当前位置:文档之家› 10-01 自交不亲和性的原因及其对策详解

10-01 自交不亲和性的原因及其对策详解

10-01 自交不亲和性的原因及其对策详解
10-01 自交不亲和性的原因及其对策详解

10-01 自交不亲和性的原因及其对策详解

所谓自交不亲和性(Self - incompatibility, SI)是指植物雌蕊的柱头或花柱通过识别自体或异体花粉,并抑制自体花粉的萌发或生长,导致自体受精不能正常进行的现象。根据植物花型不同,可分为异型和同型自交不亲和。同一物种内不同个体中花器的雌蕊或雄蕊无任何形态差异的不亲和性称为同型不亲和性(homomorphic incompatibility),在具有异型的雌、雄蕊(如相对长度不同)之间的不亲和则称为异型自交不亲和(heteromorphic incompatibility)。同型不亲和性根据其遗传机制不同又分为配子体不亲和性(gametophytic self-incompatibility, GSI)与孢子体不亲和性(sporophytic self-inconmpatibility, SSI)。

多数的情况下,SI是由单一的S位点复等位基因控制的,这个位点至少包括编码1个花柱组分和1个花药组分的基因,S基因的产物决定花粉在柱头和花柱组织中是否能正常生长。若自交不亲和的花粉S基因是由产生花粉的植株(孢子体)的S-基因型所决定的即为孢子体不亲和性,目前发现存在于十字花科、菊科植物中;而自交不亲和的花粉S基因是由花粉本身单一的S基因所控制的即为配子体不亲和性,这种现象在茄科、蔷薇科、罂粟科、玄参科、桔梗科等植物中较为常见。SI的遗传控制机制较为复杂,如禾本科中是由2个基因位点(S-和Z-)控制的,甜菜中则由4个基因控制。

1 自交不亲和的机制

配子型自交不亲和目前只分离鉴定了配子体自交不亲和植物控制雌蕊的不亲和基因及其表达产物,但尚未得到花粉不亲和基因的表达产物,因此,有关雌蕊不亲和因子和花粉不亲和因子的作用机制尚不完全清楚。

根据目前的研究结果,配子型自交不亲和反应有两种类型:(1)在茄科、蔷薇科植物中,成熟雌蕊中产生的S-RNase(S-核酸酶)通过分泌到达花柱表面,与花粉管壁上的S受体(S蛋白)结合,并发生识别反应,当雌蕊和花粉的不亲和基因型相同时,S-RNase可进入花粉管,引起花粉rRNA的降解,抑制花粉管的生长,导致自交不亲和性的产生。当雌蕊和花粉不亲和基因型不同时,S-RNase不能进入花粉管,花粉管就能正常生长,并完成受精,不发生自交不亲和现象。(2)存在于罂粟科植物的自交不亲和性反应主要是通过钙离子的信号传导来实现的。即柱头产生的S蛋白作为信号分子,与花粉管表面的S受体特异性结合后发生识别反应,当两者不亲和时,引起胞内游离钙离子浓度迅速增加,随后花粉管顶端的Ca2+梯度消失,同时激活多种花粉蛋白的磷酸化过程,使花粉管不能合成正常生长所需要的组分,最终花粉管生长停顿、引起细胞程序性死亡。

孢子体型自交不亲和孢子体自交不亲和性目前发现只存在于十字花科和菊科中,其中对芸苔属植物(十字花科的一种模式作物)研究较多。一般认为芸苔属植物的自交不亲和反应发生在柱头的乳突细胞中,当花粉粒落到柱头的乳突细胞表面时,含有花粉外被蛋白(POLLEN COAT PROTEINS, PCPs)和花粉S配基—SCR/ SP11(SCR,S LOCUS CYSTEINE RICH PROTEIN,S位点富含半胱氨酸蛋白;SP11,S位点蛋白11)的花粉和柱头之间形成

接触层,花粉外被蛋白SCR在细胞壁SLG(S-LOCUS GLYCOPROTEIN,S位点糖蛋白)的协助下与受体柱头的SRK(S-receptor kinase, S受体激酶)在胞外区域发生相互作用,当两者的S基因型相同时,激活与SRK相关的胞内丝-苏氨酸蛋白激酶,从而导致ARC1(ARM REPEAT CONTAINING 1,臂重复蛋白)磷酸化,经过一系列反应,最后可能通过调节柱头乳突细胞上的水孔蛋白而限制不亲和的花粉获取水分、抑制花粉管的生长。

2 植物自交不亲和的鉴定方法

早期对于植物自交不亲和性的鉴定常采用田间授粉杂交法,即根据人工授粉后的亲和指数判定其亲和性,既费时费力,又易受环境条件的影响。因此,很多学者经过研究,建立了简便、准确的鉴定方法。

(1)荧光检测法该方法是将遗传稳定的自交不亲和系和自交亲和系分别进行蕾期和花期自交后,剪下柱头用FAA固定液处理后,在荧光显微镜观察,在不亲和品种的粉管萌发过程中柱头乳突细胞会形成胼胝质。

(2)等电聚焦检测法等电聚焦电泳检测法是根据成熟柱头中具有RNA酶(RNase)活性的S糖蛋白含量高低与自交不亲和的强弱呈正相关进行检测的方法。

(3)PCR检测法即通过设计与S-RNase基因相关的特异性引物,并通过PCR扩增强度和频率来判定自交不亲和型强弱的方法。

3 克服不亲和性的途径

植物受精过程中表现出来的不亲和性,是植物在长期进化过程中所形成的一种维持物种相对稳定与繁衍的适应现象,但给生产中的远缘杂交育种工作带来很大的困难,然而,在一定条件下通过人为的干预,可以打破花粉与雌蕊组织之间的不亲和性,从而达到远缘杂交的目的。在育种实践中,常采用的克服不亲和性的措施如下:

(1)花粉蒙导法即在授不亲和花粉的同时,混入一些杀死的但保持识别蛋白的亲和花粉,从而蒙骗柱头,达到受精的目的。如三角杨与银白杨进行种间杂交时,本是不亲和的,但在银白杨花粉中混入用γ射线杀死的三角杨花粉,能克服种间杂种不亲和性,获得15%的结实率。用这种方法也在波斯菊中得到种间杂交种。

(2)蕾期授粉法即在雌蕊组织尚未成熟、不亲和因子尚未定型的情况下授粉,以克服不亲和性。利用这种剥蕾授粉法,已在芸薹属、矮牵牛属和烟草属的不亲和种产生自交系获得杂交种子。

