当前位置:文档之家› 高温腐蚀

高温腐蚀

高温腐蚀
高温腐蚀

高温腐蚀是炉内高温烟气与金属壁面相互作用的一个复杂的物理化学过程,按其机理通常可分为三大类:硫化物(FeS2、H2S)型腐蚀、焦硫酸盐型腐蚀和氯化物型腐蚀。多年研究表明,水冷壁管发生高温腐蚀的区域是有规律的:通常多在燃烧高温区,即局部热负荷较高,管壁温度也较高的区域,如燃烧器区附近,其余区域的高温腐蚀明显减弱或根本不发生高温腐蚀;发生高温腐蚀的管子向火侧正面的腐蚀速度最快,管壁减薄量最大,背火侧则不发生高温腐蚀。

2 影响高温腐蚀的主要原因

1.火焰冲墙和还原性气氛的存在是造成水冷壁高温腐蚀的主要原因

对切圆燃烧锅炉,当燃烧切圆直径过大、火焰中心未形成切圆或燃烧切圆偏移时,炉内空气动力场倾斜,燃烧器区域出现火焰冲墙和还原性气氛,从而发生高温腐蚀。

2.1.1 高温火焰直接冲刷水冷壁

当含有较大煤粉浓度的高温火焰直接冲刷水冷壁管时,将大大加剧高温腐蚀的发生。其一,高温辐射热可加速硫酸盐的分解,加快腐蚀速度;其二,火焰中含有未燃尽的煤粉,在水冷壁附近缺氧燃烧,产生还原性气氛;其三,未燃尽的煤粉颗粒随烟气冲刷水冷壁管时,磨损将加速水冷壁管上保护膜的破坏,加快金属管壁高温腐蚀的过程。

2.1.2 存在还原性气体

由于着火延迟,未燃尽的煤粉在水冷壁附近进一步燃烧时,发生化学不完全燃烧,形成缺氧区,使炉膛壁面附近处于含有还原性气体(CO、H2)和腐蚀性气体(H2S)的烟气成分之中,没有完全燃烧的游离硫和硫化物与金属管壁发生反应,引起管壁高温腐蚀。

研究表明,烟气中CO浓度越大,高温腐蚀就越严重;H2S的浓度大于0.01%时,就会对钢材产生强烈的腐蚀作用;而当含氧量大于2%时,基本上不会发生高温腐蚀。

2.2 燃煤品质差是水冷壁高温腐蚀的必要条件

燃煤中硫、碱金属及其氧化物含量越大,腐蚀性介质浓度越大,出现高温腐蚀的可能性就越大。高硫煤产生的大量H2S、SO2、SO3、原子硫[S]不仅破坏管壁的Fe2O3保护膜,还侵蚀管子表面,致使金属管壁不断减薄,最终导致爆管事故。

燃用不易引燃的无烟煤和贫煤时,因着火点温度相对较高,燃烧困难,容易产生不完全燃烧,并使火焰脱长,在金属壁面附近形成还原性气氛,增加对管壁的腐蚀性。

煤粉的颗粒越大,也就越不易燃尽,比较容易形成还原性气体,产生高温腐蚀。同时,颗粒越大,对壁面的磨损也越严重,破坏了水冷壁管外氧化保护膜,使烟气中腐蚀介质直接与管壁金属发生反应,使腐蚀加剧。

2.3 过高的水冷壁管壁温度促进了水冷壁高温腐蚀的发生

研究表明,H2S等腐蚀性介质的腐蚀性在300℃以上逐步增强,即温度每升高50℃,腐蚀程度将增加一倍。对于亚临界大型电站锅炉,燃烧器区域的水冷壁管内汽水温度约在350℃左右,烟气侧水冷壁管温度多在420℃左右,正处于金属发生强烈高温腐蚀的温度范围之内。同时,管子局部壁面温度过高,易使具有腐蚀性的低熔点化合物粘附在金属表面,促进了管壁高温腐蚀的发生。

2.4 运行因素的影响

当锅炉负荷发生变化时,若运行不当(如火嘴投停不当),就容易引起燃烧不稳定,产生还原性气氛,或造成烟气冲墙,继而发生高温腐蚀。因此,运行不当也是引起高温腐蚀的一个主要因素。

3 高温腐蚀的防护措施

为防止高温腐蚀,避免锅炉爆管事故的发生,针对影响高温腐蚀的主要原因,可采取的防护措施有:

加强对燃料的控制,可通过燃烧前和燃烧中除硫的方法,降低燃料的含硫量;同时控制适当的煤粉细度,尽可能均匀各燃烧器之间的煤粉浓度分布;

加强对给水的控制,适当提高高温腐蚀区域水冷壁管内水流速度,降低管壁温度,严格控制给水品质,避免因水冷壁管内结垢而影响换热,从而导致水冷壁管壁温度增加;

提高金属抗腐蚀能力,可采用耐腐蚀高合金钢,渗铝管及在管外敷设碳化硅涂料等表面防护方式,降低腐蚀速度;

加强燃烧调整、合理配风,以达到降低水冷壁附近还原性气氛和避免烟气直接冲刷水冷壁两个目的。

对现场实际运行而言,加强燃料、给水控制会分别受到煤质及制粉系统、水质及水处理装置的限制;而提高金属抗腐蚀的能力,采用耐腐蚀高合金钢,或进行金属材料表面防

护毕竟是一种消极方式,同时造价又较高(如渗铝管与碳钢管相比,材料费大约增加一倍)。因此,合理配风、调整燃烧是防止水冷壁高温腐蚀的根本措施。实践表明,常用的“水平浓淡风煤粉燃烧器”可有效防止高温腐蚀的发生。

金属腐蚀机理及分类

1.1 金属的腐蚀机理 1.1.1 金属腐蚀的定义 金属及其制品在生产和使用过程中,在周围环境因素的作用下,发生破坏变质,改变了原有的化学、物理、机械等特性,称为金属腐蚀。 根据金属腐蚀过程,可以把腐蚀分为化学腐蚀和电化学腐蚀两大类。 1.1.2 化学腐蚀 化学腐蚀是金属与环境介质直接发生化学反应而产生的损伤。 特点:○1在腐蚀过程中没有电流产生,○2腐蚀产物直接产生并覆盖在发生腐蚀的地方。○3化学腐蚀往往在高湿的气体介质中发生。 钢铁在高温气体环境中很容易被腐蚀,如果同时有盐类或含硫物质存在,则会加速高温氧化,这称为热腐蚀。 1.1.3 电化学腐蚀 航空器上所发生的腐蚀大多数属于电化学腐蚀。 一、原电池 凡能将化学能转变为电能的装置称作原电池。 电化学腐蚀的最显著的特征是电化学腐蚀过程中有自由电子流动,产生电流。 二、电化学腐蚀与腐蚀电池 电化学腐蚀就是在金属上产生若干原电池(实际上是短路原电池,即称腐蚀电池),金属成为阳极,遭到溶解而发生腐蚀。 形成原电池的条件:1、两种金属(或两个区域)之间存在电位差;2、两种金属之间有导电通路;3、有腐蚀环境或腐蚀溶液。 铝合金的电化学腐蚀: 含有铜的铝合金构件处在潮湿的大气中,在其表面形成一层电解质溶液薄膜。这就构成了腐蚀电池。该腐蚀电池的阳极为电位较低的基体铝(-1.66V),阴极为电位较高的添加元素铜(+0.337V)。 电子由铝流向铜,铝遭到溶解。 根据组成腐蚀电池的大小,可以把腐蚀电池分为宏电池及微电池两类。 造成金属表面电位不同,形成微电池的原因很多,常见的有: (1)金属表面化学组成不均,夹杂有杂质。 (2)金属表面组织不均。 (3)金属表面生成氧化膜不均匀。 (4)金属表面物理状态不均匀。金属在机械加工过程中,受到拉、压、剪切作用,或由于热处理不均匀,造成不同部位表面的内应力和变形不同。通常,变形大,内应力高的地方为阳极,易受到腐蚀。 常见金属及其合金的电位: 一、Mg及其合金,铝合金5052、5056、5036、6061、6063、5356 二、Zn、Cd、除以上6种以外的铝合金 三、除不锈钢之外的碳钢、合金钢、Fe、Pb、Sn 四、Cu、Cr、Ni、Ag、Au、Pt、Ti、钴、铑、不锈钢 同一组中,电位基本一致,基本不发生电化学腐蚀;不同组中,第一组电位最低,为阳极,被腐蚀。

