当前位置:文档之家› 水冷壁高温腐蚀和结渣部位研究

水冷壁高温腐蚀和结渣部位研究

水冷壁高温腐蚀和结渣部位研究
水冷壁高温腐蚀和结渣部位研究

切圆燃烧锅炉

水冷壁高温腐蚀和结渣部位研究

王春昌1,魏奉群2

(西安热工研究院有限公司,陕西西安710032;2.大唐洛河发电厂,安徽淮南232008)

[摘要]对切圆燃烧锅炉结渣及高温腐蚀的发生部位及其规律进行了研究,结果表明,通过设计合理的假想切圆直径,尽可能将卫燃带布置在背火侧水冷壁上,以及在易发生高温腐蚀区域

喷涂防腐材料等,可有效防止或减缓水冷壁的严重结渣或高温腐蚀。

[关键词]切圆燃烧锅炉;结渣;高温腐蚀;卫燃带;向火侧;背火侧

[中图分类号]TK227.1

[文献标识码]A

[文章编号]1002—3364(2007)03—0029—03

1炉内高温腐蚀和结渣发生的具体

区域和部位

以高温烟气按逆时针方向旋转的切圆燃烧锅炉为

例。由于切圆燃烧锅炉燃烧器的布置方式大致相同,

由此炉内流动特性决定的炉内结渣发生的具体区域也

应具有大致相同的规律(图1)。通常在高度方向上,

主要在燃烧器区域及其上方(2~3)m的高度段;在水平方向上,主要发生在该角向火侧水冷壁上(如C角),其结渣是由上游临角(即B角)煤粉气流冲刷C角向火侧水冷壁所引起的,如图1中粗线所示。不同锅炉粗线所覆盖的水冷壁上发生结渣或高温腐蚀的程度不同,以及粗线箭头所指方向的分界面不同。

某电厂300Mw机组1号锅炉为HGl025/18.2一PM2型亚临界中间再热自然循环炉,5层一次风燃烧器,采用切圆燃烧方式。该炉投产后,炉内高温腐蚀非常严重,曾运行不到一个大修期,就必须更换约一半的水冷壁,该部分水冷壁也正处于该炉结渣现象发生的

收稿日期:

作者简介:

E-mail:

图1水冷壁结渣及高温腐蚀示意

区域。

某电厂3、4号300MW机组锅炉为WGZl053—17.5/2型炉,燃用煤种为贫煤。为了提高该炉的低负荷能力,在其燃烧器区域布置了220m2左右的卫燃带。该炉投产后不久,炉内卫燃带上结渣严重,结渣厚度高达300mm左右,并因掉渣导致锅炉多次灭火。结渣集中在图1中粗线所示的卫燃带上,而在图1中细线所示的卫燃带(宽约2m多)上却无任何结渣痕迹。

2006—05—15

王春昌,男(1955一),西安热工研究院有限公司煤清洁燃烧国家工程研究中心总工程师,研究员,长期从事大型电站锅炉燃烧技术研究开发。

wanchunchang@tpri.COrn.cn

29

万方数据

2原因分析

(1)燃烧器区域旋转气流流动轨迹如图2所示。在该燃烧器区域,炉内旋转气流的流动轨迹并非为圆,特别是旋转气流的边界层。以C角为例,由于气流从各个角高速射人到旋转气流的过程中,抽吸引射周围气体,在其周围形成所谓的“相对低压区”。因补气条件不同,在向火侧,上邻角(即B角)煤粉气流被补充到“相对低压区”,其未燃尽的焦炭颗粒或未燃气体冲向水冷壁;在背火侧,本角自身气流被卷吸到“相对低压区”,由于回流的速度比较低,且总计有数次转角,因此未燃尽的焦炭颗粒会冲向下游水冷壁,被回流携带到该角的煤粉颗粒很少。

图2燃烧器区域旋转气流流动轨迹

(2)上邻角气流对其紧邻的下角气流产生冲压,致使每个角的气流明显偏向背火侧,从而使上邻角(B角)气流在其下游更容易被下邻角(C角)向火侧气流所抽吸,煤粉颗粒以及未燃气体更容易冲刷到C角向火侧水冷壁,使水冷壁发生结渣和高温腐蚀(图2中CF段粗线)。气流偏向背火侧后,背火侧回流点位置向燃烧器口移动,回流的转角更小,气流携带的煤粉颗粒将更少,加之其自身燃尽程度很低,从而使C角背火侧水冷壁呈现出很强的氧化气氛。因此,在该部分水冷壁无结渣和高温腐蚀现象发生(图2中CK段细线)。

1996年笔者曾在26个不同试验工况下对上述哈尔滨锅炉厂生产的300Mw机组锅炉的壁面气氛进行测量,负荷分别为300MW、260MW和210MW。测量结果显示,在燃烧器区域上方约3m处,CO含量在1.5%以下,氧量在4%以上,不具备发生高温腐蚀

I热力发电·2007(3)J

30

的条件;在燃烧器区域,在图1中粗线所示的水冷壁壁面上,CO含量多在7%左右,氧量不足1%,具备产生高温腐蚀和结渣的条件;而细线所表示的水冷壁区域,其CO含量不足1%,最低氧量为4.0%,不具备发生结渣和高温腐蚀的条件。此结果与上述分析一致。

旋转气流边界层的运动轨迹线绝非几何意义上的圆形,不同锅炉旋转气流边界层的轨迹线会有差异,但其形状及规律应大致相同,这也正是切圆燃烧锅炉结渣及高温腐蚀发生区域具有相同部位,且其区域分界线部位不同的主要原因。

3影响旋转气流边界层轨迹线特性的因素

将各角煤粉气流上游背火侧边界层的轨迹线和其下游边界层的轨迹线连接起来,则构成旋转气流的边界层轨迹线,图2只给出了AD侧旋转气流边界层的轨迹线CHED,其它3面应对称且类似。因此,本节只讨论GHED段旋转气流边界层的流动特性。

从图2可见,D点到拐点E之间,旋转气流边界层的速度矢量基本上指向炉膛中央,因此AD侧DI段细线部分所示的水冷壁不会发生结渣或高温腐蚀。在拐点E以后,在EG段虚线上,旋转气流的切向速度矢量已指向炉膛壁面,且边界层轨迹线距离AD水冷壁的距离也越来越近,不仅煤粉颗粒会沿切向方向冲向水冷壁,煤粉颗粒以及气体可燃物通过紊乱扩散也会达到AI段水冷壁,因此AJ段水冷壁则很有可能发生结渣或高温腐蚀现象。拐点E是旋转气流边界层一非常重要的特征参数,其位置决定着结渣或高温腐蚀发生区域的边界线即图2中f点的位置。

影响燃烧器区域旋转气流边界层运动轨迹线的最主要因素为每个角燃烧器出口气流的射人角度及其动量。气流的射人角度完全由锅炉的假想切圆直径大小来决定,当设计假想切圆直径比较大时,旋转气流运动轨迹线的当量直径相应也比较大,如图2中GHED段轨迹线所示。此时其特征参数拐点E到AD侧的距离EJ相对比较小,从而使J点的位置偏向D点,AD侧水冷壁发生结渣或高温腐蚀的区域相对比较大。当设计假想切圆直径比较小时,旋转气流运动轨迹线的当量直径相应也比较小,图2中GHED段旋转气流边界层的轨迹线则会向炉膛中心移动,使其特征参数拐点E到AD侧的距离EJ相对比较大,从而使I点的

万方数据

区域偏向A点,AD侧水冷壁发生结渣或高温腐蚀的区域相对比较小。每个角燃烧器出口气流的动量主要影响图2中拐点E的位置,燃烧器出口气流的动量越大,图2中E点与AD墙的距离EJ相对就越大,j点就越向A点靠近,即AI段的距离就越短,反之亦然。由此可见,对锅炉燃烧系统的设计而言,预防炉内结渣和高温腐蚀的主要控制因素是假想切圆直径大小和四角气流的动量,特别是一次风气流的假想切圆直径大小和动量。

