当前位置:文档之家› 趋化因子受体CCR研究概述

趋化因子受体CCR研究概述

趋化因子受体CCR研究概述
趋化因子受体CCR研究概述

趋化因子受体CCR研究概述

趋化因子要发挥生物学作用,必须与相应的受体结合才行。趋化因子受体(Chemokine Receptor)属于G蛋白偶联受体,具有7个富含疏水氨基酸的α螺旋穿膜区结构,主要表达于骨髓来源的各白细胞亚群,同时也表达于上皮细胞、血管内皮细胞、神经细胞等类型的细胞。趋化因子受体根据其结合的配体不同也分为4个亚家族:CCR、CXCR、XCR和CX3CR。其中CCR亚族已克隆11种(CCR1-CCR11),CXCR亚族6种(CXCR1-CXCR6),另俩个亚族分别各有1种:XCR1和CX3CR1。本文主要论述CCR的研究进展。

CCR1对多种人类CC趋化因子有反应,包括钙动员、腺苷酸环化酶抑制、细胞外酸化和趋化性增加。CCR1已经从多个种属获得克隆,如恒河猴、兔、小鼠和大鼠,并且这些序列之间存在高度的序列同源性,人和恒河猴的相似性为87%。人CCR1序列的大部分显著特征是保守的,其存在的变化主要限于N末端和细胞外环,可能参与配体结合的区域。人和小鼠CCR1蛋白以高亲和力结合人和小鼠CCL3和CCL5。通过靶向基因破坏研究和通过有效的CCR1拮抗剂的研究,提供了对CCR1的生理和病理生理作用的了解。

CCR2的cDNA可以编码两个蛋白质CCR2A和CCR2B。CCR2B是主要表达形式,并且在慢性炎症中起作用,特别是动脉粥样硬化和多发性硬化疾病。CCR2的mRNA可以在单核细胞、血源性树突状细胞、天然杀伤细胞和T淋巴细胞中检测到,但不能在嗜中性粒细胞或嗜酸性

粒细胞中检测到。抗体研究显示CCR2B在单核细胞

、活化记忆T细胞、B细胞和嗜碱性粒细胞中表达。CCR2通过与配体结合,产生许多生物学信号,包括腺苷酸环化酶的抑制、细胞内钙动员和细胞趋化性的增加。CCR2已从许多物种克隆,包括小鼠、大鼠和恒河猴。序列高度同源并且显示与人CCR2的78-95%氨基酸一致。小鼠CCR2特异性结合了具有高亲和力的与MCP-1和MCP-3。在诱发的腹膜巨噬细胞以及几只小鼠器官中检测到CCR2 mRNA表达。Spiropiperidine家族的成员是CCR2的拮抗剂之一,可以特异性的阻断CCL2与CCR2的结合,而不会抑制CXCR1、CCR1或CCR3与相应配体的结合。小鼠敲除CCR2的结果表明,CCR2在动脉粥样硬化形成中起重要作用。

CCR3主要在嗜酸性粒细胞发现,在调节这些细胞的迁移中起重要作用。近期研究结果显示CCR3中和单克隆抗体7B11,阻断嗜酸细胞活化趋化因子与CCR3转染子或嗜酸性粒细胞的结合。CCR3可能更多参与TH2反应,并在哮喘和特应性皮炎在内的过敏反应中发挥重要作用。CCR3由几组显示为HIV-1共同受体,并且在脑的小胶质细胞上表达,其可能潜在地促进HIV-1对AIDS的感染,从而导致艾滋病、痴呆等疾病。此外,CCR3也被证明在树突细胞上表达,并且可能在HIV-1感染中发挥作用。

CCR4最初是从人类嗜碱性白血病细胞系文库克隆出来的。许多研究表明CCR4是TH2淋巴细胞的选择性标记,并被T细胞受体激活上调。CCR4可在血液中的记忆T细胞检测到,参与全身性的淋巴细胞免疫反应。CCR4可能在肝损伤的病理生理学中起作用。