金属腐蚀与防护

第一章绪论 腐蚀:由于材料与其介质相互作用(化学与电化学)而导致的变质和破坏。 腐蚀控制的方法: 1)、改换材料 2)、表面涂漆/覆盖层 3)、改变腐蚀介质和环境 4)、合理的结构设计 5)、电化学保护 均匀腐蚀速率的评定方法: 失重法和增重法;深度法; 容量法(析氢腐蚀);电流密度; 机械性能(晶间腐蚀);电阻性. 第二章电化学腐蚀热力学 热力学第零定律状态函数(温度) 热力学第一定律(能量守恒定律) 状态函数(内能) 热力学第二定律状态函数(熵) 热力学第三定律绝对零度不可能达到 2.1、腐蚀的倾向性的热力学原理 腐蚀反应自发性及倾向性的判据: ?G:反应自发进行 < ?G:反应达到平衡 = ?G:反应不能自发进行 > 注:ΔG的负值的绝对值越大,该腐蚀的自发倾向性越大. 热力学上不稳定金属,也有许多在适当条件下能发生钝化而变得耐蚀. 2.2、腐蚀电池 2.2.1、电化学腐蚀现象与腐蚀电池 电化学腐蚀:即金属材料与电解质接触时,由于腐蚀电池作用而引起金属材料腐蚀破坏. 腐蚀电池(或腐蚀原电池):即只能导致金属材料破坏而不能对外做工的短路原电 池. 注:1)、通过直接接触也能形成原电池而不一定要有导线的连接; 2)、一块金属不与其他金属接触,在电解质溶液中也会产生腐蚀电池. 丹尼尔电池:(只要有电势差存在) a)、电极反应具有热力学上的可逆性; b)、电极反应在无限接近电化学平衡条件下进行; c)、电池中进行的其它过程也必须是可逆的. 电极电势略高者为阴极 电极电势略低者为阳极 电化学不均匀性微观阴、阳极微观、亚微观腐蚀电池均匀腐蚀

2.2.2、金属腐蚀的电化学历程 腐蚀电池: 四个部分:阴极、阳极、电解质溶液、连接两极的电子导体(即电路) 三个环节:阴极过程、阳极过程、电荷转移过程(即电子流动) 1)、阳极过程氧化反应 ++ - M n M →ne 金属变为金属离子进入电解液,电子通过电路向阴极转移. 2)、阴极过程还原反应 []- -? D D ne +ne → 电解液中能接受电子的物质捕获电子生成新物质. (即去极化剂) 3)、金属的腐蚀将集中出现在阳极区,阴极区不发生可察觉的金属损失,只起到了传递电荷的作用 金属电化学腐蚀能够持续进行的条件是溶液中存在可使金属氧化的去极化剂,而且这些去极化剂的阳极还原反应的电极电位比金属阴极氧化反应的电位高2.2.3、电化学腐蚀的次生过程 难溶性产物称二次产物或次生物质由于扩散作用形成,且形成于一次产物相遇的地方 阳极——[]+n M(金属阳离子浓度) (形成致密对金属起保护作用) 阴极——pH高 2.3、腐蚀电池类型 宏观腐蚀电池、微观腐蚀电池、超微观腐蚀电池 2.3.1、宏观腐蚀电池 特点:a)、阴、阳极用肉眼可看到; b)、阴、阳极区能长时间保持稳定; c)、产生明显的局部腐蚀 1)、异金属(电偶)腐蚀电池——保护电位低的阴极区域 2)浓差电池由于同一金属的不同部位所接触的介质浓度不同所致 a、氧浓差电池——与富氧溶液接触的金属表面电位高而成为阳极区 eg:水线腐蚀——靠近水线的下部区域极易腐蚀 b、盐浓差电池——稀溶液中的金属电位低成为阴极区 c、温差电池——不同材料在不同温度下电位不同 eg:碳钢——高温阳极低温阴极 铜——高温阴极低温阳极 2.3.2、微观腐蚀电池 特点:a)、电极尺寸与晶粒尺寸相近(0.1mm-0.1μm); b)、阴、阳极区能长时间保持稳定; c)、引起微观局部腐蚀(如孔蚀、晶间腐蚀)

论高温氧化的利与弊-材科1104-张明康

论高温腐蚀的利与弊 北京科技大学张明康 摘要本文分别通过研究分析生物质燃烧设备,燃煤火电厂锅炉,城市供热管线不锈钢补偿器,航天航空发动机高温合金,电触头材料等新材料的高温腐蚀的原因及其应用,论述了高温腐蚀的利与弊,并对新型高温合金的发展提出建议。关键词高温腐蚀新型高温合金新材料 1 引言 高温腐蚀是指金属材料与环境介质在高温下发生不可逆转的化学反应而退化的过程,而金属的高温氧化是高温腐蚀领域中最重要最基本的一种腐蚀形式。在能源、动力、航天航空等领域普遍存在着高温腐蚀的问题,而这些腐蚀问题对工业生产发展造成很大经济的损失,因而亟待解决。在解决高温腐蚀的问题的过程中,利用高温氧化进行防腐又是一种有效可行的措施。 2.1 高温腐蚀存在的问题 目前来说,高温腐蚀存在的问题是不可否认的,其弊端在于多个方面,关键是在于能否及时发现高温腐蚀的现象,并对其进行失效分析,为拟定相应的对策做好准备。 2.1.1 生物质燃烧设备的高温腐蚀问题 近年年来,随着石油、煤炭等传统能源短缺的问题越来越受到人们的关注,生物质能作为一种可再生的新能源,有着资源量大、可再生、广泛的可获取性以及可存储运输等诸多独特的优点。其中,燃烧是有效利用生物质能的重要途径之一。但是由于生物质中的碱金属等杂质的存在,使得生物质在燃烧的过程中相关的设备会产生高温腐蚀等问题。因而研究生物质燃烧过程中的高温腐蚀问题,对提高生物质燃烧的利用水平有着重要意义。其腐蚀根据生物质的种类、床料、所用管材的不同导致腐蚀的机理不同,大致又可分为三类,即气相腐蚀、固相腐蚀以及液相腐蚀。[1]