此外,卫燃带也是影响炉内结渣程度一非常重要的因素,在某些敷设卫燃带的炉膛可以观察到一明显的现象,卫燃带上结渣严重,而水冷壁则无结渣。可见卫燃带为炉内结渣提供了条件,在炉内应尽量慎用卫燃带。

4解决措施

(1)假想切圆大小以及每个角气流的动量在设计时已确定,在运行中调整的余地很小。为此,必须清楚掌握假想切圆直径大小、煤粉气流动量大小对炉内燃烧过程的影响,按照煤种特性设计合理的假想切圆直径和煤粉气流的动量,以保证切圆燃烧锅炉运行的稳定性和安全性。

(2)对于易燃易结渣煤种,其煤粉气流的燃烧稳定性较好,因此其假想切圆直径应尽量小,每个角煤粉气流的出口动量则应尽量大,设计时应以预防炉内的结渣或高温腐蚀为主。对于难燃不结渣煤种,其假想切圆直径应适当放大,每个角煤粉气流的出口动量应适当小,设计时应以解决燃烧稳定性为主。

(3)对于难燃易结渣煤种,应特别慎重使用卫燃带,尽可能从燃烧器的整体布置上或燃烧器自身结构上来提高燃烧稳定性。在必须布置卫燃带时,则应利用燃烧器区域旋转气流边界层的特点合理布置卫燃带,尽可能将卫燃带布置在图1或图2中细线所示的水冷壁区域上(即采用背火侧卫燃带分块对称布置方式,该方式已申报专利),这样既可稳燃,又可避免卫燃带上的严重结渣。当需要在图1或图2中粗线所示的水冷壁区域上布置卫燃带时,则应特别慎重,切忌在该区域大面积整块布置卫燃带。对于已投运的布置有卫燃带的锅炉,减少卫燃带面积,特别是减少向火侧易结渣区域的卫燃带面积是缓解炉内结渣程度的技术措施之一。

STUDYoNLOCATIoNoFHIGH—TEMPERATURECoRRoSIoNAND

SLAGGINGoNWATER—WALLINTANGENTIALLYFIRINGBoILERS

WANGChun—chan91。WEIFeng—qun2

(1.Xi’anThermalPowerResearchInstituteCoLtd,Xi’an710032,ShaanxiProvince,PRC;

2.DatangLuohePowerPlant,Huainan232000,AnhuiProvince,PRC)

Abstract:Throughanalysisofgasflowpropertyinthefurnace,studyonoccurrencelocationofslaggingandhigh—temperaturecor—rosionintangentiallyfiringboilershasbeencarriedout.Itisbelievedthatthereasonablydesigneddiameterofimaginedtangentialcircle,thebestlayoutofignitionbeltontothewater—wallatsidewithbacktOfire,aswellassprayinganti—corrosiionmaterialcoat—ingsonareathehigh——temperaturecorrosioniseasilytooccurcaneffectivelypreventandalleviateseriousslaggingandhigh—。temper—_aturecorrosiononthewater—wall.

Keywords:tangentiallyfiringboiler;slagging;high—temperaturecorrosion;ignitionbelt;thesidewithfacetofire;thesidewithbacktofire

鬻繁攀囊囊鬻誉黎鬻鬻蒸簇蘸震攀攀寨黎篱蒸

瀵糕麟黼瓣

慈篓黎蘩霪羹囊蘩黍嚣蘩嚣囊慈霪霎鬻嚣攀

31

万方数据

某公司机组水冷壁烟气腐蚀原因分析与建议

批准 审核 编写 (章)

项目名称:丰鹤发电#1机组水冷壁烟气腐蚀 原因分析和处理建议 工作时间:2009年10月28日~11月2日项目负责:王卫军 电力试验研究院:长鸣何俊峰 丰鹤发电:厚礼

摘要 2009年10月,#1机组投运后首次大修检查中,电厂首次发现水冷壁严重腐蚀减薄。电厂领导和化学等相关专业高度重视,立即联系通报情况,并于10月28日第一时间送样委托检查分析。电力试验研究院受托采用目视、体视镜检查,电镜、能谱以及X射线衍射分析等方法,对送检管样腐蚀防护状态进行检查分析,提出了相应结论和建议。工作中,电厂领导高度重视,有关专业大力协作支持,在此谨致意。 分析确认或认为:1)水冷壁受热面受到的是严重的高温还原性硫腐蚀,腐蚀产物为FeS,反应物的最初来源是煤中的硫化物。2)实际燃烧气氛主要呈还原性,是形成腐蚀的主要气氛条件。3)严重高温腐蚀与腐蚀层的高密度深入龟裂、分层结构和层状裂纹特点和层状剥落特性密切相关。 为此建议:1)将两台机组的燃烧均改为合适的连续氧化性气氛,当整体氧化性燃烧与低氮燃烧控制冲突时,可采取对腐蚀部位在附壁区形成局部富氧气氛的气氛控制改进设计,或进行表面喷涂防护;同时做好运行燃烧气氛监控。2)注意煤质(含硫量、钡、钙含量)和烟气(氯化物、氟化物)分析监控,必要时掺烧活性钙化合物。3)对两台机组均加强相应控制防止水冷壁管超温:(1)防止偏烧;(2)优化给水处理,降低水侧沉积率,防止水冷壁管超温。5)金属和锅炉专业评估#1机组水冷壁管强度、寿命和换管的必要性。继续加强检修中的化学、金属、锅炉检查监督,追踪检查分析。

目录 1 引言 (1) 2 样品简况和目视观察 (1) 3 管样断面检查 (1) 4 送检各样品的体视镜检查 (3) 5 送检各样品的电镜、能谱检查 (4) 6 典型样品的X射线衍射分析 (12) 7 综合分析 (12) 8 结论和建议 (14)

锅炉管道腐蚀的原因分析和建议

锅炉管道腐蚀的原因、分析及建议 ×××(××××××××××发电有限责任公司×××××× 044602) 摘要:四管爆漏是火力发电厂中常见、多发性故障,而管道的腐蚀常常中四管泄漏的重要原因。大部分管道腐蚀的初始阶段,其泄漏量和范围都不大,对于故障的部位不好确定和判断。一般要经过几天或更长时间泄漏程度才会逐渐增大,发展成为破坏性泄漏或爆管,严重威胁着火力发电厂的安全稳定运行,故本文对锅炉四管腐蚀的原因进行了分析并根据相应的原因提出了一些建议。 关键词:腐蚀、硫化物、氯化物 0 前言 腐蚀是火力发电厂中常见的故障。腐蚀的初始阶段,没有明显的现象或其泄漏量和范围都小,对于故障的部位不好确定和判断。一般要经过几天或更长时间泄漏程度才会逐渐增大,同时局部的泄漏会冲刷周围邻近的管壁,造成连锁性破坏,危及到整个锅炉运行的安全。1.腐蚀的原因 广义的腐蚀指材料与环境间发生的化学或电化学相互作用而导致材料功能受到损伤的现象。 狭义的腐蚀是指金属与环境间的物理-化学相互作用,使金属性能发生变化,导致金属,环境及其构成系功能受到损伤的现象。 1.1管内壁腐蚀:也称水汽侧腐蚀。 1.1.1溶解氧腐蚀。 1.1.2垢下腐蚀。 1.1.3碱腐蚀 1.1.4氢损伤。 1.1.5铜氨化合物腐蚀。 1.2烟气侧腐蚀。 1.2.1高温腐蚀。