CCR5除了作为趋化因子受体外,还被证明在HIV-1的关键细胞进入共感受器的病理学上起作用。最近的三篇研究论文表明,人类CCR5基因(CCR5-32)中的32个碱基对缺失导致了氨基酸的移码并产生严重截短。CCR5也可以通过将修饰的CC趋化因子(intrakine)靶向内质网来阻断新合成的CCR5的表面表达而失活。CCR5配体还包括来自M-Tropic HIV-1菌株的gp120包膜糖蛋白,其需要CD4结合。CCR5拮抗剂包括Met-RANTES和AOP RANTES,它们都是N 末端修饰的RANTES蛋白,它们是有效的CCR5拮抗剂,并抑制巨噬细胞和淋巴细胞中M-tropic HIV-1毒株的感染。虽然CCR5在TH1和TH2系上均表达,但在几个TH2克隆中没有表达,其表达受到白介素IL-2的显著影响。这些结果表明,趋化因子受体基因表达的灵活程序可以控制效应T细胞的组织特异性迁移并发挥作用。

CCR6主要表达于脾脏、淋巴结、阑尾和胎肝。在各种白细胞亚群中,在淋巴细胞(CD4(+)和CD8(+)T细胞和B细胞)中检测到CCR6 mRNA,而在自然杀伤细胞、单核细胞或粒细胞中未检测到。CD4(+)和CD8(+)T细胞中CCR6 mRNA的表达被IL-2强烈上调。由活化的巨噬细胞、树突状细胞和内皮细胞产生的CCL20(LARC)是CCR6唯一的高亲和力配体和有效的激动剂。

克隆获得的鼠CCR6与人的氨基酸同一性约76%。CCR6在树突细胞的生理和功能上起着重要的作用。CCR6及其配体CCL20在牛皮癣中显著上调,可能参与该疾病的免疫发病机制。CCL20/CCR6可能在T细胞募集到损伤性银屑病皮肤中起作用。

CCR7在T淋巴细胞和树突状细胞运输中起重要作用。CCL19 mRNA在胸腺和淋巴结中表达最强烈,研究发现重组CCL19蛋白以高亲和力结合CCR7,并诱导钙动员和趋化反应。CCL19是CCR7的高度特异性配体,其在活化的B和T淋巴细胞中表达,并且在感染了EB病毒和感染疱疹病毒的T细胞或B细胞中被强烈上调。因此,CCR7可能在正常淋巴细胞的迁移和归巢以及感染这些疱疹病毒的淋巴细胞的病理生理学中发挥作用。CCL19和CCR7可能参与广泛的淋巴细胞特别是活化的T细胞的运输。通过CCR7发出的信号对艾滋病毒的增长有很强的积极作用CCR8,以前称为孤儿受体TER1、ChemR1或CKR-L1,在胸腺和脾脏中高度表达,并且在外周血淋巴细胞中几乎检测不到。一些NK和T细胞系和TH2淋巴细胞中CCR8信息也很丰富。来自人痘病毒MCV的MC148 CC趋化因子的结合特征,并且显示出以高亲和力仅与CCR8结合,而不与所测试的任何其他趋化因子受体结合。此外,该组能够显示MC148剂量依赖性地阻断CCR8趋化因子I-309在钙动员测定中的刺激作用。因此,MC148似乎是高度选择性的CCR8拮抗剂,可能帮助病毒克服免疫应答,干扰单核细胞侵袭和树突细胞。虽然CCR8的生物学作用目前是未知的,推测其在TH2细胞中的表达,可能表明CCR8在过敏性炎症中发挥作用。

CCR9在人和小鼠胸腺中表达非常高,淋巴结和脾脏较低。未成熟和成熟的胸腺细胞表达CCR9,表明其在胸腺T细胞发育中起作用。CCR9在小肠淋巴细胞中高水平表达,可能参与胃肠道的免疫应答。。

