的设计原理和校正方法。早期,这种控制理论常被称为自动调节原理,随着以状态空间法为基础和以最优控制理论为特征的现代控制理论的形成,开始广为使用现在的名称。

2.经典控制理论的组成

经典控制理论由线性控制理论、采样控制理论、非线性控制理论三个部分组成。1,线性控制理论是经典控制理论中以线性系统为研究对象的一个主要分支。在线性控制理论中,由于叠加原理带来的数学处理上的简便性,已经建立起一整套比较成熟和便于工程应用的分析和设计线性控制系统的方法。2,采样控制理论是经典控制理论中研究采样控制系统的组成原理、基本特性和分析设计方法的一个分支。采样控制系统不同于连续控制系统,它的特点是系统中一处或几处的信号具有脉冲序列或数字序列的形式。应用采样控制,有利于提高系统的控制精度和抗干扰能力,也有利于提高控制器的利用率和通用性。3,自动控制理论中研究非线性系统的运动规律和分析方法的一个分支。严格说,现实中的一切系统都是非线性系统,线性系统只是为了数学处理上的简化而导出的一种理想化的模型。非线性系统的一个最重要的特性是不能采用叠加原理来进行分析,这就决定了在研究上的复杂性。非线性系统理论远不如线性系统理论成熟和完整。由于数学处理上的困难,所以至今还没有一种通用的方法可用来处理所有类型的非线性系统。

3.经典控制理论的典型成果应用分析

我们比较熟悉的经典控制理论应用有双容水箱的液位控制系统,还有磁浮球的高度控制等。双容水箱是通过PID,或内模等控制器把水箱中的液位稳定的控制在同一个高度上。磁浮球也是基于同样的原理。

1946年,美国福特公司的机械工程师D.S.哈德最先提出“自动化”一词,并用来描述发动机汽缸的自动传送和加工的过程。50年代,自动调节器和经典控制理论的发展,使自动化进入以单变量自动调节系统为主的局部自动化阶段。60年代,随现代控制理论的出现和电子计算机的推广应用,自动控制与信息处理结

合起来,使自动化进入到生产过程的最优控制与管理的综合自动化阶段。70年代,自动化的对象变为大规模、复杂的工程和非工程系统,涉及许多用现代控制理论难以解决的问题。这些问题的研究,促进了自动化的理论、方法和手段的革新,于是出现了大系统的系统控制和复杂系统的智能控制,出现了综合利用计算机、通信技术、系统工程和人工智能等成果的高级自动化系统,如柔性制造系统、办公自动化、智能机器人、专家系统、决策支持系统、计算机集成制造系统等。

进入20世纪以后,工业生产中广泛应用各种自动调节装置,促进了对调节系统进行分析和综合的研究工作。这一时期虽然在自动调节器中已广泛应用反馈控制的结构,但从理论上研究反馈控制的原理则是从20世纪20年代开始的。1833年英国数学家C.巴贝奇在设计分析机时首先提出程序控制的原理。939世界上第一批系统与控制的专业研究机构成立,为20世纪40年代形成经典控制理论和发展局部自动化作了理论上和组织上的准备。

20世纪40~50年代是局部自动化时期第二次世界大战时期形成的经典控制理论对战后发展局部自动化起了重要的促进作用。在问题的过程中形成了经典控制理论,设计出各种精密的自动调节装置,开创了系统和控制这一新的科学领域。这一新的学科当时在美国称为伺服机构理论,在苏联称为自动调整理论,主要是解决单变量的控制问题。经典控制理论这个名称是1960年在第一届全美联合自动控制会议上提出来的。1945年后由于战时出版禁令的解除,出现了系统阐述经典控制理论的著作。1945年美国数学家维纳,N.把反馈的概念推广到一切控制系统。50年代以后,经典控制理论有了许多新的发展。。经典控制理论的方法基本上能满足第二次世界大战中军事技术上的需要和战后工业发展上的需要。但是到了50年代末就发现把经典控制理论的方法推广到多变量系统时会得出错误的结论。经典控制理论的方法有其局限性。 20世纪40年代中发明的电子数字计算机开创了数字程序控制的新纪元,虽然当时还局限于自动计算方面,但ENIAC和EDVAC 的制造成功,开创了电子数字程序控制的新纪元。电子数字计算机的发明为60~70年代在控制系统中广泛应用程序控制和逻辑控制以及广泛应用电子数字计算机直接控制生产过程奠定了基础。

20世纪50年代末起至今是综合自动化时期,这一时期空间技术迅速发展,迫切需要解决多变量系统的最优控制问题。于是诞生了现代控制理论。现代控制理论的形成和发展为综合自动化奠定了理论基础。同时微电子技术有了新的突破。1958年出现晶体管计算机,1965年出现集成电路计算机,1971年出现单片微处理机。微处理机的出现对控制技术产生了重大影响,控制工程师可以很方便地利用微处理机来实现各种复杂的控制,使综合自动化成为现实。

经典控制理论和现代控制理论的区别和联系

1.经典控制理论和现代控制理论的区别和联系 区别: (1)研究对象方面:经典控制系统一般局限于单输入单输出,线性定常系统。严格的说,理想的线性系统在实际中并不存在。实际的物理系统,由于组成系统的非线性元件的存在,可以说都是非线性系统。但是,在系统非线性不严重的情况时,某些条件下可以近似成线性。所以,实际中很多的系统都能用经典控制系统来研究。所以,经典控制理论在系统的分析研究中发挥着巨大的作用。 现代控制理论相对于经典控制理论,应用的范围更广。现代控制理论不仅适用于单输入单输出系统,还可以研究多输入多输出系统;不仅可以分析线性系统,还可以分析非线性系统;不仅可以分析定常系统,还可以分析时变系统。 (2)数学建模方面:微分方程(适用于连续系统)和差分方程(适用于离散系统)是描述和分析控制系统的基本方法。然而,求解高阶和复杂的微分和差分方程较为繁琐,甚至难以求出具体的系统表达式。所以,通过其它的数学模型来描述系统。 经典控制理论是频域的方法,主要以根轨迹法和频域分析法为主要的分析、设计工具。因此,经典控制理论是以传递函数(零初始状态下,输出与输入Laplace变换之比)为数学模型。传递函数适用于单输入单输出线性定常系统,能方便的处理这一类系统频率法或瞬态响应的分析和设计。然而对于多信号、非线性和时变系统,传递函数这种数学模型就无能为力了。传递函数只能反应系统的外部特性,即输入与输出的关系,而不能反应系统内部的动态变化特性。 现代控制理论则主要状态空间为描述系统的模型。状态空间模型是用一阶微分方程组来描述系统的方法,能够反应出系统内部的独立变量的变化关系,是对系统的一种完全描述。状态空间描述法不仅可以描述单输入单输出线性定常系统,还可以描述多输入多输出的非线性时变系统。另外状态空间分析法还可以用计算机分析系统。 (3)应用领域方面:由于经典控制理论发展的比较早,相对而言理论比较成熟,并且生产生活中很多过程都可近似看为线性定常系统,所以经典控制理论应用的比较广泛。 现代控制理论是在经典控制理论基础上发展而来的,对于研究复杂系统较为方便。并且现代控制理论可以借助计算机分析和设计系统,所以有其独特的优越性。 联系:(1)虽然现代控制理论的适用范围更多,但并不能定性的说现代控制理论更优于经典控制理论。我们要根据具体研究对象,选择合适的理论进行分析,这样才能是分析的更简便,工作量较小 (2)两种控制理论在工业生产、环境保护、航空航天等领域发挥着巨大的作用。 (3)两种理论有其各自的特点,所以在对系统进行分析与设计时,要根据系统的特征选取