1.2.2低温腐蚀。 1.3应力腐蚀,也称冲蚀。指管道受到腐蚀和拉(压)应力的综合效应。 3.设备发生腐蚀的理论原因分析 3.1管内壁腐蚀 3.1.1溶解氧腐蚀 由于Fe与O2、CO2之间存在电位差,形成无数个微小的腐蚀电池,Fe是电池中的阳极,溶解氧起阴极去极化作用,Fe比O2等的电位低而遭到腐蚀。 当pH值小于4或在强碱环境中,腐蚀加重,pH值介于4~13之间,金属表面形成致密的保护膜(氢氧化物),腐蚀速度减慢。腐蚀速度与溶解氧的浓度成正比,随着给水速度提高、锅炉热负荷增加、溶解氧腐蚀也随之加剧。 3.1.2垢下腐蚀 由于给水质量不良或结构缺陷防碍汽水流通,造成管道内壁结垢。垢下腐蚀介质浓度高,又处于停滞状态,会使管内壁发生严重的腐蚀,这种腐蚀与炉水的局部浓缩有关。如果补给水或因凝汽器泄漏(河水)使炉水含碳酸盐,其沉积物下局部浓缩的炉水(沉积着高浓度的OH-)pH值上升到13以上时发生碱对金属的腐蚀。如果凝汽器泄漏的是海水或含Cl-的天然水,水中的MgCl2、CaCl2将进入锅炉、产生强酸HCl,这样沉积物下浓缩的炉水(很高浓度的H+)pH值快速下降,而发生对金属的酸性腐蚀。 3.1.3碱腐蚀 游离碱会在多孔性沉积物和管内表面浓缩,浓缩的强碱会溶解金属保护膜而形成铁酸根与次铁酸根离子的混合物,当管壁表面局部碱浓度超过40%时,会释放出氢气,从而形成金属表面深而广的腐蚀,也称延性腐蚀。 3.1.4氢损伤(氢损伤实际就是酸性腐蚀) 一般情况下给水与管壁(Fe)发生反应生成H2和Fe3O4。 保护膜Fe3O4阻隔H2进入管壁金属而被炉水带走,当给水品质不佳或管内结垢会生成Fe2O3和FeO。 Fe2O3、FeO比较疏松、附着性很差,有利于H2向管壁金属的扩散,高温下晶界强度低,H2与钢中的碳和FeC反应生成CH4。

金属腐蚀与防护

第一章绪论 腐蚀:由于材料与其介质相互作用(化学与电化学)而导致的变质和破坏。 腐蚀控制的方法: 1)、改换材料 2)、表面涂漆/覆盖层 3)、改变腐蚀介质和环境 4)、合理的结构设计 5)、电化学保护 均匀腐蚀速率的评定方法: 失重法和增重法;深度法; 容量法(析氢腐蚀);电流密度; 机械性能(晶间腐蚀);电阻性. 第二章电化学腐蚀热力学 热力学第零定律状态函数(温度) 热力学第一定律(能量守恒定律) 状态函数(内能) 热力学第二定律状态函数(熵) 热力学第三定律绝对零度不可能达到 2.1、腐蚀的倾向性的热力学原理 腐蚀反应自发性及倾向性的判据: ?G:反应自发进行 < ?G:反应达到平衡 = ?G:反应不能自发进行 > 注:ΔG的负值的绝对值越大,该腐蚀的自发倾向性越大. 热力学上不稳定金属,也有许多在适当条件下能发生钝化而变得耐蚀. 2.2、腐蚀电池 2.2.1、电化学腐蚀现象与腐蚀电池 电化学腐蚀:即金属材料与电解质接触时,由于腐蚀电池作用而引起金属材料腐蚀破坏. 腐蚀电池(或腐蚀原电池):即只能导致金属材料破坏而不能对外做工的短路原电 池. 注:1)、通过直接接触也能形成原电池而不一定要有导线的连接; 2)、一块金属不与其他金属接触,在电解质溶液中也会产生腐蚀电池. 丹尼尔电池:(只要有电势差存在) a)、电极反应具有热力学上的可逆性; b)、电极反应在无限接近电化学平衡条件下进行; c)、电池中进行的其它过程也必须是可逆的. 电极电势略高者为阴极 电极电势略低者为阳极 电化学不均匀性微观阴、阳极微观、亚微观腐蚀电池均匀腐蚀

2.2.2、金属腐蚀的电化学历程 腐蚀电池: 四个部分:阴极、阳极、电解质溶液、连接两极的电子导体(即电路) 三个环节:阴极过程、阳极过程、电荷转移过程(即电子流动) 1)、阳极过程氧化反应 ++ - M n M →ne 金属变为金属离子进入电解液,电子通过电路向阴极转移. 2)、阴极过程还原反应 []- -? D D ne +ne → 电解液中能接受电子的物质捕获电子生成新物质. (即去极化剂) 3)、金属的腐蚀将集中出现在阳极区,阴极区不发生可察觉的金属损失,只起到了传递电荷的作用 金属电化学腐蚀能够持续进行的条件是溶液中存在可使金属氧化的去极化剂,而且这些去极化剂的阳极还原反应的电极电位比金属阴极氧化反应的电位高2.2.3、电化学腐蚀的次生过程 难溶性产物称二次产物或次生物质由于扩散作用形成,且形成于一次产物相遇的地方 阳极——[]+n M(金属阳离子浓度) (形成致密对金属起保护作用) 阴极——pH高 2.3、腐蚀电池类型 宏观腐蚀电池、微观腐蚀电池、超微观腐蚀电池 2.3.1、宏观腐蚀电池 特点:a)、阴、阳极用肉眼可看到; b)、阴、阳极区能长时间保持稳定; c)、产生明显的局部腐蚀 1)、异金属(电偶)腐蚀电池——保护电位低的阴极区域 2)浓差电池由于同一金属的不同部位所接触的介质浓度不同所致 a、氧浓差电池——与富氧溶液接触的金属表面电位高而成为阳极区 eg:水线腐蚀——靠近水线的下部区域极易腐蚀 b、盐浓差电池——稀溶液中的金属电位低成为阴极区 c、温差电池——不同材料在不同温度下电位不同 eg:碳钢——高温阳极低温阴极 铜——高温阴极低温阳极 2.3.2、微观腐蚀电池 特点:a)、电极尺寸与晶粒尺寸相近(0.1mm-0.1μm); b)、阴、阳极区能长时间保持稳定; c)、引起微观局部腐蚀(如孔蚀、晶间腐蚀)

防止锅炉高温腐蚀的措施

大唐三门峡发电有限责任公司 三门峡华阳发电有限责任公司 运行管理措施 [2007] 04 号 执行部门:燃料管理部、设备管理部、中电维护部、发电部 主题:防止锅炉高温腐蚀的措施 编写:周江涛 审核:郭迪华 批准:陈春林 2007年03月 19日发布2006年03月19日实施运行管理措施内容: 防止锅炉高温腐蚀的措施 由于煤炭市场原因,目前公司入厂煤煤质较差,煤中含硫量远超设计值,为了避免水冷壁、过热器、再热器发生高温腐蚀,特制定本措施。 1由于煤中含硫量越高,越易发生高温腐蚀,因此燃料管理部应加强进煤管理,杜绝高硫煤入厂,发电部燃料专业应加强混配煤管理,使入炉煤硫份小于1.5%。2炉膛内缺氧或局部缺氧会使水冷壁壁面附近有还原性气氛和产生H S气体, 2 而还原性气氛是水冷壁高温腐蚀的必要条件,还原性气氛还会使灰熔点降低,加 S气体含量与水冷壁高温腐蚀速度成正比,剧炉膛结焦,高温腐蚀速度加快,H 2 因此正常运行时氧量应控制在3%~5%,最低不得小于2.5%,投运燃烧器二次风门应及时开启,防止局部缺氧。 3合理调整一次风风速。#1、2炉直流燃烧器,适当增加一次风风速有利于防止气流偏转;但对#3、4炉旋流燃烧器,若一次风风速过大,会导致燃烧推迟,并在炉膛中间激烈燃烧、碰撞,导致气流在中部区域范围产生较大的回流,使煤粉火焰刷墙,并产生高温,形成良好的高温腐蚀条件。 4每月对煤粉细度测量一次,#1、2炉煤粉细度应在20%~22%,#3、4炉煤粉