CCR10在人睾丸和小肠中表达较高,其他组织中表达较低。小鼠CCR10在小肠、结肠、淋巴结和派耶氏斑块以及胸腺和脾脏中较低水平表达。CCR10可以由黑素细胞、真皮成纤维细胞和真皮微血管内皮细胞表达,也可由T细胞以及皮肤衍生的朗格汉斯细胞生产。总之,这些研究表明CCR10在皮肤内稳态以及炎症反应中的具有潜在作用。

CCR11主要表达在心脏、小肠和肺中,在外周血中检测不到。CCR11可以在实质细胞上表达,但是所起作用还不清楚。通过小鼠敲除实验表明,CXCR4对心脏、小肠和脑的正常发育至关重要。此外,病毒编码的趋化因子受体US28可能在血管病变的巨细胞病毒加重中起作用。

附图:CCR及其配体主要表达细胞、靶细胞图

注释:IL-6家族各白介素主要表达或靶细胞示意图,: Macrophages, : Monocytes, : Fibroblasts, : Neutrophils, : Megakaryocytes, : T Cells, : Epithelial Cells, : Endothelial Cells, : Eosinophils, : Basophils, : B Cells, : Mast cells, : Myeloid cells, : Osteoclasts, : Dendritic cells, : Melanocytes;更多内容请关注我们近期在官网分享的细胞因子海报(Post of human cytokine and chemokine-Cell sources, cell targets and major funcetions)。

(注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。可复制、编制,期待你的好评与关注)

趋化因子SDF-1及受体CXCR4研究进展

趋化因子SDF-1及受体CXCR4研究进展 第23卷第1期 2OO6年2月 生物学杂志 JOURNALOFBIOLOGY V o1.23No.1 Feb,2006 趋化因子SDF一1及受体CXCR4研究进展 储子彦,陈晓萍,方晶晶 (浙江工业大学生物与环境工程学院,杭州I310014) 摘要:趋化因子(chenmklne)是一类一级结构相似,以对白细胞等多种细胞具有趋化定向运动作用为特征的小分子蛋白.功 能研究表明,趋化因子在胚胎发育,血管生成,炎症,肿瘤,史滋病等机体多种生理和病理过程中发挥重要作用,部分趋化 因子的衍生物或抑制物具有潜在的临床应用前景.不久的将来,趋化因子及其受体可能成为疾病治疗的分子靶点. 关键词:趋化因子;SDF一1;CXCR4 中图分类号:4文献标识码:A文章编号:1008—9632(2006)Oi一0011—03 趋化因子是一类重要的免疫调节因子,直接引导 自细胞,包括多种免疫活性细胞进行有方向性迁移,不 仅能精确地调节免疫系统的反应,还对组织,器官形 成,造血系统功能有调节作用. 1趋化因子与受体的结构 趋化因子分子结构中有4个保守的半胱氨酸,形 成2对二硫键,可分成4个亚类:(1)CC亚类,2对二硫 键间无其它氨基酸间隔;(2)CXC亚类,间隔1个氨基 酸;(3)Cx3C亚类,间隔3个氨基酸;(4)C亚类,仅有1

对二硫键. SDF一1(stromalcell—derivedfactor1)基质细胞来源 因子,属于趋化因子CXC亚家族,编码区含267bp,编码89个氨基酸残基多肽. CXCR4为SDF一1受体,高度保守,a螺旋跨膜7 次,由352个氨基酸组成,在人体内,编码基因位于人染 色体2q21,有一个胞外N端,3个胞内环,3个胞外环和 1个胞内C端,SDF—l与CXCR4的N端结合,并与CX—CR4和第二胞外环ECI_2(secondextracelluarloop)相互作用才能启动下游信号通路. 2SDF一1/CXCR4生物学意义 2.1与HW病毒感染的关系 CXCR4为嗜T细胞性SI株辅助受体,能与CD4协 同作用,参与CD4抗原与HW表面糖蛋白gpl20结合 介导病毒吸附侵入的过程,CXCR4的N端结构参与病 毒结合,有多个CXCR4结构域特别是第二细胞外环结 构能与HⅣ相互作用.趋化因子与受体的结合能阻断 受体与HⅣ的结合位点防治HⅣ进入细胞,同时趋化 因子对受体的封闭和下调作用也成为一个有效的防治 手段,故趋化因子及其衍生物是辅助受体拮抗剂主要 成分之一. Fig1Representationof313modelforSDF—ld(NMR} 围1SDF一1n的3D模型 除了SDF一1的衍生物,还发现CXCR4的其他抑制剂,如:AMD一3100通过与CXCR4的第二膜外环的负电荷区域结合,成为迄今为止与CXCR4结合最有效的 非肽类抑制剂. 2.2与造血细胞的关系 2.2.1SDF一1对造血于/祖细胞增殖和分化的影响