现代控制理论----综述论文-2015

2015级硕士期末论文《现代控制理论综述》 课程现代控制理论姓名 学号 专业 2016 年1 月 4 日

经典控制理论与现代控制理论的差异 现代控制理论是建立在状态空间法基础上的一种控制理论,是自动控制理论的一个主要组成部分。在现代控制理论中,对控制系统的分析和设计主要是通过对系统的状态变量的描述来进行的,基本的方法是时间域方法。现代控制理论比经典控制理论所能处理的控制问题要广泛得多,包括线性系统和非线性系统,定常系统和时变系统,单变量系统和多变量系统。它所采用的方法和算法也更适合于在数字计算机上进行。现代控制理论还为设计和构造具有指定的性能指标的最优控制系统提供了可能性。现代控制理论的名称是在1960年以后开始出现的,用以区别当时已经相当成熟并在后来被称为经典控制理论的那些方法。现代控制理论已在航空航天技术、军事技术、通信系统、生产过程等方面得到广泛的应用。现代控制理论的某些概念和方法,还被应用于人口控制、交通管理、生态系统、经济系统等的研究中。 现代控制理论是在20世纪50年代中期迅速兴起的空间技术的推动下发展起来的。空间技术的发展迫切要求建立新的控制原理,以解决诸如把宇宙火箭和人造卫星用最少燃料或最短时间准确地发射到预定轨道一类的控制问题。这类控

制问题十分复杂,采用经典控制理论难以解决。1958年,苏联科学家Л.С.庞特里亚金提出了名为极大值原理的综合控制系统的新方法。在这之前,美国学者R.贝尔曼于1954年创立了动态规划,并在1956年应用于控制过程。他们的研究成果解决了空间技术中出现的复杂控制问题,并开拓了控制理论中最优控制理论这一新的领域。1960~1961年,美国学者R.E.卡尔曼和R.S.布什建立了卡尔曼-布什滤波理论,因而有可能有效地考虑控制问题中所存在的随机噪声的影响,把控制理论的研究范围扩大,包括了更为复杂的控制问题。几乎在同一时期内,贝尔曼、卡尔曼等人把状态空间法系统地引入控制理论中。状态空间法对揭示和认识控制系统的许多重要特性具有关键的作用。其中能控性和能观测性尤为重要,成为控制理论两个最基本的概念。到60年代初,一套以状态空间法、极大值原理、动态规划、卡尔曼-布什滤波为基础的分析和设计控制系统的新的原理和方法已经确立,这标志着现代控制理论的形成。 现代控制理论所包含的学科内容十分广泛,主要的方面有:线性系统理论、非线性系统理论、最优控制理论、随机控制理论和适应控制理论。 线性系统理论是现代控制理论中最为基本和比较成熟的一个分支,着重于研究线性系统中状态的控制和观测问题,其基本的分析和综合方法是状态空间法。按所采用的数学工具,线性系统理论通常分成为三个学派:基于几何概念和方法的几何理论,代表人物是W.M.旺纳姆;基于抽象代数方法的代数理论,代表人物是R.E.卡尔曼;基于复变量方法的频域理论,代表人物是H.H.罗森布罗克。 非线性系统理论的分析和综合理论尚不完善。研究领域主要还限于系统的运动稳定性、双线性系统的控制和观测问题、非线性反馈问题等。更一般的非线性系统理论还有待建立。从70年代中期以来,由微分几何理论得出的某些方法对