细度按200目筛通过量为70%,不合格应及时调整,防止煤粉颗粒太粗导致火焰拖长,使大量煤粉颗粒集中在水冷壁表面附近,进一步燃烧和燃尽时形成缺氧区,冲刷和腐蚀水冷壁。 5运行中应加强受热面的吹灰,保持受热面的清洁。对长期低负荷运行的工况,在受热面积灰严重时,应申请值长,投油吹灰。 6管壁温度越高, 越易发生高温腐蚀, 过热器、再热器管在650~700℃最为严重,因此运行人员要加强汽温和受热面壁温监督,机组运行中,必须有专人监视和调整汽温、壁温,汽温和受热面管壁温度应控制在正常范围内,超限时要及时调整,并分析原因。 7停炉后应对水冷壁、过热器、再热器进行检查,发现受热面有高温腐蚀造成管壁减薄严重,应及时进行更换,同时进行分析,采取相应措施: 7.1如是管材不合格或不适应高硫煤种,应更换耐腐蚀管材或刷涂耐磨耐腐蚀涂料进行防腐处理。 7.2如是燃烧切圆过大,一次风贴墙,造成火焰冲刷水冷壁引起高温腐蚀,应做空气动力场试验,调整燃烧切圆。 7.3如是燃烧器结构不合理或二次风门故障导致局部缺氧,应根据具体情况检修处理。

论高温氧化的利与弊-材科1104-张明康

论高温腐蚀的利与弊 北京科技大学张明康 摘要本文分别通过研究分析生物质燃烧设备,燃煤火电厂锅炉,城市供热管线不锈钢补偿器,航天航空发动机高温合金,电触头材料等新材料的高温腐蚀的原因及其应用,论述了高温腐蚀的利与弊,并对新型高温合金的发展提出建议。关键词高温腐蚀新型高温合金新材料 1 引言 高温腐蚀是指金属材料与环境介质在高温下发生不可逆转的化学反应而退化的过程,而金属的高温氧化是高温腐蚀领域中最重要最基本的一种腐蚀形式。在能源、动力、航天航空等领域普遍存在着高温腐蚀的问题,而这些腐蚀问题对工业生产发展造成很大经济的损失,因而亟待解决。在解决高温腐蚀的问题的过程中,利用高温氧化进行防腐又是一种有效可行的措施。 2.1 高温腐蚀存在的问题 目前来说,高温腐蚀存在的问题是不可否认的,其弊端在于多个方面,关键是在于能否及时发现高温腐蚀的现象,并对其进行失效分析,为拟定相应的对策做好准备。 2.1.1 生物质燃烧设备的高温腐蚀问题 近年年来,随着石油、煤炭等传统能源短缺的问题越来越受到人们的关注,生物质能作为一种可再生的新能源,有着资源量大、可再生、广泛的可获取性以及可存储运输等诸多独特的优点。其中,燃烧是有效利用生物质能的重要途径之一。但是由于生物质中的碱金属等杂质的存在,使得生物质在燃烧的过程中相关的设备会产生高温腐蚀等问题。因而研究生物质燃烧过程中的高温腐蚀问题,对提高生物质燃烧的利用水平有着重要意义。其腐蚀根据生物质的种类、床料、所用管材的不同导致腐蚀的机理不同,大致又可分为三类,即气相腐蚀、固相腐蚀以及液相腐蚀。[1]

2.1.2 燃煤火电厂锅炉高温腐蚀问题 燃煤火电厂的高温腐蚀主要发生在“四管”,即水冷壁管、过热器管、再热器管和省煤器管。其主要的腐蚀原因包括飞灰,低熔点的沉积物,以及锅炉烟气的硫腐蚀、氯腐蚀、和钒腐蚀。火电厂锅炉的“四管”爆漏引起的非计划停运时间占机组非计划停运时间的40%左右,少发电量占全部事故少发电量的50%以上,是影响发电机组安全经济运行的主要因素。[2] 2.1.3 城市供热管线不锈钢补偿器的高温腐蚀 补偿器井内的水介质污染严重,而且井内处于高温状态,有利于细菌的繁殖生长,而且井内水介质中的Cl-及SO2 -4含量较高,以及管道热应力作用.补偿器井内的304不锈钢补偿器,发生晶间腐蚀、点蚀、细菌腐蚀以及应力腐蚀等不同的腐蚀形式。[3] 2.2 高温腐蚀的利用 对于高温腐蚀存在的各种各样的问题,对其机理进行研究分析后发现,可利用高温腐蚀这一方法对金属材料进行防腐,因而高温腐蚀在人为的作用下,也可趋于对人们有利的方面。 2.2.1 航天航空发动机高温合金 航空发动机热端部件因高温腐蚀、蠕变、机械疲劳、热疲劳等,将导致其尽快失效。发动机叶片的失效,绝大部分是与高温腐蚀有关。影响其高温腐蚀的主要有三大因素,分别为温度、环境介质、燃气成分。为了防止高温腐蚀,可采用高温合金制备的发动机叶片,目前有ODS合金,粉末高温合金等。在其高温合金中可添加一些改善其抗高温氧化的元素,例如添加Cr,Al,Si等元素,然后利用其高温氧化生成的致密的保护性氧化膜Cr2O3,Al2O3,SiO2,防止合金进一步氧化。[4] 2.2.2 电触头材料 电触头是各种电力设备、自动化仪表和控制装置中使用的一种关键金属元件,通过其接通或分断,达到保护电器,传递、承受和控制电流的目的。利用

锅炉水冷壁管向火侧腐蚀原因及改进措施

编号:AQ-JS-00493 ( 安全技术) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 锅炉水冷壁管向火侧腐蚀原因 及改进措施 Causes of fire side corrosion of boiler water wall tubes and improvement measures

锅炉水冷壁管向火侧腐蚀原因及改 进措施 使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。 针对某电厂锅炉发生的水冷壁向火侧大面积腐蚀现象,对腐蚀管进行了宏观、微观检查,对外壁腐蚀产物进行了成分分析,确认了腐蚀成因,提出了提高炉内燃烧区的氧量、调整燃烧器及提高煤粉细度等可行的改进措施。 关键词〕电厂锅炉;水冷壁;向火侧;腐蚀 某电厂1号锅炉为亚临界、一次中间再热、自然循环汽包炉,采用固态排渣和平衡通风。前后墙水冷壁均为4×4排,锅炉设计最大连续出力为1189.96t/h,燃烧方式为对冲悬浮,共32只低NOX 双调风旋流燃烧器(DRB)布置在前后墙,锅炉设计煤种为山西晋北烟煤。 在1号机组运行12万h后的大修中,发现锅炉水冷壁管向火侧

存在严重的腐蚀。腐蚀区域位于锅炉左右侧墙,高度方向位于燃烧区域,水平方向在自后墙数第60~130根水冷壁管的范围内(侧墙水冷壁管共179根),愈靠近水冷壁中心,腐蚀愈为严重;至燃烧器上部的吹灰器层,水冷壁管的腐蚀明显减轻,前后墙燃烧器周围无腐蚀,燃烧器下部及冷灰斗区域也未发现有腐蚀现象。为了查明水冷壁管向火侧腐蚀原因,对典型的腐蚀管段采取割管,进行失效分析;在查明腐蚀原因的基础上,寻求改进措施。 1腐蚀区域的宏观检查 该电厂水冷壁管选用SA213T2钢,其规格尺寸为57.2mm×6.35mm,10头内螺纹管。图1为腐蚀后水冷壁管屏断面照片;图2为两根割管管壁减薄的宏观照片。图2中1号样的向火侧在焊接鳍片和管壁金属相交处形成明显的深弧形减薄条带;2号样的向火侧全范围减薄,最薄处也位于与鳍片邻近部位,测其壁厚为2.6mm。对1,2号样宏观检验,在外壁均未观察到由于磨损作用而留下的犁削条纹或点坑、切片等痕迹,表明管壁的减薄主要是腐蚀作用的结果。