(3)物理化学处理法采用变温、辐射、植物激素或抑制剂处理雌蕊组织,以打破不亲和性。对于配子体型不亲和的植物如梨、桃、月见草、百合、番茄、黑麦等,可用32~60℃的热水浸烫柱头,即可打破不亲和性。用抑制落花的调节剂如生长素处理花器,使花朵避免早落,可使生长慢的不亲和花粉管能在落花前到达子房而受精;或用放线菌素D处理花柱抑制DNA的转录,可部分抑制花柱中不亲和因子的产生而克服不亲和性。此外,还可利用电助授粉法(90~100V的电压刺激柱头)、CO2处理法(3.6%~5.9%的CO2处理雌蕊5h)和盐

水处理法(5%~8%的NaCl处理雌蕊)等,都可克服自交不亲和性。

(4)离体培养利用胚珠、子房等的离体培养,进行试管受精,可克服原来自交不亲和植物及种间或属间杂交的不亲和性。

(5)细胞杂交、原生质体融合或转基因技术以克服种间、属间杂交的不亲和性,达到远缘杂交的目的。

2015年高考生物一轮复习题附答案:遗传和基因表达“自交不亲和性”

2015年高考生物一轮复习题附答案:遗传和基因表达“自交不亲和性” 【例题】自交不亲和性指某一植物的雌雄两性机能正常,但不能进行自花传粉或同一品系内异花传粉的现象,如某品种烟草为二倍体雌雄同株植物,却无法自交产生后代。请回答: (1)烟草的自交不亲和性是由位于一对同源染色体上的复等位基因(S1、S2……S15)控制,以上复等位基因的出现是的结果,同时也体现了该变异具有特点。 (2)烟草的花粉只有通过花粉管(花粉管由花粉萌发产生)输送到卵细胞所在处,才能完成受精。下图为不亲和基因的作用规律: ①将基因型为S1S2的花粉授于基因型为S2S4的烟草,则子代的基因型为;若将上述亲本进行反交,子代的基因型为。 ②自然条件下,烟草不存在S系列基因的纯合个体,结合示意图说出理由:。 ③科学家将某抗病基因M成功导入基因型为S2S4的烟草体细胞,经后获得成熟的抗病植株。如图,已知M基因成功导入到II号染色体上,但不清楚具体位置。现以该植株

为父本,与基因型为S1S2的母本杂交,根据子代中的抗病个体的比例确定M基因的具体位置。 a、若后代中抗病个体占,则说明M基因插入到S2基因中使该基因失活。 b (3)研究发现,S基因控制合成S核酸酶和S蛋白因子的两个部分,前者在雌蕊中表达,后者在花粉管中表达,传粉后,雌蕊产生的S核酸酶进入花粉管中,与对应的S因子特异性结合,进而将花粉管中的rRNA降解,据此分析花粉管不能伸长的直接原因是_______。 【参考答案】 1.(1)基因突变多方向性(2)S1S2和S1S4 S1S4和S2S4 如果花粉所含S基因与母本的任何一个S基因种类相同,花粉管就不能伸长完成受精 植物组织培养1/2 若后代中无抗病个体,则M基因插入到S2基因以外的其他位置 (3)缺少核糖体,无法合成蛋白质 【解析】 试题分析:(1)等位基因的出现是基因突变的结果,能突变成多个等位基因说明突变是不定向的。 (2)①由图可知具有相同的等位基因不能伸长受精,

自交不亲和

自交不亲和性 现代遗传学告诉我们,近交可引起隐性有害基因的纯合,导致近交衰退。植物固着生长无法移动,雌雄同花植物的花粉易取“近水楼台”之便而自花授粉,产生比近交更为严重的遗传效应。植物是如何防止自花授粉的呢?原来植物都会“以逸待劳”,利用风力、水流、昆虫等媒介尽可能远距离传播花粉。而且,许多显花植物还有一项特殊本领,即便是正常可育花粉落到“自己的”柱头上也会阻止其完成受精过程,这就是所谓自交不亲和性。自交不亲和性在植物界中广泛分布,超过60%的被子植物都有这种特性,涉及大约320多个科。 自交不亲和指具有完全花并可以形成正常雌、雄配子,但缺乏自花授粉结实能力的一种自交不育性。具有自交不亲和性的作物有甘蓝、黑麦、白菜型油菜、向日葵、甜菜、白菜和甘薯等。 一、自交不亲和的类型 根据花粉识别特异性的遗传决定方式,自交不亲和性分为配子体自交不亲和性和孢子体自交不亲和性两种类型。 1.配子体型自交不亲和性(GSI) 花粉在柱头上萌发后可侵入柱头,并能在花柱组织中延伸一段,此后就受到抑制。花粉管与雌性因素的抑制关系发生在单倍体配子体(即卵细胞与精细胞)之间。常见于豆科、茄科和禾本科的一些植物。这种抑制关系的发生可以在花柱组织内,也可以在花粉管与胚囊组织之间;有的甚至是花粉管释放的精子已达胚囊内,但仍不能与卵细胞结合。 2.孢子体型自交不亲和性(SSI) 花粉落在柱头上不能正常发芽,或发芽后在柱头乳突细胞上缠绕而无法侵入柱头。由于这种不亲和关系发生在花粉管与柱头乳突细胞的孢子体之间,花粉的行为决定于二倍体亲本的基因型,因而称为孢子体型自交不亲和性,多见于十字花科和菊科植物。 二者发生不亲和的部位不同:孢子体型自交不亲和性发生于柱头表面,表现为花粉管不能穿过柱头,而配子体型自交不亲和性发生在花柱中,表现为花粉管生长停顿、破裂。远缘杂交不亲和性常会表现出花粉管在花柱内生长缓慢,不能及时进入胚囊等症状。

化学平衡常数表达式的书写

化学平衡常数表达式的书写 1、写出铁与水蒸汽反应的化学方程式,如果它是一可逆反应,请写出其平衡常数表达式 2、写出工业上制水煤气的反应方程式,如它是一可逆反应,请写出其平衡常数表达式; 3、写出工业上合成氨的反应方程式,如它是一可逆反应,请写出其平衡常数表达式; 4、写出氨催化氧化成一氧化氮的反应方程式,如它是一可逆反,请写出其平衡常数表达式; 5、HAC + H2O H3O+ + AC—这是醋酸的电离方程式,请写出其电离平衡常数表达式 6、写出碳酸根离子水解的离子方程式,并写出其水解平衡常数的表达式; 7、2CrO42—+2 H+Cr2O72—+ H2O,写出其平衡常数表达式;8、写出乙酸与乙醇的酯化反应方程式,并写出其平衡常数表达式;9、写出乙酸乙酯在酸性环境下水解的反应方程式,并写出其平衡常数表达式;10、如果在常温下的饱和氯化钠溶液中,通入大量的氯化氢气体,有什么现象?你能用平衡 移动原理来解释这个现象吗?请写出其平衡的方程式,并写出其常数表达式。 11、写出氢氧化铝沉淀与水的混和体系中的各种平衡的方程式;并写出其对应的平衡常数表达 式; 化学平衡常数的计算 1、298K时,K sp[Ce(OH)4]=1×10—29。Ce(OH)4的溶度积表达式为K sp= ____________ 。 为了使溶液中Ce4+沉淀完全,即残留在溶液中的c(Ce4+)小于1×10—5mol·L-1,需调节pH为 ______ 以上。