2.1.2 燃煤火电厂锅炉高温腐蚀问题 燃煤火电厂的高温腐蚀主要发生在“四管”,即水冷壁管、过热器管、再热器管和省煤器管。其主要的腐蚀原因包括飞灰,低熔点的沉积物,以及锅炉烟气的硫腐蚀、氯腐蚀、和钒腐蚀。火电厂锅炉的“四管”爆漏引起的非计划停运时间占机组非计划停运时间的40%左右,少发电量占全部事故少发电量的50%以上,是影响发电机组安全经济运行的主要因素。[2] 2.1.3 城市供热管线不锈钢补偿器的高温腐蚀 补偿器井内的水介质污染严重,而且井内处于高温状态,有利于细菌的繁殖生长,而且井内水介质中的Cl-及SO2 -4含量较高,以及管道热应力作用.补偿器井内的304不锈钢补偿器,发生晶间腐蚀、点蚀、细菌腐蚀以及应力腐蚀等不同的腐蚀形式。[3] 2.2 高温腐蚀的利用 对于高温腐蚀存在的各种各样的问题,对其机理进行研究分析后发现,可利用高温腐蚀这一方法对金属材料进行防腐,因而高温腐蚀在人为的作用下,也可趋于对人们有利的方面。 2.2.1 航天航空发动机高温合金 航空发动机热端部件因高温腐蚀、蠕变、机械疲劳、热疲劳等,将导致其尽快失效。发动机叶片的失效,绝大部分是与高温腐蚀有关。影响其高温腐蚀的主要有三大因素,分别为温度、环境介质、燃气成分。为了防止高温腐蚀,可采用高温合金制备的发动机叶片,目前有ODS合金,粉末高温合金等。在其高温合金中可添加一些改善其抗高温氧化的元素,例如添加Cr,Al,Si等元素,然后利用其高温氧化生成的致密的保护性氧化膜Cr2O3,Al2O3,SiO2,防止合金进一步氧化。[4] 2.2.2 电触头材料 电触头是各种电力设备、自动化仪表和控制装置中使用的一种关键金属元件,通过其接通或分断,达到保护电器,传递、承受和控制电流的目的。利用

耐热钢性能和耐腐蚀指标

耐热钢性能和耐腐蚀指标 在高温下具有较高的强度和良好的化学稳定性的合金钢。它包括抗氧化钢(或称高温不起皮钢)和热强钢两类。抗氧化钢一般要求较好的化学稳定性,但承受的载荷较低。热强钢则要求较高的高温强度和相应的抗氧化性。耐热钢常用于制造锅炉、汽轮机、动力、机械、工业炉和航空、石油化工等工业部门中在高温下工作的零部件。这些部件除要求高温强度和抗高温氧化腐蚀外,根据用途不同还要求有足够的韧性、良好的可加工性和焊接性,以及一定的组织稳定性。此外,还发展出一些新的低铬镍抗氧化钢种。 耐热钢基本信息 简介: 耐热钢(heat-resisting steels) 在高温条件下,具有抗氧化性和足够的高温强度以及良好的耐热性能的钢称作耐热钢。 类别: 耐热钢按其性能可分为抗氧化钢和热强钢两类。抗氧化钢又简称不起皮钢。热强钢是指在高温下具有良好的抗氧化性能并具有较高的高温强度的钢。 耐热钢按其正火组织可分为奥氏体耐热钢、马氏体耐热钢、铁素体耐热钢及珠光体耐热钢等。

用途 耐热钢常用于制造锅炉、汽轮机、动力机械、工业炉和航空、石油化工等工业部门中在高温下工作的零部件。这些部件除要求高温强度和抗高温氧化腐蚀外,根据用途不同还要求有足够的韧性、良好的可加工性和焊接性,以及一定的组织稳定性。 中国自1952年开始生产耐热钢。以后研制出一些新型的低合金热强钢,从而使珠光体热强钢的工作温度提高到600~620℃;此外,还发展出一些新的低铬镍抗氧化钢种。耐热钢和不锈耐酸 在使用范围上互有交叉,一些不锈钢兼具耐热钢特性,既可用作为不锈耐酸钢,也可作为耐热钢使用。合金元素的作用铬、铝、硅这些铁素体形成的元素,在高温下能促使金属表面生成致密的 氧化膜,防止继续氧化,是提高钢的抗氧化性和抗高温气体腐的主要元素。但铝和硅含量过高会使室温塑性和热塑性严重恶化。铬能显著提高低合金钢的再结晶温度,含量为2%时,强化效果最好。 镍、锰可以形成和稳定奥氏体。镍能提高奥氏体钢的高温强度和改善抗渗碳性。锰虽然可以代镍形成奥氏体,但损害了耐热钢的抗氧化性。钒、钛、铌是强碳化物形成元素,能形成细小弥散的碳化物,提高钢的高温强度。钛、铌与碳结合还可防止奥氏体钢在高温下或焊后产生晶间腐蚀。碳、氮可扩大和稳定奥氏体,从而提高耐热钢的高温强度。钢中含铬、锰较多时,可显著提高氮的溶解度,并可利用氮合金化以代替价格较贵的镍。硼、稀均为耐热钢中的微量元素。硼溶入固溶体中使晶体点阵发生畸变,晶界上的硼又能阻止元素扩散和晶

水冷壁管高温腐蚀的机理

1 高温腐蚀是炉内高温烟气与金属壁面相互作用的一个复杂的物理化学过程,按其机理通常可分为三大类:硫化物(FeS2、H2S)型腐蚀、焦硫酸盐型腐蚀和氯化物型腐蚀。多年研究表明,水冷壁管发生高温腐蚀的区域是有规律的:通常多在燃烧高温区,即局部热负荷较高,管壁温度也较高的区域,如燃烧器区附近,其余区域的高温腐蚀明显减弱或根本不发生高温腐蚀;发生高温腐蚀的管子向火侧正面的腐蚀速度最快,管壁减薄量最大,背火侧则不发生高温腐蚀。 2 影响高温腐蚀的主要原因 2.1火焰冲墙和还原性气氛的存在是造成水冷壁高温腐蚀的主要原因 对切圆燃烧锅炉,当燃烧切圆直径过大、火焰中心未形成切圆或燃烧切圆偏移时,炉内空气动力场倾斜,燃烧器区域出现火焰冲墙和还原性气氛,从而发生高温腐蚀。 2.1.1高温火焰直接冲刷水冷壁 当含有较大煤粉浓度的高温火焰直接冲刷水冷壁管时,将大大加剧高温腐蚀的发生。其一,高温辐射热可加速硫酸盐的分解,加快腐蚀速度;其二,火焰中含有未燃尽的煤粉,在水冷壁附近缺氧燃烧,产生还原性气体;其三,未燃尽的煤粉颗粒随烟气冲刷水冷壁管时,磨损将加速水冷壁管上保护膜的破坏,加快金属管壁高温腐蚀的过程。 2.1.2存在还原性气体 由于着火延迟,未燃尽的煤粉在水冷壁附近进一步燃烧时,发生化学不完全燃烧,形成缺氧区,使炉膛壁面附近处于含有还原性气体(CO、H2)和腐蚀性气体(H2S)的烟气成分之中,没有完全燃烧的游离硫和硫化物与金属管壁发生反应,引起管壁高温腐蚀。 研究表明,烟气中CO浓度越大,高温腐蚀就越严重;H2S的浓度大于0.01%时,就会对钢材产生强烈的腐蚀作用;而当含氧量大于2%时,基本上不会发生高温腐蚀[1]。 2.2燃煤品质差是水冷壁高温腐蚀的必要条件 燃煤中硫、碱金属及其氧化物含量越大,腐蚀性介质浓度越大,出现高温腐蚀的可能性就越大。高硫煤产生的大量H2S、SO2、SO3、原子硫[S]不仅破坏管壁的Fe2O3保护膜,还侵蚀管子表面,致使金属管壁不断减薄,最终导致爆管事故。 燃用不易引燃的无烟煤和贫煤时,因着火点温度相对较高,燃烧困难,容易产生不完全燃烧,并使火焰脱长,在金属壁面附近形成还原性气氛,增加对管壁的腐蚀性。 煤粉的颗粒越大,也就越不易燃尽,比较容易形成还原性气氛,产生高温腐蚀。同时,颗粒越大,对壁面的磨损也越严重,破坏了水冷壁管外氧化保护膜,使烟气中腐蚀介质直接与管壁金属发生反应,使腐蚀加剧。 2.3过高的水冷壁管壁温度促进了水冷壁高温腐蚀的发生 研究表明,H2S等腐蚀性介质的腐蚀性在300℃以上逐步增强,即温度每升高50℃,腐蚀程度将增加一倍。对于亚临界大型电站锅炉,燃烧器区域的水冷壁管内汽水温度约在350℃左右,烟气侧水冷壁管温度多在420℃左右,正处于金属发生强烈高温腐蚀的温度范围之内。同时,管子局部壁面温度过高,易使具有腐蚀性的低熔点化合物粘附在金属表面,促进了管壁高温腐蚀的发生。 2.4运行因素的影响 当锅炉负荷发生变化时,若运行不当(如火嘴投停不当),就容易引起燃烧不稳定,产生还原性气氛,或造成烟气冲墙,继而发生高温腐蚀。因此,运行不当也是引起高温腐蚀的一个主要因素。 3高温腐蚀的防护措施