金属材料的电化学腐蚀与防护

金属材料的电化学腐蚀与防护 一、实验目的 1.了解金属电化学腐蚀的基本原理。 2.了解防止金属腐蚀的基本原理和常用方法。 二、实验原理 1.金属的电化学腐蚀类型 (1)微电池腐蚀 ①差异充气腐蚀 同一种金属在中性条件下,如果不同部位溶解氧气浓度不同,则氧气浓度较小的部位作为腐蚀电池的阳极,金属失去电子受到腐蚀;而氧气浓度较大的部位作为阴极,氧气得电子生成氢氧根离子。如果也有K3[Fe(CN)6]和酚酞存在,则阳极金属亚铁离子进一步与K3[Fe(CN)6]反应,生成蓝色的Fe3[Fe(CN)6]2沉淀;在阴极,由于氢氧根离子的不断生成使得酚酞变红(亦属于吸氧腐蚀)。两极反应式如下: 阳极(氧气浓度小的部位)反应式: Fe = Fe2++2e- 3Fe2++2[Fe(CN)6]3-= Fe3[Fe(CN)6]2 (蓝色沉淀) 阴极(氧气浓度大的部位)反应式: O2+2H2O +4e-= 4OH- ②析氢腐蚀 金属铁浸在含有K3[Fe(CN)6]2的盐酸溶液中,铁作为阳极失去电子,受腐蚀,杂质作为阴极,在其表面H+得电子被还原析出氢气。两极反应式为: 阳极:Fe = Fe2++2e- 阴极:2H++2e-= H2↑ 在其中加入K3[Fe(CN)6],则阳极附近的Fe2+进一步反应: 3Fe2++2[Fe(CN)6]3-= Fe3[Fe(CN)6]2 (蓝色沉淀) (2)宏电池腐蚀 ①金属铁和铜直接接触,置于含有NaCl、K3[Fe(CN)6]、酚酞的混合溶液里,由于?O(Fe2+/Fe)< ?O(Cu2+/Cu),两者构成了宏电池,铁作为阳极,失去电子受到腐蚀(属于吸氧腐蚀)。两极的电极反应式分别如下: 阳极反应式: Fe = Fe2++2e- 3Fe2++2[Fe(CN)6]3-= Fe3[Fe(CN)6]2 (蓝色沉淀) 阴极(铜表面)反应式: O2+2H2O +4e-= 4OH- 在阴极由于有OH-生成,使c(OH-)增大,所以酚酞变红。

锅炉高温腐蚀及防止措施正式版

In the schedule of the activity, the time and the progress of the completion of the project content are described in detail to make the progress consistent with the plan.锅炉高温腐蚀及防止措施 正式版

锅炉高温腐蚀及防止措施正式版 下载提示:此解决方案资料适用于工作或活动的进度安排中,详细说明各阶段的时间和项目内容完成的进度,而完成上述需要实施方案的人员对整体有全方位的认识和评估能力,尽力让实施的时间进度与方案所计划的时间吻合。文档可以直接使用,也可根据实际需要修订后使用。 锅炉的高温腐蚀主要发生在燃用高硫煤的锅炉水冷壁管和过热器管束上。锅炉运行时在烟温大于700℃的区域内,在高温高压条件下受热面与含有高硫的腐蚀性燃料和高温烟气接触,极易发生高温腐蚀。高压锅炉水冷壁管的硫腐蚀主要是由于煤粉中的黄铁矿(FeS2)燃烧受热,分解出自由的硫原子,产生腐蚀。通常高压锅炉水冷壁管向火侧的正面腐蚀最快,减薄得最多,若发生爆管都在管子的正面爆开,管子的侧面减薄得较少,而管子背火侧几乎不减薄,这种腐蚀给锅炉水冷壁管造成很大威胁,严重

时,往往几个月就得更换部分管段,给锅炉的安全经济运行带来很大危害。而锅炉过热器管的高温腐蚀主要是由于液态的灰黏结在过热器管壁上而引起腐蚀。 1 高温腐蚀的主要原因 1.1 燃烧不良和火焰冲刷 持续燃烧不良和脉动火焰冲击炉墙时,导致燃烧不完全,在燃烧器区域附近的火焰中心处,当未燃尽的焰流冲刷水冷壁管时,由于煤粉具有一定的棱角,煤粉对管壁有很大的磨损作用,这种磨损将加速水冷壁保护层的破坏,在管壁的外露区段,磨损破坏了由腐蚀产物形成的不太坚固的保护膜,烟气介质便急剧地与纯金属发生反应,这种腐蚀和磨损相结合的过程,大大加剧了金属管子

水冷壁管高温腐蚀的机理

1 高温腐蚀是炉内高温烟气与金属壁面相互作用的一个复杂的物理化学过程,按其机理通常可分为三大类:硫化物(FeS2、H2S)型腐蚀、焦硫酸盐型腐蚀和氯化物型腐蚀。多年研究表明,水冷壁管发生高温腐蚀的区域是有规律的:通常多在燃烧高温区,即局部热负荷较高,管壁温度也较高的区域,如燃烧器区附近,其余区域的高温腐蚀明显减弱或根本不发生高温腐蚀;发生高温腐蚀的管子向火侧正面的腐蚀速度最快,管壁减薄量最大,背火侧则不发生高温腐蚀。 2 影响高温腐蚀的主要原因 2.1火焰冲墙和还原性气氛的存在是造成水冷壁高温腐蚀的主要原因 对切圆燃烧锅炉,当燃烧切圆直径过大、火焰中心未形成切圆或燃烧切圆偏移时,炉内空气动力场倾斜,燃烧器区域出现火焰冲墙和还原性气氛,从而发生高温腐蚀。 2.1.1高温火焰直接冲刷水冷壁 当含有较大煤粉浓度的高温火焰直接冲刷水冷壁管时,将大大加剧高温腐蚀的发生。其一,高温辐射热可加速硫酸盐的分解,加快腐蚀速度;其二,火焰中含有未燃尽的煤粉,在水冷壁附近缺氧燃烧,产生还原性气体;其三,未燃尽的煤粉颗粒随烟气冲刷水冷壁管时,磨损将加速水冷壁管上保护膜的破坏,加快金属管壁高温腐蚀的过程。 2.1.2存在还原性气体 由于着火延迟,未燃尽的煤粉在水冷壁附近进一步燃烧时,发生化学不完全燃烧,形成缺氧区,使炉膛壁面附近处于含有还原性气体(CO、H2)和腐蚀性气体(H2S)的烟气成分之中,没有完全燃烧的游离硫和硫化物与金属管壁发生反应,引起管壁高温腐蚀。 研究表明,烟气中CO浓度越大,高温腐蚀就越严重;H2S的浓度大于0.01%时,就会对钢材产生强烈的腐蚀作用;而当含氧量大于2%时,基本上不会发生高温腐蚀[1]。 2.2燃煤品质差是水冷壁高温腐蚀的必要条件 燃煤中硫、碱金属及其氧化物含量越大,腐蚀性介质浓度越大,出现高温腐蚀的可能性就越大。高硫煤产生的大量H2S、SO2、SO3、原子硫[S]不仅破坏管壁的Fe2O3保护膜,还侵蚀管子表面,致使金属管壁不断减薄,最终导致爆管事故。 燃用不易引燃的无烟煤和贫煤时,因着火点温度相对较高,燃烧困难,容易产生不完全燃烧,并使火焰脱长,在金属壁面附近形成还原性气氛,增加对管壁的腐蚀性。 煤粉的颗粒越大,也就越不易燃尽,比较容易形成还原性气氛,产生高温腐蚀。同时,颗粒越大,对壁面的磨损也越严重,破坏了水冷壁管外氧化保护膜,使烟气中腐蚀介质直接与管壁金属发生反应,使腐蚀加剧。 2.3过高的水冷壁管壁温度促进了水冷壁高温腐蚀的发生 研究表明,H2S等腐蚀性介质的腐蚀性在300℃以上逐步增强,即温度每升高50℃,腐蚀程度将增加一倍。对于亚临界大型电站锅炉,燃烧器区域的水冷壁管内汽水温度约在350℃左右,烟气侧水冷壁管温度多在420℃左右,正处于金属发生强烈高温腐蚀的温度范围之内。同时,管子局部壁面温度过高,易使具有腐蚀性的低熔点化合物粘附在金属表面,促进了管壁高温腐蚀的发生。 2.4运行因素的影响 当锅炉负荷发生变化时,若运行不当(如火嘴投停不当),就容易引起燃烧不稳定,产生还原性气氛,或造成烟气冲墙,继而发生高温腐蚀。因此,运行不当也是引起高温腐蚀的一个主要因素。 3高温腐蚀的防护措施