2、某温度下,将2.0 mol CO和6.0 molH2充入2 L的密闭容器中,CO(g)+2H2(g) CH3OH(g) 充分反应后,达到平衡时测得c(CO)=0.25 mol/L,则CO的转化率=__ ___,此温度下的平衡常数K=___ __(请写出计算过程,保留二位有效数字)。 3、PCl5分解成PCl3和Cl2的反应是可逆反应。T℃时,向2.0 L恒容密闭容器中充入1.0 mol PCl5,经过250 s达到平衡。反应过程中测定的部分数据见下表: t / s050150250350 n(PCl3) / mol00. 160. 190. 200. 20 3 ②试计算该温度下反应的平衡常数(写出计算过程,保留 2 位有效数字) 4、不同温度下,向装有足量I2O5固体的2 L 恒容密闭容器中通入2molCO,5CO(g)+I2O5 (s) 5CO2(g)+I2(s)测得CO2的体积分数φ(CO2) 随时间t 变化曲线如右图。请回答: ①从反应开始至 a 点时的反应速率为v(CO)=,b 点 时化学平衡常数K b=。 5、对反应CO(g) + H2O(g) CO2 (g)+ H2(g) ΔH 2 = -41 kJ/mol,起始时在密闭容器中充 入 1.00 molCO 和 1.00 molH2O ,分别进行以下实验,探究影响平衡的因素(其它条件相同且不考 实验①中c(CO2)随时间变化的关系见下图,实验编号容器体积/L温度/°C 在与实验①相同的条件下,起始时充入① 2.01200 容器的物质的量:n(CO)=n(H2O)=n(CO2)② 2.01300 =n( H2)=1.00mol 。③ 1.01200 通过计算,判断出反应进行的方向。(写出计算过程。)

稳定性模型

第八讲 稳定性模型 虽然动态过程的变化规律一般要用微分方程建立的动态模型来描述,但是对于某些实际问题,建模的主要目的并不是要寻求动态过程每个瞬时的性态,而是研究某种意义下稳定状态的特征,特别是当时间充分长以后动态过程的变化趋势。譬如在什么情况下描述过程的变量会越来越接近某些确定的数值,在什么情况下又会越来越远离这些数值而导致过程不稳定。为了分析这种稳定与不稳定的规律常常不需要求解微分方程,而可以利用微分方程稳定性理论,直接研究平衡状态的稳定性就行了。 引言:微分方程稳定性理论简介 定义1 称一个常微分方程(组)是自治的,如果方程(组) ? ???? ?????==),(),(),(1t x f t x f t x F dt dx N M (1) F 中的,即在)(),(x F t x F =中不含时间变量。 t 事实上,如果增补一个方程,一个非自治系统可以转化自治系统,就是说,如果定义 , ??????=t x y ?? ????=1),()(t x F y G 且引入另一个变量,则方程(1)与下述方程 s )(y G ds dy = 是等价的。这就是说自治系统的概念是相对的。下面仅考虑自治系统,这样的系统也称为动力系统。 定义2 系统 )(x F dt dx = (2) n R 2=n 的相空间是以为坐标的空间),,(1n x x L ,特别,当时,称相空间为相平面。 空间n R 中的点集 },,1,)2()(|),,{(1n i t x x x x i i n L L ==满足 称为系统(2)的轨线,所有轨线在相空间中的分布图称为相图。 定义3 相空间中满足的点称为系统(2)的奇点(或平衡点)。 0)(0=x F 0x 奇点可以是孤立的,也可以是连续的点集。例如,系统 ???????+=+=dy cx dt t dy by ax dt t dx )() ( (3) 当时,有一个连续的奇点的集合。当0=?bc ad 0≠?bc ad 时,是这个系统的 唯一的奇点。下面仅考虑孤立奇点。为了知道何时有孤立奇点,给出下述定理: )0,0(

实验五 油菜自交不亲和性鉴定

实验五油菜自交不亲和性鉴定 一、目的 了解植物自交不亲和性的表现特征,掌握植物自交不亲和性的鉴定方法。 二、内容说明 植物的自交不亲和性是指能产生具有正常功能且同期成熟的雌雄配子的雌雄同体植物,在自花授粉或相同基因型异花授粉时不能完成受精的现象,是花粉与雌蕊相互作用的综合结果。受单一位点或多位点的自交不亲和基因控制。 自交不亲和性广泛存在于十字花科、禾本科、豆科、茄科等许多植物中,十字花科中自交不亲和性尤为普遍。 自交不亲和株正开放花的柱头上,如果授于同株或同系统的花粉时,柱头就被激发产生胼胝质等物质,阻碍花粉发芽和花粉管发育,故不能正常受精结实,不结子或结少量种子;而授于别的品种或系统的花粉时,则柱头不会被激发产生这类物质,故能正常受精结实。但在花蕾柱头上,即使授于同株或同系统的花粉也不会被激发这种反应,因此可通过蕾期人工控制自交获得自交不亲和系的种子。 可根据自交结实情况对自交不亲和性进行判断,以自交亲和指数来表示。 自交亲和指数=自交结实种子总数/套袋自交总花蕾数; 自交亲和指数<1者为自交不亲和; 自交亲和指数≥1者为自交亲和。 胼胝质是β-1、3葡聚糖,通常分布于高等植物的筛管、新形成的细胞壁、花粉粒以及花粉管中,将其用苯胺蓝染色后,在紫外光激发下,可发出黄至黄绿色的荧光。 把授粉后经用苯胺染色的子房放到荧光显微镜下观察,可看到花粉在柱头上萌发、花粉管发育的状态,以及胼胝质在柱头表面的沉积状况等,进行判断花粉与柱头是否亲和。 三、材料与用具 1、实验材料: 自交不亲和材料:白菜型油菜; 自交亲和材料:甘蓝型油菜。 2、仪器用具:荧光显微镜、广口瓶(20~50ml)、载玻片、盖玻片、镊子、铅笔、纸牌、纸袋、甲醛、冰醋酸、无水乙醇、普通酒精、磷酸钾、苯胺蓝、氢氧化钠、甘油、蒸馏水等。 四、试验方法步骤 (一)自交亲和指数测定法1、套袋自交:选3~5株已开花且发育健壮的植株,每株上选3~4个花序,摘除已经开放的花朵和角果,然后套上纸袋,并在相应的花序上挂牌标记。 2、蕾期人工强制自交:在每个花序上选择10~15个较大的花蕾,用镊子轻轻摘除幼小的花蕾。开花后未散粉前,用镊子小心摘取本株上隔离袋内新鲜花朵的花药(粉),授到开放花朵的柱头上,即进行花期人工强制自交。 (二)荧光显微法 Martin(1959)发现水溶性苯胺蓝能显示花柱中花粉管的伸长情况:在荧光显微镜下,对于大部分附着于柱头上的SSI花粉,看不见它们的花粉管穿过乳突细胞,一经穿过乳突细胞的少数SSI花粉管,会长驱直入,到达子房,完成授精。因此,可根据穿越花柱的花粉管数量来测定自交不亲和性。 1.试剂配置 (1)FAA固定液:将40%甲醛、80%乙醇和冰醋酸,按1:8:1的比例配制而成。 (2)卡诺固定液:用3份无水乙醇和1份冰醋酸配制而成。 (3)0.1N磷酸钾水溶液:称取71g磷酸钾,用蒸馏水定容至1000ml。 (4)0.1%苯胺蓝溶液:称取0.1g水溶性苯胺蓝,用0.1N磷酸钾水溶液定容至100ml。 (5)8N氢氧化钠溶液:称取32g氢氧化钠,用蒸馏水定容至100ml。 2.取样、固定和保存 解开自交授粉6~12h的花枝上的纸袋,摘取子房,于花柱基部切下花柱,将花期授粉