经济增长理论文献综述

科技经济市场 1引言 500年至1500年,经济的年增长只有0.1%,在1000年的漫长岁月中,产出只增长了3倍,而18世纪的英国却取得了10倍于过去的增长率。这一现象第一次让人兴奋不已,古典经济学家们首先探讨了经济增长问题,对经济增长过程的分析是由斯密、李嘉图和马尔萨斯为主要代表的英国古典经济学家的核心工作,他们是研究经济增长理论的杰出前驱,斯密强调劳动专业化分工对经济增长的重要性,李嘉图则强调国际贸易对经济增长的贡献,而马尔萨斯则强调人口与经济增长的关系。但他们的研究视野都被局限在识别影响增长的因素和说明决定经济增长过程的机制上。 哈罗德1939年发表的《关于动态理论的一篇论文》和1948年出版的《走向动态经济学》,提出了经济学界的第一个经济增长理论模型,使经济增长问题的研究从定性走向了定量,1946-1947年美国经济学家多马发表了二篇有关经济增长的论文。哈罗德和多马提出的经济增长模型既是对凯恩斯宏观理论的进一步扩展,又是现代经济增长理论研究的起点,从而标志着主流经济学开始将经济增长的理论研究作为了重要的研究课题。 2经济增长理论模型化的开始 1870年以后,经济学主流关注的重点从供给转向了需求,经济增长的研究已远离了主流经济学家的视野,哈罗德-多马则开创了主流经济学家对经济增长理论模型的研究,标志着经济增长理论研究在主流经济学中的复兴。 现代经济学的增长模型是建立在Harrod(1939)和Domar (1946)的基础上,按照Harrod-Domar模型,决定一国经济增长的的最主要因素有两个:决定全社会投资水平的储蓄率和反映生产效率的资本-产出比率。由于假设前提的局限,在他们的模型中,资本和劳动同时实现充分就业的稳定状态的经济增长很难实现,即经济长期均衡增长呈现出“刀刃”特征。但Harrod-Domar模型标志了经济学界运用数理经济方法研究经济增长理论的开始,是对经济增长理论研究的一次重大革命:他对资本积累和劳动就业的研究,对以后的经济增长理论模型将资本和劳动作为经济增长所必须依赖的两大要素,显然具有直接的影响。这一模型既是现代经济增长理论的起点,也是将经济增长理论模型化的现代经济增长模型研究的起点,同时,它也是经济增长理论模型内生化进程的出发点。 Harrod-Domar模型强调物质资本的增长对现代经济增长的决定意义。这是以后的经济增长理论研究经济增长率的起点,模型中四个外生的参数:资本-产出比、储蓄率、技术进步的速度和人口增长率,以后的经济增长理论模型的发展基本上就是围绕着将这四个外生变量内生化而进行的。 3现代经济增长理论模型的基准 索罗在Harrod-Domar模型的基础上新引进了三个假设:(1)总 量生产函数象柯布道格拉斯生产函数一样具有新古典性质;(2)劳动和资本这二种生产要素在任何时刻都处于供求均衡状态;(3)劳动和资本可以相互替代。在此基础上索罗于1956年发表的论文《A Contribution to the Theory of Economic Growth》成了近半个世纪几乎所有的经济增长理论模型研究的基准点:(1)自索罗模型开始,新古典生产函数就成了经济增长理论模型中标准的总量生产函数;(2)在索罗模型的影响下,整个经济时刻都处于动态一般均衡状态成了经济增长理论模型中的通则;(3)索罗模型将给定人们掌握的技术下的劳动生产率内生化,于是在其模型中引入了那个著名的代表技术水平的变量A;(4)索罗模型还在经济增长理论中确立了一个思想传统:它使经济增长理论变成了完全从供给方面研究长期经济增长的根源;(5)在索罗模型的影响下,主流经济增长模型都以自己的长期增长稳态来解释形成“卡尔多稳态”的原因。 罗索模型通过假设资本和劳动之间的替代解决了Harrod-Domar模型中的“刀刃”问题,但它却不能解决没有外生给定技术进步时产生人均产出的长期增长,此外模型中的储蓄率也不是通过个人动态最优化行为内生决定的,更为紧要是的它能解决经济增长中的许多问题却不能解决经济增长本身!索罗模型的缺陷激发了经济学家们构造经济增长数学模型的冲动。其中,拉姆齐模型通过变分法解决了消费都在现在消费和未来消费之间的有效折中,解决了最优化的储蓄、生产和消费的时间路径,沿着这条思路的研究取得的最重要成果是卡斯和库普曼斯在1965年作出的贡献:他们将拉姆齐的消费都最优化理论引入新古典经济增长模型,从而使新古典模型达到了最完美的程度。 4将储蓄内生化的经济增长模型 新古典经济理论没有考虑消费者的最优化决策行为,而是假设储蓄是产出的固定比例,并且是外生给定的,从而使这个模型缺乏微观经济基础。于是新古典经济理论在将资本内生化的基础上进行了将储蓄率内生化。新古典经济理论的第二步内生化不仅导致了拉齐姆-卡斯库普曼斯模型(无限斯界模型)的产生,而且也导致了戴蒙德的世代交替模型的诞生。 按新古典经济学的研究范式将储蓄内生化,首要条件是建立附有对时间的主观帖现率的新古典的效用函数,在个人效用函数最大化分析中,重要问题之一是决策的时间范围,即决策的个人是将未来无限长时间中的效用最大化,还是仅仅将自己有限的一生的时间内进行效用的最大化,以前一种时间假定为条件建立的经济模型被称为“无限期界模型”(Infinite Horizon M odel)以后一种时间假设为条件建立的模型被称为“世代交叠模型”(Overlapping generations M odel)。 拉姆齐以数学模型论证了最优消费行为下,一国储蓄所必须满足的条件(Ramsey,1928),但由于当时经济数学工具的限制,拉姆齐推导出的其实是每个时点上的最优储蓄,而没有依据基本的效用函数指出整个未来时期中最优消费和最优储蓄的动 经济增长理论文献综述 佘时飞 (电子科技大学中山学院,广东中山528402) 摘要:在哈罗德-多马将经济增长理论模型化的基础上,索罗将资本进行了内生化,拉姆齐-卡斯-库普曼斯和戴蒙德则将储蓄进行了内生化,从而进一步完善了新古典经济增长理论。此后沿着内生化方向,出现了大量的文献,将经济增长理论的研究进一步推向深入。内生化将经济增长理论发展带入了一个全新的时代,成为当前经济理论研究的主导方向,本文将对这一方向的发展作一个较为系统的综述。 关键词:技术进步;制度创新;内生增长 经济研究 趦趻 2009年第8期

自动控制原理论文

自动控制 摘要:综述了自动控制理论的发展情况,指出自动控制理论所经历的三个发展阶段,即经典控制理论、现代控制理论和智能控制理论。最后指出,各种控制理论的复合能够取长补短,是控制理论的发展方向。 自动控制理论是自动控制科学的核心。自动控制理论自创立至今已经过了三代的发展:第一代为20世纪初开始形成并于50年代趋于成熟的经典反馈控制理论;第二代为50、60年代在线性代数的数学基础上发展起来的现代控制理论;第三代为60年代中期即已萌芽,在发展过程中综合了人工智能、自动控制、运筹学、信息论等多学科的最新成果并在此基础上形成的智能控制理论。经典控制理论(本质上是频域方法)和现代控制理论(本质上是时域方法)都是建立在控制对象精确模型上的控制理论,而实际上的工业生产系统中的控制对象和过程大多具有非线性、时变性、变结构、不确定性、多层次、多因素等特点,难以建立精确的数学模型。因此,自动控制专家和学者希望能从要解决问题领域的知识出发,利用熟练操作者的丰富经验、思维和判断能力,来实现对上述复杂系统的控制,这就是基于知识的不依赖于精确的数学模型的智能控制。本文将对经典控制理论、现代控制理论和智能控制理论的发展情况及基本内容进行介绍。 1自动控制理论发展概述 自动控制是指使用自动化仪器仪表或自动控制装置代替人 自动地对仪器设备或工业生产过程进行控制,使之达到预期的状态或性能指标。对传统的工业生产过程采用自动控制技术,可以有效提高产品的质量和企业的经济效益。对一些恶劣环境下的控制操作,自动控制显得尤其重要。 自动控制理论是和人类社会发展密切联系的一门学科,是自动控制科学的核心。自从19世纪M ax we ll对具有调速器的蒸汽发动机系统进行线性常微分方程描述及稳定性分析以来,经过20世纪初Ny qu i s t,B od e,Ha rr is,Ev ans,W ie nn er,Ni cho l s等人的杰出贡献,终于形成了经典反馈控制理论基础,并于50年代趋于成熟。经典控制理论的特点是以传递函数为数学工具,采用频域方法,主要研究“单输入—单输出”线性定常控制系统的分析和设计,但它存在着一定的局限性,即对“多输入—多输出”系统不宜用经典控制理论解决,特别是对非线性、时变系统更