锅炉水冷壁管向火侧腐蚀原因及改进措施(标准版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 锅炉水冷壁管向火侧腐蚀原因及 改进措施(标准版)

锅炉水冷壁管向火侧腐蚀原因及改进措施 (标准版) 导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 针对某电厂锅炉发生的水冷壁向火侧大面积腐蚀现象,对腐蚀管进行了宏观、微观检查,对外壁腐蚀产物进行了成分分析,确认了腐蚀成因,提出了提高炉内燃烧区的氧量、调整燃烧器及提高煤粉细度等可行的改进措施。 关键词〕电厂锅炉;水冷壁;向火侧;腐蚀 某电厂1号锅炉为亚临界、一次中间再热、自然循环汽包炉,采用固态排渣和平衡通风。前后墙水冷壁均为4×4排,锅炉设计最大连续出力为1189.96t/h,燃烧方式为对冲悬浮,共32只低NOX双调风旋流燃烧器(DRB)布置在前后墙,锅炉设计煤种为山西晋北烟煤。 在1号机组运行12万h后的大修中,发现锅炉水冷壁管向火侧存在严重的腐蚀。腐蚀区域位于锅炉左右侧墙,高度方向位于燃烧区域,水平方向在自后墙数第60~130根水冷壁管的范围内(侧墙水冷壁管共179根),愈靠近水冷壁中心,腐蚀愈为严重;至燃烧器上部的吹灰器

锅炉水冷壁高温腐蚀原因及预防措施

锅炉水冷壁高温腐蚀原因及预防措施 文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

水冷壁高温腐蚀的原因分析及预防措施 我厂#2炉在本次B 级检修中发现水冷壁存在高温腐蚀现象,高温腐蚀区域大约在D 层燃烧器与 层燃烧器之间, 在这一区域水冷壁高温腐蚀后,壁厚明显减薄,最薄处仅有5mm, 因而强度降低,极易造成水冷壁爆管和泄漏,危及锅炉安全运行。 针对水冷壁高温腐蚀问题,生产部、调度部、运行分场进行了多次分析和探讨,认为我厂水冷壁高温腐蚀的原因大致有以下几个原因: 1、我厂燃煤为山西贫煤,该煤种含硫及硫化物较多,高含硫量使煤在燃烧中产生较多的腐蚀性物质,直接导致水冷壁的高温腐蚀。同时,由于近年来煤炭市场供求关系的转换,煤质难以得到保证,由于煤质较杂多变,运行中往往引起煤粉变相,着火点推迟,燃烧速度低等一系列问题。 2、我厂锅炉为亚临界锅炉,饱和水温约为360 ℃,水泠壁温度可达400℃,在该条件下管壁被氧化,使受热面外表形成一层Fe 2O 3和极细的灰粒污染 层,在高温火焰的作用下,灰分中的碱土金属氧化物(Na 2O 、K 2O )升华,靠扩散 作用到达管壁并冷凝在壁面上,与周围烟气中的SO 3化合生成硫酸盐。管壁上的硫 酸盐与飞灰中的Fe 2O 3及烟气中的SO 3作用,生成复合硫酸盐,复合硫酸盐在 550℃-710 ℃范围内呈液态,液态的复合硫酸盐对管壁有极强的腐蚀作用。 3、我厂入炉煤粉长期偏向,造成煤粉直接冲刷水冷壁,在水冷壁附近区域造成还原性气氧,导致高温腐蚀。 4、我厂为四角切圆燃烧锅炉。当一、二次风射流喷出燃烧器后由于受到上游邻角气流的挤压作用及左右两侧不同补气条件的影响,使气流向背火侧水冷壁

材料的腐蚀与防护

姓名:贾永乐学号:201224190602 班级:机械6班 检索主题:材料的腐蚀与防护 数据库:中国知识资源总库——中国期刊全文数据库 检索方法:用高级检索,主题词:腐蚀与防护关键词:材料相与检索结果:1456篇,其中关于航空材料的13篇;金属材料的腐蚀的183篇;材料的防护的522篇,其余为腐蚀与防护相关 的其它技术和方法。 文献综述 1材料腐蚀与防护的发展史: 所有的材料都有一定的使用寿命,在使用过程中将遭受断裂、磨损、腐蚀等损坏。其中,腐蚀失效的危害最为严重,它所造成的经济损失超过了各种自然灾害所造成的损失总和,造成许多灾难性的事故,造成了资源浪费和环境污染。因此,研究与解决材料的腐蚀问题,与防止环境污染、保护人民健康息息相关。在现代工程结构中,特别足在高温、高压、多相流作用下,以及在磨损、断裂等的协同作用下,腐蚀损坏格外严重。据统计,材料腐蚀带来的经济损失约占国民生产总值的1.8%~4.2%。而常用金属材料最容易遭受腐蚀,因此金属腐蚀的研究受到广泛的重视【1】。我们只有在搞清楚材料腐蚀的原因的基础上,才能研制适宜的耐腐蚀材料、涂层及采取合理的保护措施,以达到防止或控制腐蚀的目的。从而减少经济损失和事故,保护环境保障人类健康。 每年由于腐蚀引起的材料失效给人类社会带来了巨大的损失。航

空材料的腐蚀损失尤为巨大。我国针对航空产品的腐蚀与防护的研究和应用起始于上世纪五十年代,经过几十年的曲折发展,取得了很大进步。目前在航空产品的常温腐蚀与防护上,已经进入了向国际接轨的发展阶段。航空材料由于服役环境复杂多变, 不同构成材料相互配合影响, 导致航空材料在飞行器的留空阶段、停放阶段遭受多种不同种类的腐蚀, 增加了飞行器的运营成本, 对飞行器的功能完整性和使用安全性造成严重的危害。英美空军每架飞机每年因腐蚀造成的直接修理费用为11 000~ 55 000美元之间【2】。1985年8月12日,日本一架B747客机因应力腐蚀断裂而坠毁,死亡500余人。因此航空材料的腐蚀防护技术研究对航空业的发展具有举足轻重的作用。 1978.10国家科委主任方毅在全国聘任27位科学家组建了我国《腐蚀科学》学科组,笔者作为学科组成员,第三专业组(大气腐蚀专业组)副组长,承担了航空航天部分的调查任务。1980.1—1982.6广泛函调一百多个工厂,并深入26个厂、所、部队,机场进行了实地考查,发现了大量的腐蚀问题,笔者1985年在我国首次出版了《航空产品腐蚀故障事例集》,汇集了数据比较周全,二十世纪六、七十年代的46个腐蚀故障【3】。 1990年前,铁道车辆车体结构通常采用普碳钢制造,加之使用涂料档次低,对表面处理和涂装工艺不够重视,车辆锈蚀严重,修理时车体钢板的更换率相当高,有些客车甚至仅使用1个厂修期就报废。1985年,耐大气腐蚀钢(即Corten钢,又称耐候钢)开始用于车辆,到1990年,已在全部新造车辆上采用。由于这类钢材含有(0.2%~0.4%