细胞因子风暴研究进展

细胞因子风暴研究进展 细胞因子风暴(英语:Cytokine storm)又称高细胞介质症(Hypercytokinemia),一种不适当的免疫反应,因为细胞因子与免疫细胞间的正回馈循环而产生。这也被认为是1918年流感大流行、2003年SARS事件、2009年H1N1流感大流行,以及H5N1高致病性禽流感中病毒致死的原因不过美国疾病控制与预防中心认为这一症状与H1N1之间的没有充分的证据可以展示其关联性。 症状为高烧、红肿、肿胀、极度疲倦与恶心。在某些情况下可能致命。治疗:当免疫系统对抗病原体时,细胞素会引导免疫细胞前往受感染处。同时,细胞素也会激活这些免疫细胞,被激活的免疫细胞则会产生更多的细胞素。通常来说,人体会检查并控制这个反馈循环。但是在有些情况下,情况会失控,导致一个地方聚集了太多被激活的免疫细胞。目前为止,还没有完全了解这一现象的具体成因,但是有推测认为可能是由于免疫系统对新的、高致病的病原体产生的过激反应。 细胞因子风暴有可能会对身体组织和器官产生严重的损伤,比如当其发生于肺部,过多的免疫细胞和组织液可能会在肺部积聚,阻塞空气进出,并导致死亡。 细胞因子风暴与各种感染性和非感染性疾病有关,甚至是治疗性干预尝试的不幸后果。已有研究证明其在移植物抗宿主病、多发性硬化症、胰腺炎或多器官功能障碍综合征中出现。随着研究的深入,对细胞因子风暴的细胞定位和分子机制有所了解,并有助于病毒性症状尤其是流行性感冒的治疗。 细胞因子是由细胞分泌出来用于细胞间信号传导和通信的多种小蛋白质,具有自分泌、旁分泌和/或内分泌活性,并且通过结合受体引发多种免疫应答。细胞因子的主要功能有控制细胞增殖和分化、血管发生、免疫、炎症反应的调节(表1)。 表一:与细胞因子风暴相关的因子主要类型及功能 类型功能 干扰素调节先天免疫,活化抗病毒性质,抗增殖作用。 白介素白细胞增殖和分化, 趋化因子控制趋向性,募集白细胞,很多是促炎因子 集落刺激因子刺激造血祖细胞增殖和分化 肿瘤坏死因子促炎,激活细胞毒素T细胞 干扰素(IFNs)是一种细胞因子家族,其在病毒和其他微生物病原体的先天免疫中起核