自动控制理论发展简史

自动控制理论发展简史(经典部分) 牛顿可能是第一个关注动态系统稳定性的人。1687年,牛顿在他的《数学原理》中对围绕引力中心做圆周运动的质点进行了研究。他假设引力与质点到中心距离的q 次方成正比。牛顿发现,假设q>-3 ,则在小的扰动后,质点仍将保留在原来的圆周轨道附近运动。而当q≤-3时,质点将会偏离初始的轨道,或者按螺旋状的轨道离开中心趋向无穷远,或者将落在引力中心上。 在牛顿引力理论建立之后,天文学家曾不断努力以图证明太阳系的稳定性。特别地,拉格朗日和拉普拉斯在这一问题上做了相当的努力。1773年,24岁的拉普拉斯“证明了行星到太阳的距离在一些微小的周期变化之内是不变的”。并因此成为法国科学院副院士。虽然他的论证今天看来并不严格,但他的工作对后来李亚普诺夫的稳定性理论有很大的影响。 直到十九世纪中期,稳定性理论仍集中在对保守系统研究上。主要是天文学的问题。在出现控制系统的镇定问题后,科学家们开始考虑非保守系统的稳定性问题。 James Clerk Maxwell是第一个对反馈控制系统的稳定性进行系统分析并发表论文的人。在他1868年的论文“论调节器”(Maxwell J C.On Governors. Proc. Royal Society of London,vol.16:270-283,1868)中,导出了调节器的微分方程,并在平衡点附近进行线性化处理,指出稳定性取决于特征方程的根是否具有负的实部。Maxwell的工作开创了控制理论研究的先河。 Maxwell是一位天才的科学家,在许多方面都有极高的造诣。他同时还是物理学中电磁理论的创立人(见其论文“A dynamical theory of the electromagnetic field”,1864)。目前的研究表明,Maxwell事实上在1863年9月即已基本完成了其有关稳定性方面的研究工作。 约在1875年,Maxwell担任了剑桥Adams Prize的评奖委员。这项两年一次的奖授予在该委员会所选科学主题方面竞争的最佳论文。1877年的Adams Prize的主题是“运动的稳定性”。E.J.Routh在这项竞赛中以其跟据多项式的系数决定多项式在右半平面的根的数目的论文夺得桂冠(Routh E J.A Treatise on the Stability of Motion.London,U.K.:Macmillan,1877)。Routh的这一成果现在被称为劳斯判据。Routh工作的意义在于将当时各种有关稳定性的孤立的结论和非系统的结果统一起来,开始建立有关动态稳定性的系统理论。 Edward John Routh 1831年1月20日出生在加拿大的魁北克。他父亲是一位在Waterloo服役的英国军官。Routh 11岁那年回到英国,在de Morgan指导下学习数学。在剑桥学习的毕业考试中,他获得第一名。并得到了“Senior Wrangler”的荣誉称号。(Clerk Maxwell排在了第二位。尽管Clerk Maxwell当时被称为最聪明的人。)毕业后Routh开始从事私人数学教师的工作。从1855年到1888年Routh教了600多名学生,其中有27位获得“Senior Wrangler”称号,建立了无可匹敌的业绩。Routh于1907年6月7日去世,享年76岁。 Routh之后大约二十年,1895年,瑞士数学家A. Hurwitz在不了解Routh工作的情况下,独立给出了跟据多项式的系数决定多项式的根是否都具有负实部的另一种方法(Hurwitz A. On the conditions under which an equation has only roots with negative real parts. Mathematische Annelen,vol.46:273-284,1895)。Hurwitz的条件同Routh的条件在本质上是一致的。因此这一稳定性判据现在也被称为Routh-Hurwitz稳定性判据。 1892年,俄罗斯伟大的数学力学家A.M.Lyapunov(1857.5.25-1918.11.3)发表了其具有深远历史意义的博士论文“运动稳定性的一般问题”(The General Problem of the Stability of Motion,1892)。在这一论文中,他提出了为当今学术界广为应用且影响巨大的李亚普诺夫方法,也即李亚普诺夫第二方法或李亚普诺夫直接方法。这一方法不仅可用于线性系统而且可用于非线性时变系统的分析与设计。已成为当今自动控制理论课程讲授的主要内容之一。 Lyapunov是一位天才的数学家。他是一位天文学家的儿子。曾从师于大数学家P.L.Chebyshev(车比晓夫),和A.A.Markov(马尔可夫)是同校同学(李比马低两级),并同他们始终保持着良好的关系。他们共同在概率论方面做出过杰出的成绩。在概率论中我们可以看到关于矩的马尔可夫不等式、车比晓夫不等式和李亚普诺夫不等式。李还在相当一般的条件下证明? 在控制系统稳定性的代数理论建立之后,1928年至1945年以美国AT&T公司Bell实验室(Bell Labs)的科学家们为核心,又建立了控制系统分析与设计的频域方法。