腐蚀与防护习题

第一章绪论 1.根据你对腐蚀的理解、给材料腐蚀下一个你认为比较完善的定义。 2.简述研究金属腐蚀的主要目的和内容。 3.为什么有人把金属的高温氧化归为电化学腐蚀? 4.腐蚀控制的主要方法有哪些?控制腐蚀有何意义?腐蚀可否根除? 5.腐蚀学科的发展可以划分为几个主要阶段?各阶段有何特点? 6.腐蚀的分类方法有哪些?为什么要从多种角度对腐蚀进行分类?按腐蚀形态可将腐蚀分为哪些类型? 7.化学腐蚀和电化学府蚀有何区别? 8.试评述重量法、深度法和电流密度表征法用于腐蚀速率大小表示时的特点及适用条件。为何这些方法不能评定局部腐蚀?局部腐蚀应该如何评定才合理?对于腐蚀速率随时间改变的均匀腐蚀情况,怎样评定腐蚀程度更为科学?请给出你认为合理的方案。 9.通过理论推导,试铜在充空气的中性水溶液中的腐蚀产物为二价铜离子,阳极腐蚀电流密度i =10-2A/m3。请分别计算出以重量法和深度法表示的 corr 铜的腐蚀速率大小,并指出铜在该环境中的腐蚀等级和耐蚀情况。 第二章电化学腐蚀的基本原理 1.电极电位是如何产生的?能否测量电极电位的绝对值? 2.电极体系分为几种类型?它们各有什么特点? 3.化学位和电化学位有什么不同?电化学位由几个部分组成? 5.如何根据热力学数据判断金属腐蚀的倾向? 6.如何使用电极电位判断金属腐蚀的倾向? 7.什么是腐蚀电池?腐蚀电池有几种类型?

8.何谓腐蚀电池?腐蚀电池和原电池有无本质区别?原因何在? 9.腐蚀电池由几个部分组成?其基本过程是什么?二次反应产物对金属腐蚀有何影响? 10.腐蚀电池分类的根据是什么?它可分为几大类? 11.什么是异金属接触电池、浓差电池和温差电池?举例说明这三类腐蚀电池的作用?何谓标准电极电位?试指出标准电位序和电偶序的区别。 12.含有杂质的锌片在稀H 2SO 4 中的腐蚀是电化学腐蚀,是由于锌片中的杂质形 成的微电池引起的,这种说法正确吗?为什么? 13.什么是电位-pH图?举例说明它的用途及局限性。 12.计算下列电极体系的电极电位: (1)Zn/Zn 2 +(2mol/L);(2)Fe3+(0.5mol/L)/Fe2+(0.2mol/L); (3)C1O 4-(0.2mol/L),C10 3 -(0.3mol/L),0H-(0.6mol/L)组成的电极体系; 13.计算Ag/AgCl电板在1mol/L KCl溶液中的电极电位。 14.将Zn片浸入Ph=l的0.01 mol/L的ZnCl 2 溶液中,通过计算判断能否发生析氢腐蚀。 15.Zn片浸在活度为1的Zn2+溶液中,Pt片浸在Ph=1,PH2=0.2MPa的酸溶液中,组成电池,求该电池的电动势,并判断该电池的正负极。 16.计算下列电板组成的电池电动势,当该电池短路时,哪个电极被腐蚀? (1)Fe和Mg分别浸在相同活度的Fe2+和Mg2+溶液中。 (2)Pb和Ag分别浸在相同活度的Pb2+和Ag+溶液中。 17.什么是析氢腐蚀?析氢腐蚀发生的必要条件是什么?析氢腐蚀有哪些特征? 18.划分高、中、低氢过电位金属的依据是什么?并据此分析金属元素对析氢腐蚀的影响?

第一章 金属材料的高温化学腐蚀

绪论 金属腐蚀的定义: 金属材料和环境介质发生化学或电化学作用,引起材料的退化与破坏称为金属的腐蚀. 本课程研究的内容 ? 1. 研究金属和周围介质作用时所发生的化学或电化学的现象、机理及其一般规律。 ? 2. 研究各种条件下金属材料的防止腐蚀的方法和措施。 三、金属腐蚀与防护的重要性 经济损失: ?直接损失:指采用防护技术的费用和发生腐蚀破坏以后的维修、更换费用和劳务费用。 ?间接损失:指设备发生腐蚀破坏造成停工、停产;引起的物资跑、冒、滴、漏损失; 对环境污染以至爆炸、火灾等事故的间接损失更是无法估量。 第一章金属材料的高温化学腐蚀 第一节概述 一、高温化学腐蚀定义: 高温化学腐蚀是研究金属材料和与它接触的环境介质在高温条件下所发生的界面反应过程的科学。 金属高温腐蚀与常温腐蚀的区别: 高温腐蚀:主要是以界面的化学反应为特征。常温腐蚀:主要是电化学过程。 金属材料的高温腐蚀反应式: Me(金属)+X(介质)--MeX(腐蚀产物) 二、高温腐蚀分类 按环境介质状态分 1)高温气态介质腐蚀(2)高温液态介质腐蚀(3)高温固态介质腐蚀 (1)高温气态介质腐蚀: 气态介质中包括有单质气体分子。非金属化合物气体分子。金属氧化物气态分子,和金属盐气态分子。由于这种高温腐蚀是在高温,干燥的气体分子环境中进行的,所以常被称为“高温气体腐蚀”“干腐蚀”“化学腐蚀”。 (2)高温液态介质腐蚀: 液态介质(包括液态金属,液态融盐及低熔点氧化物)对固态金属材料的高温腐蚀。这种腐蚀包括界面化学反应,也包括液态物质对固态物质的溶解。 (3)高温固态介质腐蚀: 金属材料在带有腐蚀性的固态颗粒状物质的冲刷下发生的高温腐蚀。这类腐蚀包括固态燃灰与盐颗粒对金属材料的腐蚀。又包括这些固态颗粒状物质对金属材料表面的机械磨损,所以人们又称为“磨蚀”或“冲蚀”。 高温腐蚀现象 (1)在金属热处理过程中,碳氮共渗和盐浴处理易于产生增碳、氮化损失和熔融盐的腐蚀。(2)含有燃烧的各个过程,比如柴油发动机、燃气轮机、焚烧炉等所产生的复杂气氛的高温氧化等腐蚀。 (3)核反应堆运行过程中,煤的气化和液化所产生的高温硫化腐蚀。 (4)在航空领域,宇宙飞船返回大气层过程中的高温氧化和高温硫化腐蚀,以及航空发动