趋化因子及其受体在免疫细胞中的作用

趋化因子及其受体在免疫细胞中的作用研究概述 趋化因子是目前成员最多的细胞因子家族,在人和小鼠中大概有50个内源性趋化因子。这些因子大约结合20多个跨膜受体。趋化因子的主要作用是控制免疫细胞的迁移模式,对细胞运动至关重要。趋化因子系统在初始T细胞产生,决定细胞的分化(如效应细胞和记忆细胞),影响调节性T细胞的功能,调节免疫细胞迁移和定位,已达到体内平衡。趋化因子在急性炎症和淋巴系统中对免疫反应的产生和调节具有重要作用。趋化因子在炎性疾病及癌症中的作用使其成为新的药物靶点。 趋化因子可以控制骨髓、血液及外周组织中的免疫细胞运输。CXCL12由CAR细胞产生,可以使发育中的中性粒细胞、B细胞和单核细胞保留在骨髓中。DC前体、肥大细胞前体和发育中的嗜酸性粒细胞通过未知机制保留在骨髓中。在没有CXCR4信号传导或CXCR2信号传导的情况下,嗜中性粒细胞离开骨髓并进入血液。B细胞通过CB2信号进入骨髓,并通过S1P1信号传导进入血液。B细胞可以使用CCR7、CXCR4和CXCR5信号进入淋巴结构。单核细胞响应CCR2信号进入血液以及CXCR4信号传导减少。单核细胞分化为促炎症(CCR2+)和抗炎(CX3CR1+)单核细胞。抗炎单核细胞可以通过CX3CL1进入外周组织。DC前体通过未知机制进入血液,并可以通过CCL20离开外周组织。在人类中,CXCL14也可能在抗炎单核细胞和DC前体迁移到外周组织中起作用。肥大细胞前体通过未知机制离开骨髓,并在CXCR2介导的信号后迁移至肠道。CCR3信号通过CCL11和CCL24(人和小鼠)以及CCL26(人)后,嗜酸性粒细胞进入血液并离开外周组织。

KLF转录因子抑制轴突再生的分子机制

KLF转录因子抑制轴突再生的分子机制 转录因子(KLFs)的Kruppel-样家族的分子机制在增殖细胞中的研究比在有丝分裂后细胞中的研究更集中,如神经元。来自美国加州大学圣地亚哥分校Jeffrey L. Goldberg 教授所在团队最近发现,KLFs具有调节中枢神经系统神经元,包括视网膜神经节细胞,海马和皮层神经元内在细胞轴突生长的能力。至少有15/17 的KLF家族成员可在神经元中表达,其中至少有5种结构独特的亚科,这对决定了这一复杂的家族因子如何在神经元中调节轴突生长和再生的复杂遗传程序是很重要的。通过细节化神经系统中KLF家族的分子机制,包括结合配体和靶基因,并比较它们在神经系统之外定义的机制,我们可以更好地理解KLFs如何调控神经轴突生长和轴突再生。相关研究内容发表在2014年8月第15期《中国神经再生研究(英文版)》杂志上。 Article: “Molecular mechanisms of the suppression of axon regeneration by KLF transcription factors" by Akintomide Apara1, Jeffrey L. Goldberg2 (1 University of Miami Miller School of Medicine, Miami, FL, USA; 2 Shiley Eye Center, University of California San Diego, La Jolla, CA, USA) Apara A, Goldberg JL. Molecular mechanisms of the suppression of axon regeneration by KLF transcription factors. Neural Regen Res. 2014;9(15):1418-1421. 欲获更多资讯:Neural Regen Res