内生增长理论的历史渊源及其现代发展解读

内生增长理论的历史渊源及其现代发展 1986年,Romer向美国经济学会(AEA)年会递交了一篇仅仅七页的论文,与会的经济学家及Romer本人都没有想到这篇短文对于今后十多年的经济增长研究的影响。事实上,由Romer的论文及其他后继者的工作,开创了增长理论研究的一个新时代,即内生增长理论时代。从经济学家角度来看,尽管宏观经济学与经济增长理论均研究宏观经济问题,但增长理论是要解决经济增长的长期路径问题,因而更关注经济中的潜在产出及其增长路径的原因,其基础是一个足够简单而符合实际情况的生产函数,而宏观经济学则考察经济的短期波动问题。因此,对于经济学家来说,怎样在一些合乎现实情况的生产函数基础上,研究经济的长期增长路径,是经济增长理论所要解决的问题[1]。为了解决这个问题,很多经济学家进行深入的研究,而形成了今天内生增长理论百花齐放的局面。新增长理论兴起的一个重要原因,在于其对战后的世界经济增长,乃至于人类社会长期以来的经济增长提供了一个基本解释框架(例如,Kremer (1993)对于全世界有史以来的经济增长过程的研究)。另一个原因则是其对于具有经典意义的Solow模型所作出的更合乎现实的修正。这主要体现在其巧妙地避开了新古典增长模型无法与规模报酬递增及边际报酬不变自洽的矛盾。还有一个原因是自70年代以来宏观经济学所遇到的困境,理性预期的出现,从本质上并没有挽救宏观经济学所面临的一系列问题,而是使宏观经济学成为一些远离现实的更复杂的数学模型,例如Sala-I-Martin(2001)指出,新增长理论出现的一个重要的贡献是使经济学家的注意力从理性预期转移到长期问题,而理性预期对于长期问题事实上没有作出贡献。本文旨在探讨由Romer及Lucas 所开创的内生增长理论的思想渊源,并说明其现代进展。 一、内生经济增长理论的理论渊源 自经济学产生开始,经济学家就不断探索经济增长的原因、经济增长的内在机制及经济增长的途径。早期的许多经济学家,如A.Smith、K.Marx、 D.Ricardo等,均对经济增长理论进行了深刻的探索。但真正建立了增长理论现代形式[2]的却是本世纪三四十年代的经济学家Harrod与Domar。Harrod与Domar在Kenyes所发展的宏观经济学基础上,将其进行动态化,将经济增长理论引入现代时期[3]。 Harrod与Domar使用了里昂惕夫性质的生产函数,即F=MIN(K/G,L),并使用I=S均衡条件,得到了长期增长的均衡路径。但是,由于Harrod与Domar所使用的生产函数的非连续性,导致这种均衡是十分不稳定的,正是Harrod—Domar模型的路径被称为刃锋上的增长的原因。在1956年,Solow对Harrod—Domar模型的生产函数进行了修正,创立了著名的新古典增长模型。Solow的贡献在于在生产函数中引入技术进步因素,并假设资本与劳动之间可完全替代[4],这种具有连续性的生产函数使经济学家可以寻找到一种稳定的持续增长路径。

公司控制权理论概述

公司控制权理论概述标准化管理部编码-[99968T-6889628-J68568-1689N]

公司控制权理论概述部分 一、公司控制权词源 在现代汉语词典里,控制,已经成为一个固定用法的组合词,是控与制两者所组成的关联。控‘“掌握;操纵。”制,“管束;约束。”从现代汉语的用法来看“控”与“制”具有不可分离性。其表达了一个主体对他的相对对象进行某种支配的观念。控制,“掌握、支配,使不越出一定范围。” “从控制的内容上看,公司控制是指所行使的控制力作用于什么事情或什么事务”是指对一个公司的经营者或方针政策具有决定性的影响力,这种影响力可以决定一个董事会的选任,决定公司的财务和经营者管理活动,甚至使该公司成为某种特定目的的工具。 二、公司控制权概念解析 如果将公司控制理解为一种与公司有关的相关“控制”,即一种更宽泛的“控制”理解,那么上述的“公司控制”定义也可以说是一种公司内部控制的定义。相对于这种内部控制而言就会产生外部控制的理解,即公司作为一个即存物与外部发生联系时产生之控制内容,“控制还可以从公司之间的关系来考察。”换言之,公司控制还应包括,公司之间的控股关系产生的控制,以及“除了控股一种因素或方式之外,并不排除其他因素和方式也可以形成”之控制——公司之间的控制所形成母子公司关系或控制从属公司形成企业集团或关系企业关系。 从严格意义上讲,控制权并不是像“所有权”或“股东权”一样有着明确权利内涵的概念,控制权更多的是一种事实状态,一种对公司资源的实际控制,其实质的股东权与法人财产权相互博弈的一个过程。

本文认为。公司控制权,是指股东、管理层或其他利益相关者在事实状态下,拥有对公司经营决策、日常管理以及财务政策制定等的可能性与现实性结合,是一种权力与权利观念的结合,即制度化了的影响公司财务决策和经营决策的能力与暗含于私权观念下的“意思自治”的“权利”观念的结合。 三、公司控制权与所有权和经营管理权三者之间的概念辨析 本文中将公司控制权与所有权和经营管理权三者的关系界定为:公司控制权是指对公司的所有可供支配和利用资源的控制和管理的权利,它与剩余索取权一起构成所有权,公司控制权源于公司所有权,公司所有权是公司控制权的基础。公司控制权派生出投票权、决策权等经营管理权,但以上派生权利并非控制权的全部。 下面就以上观点进行如下论述:首先企业所有权的核心是剩余索取权,全部的所有权拥有合同权利之外的剩余控制权,而控制权从属于所有权,控制权由所有权派生。即是说,经营管理权出自于控制权且受制于控制权,但同时经营管理权又是控制权赖以实现的重要途径,因为所有权与控制权存在分离的倾向,控股股东只有通过股东会选举出代表自己的董事会,才能真正实施对公司的控制。 因此,公司控制权虽然与所有权、经营管理权在内容上存在交叉,但是控制权已经超越了所有权的边界,经营管理权也只是公司控制权派生出来的一种实现公司控制权的权利。 法学中的权利不仅包括法律明确规定的具体法律制度,还包括实体法未明确规定的权利。在此我们可以论证控制权实际上是一种法律权利,主要体现在以下几方面:首先,公司控制权是公司实践中实际存在的一种为实现公