化学平衡常数及计算练习(附答案)

化学平衡常数练习 一、单选题 1.在一密闭容器中,反应aX(g)+bY(g)cZ(g)达到平衡时平衡常数为K1;在温度不变的条件下向容器中通入一定量的X和Y气体,达到新的平衡后Z的浓度为原来的1.2倍,平衡常数为K2,则K1与K2 的大小关系是() A.K1K2D.无法确定 2.在300 mL的密闭容器中,放入镍粉并充入一定量的CO气体,一 定条件下发生反应:Ni(s)+4CO(g)?Ni(CO)4(g),已知该反应平衡常数与温度的关系如下表: 温度/℃25 80 230 平衡常数5×104 2 1.9×10-5 下列说法不正确的是( ) A.上述生成Ni(CO)4(g)的反应为放热反应 B.在25 ℃时,反应Ni(CO)4(g)?Ni(s)+4CO(g)的平衡常数为 2×10-5 C.在80 ℃时,测得某时刻,Ni(CO)4、CO浓度均为0.5 mol·L-1,则此时v正>v逆 D.在80 ℃达到平衡时,测得n(CO)=0.3 mol,则Ni(CO)4的平衡浓度为2 mol·L-1 3.在一定温度下,改变反应物中n(SO2),对反应2SO2(g)+O2(g)?2SO3(g)

ΔH<0的影响如图所示,下列说法正确的是( ) A .反应b ?c 点均为平衡点,a 点未达到平衡且向正反应方向进行 B .a ?b ?c 三点的平衡常数K b >K c >K a C .上述图象可以得出SO 2的含量越高得到的混合气体中SO 3的体积分数越高 D .a ?b ?c 三点中,a 点时SO 2的转化率最高 4.下列关于化学平衡常数的说法中,正确的是( ) A .可以用化学平衡常数来定量描述化学反应的限度 B .在平衡常数表达式中,反应物浓度用起始浓度表示,生产物浓度用平衡浓度表示 C .平衡常数的大小与浓度、压强、催化剂有关 D .化学平衡发生移动,平衡常数必定发生变化 5.在一定温度下,向2L 体积固定的密闭容器中加入1molHI ,发生反应:2HI(g)?H 2(g)+I 2(g) ?H>0,测得2H 的物质的量随时间变化如表,下列说法正确的是( ) t /min 1 2 3 ()2n H /mol 0.06 0.1 0.1 A .2 min 内的HI 的分解速度为0.0511mol L min --??

有关化学平衡常数的计算

(a)已知初始浓度和平衡浓度求平衡常数和平衡转化率 例1:对于反应2SO 2(g)+ O2(g) 2SO3(g) ,若在一定温度下,将0.1mol的SO2(g)和0.06mol O2(g)注入一体积为2L的密闭容器中,当达到平衡状态时,测得容器中有0.088mol的SO3(g)试求在该温度下(1)此反应的平衡常数。 (2)求SO2(g)和O2(g)的平衡转化率。 (b)已知平衡转化率和初始浓度求平衡常数 例2:反应SO 2(g)+ NO2(g) SO3(g)+NO(g) ,若在一定温度下,将物质的量浓度均为2mol/L的SO2(g)和NO2(g)注入一密闭容器中,当达到平衡状态时,测得容器中SO2(g)的转化率为60%,试求:在该温度下。 (1)此反应的浓度平衡常数。 (2)若SO2(g) 的初始浓度均增大到3mol/L,则SO2转化率变为多少? (c)知平衡常数和初始浓度求平衡浓度及转化率 练习1、在密闭容器中,将NO2加热到某温度时,可进行如下反应:2NO 2 2NO+O2,在平衡时各物质的浓度分别是:

[NO2]=0.06mol/L,[NO]=0.24mol/L, [O2]=0.12mol/L.试求: (1)该温度下反应的平衡常数。 (2)开始时NO2的浓度。 (3)NO2的转化率。 练习2:在2L的容器中充入1mol CO和1mol H2O(g),发生反应:CO(g)+H 2O(g) CO2(g)+H2(g) 800℃时反应达平衡,若k=1.求:(1)CO的平衡浓度和转化率。 (2)若温度不变,上容器中充入的是1mol CO和2mol H2O(g),CO 和H2O(g),的平衡浓度和转化率是多少。 (3)若温度不变,上容器中充入的是1mol CO和4mol H2O(g),CO 和H2O(g),的平衡浓度和转化率是多少。 (4)若温度不变,要使CO的转化率达到90%,在题干的条件下还要充入H2O(g) 物质的量为多少。 练习1、 已知一氧化碳与水蒸气的反应为 CO + H 2O(g) CO2 + H2 在427℃时的平衡常数是9.4。如果反应开始时,一氧化碳和水蒸气的浓度都是0.01mol/L,计算一氧化碳在此反应条件下的转化率。 练习2、 合成氨反应N 2+3H22NH3在某温度下达平衡时,各物质的浓度是:[N2]=3mol·L-1,[H2]=9 mol·L-1,[NH3]=4 mol·L-1。求该温度时的平衡常