细胞因子风暴研究进展

细胞因子风暴研究进展 细胞因子风暴(英语:Cytokine storm)又称高细胞介质症(Hypercytokinemia),一种不 适当的免疫反应,因为细胞因子与免疫细胞间的正回馈循环而产生。这也被认为就是1918年流感大流行、2003年SARS事件、2009年H1N1流感大流行,以及H5N1高致病性禽流感中 病毒致死的原因不过美国疾病控制与预防中心认为这一症状与H1N1之间的没有充分的证据 可以展示其关联性。 症状为高烧、红肿、肿胀、极度疲倦与恶心。在某些情况下可能致命。治疗:当免疫系统对抗病原体时,细胞素会引导免疫细胞前往受感染处。同时,细胞素也会激活这些免疫细胞,被激活的免疫细胞则会产生更多的细胞素。通常来说,人体会检查并控制这个反馈循环。但 就是在有些情况下,情况会失控,导致一个地方聚集了太多被激活的免疫细胞。目前为止,还没有完全了解这一现象的具体成因,但就是有推测认为可能就是由于免疫系统对新的、高致 病的病原体产生的过激反应。 细胞因子风暴有可能会对身体组织与器官产生严重的损伤,比如当其发生于肺部,过多的免疫细胞与组织液可能会在肺部积聚,阻塞空气进出,并导致死亡。 细胞因子风暴与各种感染性与非感染性疾病有关,甚至就是治疗性干预尝试的不幸后 果。已有研究证明其在移植物抗宿主病、多发性硬化症、胰腺炎或多器官功能障碍综合征中 出现。随着研究的深入,对细胞因子风暴的细胞定位与分子机制有所了解,并有助于病毒性症 状尤其就是流行性感冒的治疗。 细胞因子就是由细胞分泌出来用于细胞间信号传导与通信的多种小蛋白质,具有自分泌、旁分泌与/或内分泌活性,并且通过结合受体引发多种免疫应答。细胞因子的主要功能有 控制细胞增殖与分化、血管发生、免疫、炎症反应的调节(表1)。 表一:与细胞因子风暴相关的因子主要类型及功能 类型功能 干扰素调节先天免疫,活化抗病毒性质,抗增殖作用。 白介素白细胞增殖与分化, 趋化因子控制趋向性,募集白细胞,很多就是促炎因子 集落刺激因子刺激造血祖细胞增殖与分化 肿瘤坏死因子促炎,激活细胞毒素T细胞 干扰素(IFNs)就是一种细胞因子家族,其在病毒与其她微生物病原体的先天免疫中起核