材料腐蚀的分类

材料腐蚀的分类 材料腐蚀类别与相应机理 金属和它所处的环境介质之间发生化学、电化学或物理作用,引起金属的变质和破坏,称为金属腐蚀。腐蚀现象是十分普遍的。从热力学的观点出发,除了极少数贵金属Au、Pt 等外,一般材料发生腐蚀都是一个自发过程。金属很少是由于单纯机械因素(如拉、压、冲击、疲劳、断裂和磨损等)或其他物理因素(如热能、光能等)引起破坏的,绝大多数金属的破坏都与其周围环境的腐蚀因素有关。 1.1金属的高温氧化腐蚀 1.1.1高温氧化腐蚀概念 在大多数条件下,使用金属相对于其周围的气态都是热不稳定的。根据气体成分和反应条件不同,将反应生成氧化物、硫化物、碳化物和氮化物等,或者生成这些反应产物的混合物。在室温或较低温干燥的空气中,这种不稳定性对许多金属来说没有太多的影响。因为反应速度很低。但是随着温度的上升,反应速度急剧增加。这种在高温条件下,金属与环境介质中的气相或凝聚相物质发生化学反应而遭受破坏的过程称高温氧化,亦称高温腐蚀。 从广义上看,金属的氧化应包括硫化、卤化、氮化、碳化,液态金属腐蚀,混合气体氧化,水蒸气加速氧化,热腐蚀等高温氧化现象;从狭义上看,金属的高温氧化仅仅指金属(合金)与环境中的氧在高温条件下形成氧化物的过程。 1.1.2高温氧化腐蚀机理 研究金属高温氧化时,首先应讨论在给定条件下,金属与氧相互作用能否自发地进行或者能发生氧化反应的条件是什么,这些问题可通过热力学基本定律做出判断。 金属氧化时的化学反应可以表示成: Me (s)+O 2(g)→MeO 2(g) 对该式来说: 可知,只要知道温度T 时的标准自由能变化值,即可得到该温度下的金属氧化物分解压,然后将其与给定条件下的环境氧分压比较就可判断金属氧化反应式的反应方向。 在一个干净的金属表面上,金属氧化反应的最初步骤是气体在金属表面上吸附。随着反应的进行,氧溶解在金属中,进而在金属表面形成氧化物薄膜或独立的氧化物核。在这

锅炉受热面高温腐蚀原因分析及防范措施

锅炉受热面高温腐蚀原因分析及防范措施 Cause Analysis and Protective Measues to High-temperature Corrosion On Heating Surface of Boiler 张翠青 (内蒙古达拉特发电厂,内蒙古达拉特 014000) [摘要]达拉特发电厂B&WB-1025/18.44-M型锅炉在九八及九九年#1、#2炉大修期间,检查发现两台炉A、B两侧水冷壁烟气侧、屏式过热器迎火侧、高温过热器迎火侧存在大面积腐蚀,根据腐蚀部位、形态和产物进行分析,锅炉受热面的腐蚀属于高温腐蚀,其原因主要与炉膛结构、煤、灰、烟气特性及运行调整有关,并提出了防范调整措施。 [关键词] 锅炉受热面;高温腐蚀;机理原因分析;防范措施

达拉特发电厂#1~#4炉是北京B&WB公司设计制造的B&WB-1025/18.4-M型亚临界自然循环固态排渣煤粉炉。锅炉采用前后墙对冲燃烧方式。设计煤种为东胜、神木地区长焰煤。在九八及九九年#1、#2炉大修期间,检查发现两台炉A、B两侧水冷壁烟气侧、屏式过热器迎火侧、高温过热器迎火侧存在大面积腐蚀,两台炉腐蚀的产物、形状及部位相似。腐蚀区域水冷壁在标高16~38米之间及屏式过热器、高温过热器沿管排高度,腐蚀深度在0.4~1.0mm之间,最深处达1.7mm,腐蚀面积达500平方米左右。腐蚀给机组安全运行带来严重隐患。 1.腐蚀机理原因 1.1锅炉炉膛结构 锅炉炉膛结构设计参数见下表: 高40%多,同时上排燃烧器至屏过下边缘高度值比推荐范围的下限还低1.8米,这就导致燃烧器布置过于集中、燃烧器区域局部热负荷偏大、该区域内燃烧温度过高,实测炉膛温度达1370~1430℃。燃烧温度偏高直接导致水冷壁管壁温度过高,理论计算该区域水冷壁表面温度为452℃。大量的试验研究表明当水冷壁管壁温度大于400℃以后,就会产生明显的高温腐蚀。 1.2 煤、灰、烟气因素 蒙达公司实际燃煤是东胜、神木煤田的长焰煤和不粘结煤的混煤。:燃煤中碱性氧化物含量较高,灰中钠、钾盐类含量高,平均值达3.85%,含硫量偏高。 1.3 运行调整不当 为了分析运行调整因素对腐蚀的影响,在A、B侧水冷壁标高20、25、28米处安装了三排烟气取样点,每排三个,共18个。分析烟气成分后发现,燃用含硫量高的煤种时,由于燃烧配风调整不合理,省煤器后氧量偏大(实侧值 气体,加剧了高温腐蚀的产生与发展。 4.35%),导致燃烧过程中生成大量的SO 2 2.腐蚀类型 所取垢样中,硫酸酐及三氧化二铁的含量最高,具有融盐型腐蚀的特征,属于融盐型高温腐蚀。从近表层腐蚀产物的分析结果看,S和Fe元素含量最高,具有硫化物型腐蚀特征,说明存在较严重的硫化物型腐蚀。因此,达拉特发电厂的锅炉高温腐蚀是以融盐型腐蚀为主并有硫化物腐蚀的复合型腐蚀。 3.防止受热面高温腐蚀的措施 2.1.采用低氧燃烧技术组 由于供给锅炉燃烧室空气量的减少,因此燃烧后烟气体积减小,排烟温度下 的百分数和过量空气百分数之间降,锅炉效率提高。燃油和煤中的硫转化为SO 3 的转化明显下降。的关系是,随着过量空气百分数的降低,燃料中的硫转化为SO 3

材料腐蚀与防护试题

吸氧腐蚀:是指金属在酸性很弱或中性溶液里,空气里的氧气溶解于金属表面水膜中而发生的电化学腐蚀。 第一章金属与合金的高温氧化 1、金属氧化膜具有保护作用的的充分条件与必要条件充分条件:膜要致密、连续、无孔洞,晶体缺陷少;稳定性好,蒸汽压低,熔点高;膜与基体的附着能力强,不易脱落;生长内应力小;与金属基体具有相近热膨胀系数;膜的自愈能力强。必要条件:氧化时生成的金属氧化膜的体积与生成这些氧化膜所消耗的金属的体积之比必须大于1,即PBR值大于1. 2、说出几种主要的恒温氧化动力学规律,并分别说明其意义。(1)直线规律:符合这种规律的金属在氧化时,氧化膜疏松,易脱落,即不具有保护性,或者在反应期间生成气相或者液相产物离开了金属表面,或者在氧化初期氧化膜很薄时,其氧化速度直线由形成氧化物的化学反应速度决定,因此其氧化速度恒定不变,符合直线规律。(2)抛物线规律:许多金属或者合金在较高的高温氧化时,其表面可形成致密的固态氧化物膜,氧化速度与膜的厚度成反比,即其氧化动力学符合这种规律。(3)立方规律:在一定温度范围内,一些金属的氧化物膜符合这种规律。(4)对数和反对数规律:许多金属在温度低于300-400摄氏度氧化时,其反应一开始很快,但是随后就降到了氧化速度可以忽略的