远缘杂交在育种上的运用

第十一章远缘杂交在育种上的应用 教学内容:远缘杂交育种的重要意义;远缘杂交的困难及其克服方法;远缘杂交后代的分离与选择。 教学目标:了解远缘杂交的作用;重点掌握远缘杂交不亲和性及其克服方法,杂种夭亡、不育的原因及其克服方法,远缘杂交后代分离特点及处理方 法。 教学重点:系统掌握克服远缘杂交不亲和、杂种夭亡和不育、杂种后代分离无规律等困难的方法。 教学难点:远缘杂交的两大困难及其克服方法。 一远缘杂交的意义与作用 远缘杂交(wide cross):将植物分类学上用于不同种、属或亲缘关系更远的物种 间杂交。产生的后代为远缘杂种。 分为:种间杂交(interspecific hybridization)、属间杂交(intergeneric hybridization)和亚远缘杂交(sub-wide cross)。 1 培育新品种和种质系 2 创造新的物种 3 创造异染色体系 4 诱导单倍体 5 有效地利用杂种优势 6 研究生物的进化 二远缘杂交不亲和性及其克服方法 1 远缘杂交不亲和性及其原因 由于双亲的亲缘关系较远,遗传差异大,染色体数目、结构不同,生理上也常不协调,这些都会影响受精过程。 远缘杂交不亲合性的关键——生殖隔离 具体原因: (1) 亲缘关系较远的双亲在结构上、生理上的差异,不能完成正常的受精作用(2)远缘杂交的不亲和性与双亲的基因组成有关 2 克服远缘杂交不亲和性的方法 (1)亲本的选择与组配 a 栽培种和野生种杂交时,应以栽培种为母本。 b 在染色体数目不同的远缘杂交中,一般以染色体数目多的作母本。 c 以杂种为母本 d 广泛测交,选择适当亲本组配,并注意细胞质的作用。 (2)染色体预先加倍法 先将的染色体数目少的亲本进行人工加倍后再进行杂交,可提高杂交的结实率。

克服植物种间杂交与自交不亲和性的研究现状

克服植物种间杂交与自交不亲和性的研究现状 张旸 (东北林业大学花卉生物工程研究所哈尔滨150040) 摘要本论文论述了植物种间杂交和自交不亲和性的研究现状主要论述了克服不亲和性的方法以及最新激光克服不亲和性的研究进展 关键词种间杂交不亲和性自交不亲和性激光 Development of overcoming cross-incompatibility and self-incompatibility in the Plants Zhang Yang (Research Institute of Flower Biotechnology ,Northeast Forestry University, Harbin150040) abstract : With the development of interdisciplinary more and more the bio-physical technologies have been applied into many fields. Cross-incompatibility and self-incompatibility in the plant breeding were summarized in this paper. Furthermore, application of laser in overcoming incompatibility were also discussed. key words : cross-incompatibility self-incompatibility laser 种间杂交不亲和性和自交不亲和性是自然界中普遍存在的现象杂交育种以基因型不同的植物种或品种进行交配或结合形成杂种通过培育选择获得新品种的方法它是培育新品种的主要途径是近代育种工作最重要的方法之一自交不亲和系的选育和利用是杂种优势利用历史上的一个重要发现可以节省人工去雄的劳力降低种子生产成本提高制种效率保证较高的杂种率利用其杂种优势至今仍是许多作物杂种优势利用的主要方式利用自交不亲和系生产杂种是一种非常简便的制种方法但是由于不亲和性的存在远缘杂交以及自交不亲和系的繁殖和保持存在一定的困难因此克服不亲和性的方法也研究的一个热点 一植物种间杂交不亲和性的研究 1.1 植物种间杂交不亲和性的研究概况 近几年来随着育种工作的深入发展植物种内的遗传资源日益枯竭利用其近缘和野生植物有益资源拓宽作物遗传资源范围已日益受到育种工作者的重视有益遗传资源向植物导入在不同水平上有不同的方法如植株水平上的有性种间杂交细胞水平上的原生质融合和分子水平的基因工程[3][9]等据报道在现已发现的三十九万种植物中仅五百多个种被驯化为栽培种由于优良品种和杂交品种越来越广泛地替代了农家品种使栽培种的种质资源不断地被侵蚀作物品种遗传基础进一步萎缩提高品种产量水平的速度显著变慢因此克服植物交配的不亲和性对于生物育种来说就具有了更加重要的意义 在培育优良品种的过程种由于种内杂交较易成功育种家们历来主要利用栽培种内的基因资源现在已感到栽培种内的基因资源贫乏有些特征特性在栽培品种中已很难找到而野生种在严酷的生存竞争和自然选择条件下恰恰保留和积累了这些特征和特性因此通过种间杂交发掘已经驯化和大量尚未驯化的近缘种的优良遗传资源丰富栽培种的基因库已成为植物育种的一个重要研究领域近二十年来新的抗病抗虫优质等基因从野生种近缘种向栽培种渗入的速度已经加快一些新的性状如细胞质雄性不育性等亦在种间杂交过程中不断的被创造出来其中不少已被利用到作物品种改良中种间杂交又是创造新作物类型的有效途径典型的例子有小黑麦糊麻萝卜甘蓝等通过无融合生殖或染色体消除等途径种间杂交还被成功的用来创造单倍体以加速育种的进程因此种间杂交是育种工作的一条重要而有效的途径 但是种间杂交在育种工作中的作用却因为种间的生殖隔离而受到严重的限制这突出的表现在种间杂交不亲和杂种不活杂种不育和杂种衰败上[1][32] 种间不亲和性:是指两个可育的不同种的植物授粉后由于花粉不能萌发或花粉管行为反常或雌

高考化学复习化学反应速率和化学平衡高考题选(平衡常数·计算)

高中化学学习材料 金戈铁骑整理制作 化学反应速率和化学平衡高考题选(平衡常数·计算) 1.(07年宁夏理综·13)一定条件下,合成氨气反应达到平衡时,测得混合气体中氨气的体积分数为20.0% ,与反应前... 的体积相比,反应后体积缩小的百分率是 A A .16.7% B .20.0% C .80.0% D .83.3% 2.(08年宁夏理综·12)将固体NH 4I 置于密闭容器中,在一定温度下发生下列反应: ①NH 4I(s)NH 3(g)+HI(g);②2HI(g) H 2(g)+I 2(g) 答案:C 达到平衡时,c (H 2)=0.5mol·L -1,c (HI)=4mol·L -1,则此温度下反应①的平衡常数为 A .9 B .16 C .20 D .25 3.(08年海南化学·10)X 、Y 、Z 三种气体,取X 和Y 按1︰1的物质的量之比混合,放入密闭容器中发生如下反应:X+2Y 2Z ,达到平衡后,测得混合气体中反应物的总物质的量与生成物的总物质的量之比为3︰2,则Y 的转化率最接近于答案:D A .33% B .40% C .50% D .66% 4.(08年山东理综·14)高温下,某反应达到平衡,平衡常数K =c (CO)·c (H 2O)c (CO 2)·c (H 2) 。恒容时,温度升高,H 2浓度减小。下列说法正确的是 答案:A A .该反应的焓变为正值 B .恒温恒容下,增大压强,H 2浓度一定减小 C .升高温度,逆反应速率减小 D .该反应的化学方程式为CO +H 2O 高温 催化剂CO 2+H 2 5.(09年宁夏理综·13)在一定温度下,反应12H 2(g)+12 X 2(g)HX(g)的平衡常数为10。若将1.0mol 的HX(g)通入体积为1.0L 的密闭容器中,在该温度时HX(g)的最大分解率接近于B A .5% B .17% C .25% D .33% 6.(09年天津理综·5)人体血液内的血红蛋白(Hb)易与O 2结合生成HbO 2,因此具有输氧能力,CO 吸入肺中发生反应:CO+HbO 2O 2+HbCO ,37 ℃时,该反应的平衡常数K =220。HbCO 的浓度达到HbO 2浓度的0.02倍,会使人智力受损。据此,下列结论错误的是答案:C A .CO 与HbO 2反应的平衡常数K =c (O 2)·c (HbCO)c (CO)·c (HbO 2) B .人体吸入的CO 越多,与血红蛋白结合的O 2越少 C .当吸入的CO 与O 2浓度之比大于或等于0.02时,人的智力才会受损 D .把CO 中毒的病人放入高压氧仓中解毒,其原理是使上述平衡向左移动