论锅炉受热面高温腐蚀

论锅炉受热面高温腐蚀 论锅炉受热面的高温腐蚀 【摘要】主要介绍了电站锅炉受热面的高温腐蚀机理、危害、类型、影响高温腐蚀的因素,并提出了防止或减轻受热面高温腐蚀的措施。 【关键词】受热面高温腐蚀机理影响因素防止措施 目前在高参数、大容量火电机组中,锅炉受热面的高温腐蚀问题已很普遍且迫切需要解决。因发生高温腐蚀导致受热面管件损坏严重而被迫停机的事故屡见不鲜。受热面的高温腐蚀已经成为燃煤锅炉机组安全稳定运行的一大隐患。在锅炉的设计及运行调整中如稍有不慎则高温腐蚀便很容易发生,腐蚀使得受热面承压部件的管壁变薄,严重时会使受热面管子在短时间内爆管,导致锅炉漏泄而被迫停机或事故跳机。可见其迫害程度非常之大,在运行中必须避免受热面的高温腐蚀。 1 高温腐蚀的形成机理 所谓高温腐蚀是指在煤粉锅炉高温火焰及高温烟气区,过热器和再热器管子及其悬挂件产生的外部腐蚀。锅炉受热面的高温腐蚀是一个复杂的物理化学过程。与其他有关煤的反应机理一样,由于煤自身的复杂性以及迄今对它的认识有限,这类机理都是粗糙的和带有推理性的,在结论的定量上也都具有相当宽的范围。高温腐蚀多发生在燃烧器区域的水冷壁、高温过热器、高温再热器,亦即受热面管壁金属温度超越一定界限的部位。从对高温腐蚀的现象及调查研究结果表明,这种腐蚀都是因壁面与积灰层间的一层液相物反应 而产生的。污染后的受热面会受到灰渣和烟气的复杂的化学反应。高温过热器与高温再热器多布置于烟温高于700-800?的烟道内,管子的外表面积灰由内层、外层两部分组成,内层灰密实,与管子黏结牢固,不易清除;外层灰松散,容易清除。

低熔灰在炉膛内高温烟气区已成为气态,随着烟气流向烟道。由于高温过热器及高温再热器区域的烟温较高,低熔灰若不接触温度较低的受热面则不会凝固,若接到温度较低的受热面就会凝固在受热面上,形成黏结灰层。灰层形成后,表面温度随灰层厚度的增加而增加。此后,一些中、高熔灰粒也被黏附在黏性灰层中。这种积灰在高温烟气中的氧化硫气体的长期作用下,形成白色的硫酸盐密实灰层,这个过程称为烧结。随着灰层厚度的增加,其外表面温度继续升高,低熔灰的黏结结束。但是中熔灰和高熔灰在密实灰层表面还进行着动态沉积,形成松散而且多孔的外层灰。内层灰的坚实程度随着时间的增长而增大,时间越长,灰层越坚实。 对于黏结灰层固形物进行化学分析和x衍射分析,结果都表明其主要构成是碱-三硫酸铁的络合物。它在538-704?温度范围内呈熔融状态。从关于碱-三硫酸铁络合物与铁的反应特性资料可知,在与碱-三硫酸铁络合物紧密黏结的奥氏体钢或铁素体钢之间都会产生对铁的腐蚀反应。与铁素体钢的这种反应,其速度是随着温度的升高而增大的;奥氏体钢的腐蚀速度与温度关系则成半铃形。从实验室的腐蚀失重试验结果也表明在相当于炉内条件下,合成硫酸盐具有相同的铃形腐蚀速度曲线,也表明这个硫酸盐络合物是受热面 高温腐蚀的根本原因。由此可以得出产生高温腐蚀的机理是:因煤灰的选择性沉积,使碱与氧化铁在积灰层中的浓度远比在煤灰中高。碱-三硫酸铁是这些选择性沉积物中与烟气中的so3反应生成的。碱与氧化铁在沉积之初很可能是粉末状的物料,随着温度的升高而呈熔融或半熔融状态。碱在管壁表面的聚积也可能是出于外层熔融物料的迁移。图示也表明了,积灰层中钾、钠含量比的重要性。钠络合物在图示的温度范围内都是干的;而钾络合物从625?开始就产生黏结;1:1钾络合物在约550?时就开始呈熔融状态,非但开始呈熔融状态的温度低,其温度范围也宽(如图1)。 煤灰在受热面上的沉积并致腐蚀的大致步骤如下:

第一章 金属材料的高温化学腐蚀

绪论 金属腐蚀的定义: 金属材料和环境介质发生化学或电化学作用,引起材料的退化与破坏称为金属的腐蚀. 本课程研究的内容 ? 1. 研究金属和周围介质作用时所发生的化学或电化学的现象、机理及其一般规律。 ? 2. 研究各种条件下金属材料的防止腐蚀的方法和措施。 三、金属腐蚀与防护的重要性 经济损失: ?直接损失:指采用防护技术的费用和发生腐蚀破坏以后的维修、更换费用和劳务费用。 ?间接损失:指设备发生腐蚀破坏造成停工、停产;引起的物资跑、冒、滴、漏损失; 对环境污染以至爆炸、火灾等事故的间接损失更是无法估量。 第一章金属材料的高温化学腐蚀 第一节概述 一、高温化学腐蚀定义: 高温化学腐蚀是研究金属材料和与它接触的环境介质在高温条件下所发生的界面反应过程的科学。 金属高温腐蚀与常温腐蚀的区别: 高温腐蚀:主要是以界面的化学反应为特征。常温腐蚀:主要是电化学过程。 金属材料的高温腐蚀反应式: Me(金属)+X(介质)--MeX(腐蚀产物) 二、高温腐蚀分类 按环境介质状态分 1)高温气态介质腐蚀(2)高温液态介质腐蚀(3)高温固态介质腐蚀 (1)高温气态介质腐蚀: 气态介质中包括有单质气体分子。非金属化合物气体分子。金属氧化物气态分子,和金属盐气态分子。由于这种高温腐蚀是在高温,干燥的气体分子环境中进行的,所以常被称为“高温气体腐蚀”“干腐蚀”“化学腐蚀”。 (2)高温液态介质腐蚀: 液态介质(包括液态金属,液态融盐及低熔点氧化物)对固态金属材料的高温腐蚀。这种腐蚀包括界面化学反应,也包括液态物质对固态物质的溶解。 (3)高温固态介质腐蚀: 金属材料在带有腐蚀性的固态颗粒状物质的冲刷下发生的高温腐蚀。这类腐蚀包括固态燃灰与盐颗粒对金属材料的腐蚀。又包括这些固态颗粒状物质对金属材料表面的机械磨损,所以人们又称为“磨蚀”或“冲蚀”。 高温腐蚀现象 (1)在金属热处理过程中,碳氮共渗和盐浴处理易于产生增碳、氮化损失和熔融盐的腐蚀。(2)含有燃烧的各个过程,比如柴油发动机、燃气轮机、焚烧炉等所产生的复杂气氛的高温氧化等腐蚀。 (3)核反应堆运行过程中,煤的气化和液化所产生的高温硫化腐蚀。 (4)在航空领域,宇宙飞船返回大气层过程中的高温氧化和高温硫化腐蚀,以及航空发动