程度,该行为符合对数或反对数规律。 3、说出三种以上能提高钢抗高温氧化的元素镍,铝,钛 4.、纯NI在1000摄氏度氧气氛中遵循抛物线氧化规律,常数k=39X10-12cm2/s,如果这种关系不受氧化膜厚度的影响,试计算使0.1cm厚镍板全部氧化所需的时间。解:由抛物线规律可知:厚度y与时间t存在如下关系:y2=kt,t=y2/k=2.56x108s 5哈菲价法则:当基体氧化膜为P型半导体时,往基体中加入比基体原子低价的合金元素,使离子空穴浓度降低,提高电子浓度,结果导致电导率增加,而氧化速率降低,往基体中比此基体原子高价的合金元素,使离子空穴浓度提高,降低电子浓度,结果导致电导率降低,而氧化速度提高。当基体氧化膜为n型半导体时,往基体中加入比基体原子低价的合金元素,使电子浓度降低,电导率降低,而基体离子浓度增加,氧化速度增加,往基体中加入比基体原子高价的合金元素,使电子浓度增加,电导率增加,而基体离子浓度降低,氧化速度降低。以上合金元素对氧化物晶体缺陷的影响规律成为控制合金氧化的原子价规律,简称哈菲原子价法则。 第二章金属的电化学腐蚀 1、解释下列词语

金属腐蚀与防护课后习题答案(学习相关)

腐蚀与防护试题 1化学腐蚀的概念、及特点 答案:化学腐蚀:介质与金属直接发生化学反应而引起的变质或损坏现象称为金属的化学腐蚀。 是一种纯氧化-还原反应过程,即腐蚀介质中的氧化剂直接与金属表面上的原子相互作用而形成腐蚀产物。在腐蚀过程中,电子的传递是在介质与金属之间直接进行的,没有腐蚀电流产生,反应速度受多项化学反应动力学控制。 归纳化学腐蚀的特点 在不电离、不导电的介质环境下 反应中没有电流产生,直接完成氧化还原反应 腐蚀速度与程度与外界电位变化无关 2、金属氧化膜具有保护作用条件,举例说明哪些金属氧化膜有保护作用,那些没有保护作用,为什么? 答案:氧化膜保护作用条件: ①氧化膜致密完整程度;②氧化膜本身化学与物理稳定性质;③氧化膜与基体结合能力;④氧化膜有足够的强度 氧化膜完整性的必要条件:PB原理:生成的氧化物的体积大于消耗掉的金属的体积,是形成致密氧化膜的前提。 PB原理的数学表示: 反应的金属体积:V M = m/ρ m-摩尔质量 氧化物的体积: V MO = m'/ ρ ' 用? = V MO/ V M = m' ρ /( m ρ ' ) 当? > 1 金属氧化膜具备完整性条件 部分金属的?值 氧化物?氧化物?氧化物? MoO3 3.4 WO3 3.4 V2O5 3.2 Nb2O5 2.7 Sb2O5 2.4 Bi2O5 2.3 Cr2O3 2.0 TiO2 1.9 MnO 1.8 FeO 1.8 Cu2O 1.7 ZnO 1.6 Ag2O 1.6 NiO 1.5 PbO2 1.4 SnO2 1.3 Al2O3 1.3 CdO 1.2 MgO 1.0 CaO 0.7 MoO3 WO3 V2O5这三种氧化物在高温下易挥发,在常温下由于?值太大会使体积膨胀,当超过金属膜的本身强度、塑性时,会发生氧化膜鼓泡、破裂、剥离、脱落。 Cr2O3 TiO2 MnO FeO Cu2O ZnO Ag2O NiO PbO2 SnO2 Al2O3 这些氧化物在一定温度范围内稳定存在,?值适中。这些金属的氧化膜致密、稳定,有较好的保护作用。 MgO CaO ?值较小,氧化膜不致密,不起保护作用。 3、电化学腐蚀的概念,与化学腐蚀的区别 答案:电化学腐蚀:金属与介质发生电化学反应而引起的变质与损坏。 与化学腐蚀比较: ①是“湿”腐蚀 ②氧化还原发生在不同部位 ③有电流产生

过热器高温腐蚀机理分析-赵梦瑾

过热器高温腐蚀机理分析 赵梦瑾 摘要:介绍了锅炉过热器高温硫腐蚀和水蒸汽氧化腐蚀的过程机理,分析导致腐蚀不断进行的主要因素,并提出防治措施,促进锅炉安全经济运行。 1 前言 过热器用于回收烟气中的热量,提高锅炉效率。炉膛出口烟气温度比较高,为1000~1100℃,经过过热器后温度降至700~800℃。过热器在锅炉受压部件中承受的温度最高。高温硫腐蚀和水蒸汽氧化腐蚀是过热器管两种主要腐蚀形式,其中外壁高温硫腐蚀已受到较多关注。近年来由水蒸气氧化腐蚀而引发爆管以及剥落下来的坚硬氧化皮微粒造成的汽轮机固体颗粒侵蚀的事故日益突出,水蒸汽氧化腐蚀问题也越来越引起重视。 2 高温硫腐蚀 2.1 机理 高温积灰所生成的内灰层含有较多的碱金属,这些碱金属与飞灰中的铁铝等成分以及烟气中通过松散外灰层扩散进来的氧化硫进行较长时间的化学作用便生成碱金属的硫酸盐等复合物,复合硫酸盐附着在管壁上,对管子金属进行氧化腐蚀。在腐蚀发生过程中,从机理上讲主要会有如下几种反应发生[1]: (1)在燃烧过程中,FeS2及有机硫化物与氧发生反应; 4FeS2 +11O2→2Fe2O3+8SO2 RS(有机硫化物)+ O2→SO2 2SO2+ O2→2SO3 (2)在高温条件下,煤中钠和钾被氧化成Na2O和K2O; (3)Na2O和K2O与烟气中或沉积在管壁上的SO3发生反应生成碱性硫酸盐; Na2O+ SO3→Na2SO4 K2O+ SO3→K2SO4 (4)碱性硫酸盐、氧化铁与SO3反应形成复合硫酸盐; 3Na2SO4+Fe2O3+ 3SO3→2Na3Fe(SO4)3 3K2SO4+Fe2O3+ 3SO3→2K3Fe(SO4)3 (5)在高温条件下,处于熔融状态的复合硫酸盐与管子金属发生下列反应。 4Na3Fe(SO4)3 +12Fe→3FeS+ 3Fe3O4 +2Fe2O3 +6Na2SO4+ 3SO2 4K3Fe(SO4)3 +12Fe→3FeS+ 3Fe3O4 +2Fe2O3 +6K2SO4+ 3SO2 这些复合硫酸盐在550~750℃范围内以熔化状态贴附在管壁上,并随着烟气的流动而被带走,造成管壁表面粗糙,而后面新生成的硫酸盐就越易在这些粗糙表面优先附着,又会重复上述的腐蚀反应。这是一个恶性循环过程,周而复始,随着腐蚀的进行,管壁就会被逐渐蚕食。当被侵蚀的金