经典控制理论

1、经典控制理论与现代控制理论的主要差别。 经典控制理论和现代控制理论,同属于自动控制理论的范畴,属于两种截然不同的分析方式。现实生活中,我们更多接触的是物理模型,而自动控制理论,归根结底,是个数学问题。那么,把真实的物理系统理想化之后,即为物理模型,对物理模型进行数学描述,即为数学模型。经典控制理论着重研究系统的输入-输出特性(即外部描述),现代控制理论不但研究系统的输入-输出关系,而且还研究系统内部各个状态变量,采用状态向量描述(即内部描述)。两种描述,都有时域和频域方法。从广义上讲,现代控制理论的应用层面更宽,而经典控制理论的应用领域相对狭窄,仅仅用线性时不变定常连续系统。 2、传递函数 那么怎么把一个物理模型,描述出数学模型,很简单,就是利用了传递函数。任何一个线性定常连续系统,都可以用一个线性常微分方程描述。把输出量的微分线性组合放在方程等式左边,输入量的微分线性组合放在方程右边,等号两边分别取拉普拉斯变换,就得到了我们的传递函数模型。通过拉普拉斯变换,线性微分方程转换成了代数方程,传递函数表达了一个系统输入-输出的关系,一旦系统给定,传递函数就不会变化,即传递函数不受输入和输出的变化影响。传递函数又可定义为初始条件为零的线性定常系统输出量的s变换与输入量的s变换之比。传递函数的局限在于,它只能反映系统的外部特性,即输入-输出的特性,因此传递函数模型也常被称为“黑箱”模型,我们只能看到由它引起的外部变化,并不能解决系统内部的一些问题和矛盾。要解决这个问题就要用状态空间模型和现代控制理论,因此状态空间模型又称“白箱”模型,我们可以清晰看到它的内部结构,以便对系统进行优化和完善。 3、经典控制理论研究的核心内容。 已知一个系统的传递函数,这个系统的动态性能从最根本上讲取决于什么,这些决定因素是如何影响系统性能的。这个问题其实是经典控制理论最最核心的问题,经典控制理论所有的研究方法都是基于这个问题展开的。给定一个传递函数G(s),决定系统性能的最根本因素就是系统的零点和极点在复平面上的分布情况,其中起决定性作用的是极点的分布,它决定了系统是否是稳定的,是否有震荡,震荡的频率和幅度等等系统最关键的东西,零点的存在起的是一种调节作用,要么是锦上添花,要么是雪上加霜。学习经典控制理论,最终目的是学会如何根据各种被控对象来设计合适的控制器,但从上面的意义上来讲,设计控制器最终目的就是为了把整个系统的零点和极点控制在我们希望的区域或范围内(被控变量的可控性)。 4、经典控制理论的分析方法 经典控制理论,概括来讲,有三种分析方法:时域分析、根轨迹分析、频域分析。 那么PID调节,属于哪种分析方式呢?属于时域分析。很多人可能不太理解这样的观点。PID,含有零点、含有极点,零极点的概念,在频域分析法中同样存在,应该属于频域分析。

自动控制理论的发展及其应用综述

自动控制理论的发展及其应用综述 黄佳彬 3120101224 20世纪40年代,控制论这门学科开始发展,其标志为维纳于1948年出版了自动控制学科史上的名著《控制论,或动物和机器的控制和通信》(Cybernetics,or control and communication in the animal and machine)。控制论思想的提出为现代科学研究提供了新的思想和方法,同时书中的一些新颖的思想和观点吸引了无数学者,令其在自己研究的领域引进控制论。随着研究队伍的庞大,控制论形成了多个分支,其中主要的几个分支有生物控制论,工程控制论,军事控制论,社会、经济控制论,自然控制论。这里我们主要对工程控制论进行研究。 1.自动控制理论的发展 工程控制论的概念最早由钱学森引入,当时有两种控制理论思想,一种基于时间域微分方程,另一种基于系统的频率特性。这两种思想即为经典控制理论,主要研究的是单输入-单输出的控制系统,同时利用分析法与实验验证法这两种方法对某个控制系统进行数学建模,由此可以获得系统各元部件之间的信号传递关系的形象表示。 由于经典控制理论的建立基于传递函数和频率特性,是对系统的外部描述。同时经典控制理论主要研究单输入单输出系统,无法解决现实工程应用中多输入多输出系统的问题,而且经典控制理论只对线性时不变系统进行讨论,存在不少的局限性,由此,现代控制理论逐渐发展起来。 现代控制理论是从线性代数的理论研究上得来的,本质是“时域法”,即基于状态空间模型在时域对系统进行分析和设计,并且引入“状态”这一概念,用“状态变量”和“状态方程”描述系统,以此来反应系统的内在本质和特性。现代控制理论研究的内容主要有三方面:多变量线性系统理论、最优控制理论以及最优估计与系统辨识理论,这些研究从理论上解决了许多复杂的系统控制问题,但是随着发展,实际生产系统的规模越来越大,控制对象、控制器、控制任务和目的也更为复杂,导致现代控制理论的成果并未有在实际中很好的应用。 智能控制的概念最早是在20世纪70年代由傅京孙教授提出,这一概念最早是为解决经典控制理论和现代控制理论在实际应用上面临的问题而寻求的新出路,也是人工智能与自动控制交叉的产物。1977年,美国学者Saridis在原本的

内生经济增长模型.doc

内生经济增长模型 目录 理论概述 理论内容 理论思路 理论概述 理论内容 理论思路 展开 编辑本段理论概述 内生增长理论概述 内生增长理论的主要任务之一是揭示经济增长率差异的原因和解释持续经济增长的可能。尽管新古典经济增长理论为说明经济的持续增长导入了外生的技术进步和人口增长率,但外生的技术进步率和人口增长率并没有能够从理论上说明持续经济增长的问题。 内生经济增长模型 内生增长理论是基于新古典经济增长模型发展起来的,从某种意义上说,内生经济增长理论的突破在于放松了新古典增长理论的假设并把相关的变量内生化。 编辑本段理论内容 储蓄率内生 早期的新古典增长模型假设储蓄率是外生的,Cass(1965年)和Koopmans(1965年)把Ramsey的消费者最优化分析引入到新古典增长理论中,因而提供了对储蓄率的一种内生决定:储蓄率取决于居民的消费选择或者说对现期消费和远期消费(储蓄)的偏好。 内生储蓄率意味着资本积累速度和资本供给的内生决定,从而决定经济增长的一个投入要素(资本)从数量上得以在模型内加以说明。然而,Ramsey-Cass-Koopmans