锅炉水冷壁高温腐蚀原因分析及预防措施

锅炉水冷壁高温腐蚀原因分析及预防措施 发表时间:2019-11-18T13:31:35.660Z 来源:《中国电业》2019年14期作者:侯启聪 [导读] 对大唐鲁北电厂2×330MW机组锅炉水冷壁产生高温腐蚀的原因进行分析。 摘要:对大唐鲁北电厂2×330MW机组锅炉水冷壁产生高温腐蚀的原因进行分析,认为其主要是主燃烧器区二次风和一次风配比不合理,造成风粉脱离,含粉气流贴壁冲刷,在水冷壁区域形成局部还原性气氛所致。文章针对锅炉水冷壁高温腐蚀的原因及预防措施,进行简要的剖析研究。 关键词:锅炉;水冷壁;高温腐蚀;燃烧 鲁北电厂330MW锅炉是采用美国燃烧工程公司(CE)的引进技术设计和制造的。锅炉为亚临界参数、一次中间再热、自然循环汽包炉,采用平衡通风、四角切圆燃烧方式,。锅炉以最大连续负荷(即BMCR工况)为设计参数,锅炉的最大连续蒸发量为1020t/h;机组电负荷为330MW(即TRL工况)时,锅炉的额定蒸发量为969t/h。 锅炉设计燃料为烟煤,收到基硫0.41%,校核煤种收到基硫0.6%。 1高温腐蚀的现象及原理 机组停备水冷壁防磨防爆检查发现,腐蚀严重的区域大都位于燃烧器喷出后射流的中下游。腐蚀区域的水冷壁表面一般呈黑褐色,外层松软、内层坚硬,剥落坚硬层后,垢状物与水冷壁管结合面处层蓝色。腐蚀区域大多水冷壁表面不清洁,有较多的灰沾污。大唐鲁北电厂1、2号炉水冷壁发现腐蚀区域水冷壁表面有未燃尽的煤粉附着,再往里有较多的黄色硫化物。 通过收集资料汇总发现,近几年山东省相继有多台电厂锅炉发生严重的水冷壁高温腐蚀,如黄台电厂8号炉(1000t/h)、华能德州电厂1-4号炉(1000t/h)、南定电厂1、2号炉(410t/h)、潍坊电厂1、2号炉(1000t/h)、青岛电厂1、2号炉(1000t/h)等,腐蚀最严重的锅炉水冷壁最小壁厚仅1.3mm,腐蚀速度2mm/a。上述各台锅炉发生高温腐蚀的区域基本相近,都在燃烧器出口射流中下游区域,高度在燃烧器中心线附近,且管子向火侧的正面点腐蚀速度最快。水冷壁发生高温腐蚀后,壁厚减薄,强度降低,容易造成爆管泄漏,影响锅炉安全运行。有腐蚀物分析基本可确定,大唐鲁北1号炉水冷壁高温腐蚀属于硫化物型高温腐蚀。这种腐蚀主要是由煤中的黄铁矿硫造成的。 2水冷壁高温腐蚀原因分析 2.1煤种问题 煤种是造成高温腐蚀的主要原因之一。煤中的硫和硫化物是形成腐蚀物质的基础,而煤的燃烧特性则直接影响贴壁还原性气氛的生成。 对发生高温腐蚀的锅炉所燃用煤质统计分析表明,大部分锅炉燃煤的含硫量均在1.2%以上,有些甚至高达3%。高含硫量使煤在燃烧中产生更多的腐蚀性,加速水冷壁腐蚀。根据山东省锅炉高温腐蚀情况普查结果,发生严重高温腐蚀的多为1000t/h以上高参数、大容量锅炉,中小型锅炉较少出现高温腐蚀。南定电厂1、2号炉均为410t/h锅炉,但也出现严重高温腐蚀,这其中有燃烧器结构布置方面的原因,但更重要的是煤质。 2.2炉内燃烧风粉分离 这是四角切圆燃烧锅炉普遍存在的问题。目前四角切圆燃烧锅炉普遍采用集束射流着火方式,一二次风间隔布置并以同一角度平行射向炉内。理想的着火应是一次风喷出后不久即被动量较大的二次风所卷吸,射流轨迹变弯,形成转弯的扇形面,并卷吸周围高温烟气,形成着火区,着火后的一次风被卷入二次风射流中燃烧。由于一次风射流混入动量大的二次风中,使火炬射流刚性加强,不易受干扰,从而在整个燃烧器区域内形成一个燃料与空气强烈混合的、稳定燃烧的旋转火炬。 但炉内实际燃烧过程并非如此。为保证稳定燃烧,一次风出口风速通常控制比较低(20—25m/s),而二次风速一般在40—50m/s之间,从而一二风的射流刚性相差较大。一二次风射流喷出燃烧器后由于受到上游邻角气流的挤压作用及左右两侧不同补气条件的影响,使气流向背火侧水冷壁偏转,此时刚性较弱的一次风射流比二次风偏转更大角度,从而使一二次风分离。一二次风的刚性相差越大,这种分离现象越明显。由于部分一次风射流偏离二次风,煤粉在缺氧状态下燃烧,在射流中下游水冷壁附近形成还原性气氛,这是引发高温腐蚀的一个重要原因。 2.3运行调整方面 2.3.1配风状况差 锅炉二次风门普遍采用气动执行机构控制,由于种种原因风门控制大都较乱,加上锅炉一二次风配比不合理,炉内配风状况很差。这也是造成一二次风混合不完全,煤粉着火和燃尽差,煤粉贴壁燃烧的原因之一。 2.3.2燃烧配风状况差 部分锅炉设备由于辅机设备问题,造成满负荷工况供风不足。如潍坊电厂1、2号炉由于排烟温度低,空预器积灰严重,阻力增大,造成送、引风机出力不足,满负荷运行时炉膛出口氧量不足1%(设计值为4%),远远不能满足锅炉正常燃烧要求。由于总风量不足,使燃烧器区域的缺氧燃烧状况更加严重,对预防高温腐蚀非常不利。 通过以上分析,认为鲁北1号炉高温腐蚀的主要原因是:锅炉长期高负荷、大煤量运行工况下,主燃烧器区二次风和一次风配比不合理,一次风粉射流在炉内上升过程中,受到刚性较强的二次风射流的挤压和下游二次风射流的牵引,造成风粉脱离,含粉气流贴壁冲刷,在水冷壁区域形成局部还原性气氛。而给煤量大大偏离设计值造成的入炉煤粉浓度加大,以及含硫量的增高加剧了腐蚀的速度。 3预防高温腐蚀的措施方法 造成高温腐蚀的主要原因是煤质、设备、运行三个方面。从目前情况看,要改变煤种非常困难,依靠燃烧调整来预防高温腐蚀也有一定难度且效果不理想,因此,只有通过设备改造来预防高温腐蚀才是最根本有效的方法。 3.1侧边风技术 所谓侧边风就是在高温腐蚀区域的上游水冷壁或在高温腐蚀区域水冷壁上安装喷口,向炉膛内通入空气。采用侧边风的主要目的是改变水冷壁高温腐蚀区域的还原性气氛,增加局部含氧量。一般情况下以二次风作为侧边风的风源。根据侧边风结构及布置方式又分为贴壁型和射流型2种。贴壁型侧边风一般采用在水冷壁鳍片上开孔的方式,开孔位置在高温腐蚀区域内,依据腐蚀面积大小决定开孔数目的多少。二次风有小孔进入炉膛后,受炉内烟气运动影响,很快偏转附着于水冷壁管上,在高温腐蚀区域水冷壁表面形成一层空气保护膜。贴

电站锅炉水冷壁管腐蚀检测

电站锅炉水冷壁管腐蚀检测 刘凯厦门涡流检测技术研究所福建厦门361004 王维东徐州电力试验中心江苏徐州221009 朱伟明安徽淮南平发电有限公司安徽淮南232089 李林华电攀枝花发电公司四川攀枝花617066 摘要:锅炉是电站重要设备,其水冷壁管内腐蚀和裂纹造成爆裂致使停炉等严重事故,一直是困扰业界之难题。本文介绍新发展的低频电磁技术能够从管道外壁快速探测管内壁缺陷,并已在多个电厂成功运用。 关键词:水冷壁管;缺陷;低频电磁 Inspection of Waterwall Tube Defects for Power Plants LIU Kai Xiamen Eddy Current NDT Testing Institute 361004, China WANG Weidong Xuzhou Electric Power Research Institute 221009,China ZHU Weiming Pingwei Eleectric Power Co. 232089,China LI Lin China Hua Dian Panzhihua Power Co. 617066, China Abstract: This paper introduces a system using a scanner moved along the tube wall to scan from OD for defects inside the tube, primarily on the fireside. Typical defects found on these waterwall tubes are hydrogen damage, caustic gouging, etc. This system is based on low frequency electromagnetic technology. The tubes are not required to be cleaned to the level necessary for UT thinkness testing. This new system is fast, accurate, cost effective and field proven for power plants. Keywords: Boiler waterwall; Defect; Wallthickness; Low frequency electromagnetic 锅炉是热电厂最重要的生产设备,其炉内水冷壁管在长期服役中受到烟气、煤灰和火焰等侵蚀,极易出现磨损、腐蚀,造成管壁局部减薄,在管内高压、高温蒸汽的作用下,最终产生管体爆裂泄漏等严重事故。锅炉出现泄漏与一般管道出现泄漏不同,无法在继续生产运行中进行维修,往往要停机抢修,其经济损失巨大,因而各电厂对有效减少和避免锅炉管爆漏都非常重视,加强水冷壁管的在役运行材质的监测和检查具有十分重要的现实意义。 1. 水冷壁管内壁腐蚀机理 造成水冷壁管管壁减薄的原因主要有外壁烟灰吹蚀和内壁垢下腐蚀。前者出现在管外

相关主题
文本预览
相关文档 最新文档