化学平衡常数和化学平衡计算练习题

化学平衡常数和化学平衡计算 1.在密闭容器中将CO和水蒸气的混合物加热到800℃时,有下列平衡:CO+H2OCO2+H2,且K=1。若用2molCO和10molH2O相互混合并加热到800℃,则CO的转化率为() A.16.7% B.50% C.66.7% D.83.3% 2.在容积为1L的密闭容器里,装有4molNO2,在一定温度时进行下面的反应:2NO2 (g)N2O4(g),该温度下反应的平衡常数K=0.25,则平衡时该容器中NO2的物质的量为 A.0mol B.1mol C.2molD.3mol 3.某温度下H2(g)+I2(g)2HI(g)的平衡常数为50。开始时,c(H2)=1mol·L-1,达平衡时,c(HI)=1mol·L-1,则开始时I 2(g)的物质的量浓度为 ( ) A.0.04mol·L-1 B.0.5mol·L-1C.0.54mol·L-1? D.1mol·L-1 4.在一个容积为6 L的密闭容器中,放入3 L X(g)和2 L Y(g),在一定条件下发生反应:4X(g)+n Y(g)2Q(g)+6R(g)反应达到平衡后,容器内温度不变,混合气体的压强比原来增加了5%,X的浓度减小1/3,则该反应中的n值为( ) A.3 B.4 C.5 D.6 5.在一定条件下,可逆反应X(g)十3Y(g)2Z(g)达到平衡时,X的转化率与Y的转化率之比为1∶2,则起始充入容器中的X与Y的物质的量之比为( ) A.1∶1 B.1∶3 C.2∶3D.3∶2 6.将等物质的量的CO和H2O(g)混合,在一定条件下发生反应:CO(g)+H2O(g)CO2(g)+H2(g),反应至4min时,得知CO的转化率为31.23%,则这时混合气体对氢气的相对密度为 A.11.5 B.23 C.25 D.28 7.在一固定容积的密闭容器中,加入4 L X(g)和6 L Y(g),发生如下反应:X(g)+nY(g)2R(g)+W(g),反应达到平衡时,测知X和Y的转化率分别为25%和50%,则化学方程式中的n值为 A.4 B.3 C.2 D.1 8.将固体NH4I置于密闭容器中,在某温度下发生下列反应:NH4I(s)NH3(g)+HI(g),2HI(g)H2(g)+I2(g)。当反应达到平衡时,c(H2)=0.5mol·L-1,c(HI)=4mol·L-1,则NH3的浓度为() A.3.5mol·L-1B.4mol·L-1 C.4.5mol·L-1D.5mol·L -1 9.体积可变的密闭容器,盛有适量的A和B的混合气体,在一定条件下发生反应A(g)+3B(g)2C(g)。若维持温度和压强不变,当达到平衡时,容器的体积为V L,其中C气体的体积占10%。下列判断中正确的是 ( ) A.原混合气体的体积为1.2VL B.原混合气体的体积为1.1V L C.反应达到平衡时气体A消耗掉0.05VLD.反应达到平衡时气体B消耗掉0.05V L 10.在n L密闭容器中,使1molX和2molY在一定条件下反应:a X(g)+b Y(g)c Z(g)。达到平衡时,Y的转化率为20%,混合气体压强比原来下降20%,Z的浓度为Y的浓度的0.25倍,则a,c的值依次为( ) A.1,2 B.3,2 C.2,1 D.2,3 11.在一定条件下,1mol N2和3mol H2混合后反应,达到平衡时测得混合气体的密度是同温同压下氢气的5倍,则氮气的转化率为( ) A.20% B.30% C.40%?D.50%

数学建模平衡点稳定性

微分方程平衡点及其稳定性理论 这里简单介绍下面将要用到的有关内容: 一、 一阶方程的平衡点及稳定性 设有微分方程 ()dx f x dt = (1) 右端不显含自变量t ,代数方程 ()0f x = (2) 的实根0x x =称为方程(1)的平衡点(或奇点),它也是方程(1)的解(奇解) 如果从所有可能的初始条件出发,方程(1)的解()x t 都满足 0lim ()t x t x →∞ = (3) 则称平衡点0x 是稳定的(稳定性理论中称渐近稳定);否则,称0x 是不稳定的(不渐近稳定)。 判断平衡点0x 是否稳定通常有两种方法,利用定义即(3)式称间接法,不求方程(1)的解()x t ,因而不利用(3)式的方法称直接法,下面介绍直接法。 将()f x 在0x 做泰勒展开,只取一次项,则方程(1)近似为: 0'()()dx f x x x dt =- (4) (4)称为(1)的近似线性方程。0x 也是(4)的平衡点。关于平衡点0x 的稳定性有如下的结论: 若0'()0f x <,则0x 是方程(1)、(4)的稳定的平衡点。 若0'()0f x >,则0x 不是方程(1)、(4)的稳定的平衡点 0x 对于方程(4)的稳定性很容易由定义(3)证明,因为(4)的一般解是 0'()0()f x t x t ce x =+ (5) 其中C 是由初始条件决定的常数。

二、 微分方程组的平衡点和稳定性 方程的一般形式可用两个一阶方程表示为 112212()(,)()(,)dx t f x x dt dx t g x x dt ?=????=?? (6) 右端不显含t ,代数方程组 1212 (,)0(,)0f x x g x x =??=? (7) 的实根0012 (,)x x 称为方程(6)的平衡点。记为00012(,)P x x 如果从所有可能的初始条件出发,方程(6)的解12(),()x t x t 都满足 101lim ()t x t x →∞= 202lim ()t x t x →∞ = (8) 则称平衡点00012(,)P x x 是稳定的(渐近稳定);否则,称P 0是不稳定的(不渐 近稳定)。 为了用直接法讨论方法方程(6)的平衡点的稳定性,先看线性常系数方程 1111222122()()dx t a x b x dt dx t a x b x dt ?=+????=+?? (9) 系数矩阵记作 1122a b A a b ??=???? 并假定A 的行列式det 0A ≠ 于是原点0(0,0)P 是方程(9)的唯一平衡点,它的稳定性由的特征方程 det()0A I λ-= 的根λ(特征根)决定,上方程可以写成更加明确的形式: 2120()det p q p a b q A λλ?++=?=-+??=? (10) 将特征根记作12,λλ,则