模型对储蓄的内生性的技术处理并没有消除模型本身长期人均增长率内生经济增长模型 对外生技术进步的依赖。Ramsey模型暗示长期增长率被钉住在外生的技术进步率值x上。一个更高的储蓄意愿或技术水平的增进在长期中体现为更高的资本或更有效的工人产出水平,但却不会引起人均增长率的变化。 劳动供给内生 新古典的另一个关键外生变量是人口增长率。更高的人口增长率降低了每个工人的资本和产出的稳态水平,因而趋于减少对于一个给定的人均产出初始水平而言的人均增长率。然而标准模型没有考虑人均收入及工资率对人口增长的影响——被Malthus所强调的那种影响——也没有把在养育过程中所使用的资源考虑在内。 内生增长理论的一条研究路线通过把迁移、生育选择和劳动/闲暇选择分析整合进新古典模型中来使人口增长内生化。首先,考虑针对经济机会的移入(immigration)和移出(emigration)。对于给定的出生率和死亡率而言,这一过程改变了人口及劳动力;其次,引入有关出生率的选择。这是容许人口和劳动力的内生决定的另一条渠道;最后,另一条与在一个增长框架中劳动供给的内生性有关的研究思路则涉及迁移及劳动/闲暇的选择——劳动力与人口不再相等。 Becker,Murphy and Tamura(1990年),Ehrlich and Lui(1991年),Rosenzweig(1990年)讨论了劳动供给、人力资本投资对经济增长的影响。 内生技术进步 把技术变迁理论包括进新古典框架中是困难的,因为这样做的话标准的竞争性假设就不可能得到维持。技术进步涉及新观念的创造,而这是部分非竞争性的,具有公共品的特征。对于一种给定的技术,换言之,在给定有关如何生产的知识水平的情况下,假定在标准的竞争性生产要素如劳动、资本和土地中规模报酬不变是合理的,则以相同数量的劳动、资本和土地来复制一个企业从而得到二倍的产出是可能的。但是,如果生产要素中包括非竞争性的观念,那么规模报酬则趋于递增。而这些递增报酬与完全竞争相冲突。特别的,非竞争性的旧观念的报酬与其当前的边际生产成本(等于零)相一致,这将不能为体现于新观念创造之中的研究努力提供适当的奖励。 经济的长期增长必然离不开收益递增,新古典增长理论之所以不能很好地解释经济的持续增长,在于新古典经济增长模型的稳定均衡是以收益递减规律为基本前提的。内生增长理论在理论上的主要突破在于把技术进步引入到模型中来,其消除新古典增长模型中报酬递减的途径有三种: 要素报酬不变 : 考虑把物质和人力资本都包括在内的广义的资本概念(AK模型)

现代控制理论概述及实际应用意义

13/2012 59 现代控制理论概述及实际应用意义 王 凡 王思文 郑卫刚 武汉理工大学能源与动力工程学院 【摘 要】控制理论作为一门科学技术,已经广泛地运用于我们社会生活的方方面面。本文介绍了现代控制理论的产生、发展、内容、研究 方法和应用以及经典控制理论与现代控制理论的差异,并介绍现代控制理论的应用。提出了学习现代控制理论的重要意义。【关键词】现代控制理论;差异;应用;意义 1.引言 控制理论作为一门科学技术,已经广泛地运用于我们社会生活的方方面面。例如,我们的教学也使用了控制理论的方法。老师在课堂上讲课,大家在课堂上听,本身可看作一个开环函数;而同学们课下做作业,再通过老师的批改,进而改进和提高老师的授课内容和方法,这就形成了一个闭环控制。像这样的例子很多,都是控制理论在生活中的应用。现代控制理论如此广泛,因此学好现代控制理论至关重要。 2.现代控制理论的产生与发展现代控制理论的产生和发展经过了很长的时期。从现代控制理论的发展历程可以看出,它的发展过程反映了人类由机械化时代进入电气化时代,并走向自动化、信息化、智能化时代。其产生和发展要分为以下几个阶段的发展。 2.1 现代控制理论的产生在二十世纪五十年代末开始,随着计算机的飞速发展,推动了核能技术、空间技术的发展,从而对出现的多输入多输出系统、非线性系统和时变系统的分析与设计问题的解决。 科学技术的发展不仅需要迅速 地发展控制理论,而且也给现代控制理论的发展准备了两个重要的条件—现代数学和数字计算机。现代数学,例如泛函分析、现代代数等,为现代控制理论提供了多种多样的分析工具;而数字计算机为现代控制理论发展提供了应用的平台。 2.2 现代控制理论的发展五十年代后期,贝尔曼(Bellman)等人提出了状态分析法;在1957年提出了动态规则;1959年卡尔曼(Kalman)和布西创建了卡尔曼滤波理论;1960年在控制系统的研究中成功地应用了状态空间法,并提出了可控性和可观测性的新概念;1961年庞特里亚金(俄国人)提出了极小(大)值原理;罗森布洛克(H.H.Rosenbrock)、麦克法轮(G.J.MacFarlane)和欧文斯(D.H.Owens)研究了使用于计算机辅助控制系统设计的现代频域法理论,将经典控制理论传递函数的概念推广到多变量系统,并探讨了传递函数矩阵与状态方程之间的等价转换关系,为进一步建立统一的线性系统理论奠定了基础。 20世纪70年代奥斯特隆姆(瑞典)和朗道(法国,https://www.doczj.com/doc/df1386184.html,ndau)在自适应控制理论和应用方面作出了贡献。 与此同时,关于系统辨识、最优控制、离散时间系统和自适应控制的发展大大丰富了现代控制理论的内容。 3.现代控制理论的内容及研究方法 现代控制理论的内容主要有为系统辨识;最优控制问题;自适应控制问题;线性系统基本理论;最佳滤波或称最佳估计。 (1)系统辨识 系统辨识是建立系统动态模型的方法。根据系统的输入输出的试验数据,从一类给定的模型中确定一个被研究系统本质特征等价的模型,并确定其模型的结构和参数。 (2)最优控制问题 在给定约束条件和性能指标下,寻找使系统性能指标最佳的控制规律。主要方法有变分法、极大值原理、动态规划等极大值原理。现代控制理论的核心即:使系统的性能指标达到最优(最小或最大)某一性能指标最优:如时间最短或燃料消耗最小等。 (3)自适应控制问题 在控制系统中,控制器能自动适应内外部参数、外部环境变化,自动调整控制作用,使系统达到一定意义下的最优。模型参考自适应控制