材料腐蚀的种类、危害和解决办法

材料腐蚀的种类、危害及解决办法 腐蚀是指材料受周围环境的 作用,发生有害的化学变化、电化学变化或物理变化而失去其 固有性能的过程。通常环境介质对材料有各种不同的作用,其 中有多种作用可导致材料遭受破坏,但只有满足以下两个条件,才称为腐蚀作用:①材料受介质作用的部分发生状态变化,转变成新相。②在材料遭受破坏过程中,整个腐蚀体系的自由能降低。 材料腐蚀发生在材料表面。按腐蚀反应进行的方式分为化学腐蚀和电化学腐蚀。前者发生在非离子导体介质中;后者发生在具有离子导电性的介质中,故可通过改变材料的电极电位来改变腐蚀速度。按材料破坏特点分为均匀腐蚀、局部腐蚀和选择性腐蚀。均匀腐蚀指材料表面各处腐蚀破坏深度差别很小,没有特别严重的部位,也没有特别轻微的部分。局部腐蚀是材料表面的腐蚀破坏集中发生在某一区域,主要有孔蚀、缝隙腐蚀、晶间腐蚀等。选择性腐蚀是金属材料在腐蚀介质中,其活性组元产生选择性溶解,由金属材料合金组分的电化学差异所致。按腐蚀环境又分为微生物腐蚀、大气腐蚀、土壤腐蚀、海洋腐蚀和高温腐蚀等。 金属材料以及由它们制成的结构物,在自然环境中或者在工况条件下,由于和其所处环境介质发生化学或者电化学作用而引起的变质和破坏,这种现象称为腐蚀,其中也包括上述因素和力学因素或者生物因素的共同作用。某些物理作用例如金属材料在某些液态金属中的物理溶解现象也可以归入金属腐蚀范畴。一般而言,生锈专指钢铁和铁基合金而言,它们在氧和水的作用下形成了主要由含水氧化铁组成的腐蚀产物铁锈。有色金属及其合金可以发生腐蚀但并不生锈,而是形成和铁锈相似的腐蚀产物,如铜和铜合金表面的铜绿,偶尔也被人称作铜锈。由于金属和合金遭受腐蚀后又回复到了矿石的化合物状态,所以金属腐蚀也可以说是冶炼过程的逆过程。上述定义不仅适用于金属材料,也可以广义地适用于塑料、陶瓷、混凝土和木材等非金属材料。例如,涂料和橡胶由于阳光或者化学物质的作用引起变质,炼钢炉衬的熔化以及一种金属被另一种金属熔融液态金属腐蚀,这些过程的结果都属于材料腐蚀,这是一种广义的定义。金属及其合金至今康 昆 勇

耐热钢性能和耐热腐蚀指标

耐热钢性能和耐腐蚀指标 耐热钢基本信息

镍、锰可以形成和稳定奥氏体。镍能提高奥氏体钢的高温强度和改善抗渗碳性。锰虽然可以代镍形成奥氏体,但损害了耐热钢的抗氧化性。 钒、钛、铌是强碳化物形成元素,能形成细小弥散的碳化物,提高钢的高温强度。钛、铌与碳结合还可防止奥氏体钢在高温下或焊后产生晶间腐蚀。 碳、氮可扩大和稳定奥氏体,从而提高耐热钢的高温强度。钢中含铬、锰较多时,可显著提高氮的溶解度,并可利用氮合金化以代替价格较贵的镍。 硼、稀土均为耐热钢中的微量元素。硼溶入固溶体中使晶体点阵发生畸变,晶界上的硼又能阻止元素扩散和晶界迁移,从而提高钢的高温强度;稀土元素能显著提高钢的抗氧化性,改善热塑性。 耐热钢分类 珠光体钢 马氏体钢 含铬量一般为7~13%,在650℃以下有较高的高温强度、抗氧化性和耐水汽腐蚀的能力,但焊接性较差。含铬12%左右的1Cr13、2Cr13,以及在此基础上发展出来的钢号如1Cr11MoV,1Cr12WMoV,2Cr12WMoNbVB等,通常用来制作汽轮机叶片、轮盘、轴、紧固件等。此外,作为制造内燃机排气阀用的4Cr9Si2,4Cr10Si2Mo 等也属于马氏体耐热钢。 铁素体钢 含有较多的铬、铝、硅等元素,形成单相铁素体组织,有良好的抗氧化性和耐高温气体腐蚀的能力,但高温强度较低,室温脆性较大,焊接性较差。如1Cr13SiAl,1Cr25Si2等。一般用于制作承受载荷较低而要求有高温抗氧化性的部件。 奥氏体钢 含有较多的镍、锰、氮等奥氏体形成元素,在 600℃以上时,有较好的高温强度和组织稳定性,焊接性能良好。通常用作在 600℃以上工作的热强材料。 典型钢种有1Cr18Ni9Ti, 1Cr23Ni13, 1Cr25Ni20Si2,2Cr20Mn9Ni2Si2N,4Cr14Ni14W2Mo等。 耐热钢生产工艺 冶炼耐热钢一般在电弧炉或感应炉中熔炼。质量要求高的往往采用真空精炼和

腐蚀机理

混凝土盐渍土腐蚀机理及影响因素 [摘要]通过对盐渍土地区混凝土腐蚀的机理分析, 指出了西部盐渍区富含的硫酸盐是造成混凝土物耐久性差的主要原因; 并详细阐述了国内外关于混凝土硫酸盐侵蚀影响因素的现状研究。 [关键词]盐渍土耐久性硫酸盐侵蚀 盐渍土就是指含盐分较高的土壤, 一般超过3% 的盐含量就可归结到盐渍 土的范围。我国西部地区盐渍土分布广泛, 新疆、青海、西藏、甘肃、宁夏以及内蒙古等地均有大面积的盐渍区。我国正在实施西部大开发战略, 因此大量基础设施就要建于盐渍土之上。以往的资料和调查表明, 一些道路、桥梁、建筑物、地下管道乃至电线杆等, 仅使用几年就遭受严重的腐蚀破坏, 不得不进行工程修复, 造成巨大经济损失。因此, 研究抗腐蚀混凝土在盐渍地区的耐久性问题, 具有非常重要的现实意义和深远的社会影响。 1、盐渍土对混凝土结构的腐蚀机理 盐渍土含盐量及含盐种类有很大差别, 其腐蚀性也有差异。氯盐主要腐蚀混凝土中的钢筋从而引起结构破坏; 硫酸盐主要是通过物理、化学作用破坏水泥水化产物, 使混凝土分化、脱落和丧失强度。1. 1 硫酸盐的化学腐蚀机理实际上硫酸盐侵蚀是一个比较复杂的过程。硫酸盐侵蚀引起的危害性包括混凝土的整体开裂和膨胀以及水泥浆体的软化和分解。不同的Ca、N a、K、M g 和Fe 的阳离子会产生不同的侵蚀机理和破坏原因, 如硫酸钠和硫酸镁的侵蚀机理就截然不同。1) 硫酸钠侵蚀首先是N a2SO 4 和水泥水化产物Ca (OH) 2 的反应, 生成的石膏(CaSO4·2H2O ) , 再与单硫型硫铝酸钙和含铝的胶体反应生成次生的钙矾石, 由于钙矾石具有膨胀性, 所以钙矾石膨胀破坏的特点是混凝土试件表面出现少数较粗大的裂缝。当侵蚀溶液中SO 2-4 浓度大于1000mg?L 时, 水泥石的毛细孔若为饱和石灰溶液所填充, 不仅有钙矾石生成, 而且在水泥石内部还会有二水石膏结晶析出。从氢氧化钙转变为石膏, 体积增大为原来的两倍, 使混凝土因内应力过大而导致膨胀破坏。石膏膨胀破坏的特点是试件没有粗大裂纹但遍体溃散。B iczok 认为: 侵蚀溶液浓度改变, 反应机理也发生变化。以N a2SO 4 侵蚀为例, 低SO 2-4 浓度(< 1000mg?L SO 2-4 ) , 反应产物主要是钙矾石; 而在高浓度下(> 8000mg?L SO 2-4 ) , 主要产物是石膏; 在中等程度浓度下(1000mg? L~8000mg?L SO 2-4 ) , 钙矾石和石膏同时生成。在M gSO4 侵蚀情况下, 在低SO 2-4 浓度(< 4000mg?L SO 2-4 ) , 反应产物主要是钙矾石; 在中等程度浓度下(4000mg? L~7500mg?L SO 2-4 ) , 钙矾石和石膏同时生成; 而在高浓度下(> 7500mg?L SO 2-4 ) , 镁离子腐蚀占主导地位。2) 硫酸镁与水化水泥产物的反应方程式如下:Ca (OH) 2+ M gSO4+ 2H2O→CaSO4·2H2O + M g (OH) 2 (3)硫酸镁侵蚀首先发生上式的反应, 然而上式生成的M g(OH) 2 与N aOH 不同, 它的溶解度很低(0. 01g?L , 而Ca (OH ) 2是1. 37g?L ) , 饱和溶液的PH 值是10. 5 (Ca (OH) 2 是12. 4,N aOH是13. 5) , 在此PH 值下钙矾石和C- S- H 均不稳定, 低的PH 值环境将产生以下结果: (1) 次生钙矾石不能生