(完整版)化学平衡常数及其计算

考纲要求 1.了解化学平衡常数(K)的含义。 2.能利用化学平衡常数进行相关计算。 考点一化学平衡常数 1.概念 在一定温度下,当一个可逆反应达到化学平衡时,生成物浓度幂之积与反应物浓度幂之积的比值是一个常数,用符号K表示。 2.表达式 对于反应m A(g)+n B(g)p C(g)+q D(g), K=c p?C?·c q?D? c m?A?·c n?B? (固体和纯液体的浓度视为常数,通常不计入平衡常数表达式中)。 3.意义及影响因素 (1)K值越大,反应物的转化率越大,正反应进行的程度越大。

(2)K只受温度影响,与反应物或生成物的浓度变化无关。 (3)化学平衡常数是指某一具体反应的平衡常数。 4.应用 (1)判断可逆反应进行的程度。 (2)利用化学平衡常数,判断反应是否达到平衡或向何方向进行。 对于化学反应a A(g)+b B(g)c C(g)+d D(g)的任意状态,浓度商:Q c=c c?C?·c d?D? c a?A?·c b?B? 。 Q<K,反应向正反应方向进行; Q=K,反应处于平衡状态; Q>K,反应向逆反应方向进行。 (3)利用K可判断反应的热效应:若升高温度,K值增大,则正反应为吸热反应;若升高温度,K值减小,则正反应为放热反应。 深度思考

1.正误判断,正确的打“√”,错误的打“×” (1)平衡常数表达式中,可以是物质的任一浓度() (2)催化剂能改变化学反应速率,也能改变平衡常数() (3)平衡常数发生变化,化学平衡不一定发生移动() (4)化学平衡发生移动,平衡常数不一定发生变化() (5)平衡常数和转化率都能体现可逆反应进行的程度() (6)化学平衡常数只受温度的影响,温度升高,化学平衡常数的变化取决于该反应的反应热() 2.书写下列化学平衡的平衡常数表达式。 (1)Cl2+H2O HCl+HClO (2)C(s)+H2O(g)CO(g)+H2(g) (3)CH3COOH+C2H5OH CH3COOC2H5+H2O (4)CO2-3+H2O HCO-3+OH- (5)CaCO3(s)CaO(s)+CO2(g) 3.一定温度下,分析下列三个反应的平衡常数的关系 ①N2(g)+3H2(g)2NH3(g)K1 ②1 2N2(g)+ 3 2H2(g)NH3(g)K2 ③2NH3(g)N2(g)+3H2(g)K3 (1)K1和K2,K1=K22。 (2)K1和K3,K1=1 K3。 题组一平衡常数的含义 1.研究氮氧化物与悬浮在大气中海盐粒子的相互作用时,涉及如下反应: 2NO2(g)+NaCl(s)NaNO3(s)+ClNO(g)K1 2NO(g)+Cl2(g)2ClNO(g)K2 则4NO2(g)+2NaCl(s)2NaNO3(s)+2NO(g)+Cl2(g)的平衡常数K=(用K1、K2表示)。 2.在一定体积的密闭容器中,进行如下化学反应:CO2(g)+H2(g)CO(g)+H2O(g),其化学平衡常数K和温度t的关系如表所示: t/℃700 800 830 1 000 1 200 K0.6 0.9 1.0 1.7 2.6

基于S- 核酸酶的自交不亲和性的分子机制

植物学通报 Chinese Bulletin of Botany 2007, 24 (3): 372?388, https://www.doczj.com/doc/e2871520.html,
.综述.
基于 S- 核酸酶的自交不亲和性的分子机制
张一婧, 薛勇彪 *
中国科学院遗传与发育生物学研究所, 北京 100080
摘要
自交不亲和性是一种广泛存在于显花植物中的种内生殖障碍, 可以抑制近亲繁殖而促进异交。其中, 以茄科、玄参科
和蔷薇科为代表的配子体自交不亲和性是最常见的类型。这类自交不亲和性是由单一的多态性S-位点所控制。目前的研究发 现这一位点至少包含两个自交不亲和反应特异性决定因子: 花柱中的S-核酸酶和花粉中的SLF(S-Locus F-box)蛋白。该文将 主要介绍并讨论基于S-核酸酶的自交不亲和性分子机制的研究进展。
关键词 内吞, F-box, 自交不亲和性, 泛素
张一婧, 薛勇彪 (2007). 基于 S- 核酸酶的自交不亲和性的分子机制. 植物学通报 24, 372?388.
被子植物是地球上分布最广泛的一类植物, 其重要 的特征之一在于它拥有一种在其它植物中所没有的生殖 器官——花, 因而它也被称为显花植物。然而, 许多显 花植物的花都同时拥有雄蕊与雌蕊。 显然, 这些雌雄同 株植物进行自花授粉的可能性非常大, 因此可能降低这 一类植物的遗传多样性, 不利于其后代个体的生长。 为 了避免这种情况的发生, 植物采取了多种策略来抑制近 亲繁殖并促进异交, 自交不亲和性(self-incompatibility, SI)就是其中最为重要的一种。 自交不亲和性是指可育的雌雄同花植物在自花授粉 后不能产生合子的现象与机制(de Nettancourt, 2001)。 自交不亲和性机制的存在促进了植物遗传多样性的保持, 从而提高了植物应对自然选择的能力和进化潜力。一 般认为, 自交不亲和性的产生可能与被子植物的高度分 化和广泛分布密切相关。 目前分子生物学研究比较多的自交不亲和植物主要 分布在 5 个科: 茄科、蔷薇科、玄参科、罂粟科和十 字花科(Takayama and Isogai, 2005)。研究表明, 这 5个科的花粉和花柱的识别都是由单一的多态性位点, 即 自交不亲和位点(S- 位点)所控制的。当然, 自交不亲和 反应的完成, 也需要 S- 位点之外基因产物的参与。然 而, 这一过程中识别与作用的特异性是由S-位点的基因
收稿日期: 2006-11-10; 接受日期: 2007-01-31 基金项目: 国家自然科学基金(No. 30221002) * 通讯作者。E-mail: ybxue@https://www.doczj.com/doc/e2871520.html,
产物来决定。 也就是说, 花粉和花柱的识别是由同处于 S - 位点的 2 个 S - 基因来决定的。在不同单倍型 (haplotype)(如 S1, S2, S3, …, Sn)中, 这 2 个 S- 基因存 在着一定的多态性, 编码着结构相似但不完全等同的花 粉或花柱决定因子(de Nettancourt, 2001; Takayama and Isogai, 2005)。 在自交不亲和反应中, 花粉的遗传背景决定了它是 否能被花柱所接受。根据这种遗传背景的特点, 上述 5 个科植物的自交不亲和可以分为两类: 配子体自交不亲 和( g a m e t o p h yi t i c S I , G S I ) 和孢子体自交不亲和 (sprophytic SI, SSI)。茄科、蔷薇科、玄参科和罂 粟科属于配子体自交不亲和, 因为它们的花粉亲和与否 决定于该花粉(配子体)自身的基因型。也就是说, 如果 花粉的基因型(Sx)与花柱(二倍体)的基因型(SxSy)只要有 一个相同, 那么这粒花粉就不能被该花柱所接受。 而在 十字花科中, 花粉的自交不亲和表型是由它们的二倍体 亲本(孢子体)的基因型来决定的。这意味着, 如果在产 生花粉的亲本植株的两个基因型(如SxSy)中, 只要有一 个与花柱(二倍体)的某一个基因型相同, 那么这些花粉的 萌发或生长就会被该花柱所抑制(de Nettancourt, 2001; Takayama and Isogai, 2005) (图 1)。 茄科、蔷薇科、玄参科和罂粟科植物所拥有的配