现代控制理论的论文

第一章经典控制理论和现代控制理论 本学期学习了现代控制理论课程的主要内容,现代控制理论建立在状态空间法基础上的一种控制理论,是自动控制理论的一个主要组成部分。在现代控制理论中,对控制系统的分析和设计主要是通过对系统的状态变量的描述来进行的,基本的方法是时间域方法。现代控制理论比经典控制理论所能处理的控制问题要广泛得多,包括线性系统和非线性系统,定常系统和时变系统,单变量系统和多变量系统。它所采用的方法和算法也更适合于在数字计算机上进行。现代控制理论还为设计和构造具有指定的性能指标的最优控制系统提供了可能性。现代控制理论的名称是在1960年以后开始出现的,用以区别当时已经相当成熟并在后来被称为经典控制理论的那些方法。现代控制理论已在航空航天技术、军事技术、通信系统、生产过程等方面得到广泛的应用。现代控制理论的某些概念和方法,还被应用于人口控制、交通管理、生态系统、经济系统等的研究中。 以下是经典控制理论和现代控制理论的比较: 1、经典控制理论: (1)理论基础:Evens的根轨迹,Nyquist稳定判据。 (2)研究对象:线性定常SISO系统分析与设计。 (3)分析问题:稳、准、快 (4)采用方法:是以频率域中传递函数为基础的外部描述方法。 (5)数学描述:高阶微分方程、传递函数、频率特性;方块图、信号流图、频率特性曲线。 (6)研究方法:时域法、根轨迹法、频率法。 2、现代控制理论: (1)理论基础:李雅普诺夫稳定性理论,Bellman动态规划,Понтрягин极值原理,Kalman 滤波。 (2)研究对象:MIMO系统分析与设计(复杂系统:多变量、时变、非线性) (3)分析问题:稳、准、快 (4)设计(综合)问题: 1)采用方法:是以时域中(状态变量)描述系统内部特征的状态空间方法为基础的内部描述方法。 2)数学描述:状态方程及输出方程、传递函数阵、频率特性;状态图、信号流图、频率特性曲线。 3)研究方法:状态空间法(时域法)、频率法。多采用计算机软硬件教学辅助设计——MATLAB软件 (5)特点: 1)系统:MIMO、非线性、时变。 2)方法将矩阵理论和方法应用到控制理论中,不仅能描述系统的输入与输出之间的关系,而且在任何初始条件下,都能揭示系统内部的行为。 3)一个复杂系统可能有多个输入和多个输出,并且以某种方式相互关联或耦合。为了分析这样的系统,必须简化其数学表达式,转而借助于计算机来进行各种大量而乏味的分析与计算。从这个观点来看,状态空间法对于系统分析是最适宜的。

自动控制理论发展概况

自动控制理论发展概况 ——航 自动控制(automatic control)是指在没有人直接参与的情况下利用机械以及程序进行的工程生产以及生活应用,于是在此需求下就形成了一种系统,称之为自动控制系统,这是一类力求以尽可能少的人类干预实现尽可能多的自动监视、检测、调节和控制作用以达到预期技术要求的人造系统。而为了更好地让人们学习和应用这个系统,则派生了一门学科,即自动控制理论,研究这类系统的构思、设计、性能、分析,乃至实施和运行的原理和技术。 自动控制理论已经经过了漫长的发展,关于自动控制的历史,早在古代,我国勤劳的劳动人民就凭借生产实践中积累的丰富经验和对控制以及反馈概念的深刻理解以及直观认识,发明了许多蕴含着深刻控自动控制技术的工具。 如果要深入追溯自动控制技术的发展历史,那么早在两千年前中国就有了自动控制技术的萌芽。例如,两千年前我国发明的指南车,就是一种开环自动调节系统。它利用差速齿轮原理,利用齿轮传动系统,根据车轮的转动,由车上木人指示方向。不论车子转向何方,木人的手始终指向南方,“车虽回运而手常指南”。这是最早的自动化控制应用,也是自动化技术的萌芽阶段。 经典控制理论的发展阶段。 后来到18世纪,欧洲开始了轰轰烈烈的工业革命,工业迅速发展,这段时间让人们认识到机械运作在工业工程上的巨大便利以及其极高的效率。1788年瓦特为了控制蒸汽机的速度而发明了离心式调速器,又称瓦特调速器或飞球调速器。这是一个闭环控制系统,也是一个反馈调节系统,这一发明为经典控制理论的发展拉开了序幕。 控制理论发展的初期,主要是以反馈理论为基础的自动调节原理,主要用于工业控制。于是在工业革命的时期,自动控制技术有一个非常良好的发展环境,在20世纪形成了比较完整的自动控制理论体系,即经典控制理论。 经典控制理论的分析方法为复数域方法,以传递函数作为系统数学模型,可通过试验方法建立数学模型,物理概念清晰,得到广泛的工程应用。但是只适应

控制论论文

最优控制理论简单研究 姓名:学号: 内容摘要 最优控制理论(optimal control theory),是现代控制理论的一个主要分支,着重于研究使控制系统的性能指标实现最优化的基本条件和综合方法。最优控制理论是研究和解决从一切可能的控制方案中寻找最优解的一门学科。它是现代控制理论的重要组成部分。其所研究的问题可以概括为:对一个受控的动力学系统或运动过程,从一类允许的控制方案中找出一个最优的控制方案,使系统的运动在由某个初始状态转移到指定的目标状态的同时,其性能指标值为最优。这类问题广泛存在于技术领域或社会问题中。这类问题广泛存在于技术领域或社会问题中。例如,确定一个最优控制方式使空间飞行器由一个轨道转换到另一轨道过程中燃料消耗最少,选择一个温度的调节规律和相应的原料配比使化工反应过程的产量最多。因此最优控制理论对于解决实际问题和促进科学的发展具有重要的意义和作用。 关键字:最优控制;状态方程;稳定性 引言 控制工程领域早期的经典控制方法和技术早已被工程师们所熟知并进行广泛的应用。一般而言经典控制非常适合解决单输入单输出线性定长系统的控制器设计问题。然而对于高阶系统或多输入多输出系统,采用经典控制方法很难获得令人满意的控制性能。在这种情况下,控制学者于20世纪60年代初开始研究状态空间方法,并依此发展出现代控制的理论框架。其中最优控制则是现代控制理论的主要分支,解决最优控制问题的主要方法有变分法、极值原理和动态规划。从数学的观点来看,最优控制研究的问题是求解一类带有约束条件的泛函极值问题,属于变分学的范畴,但它只能解决一类简单的最优控制问题,因为它只对无约束或开集性约束是有效的,而无法解决工程实际中经常碰到的容许控制属于闭集的一类最优控制问题。这就促使了控制学者们开辟求解最优控制问题的新途径。苏

相关主题
文本预览
相关文档 最新文档