腐蚀机理

在油田的开采过程中,套管的腐蚀是必然的。套管腐蚀是指原油中含有硫、CO:及地层水中和注入水中含有的各种腐蚀性物质与套管中Fe或FeZ+发生应而腐蚀管体,或在高温、高压、高速旋转等多相环境下的腐蚀问题,造成井管柱的严重腐蚀破坏,导致油套管的穿孔和断裂。 1.4.1CO2的腐蚀 (1)CO2腐蚀机理 由于地层中的地质化学过程、采出水中的HOC:,一减压升温分解、或为提高采率而注入C0:气体等原因,而导致油田采出水中含有COZ。溶解在水中的COZ与反应生成碳酸,碳酸可进一步电离出+H: CO2+H2O一H,CO:、 H:CO;一H++HCO。- (1一1) (1一2) 第一章前言 HCO3-一H++CO32一(l一3) 而产生氢去极化腐蚀,其腐蚀反应为: 阳极:Fe一FeZ++Ze(1一4) 阴极:H‘+e一H(1一5) ZH一H:(1一6) 总反应为:Fe+HZCO:,一FeCO:,+HZ(1一7) 由于碳酸的二级电离非常微弱,甚至可忽略不计,所以可以认为溶液中的碳 酸是以+H和HC仇一形式存在的,因此反应产物中大多数物质不是FCeO。而是 e(HCO:,)2。 Fe(HCO办2在高温下不稳定,发生分解: Fe(HCO3)2一FeCO:,+H:O+COZ 腐蚀产生的碳酸盐在钢铁表面不同区域之间形成了自催化作用很强的腐蚀 偶,加快金属的腐蚀。 CO:的腐蚀程度取决于温度、压力、C0:含量、水的pH值、水的组分、沉淀 类型和流动条件,其主要影响因素是C02在水中的含量【‘6’。低硫油井或凝析气 中,局部腐蚀要比均匀腐蚀严重得多,特别是C02分压升高到0.IMPa时,碳钢 坑蚀更严重,局部腐蚀出大小不同形状各异的腐蚀疤和沟槽;腐蚀穿透率也很 , 一般可达到10mm/a。COZ腐蚀产物为FeCO:,,含量高时呈灰白色,而且比较硬, 酸起泡。 (2)CO:腐蚀的特征 在产生COZ腐蚀时,金属破坏的基本特征是局部腐蚀,但均匀腐蚀现象也很常 见。均匀腐蚀的腐蚀速率主要由CO:的分压、温度、腐蚀产物的保护性、电解质 液的成分和材料决定,而在局部腐蚀时,除上述因素外,流速、某些化学组分(如 O:和H多)的存在、残余应力等都对其有影响。由此可以看出,COZ腐蚀的影响因 很多,其中COZ分压、流速、pH值、温度和保护膜、溶液成分、材料成分等都 影响腐蚀的非常重要的因素。国内外很多学者“了,进行了大量的研究,其目的在 通过综合考虑各个方面的因素,制订出腐蚀速率预测模型,找到最切合实际的 防止COZ腐蚀的方法。 (3)COZ腐蚀的危害

锅炉高温腐蚀及防止措施

锅炉高温腐蚀及防止措 施 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

锅炉高温腐蚀及防止措施锅炉的高温腐蚀主要发生在燃用高硫煤的锅炉水冷壁管和过热器管束上。锅炉运行时在烟温大于700℃的区域内,在高温高压条件下受热面与含有高硫的腐蚀性燃料和高温烟气接触,极易发生高温腐蚀。高压锅炉水冷壁管的硫腐蚀主要是由于煤粉中的黄铁矿(FeS2)燃烧受热,分解出自由的硫原子,产生腐蚀。通常高压锅炉水冷壁管向火侧的正面腐蚀最快,减薄得最多,若发生爆管都在管子的正面爆开,管子的侧面减薄得较少,而管子背火侧几乎不减薄,这种腐蚀给锅炉水冷壁管造成很大威胁,严重时,往往几个月就得更换部分管段,给锅炉的安全经济运行带来很大危害。而锅炉过热器管的高温腐蚀主要是由于液态的灰黏结在过热器管壁上而引起腐蚀。 1高温腐蚀的主要原因 1.1燃烧不良和火焰冲刷 持续燃烧不良和脉动火焰冲击炉墙时,导致燃烧不完全,在燃烧器区域附近的火焰中心处,当未燃尽的焰流冲刷水冷壁管时,由于煤粉具有一定的棱角,煤粉对管壁有很大的磨损作用,这种磨损将加速水冷壁保护层的破坏,在管壁的外露区段,磨损破坏了由腐蚀产物形成的不太坚固的保

护膜,烟气介质便急剧地与纯金属发生反应,这种腐蚀和磨损相结合的过程,大大加剧了金属管子的损害过程。 1.2燃料和积灰沉积物中的腐蚀成分 燃用含硫量高的煤粉时,煤粉中的黄铁矿(FeS2)燃烧受热,分解出自 由的硫原子:FeS2→FeS+[S],而烟气中存在的一定浓度的H2S与SO2化合,也产生自由硫原子:2H2S+SO2→2H2O+3[S]。自由硫原子与约350℃温度的水冷壁管相遇,发生反应:Fe+[S]→FeS,3FeS+5O2→Fe3O4+3SO2,产生腐蚀。 其次,燃料中的硫及碱性物会在炉内高温下反应生成硫酸盐,当这些 硫酸盐沉积到受热面上后会再吸收SO3,生成焦硫酸盐,如Na2S2O7和 K2S2O7。焦硫酸盐的熔点很低,在通常的锅炉受热面壁温下呈熔融状态, 与Fe2O3更容易发生反应,生成低熔点的复合硫酸 盐:3Na2SO4+Fe2O3+3SO3→2Na3Fe(SO4)3,3K2SO4+Fe2O3+ 3SO3→2K3Fe(SO4)3,当温度在550℃~700℃时,复合硫酸盐处于融化 状态,将管壁表面的Fe2O3氧化保护膜破坏,继续和管子金属发生反应,造成过热器管的腐蚀。

相关主题
文本预览
相关文档 最新文档