化学平衡常数及其计算

考纲要求 1.了解化学平衡常数(K)的含义。2.能利用化学平衡常数进行相关计算。 考点一化学平衡常数 1.概念 在一定温度下,当一个可逆反应达到化学平衡时,生成物浓度幂之积与反应物浓度幂之积的比值是一个常数,用符号K表示。 2.表达式 对于反应m A(g)+n B(g)p C(g)+q D(g), K=c p?C?·c q?D? c m?A?·c n?B? (固体和纯液体的浓度视为常数,通常不计入平衡常数表达式中)。3.意义及影响因素 (1)K值越大,反应物的转化率越大,正反应进行的程度越大。 (2)K只受温度影响,与反应物或生成物的浓度变化无关。 (3)化学平衡常数是指某一具体反应的平衡常数。 4.应用 (1)判断可逆反应进行的程度。 (2)利用化学平衡常数,判断反应是否达到平衡或向何方向进行。 对于化学反应a A(g)+b B(g)c C(g)+d D(g)的任意状态,浓度商:Q c=c c?C?·c d?D? c a?A?·c b?B? 。 Q<K,反应向正反应方向进行; Q=K,反应处于平衡状态; Q>K,反应向逆反应方向进行。 (3)利用K可判断反应的热效应:若升高温度,K值增大,则正反应为吸热反应;若升高温度,K值减小,则正反应为放热反应。 深度思考

1.正误判断,正确的打“√”,错误的打“×” (1)平衡常数表达式中,可以是物质的任一浓度() (2)催化剂能改变化学反应速率,也能改变平衡常数() (3)平衡常数发生变化,化学平衡不一定发生移动() (4)化学平衡发生移动,平衡常数不一定发生变化() (5)平衡常数和转化率都能体现可逆反应进行的程度() (6)化学平衡常数只受温度的影响,温度升高,化学平衡常数的变化取决于该反应的反应热() 2.书写下列化学平衡的平衡常数表达式。 (1)Cl2+H2O HCl+HClO (2)C(s)+H2O(g)CO(g)+H2(g) (3)CH3COOH+C2H5OH CH3COOC2H5+H2O (4)CO2-3+H2O HCO-3+OH- (5)CaCO3(s)CaO(s)+CO2(g) 3.一定温度下,分析下列三个反应的平衡常数的关系 ①N2(g)+3H2(g)2NH3(g)K1 ②1 2N2(g)+ 3 2H2(g)NH3(g)K2 ③2NH3(g)N2(g)+3H2(g)K3 (1)K1和K2,K1=K22。 (2)K1和K3,K1=1 K3。 题组一平衡常数的含义 1.研究氮氧化物与悬浮在大气中海盐粒子的相互作用时,涉及如下反应:2NO2(g)+NaCl(s)NaNO3(s)+ClNO(g)K1

平衡常数K(Kp)的计算和应用

化学平衡常数K(Kp)的计算和应用教学设计 广州市第三中学魏勤 高考情况分析: 在近几年全国卷中,直接计算平衡常数K的题目有8道。它们在《题型训练》中的位置分别是: 原理题1(2013全国甲卷28题)P178 原理题3(2014全国甲卷26题)P182 原理题4(2014全国乙卷28题)P183 原理题5(2015全国甲卷27题)P185(只写表达式) 原理题6(2015全国乙卷28题)P187(只写计算式) 原理题8(2016全国乙卷27题)P191 原理题11(2017全国乙卷28题)P196 原理题12(2017全国丙卷28题)P198 专题目标 习惯依赖计算器的学生,对于化学试卷中的计算有一种恐惧,经常是直接放弃,特别是二卷中的计算。平衡常数和压强平衡常数还涉及转化率等有关平衡的相关计算,既是化工生产中必须关注的,也是高考的必考考点和热点。 不管是速率、起始(或平衡)浓度(或物质的量)、转化率,还是平衡常数的计算,都涉及到三段式,这是学生最容易想到的方法。通过本训练,希望学生能够熟练应用三段式,掌握平衡常数和压强平衡常数的计算方法,从而克服对计算的恐惧心理。 引出问题1——直接利用数据或列三段式计算K或K p 例1.题型训练P182(2014全国甲卷26题)——直接代数型 在容积为的容器中,通入一定量的N2O4,发生反应N2O4(g) 2NO2(g),随温度升高,混合气体的颜色变深。

回答下列问题: (1)……反应的平衡常数K1为。 (2)100℃时达到平衡后,改变反应温度为T,c(N2O4)以 mol?L-1?s-1的平均速率降低,经10s又达到平衡。…… ②列式计算温度T是反应的平衡常数K2:。 答案:L L 【变式训练1】 上题(1)中, 若起始压强为MPa,则平衡压强p总= ;分压p(NO2)= ,p(N2O4)= ,压强平衡常数K p= 。 答案: 方法指导:根据压强平衡常数的公式,分别求出总压强分压Kp 例2.题型训练P191 (2016·新课标全国Ⅰ,27)——给出三段式部分数据 (2)CrO2-4和Cr2O2-7在溶液中可相互转化。室温下,初始浓度为 m ol·L-1的Na2CrO4溶液中c(Cr2O2-7)随c(H+)的变化如图所示。 ②用离子方程式表示Na2CrO4溶液中的转化反应

相关主题
文本预览
相关文档 最新文档