髓鞘相关抑制因子在中枢神经系统轴突再生中的作用

髓鞘相关抑制因子在中枢神经系统轴突再生中的作用 王养华△(综述),许卫红※(审校) (福建医科大学附属第一医院脊柱外科,福州350004) 中图分类号:R651 文献标识码:A 文章编号:1006-2084(2012)09-1312-03 摘要:成熟哺乳动物中枢神经系统损伤后轴突的再生是极其有限的。中枢神经再生困难之一是其内在的髓鞘相关抑制因子(MAIs)的存在,Nogo-A蛋白、髓鞘相关糖蛋白、少突胶质细胞髓鞘糖蛋白是三个经典的MAIs。这三个分子由少突胶质细胞产生,并通过Nogo受体和配对免疫球蛋白样受体B共同的神经受体激活小GTP酶Ras同源基因家族成员(Rho),进而活化的RhoA激活Rho相关激酶抑制中枢神经系统轴突的再生。现就MAIs在中枢神经系统轴突再生中的作用予以综述,并探讨其可能的治疗措施以促进中枢神经轴突再生和功能恢复。 关键词:轴突再生;抑制因子;受体 Role of Myelin-as s oc iate d Inhibit ors in t he Cent ral Nervous System Axonal Re generation WANG Yang-hua,XU Wei-hong.(Department of Spinal Surger y,the Fir st Affiliated Hos pital of Fujian Medical Uni-ver sity,Fuzhou350004,China) Abst rac t:The r egeneration of the rear ax le axon of the central ner vous system of mature mammals is ex-tremely limited after damage.C entr al ner ve regener ation is difficult because of its inherent myelin-a ssocia ted inhibitors(MAIs).Nogo-A pr otein,my elin-associated gly copr otein,oligodendrocy tes myelin glycoprotein pro-tein are three classical MAIs.The three molecules a re all produced by oligodendrocy tes,and through the Nogo r eceptors and pair immunoglobulin-like r eceptor B a ctivate sm all GTP enzyme Ras homology g ene family m ember s(Rho),and the a ctivated RhoA a ctivates Rho r elated kina se,thus inhibites the neur ite regenera tion of the central nervous system.H ere is to make a review on the r ole of MAIs in the central ner vous system ax-onal r egeneration,explor ing possible treatments to promote the regener ation and function recov ery. Key words:Axona l r egeneration;Inhibitory factor;Receptor 人们发现抑制性因子在中枢神经系统再生过程 中发挥了重要作用。研究表明,髓鞘来源的抑制因 子可能是中枢神经抑制因素中最重要的,已经确定 的髓鞘相关抑制因子(m yelin-associated inhibitors, M AIs)包括N ogo-A蛋白、髓鞘相关糖蛋白(m yelin- a ssociated glycopr otein,M AG)和少突胶质细胞髓鞘糖 蛋白(oligodendrocytes myelin glycoprotein protein, O Mgp)[1]。现重点讨论M AIS对中枢神经的抑制作 用,特别强调Nogo-N ogo受体轴在中枢神经系统轴突 生长中的作用。 1 MAIs M AIs是中枢神经系统的髓鞘成分少突胶质细胞 表达的蛋白质。MAIs抑制体外和体内轴突的生长, M AIs包括Nogo-A蛋白、M AG、OM gp。这三者与神经 元Nogo受体1(N gR1)互相作用,也表现出了对第二轴 突生长抑制受体即配对免疫球蛋白样受体B(pair im- munoglobulin-like r eceptor B,PirB)的亲和力,它们与受 体结合后激活下游信号转导通路,抑制轴突的再生[2]。 2 Nogo-A 在中枢神经系统髓鞘的抑制成分中,Nogo-A蛋 白是其中一个最具M AIs特点的抑制因子,主要在 少突胶质细胞表达。Nogo分为3个亚型:Nogo-A、 N ogo-B和Nogo-C。Nogo-A蛋白的两个抑制部分已被 确定[3]:①Nogo-66是与神经元细胞膜上的NgR1互 相作用的66个氨基酸片段,相邻的24个氨基酸序 列,虽然本身不起抑制作用,但是可促进Nogo-66结合NgR1的亲和力。N ogo-66也可以直接与PirB结合。 ②N ogo-A蛋白的氨基-N ogo 序列通过另一个独立的机制扰乱神经功能。Nogo蛋白的另外两个Nogo亚型(N ogo-B 和N ogo-C)含有N ogo-A中抑制性的N ogo-66环,缺乏氨基-N ogo序列。N ogo-A在中枢神经系统表达,不在外周神经系统表达,这意味着N ogo-A 在中枢神经系统再生的抑制中可能占有重要地位。研究发现,脊髓损伤后Nogo-A在 神经元的表达逐渐升高,导致神经再生困难[4];而沉默Nogo基因可以介导轴突再生以促进脱髓鞘疾病的功能恢复[5]。即使是Nogo基因最小的突变在锥体束切断术后也促进了轴突的生长[6]。此外,抗Nogo-A抗体促进中枢神经系统损伤后轴突生长及功能恢复。目前最新研究抗Nogo-A抗体已经发展到脊髓损伤的临床试验阶段[7]。研究已表明,Nogo-A 先使生长锥塌陷从而在体外抑制突起生长,并在使用基因缺失的、中和抗体、体内的药物拮抗剂的哺乳类动物脊髓损伤模型中抑制轴突再生[8]。大量实验数据表明Nogo-A在体内的作用,在小鼠、大鼠、灵长类动物急性脊髓损伤模型中观察到恢复表型[9]。 3 MAG MAG属于免疫球蛋白超家族的成员,是一种细胞表面蛋白。虽然M AG同时表达于中枢神经系统和周围神经系统的神经胶质细胞,但是在周围神经系统髓鞘快速清除,而在有中枢神经系统清除较慢,伤后可能只在中枢神经系统留下M AG以抑制轴突在体内再生[10]。MAG在中枢神经系统有两个功能:维持髓鞘的完整性和抑制中枢神经系统轴突再生。MAG在体外可以明显地抑制突起的生长,引起生长锥的塌陷,抑制包括神经节细胞在内的多种神经元突起的生长,通过免疫耗竭MAG后,可明显减少髓鞘对轴突生长的抑制作用。但是,在MAG基因缺失小鼠模型中并没有观察到促进中枢神经系统髓鞘的轴突生长以及脊髓损伤小鼠模型沉默,M AG的表达

趋化因子及其受体的研究进展

趋化因子及其受体的研究进展 摘要:趋化因子( chemokine)是一类一级结构相似小分子细胞因子,能够趋化细胞定向移动的,而且在免疫细胞和器官的发育、免疫应答过程、炎症反应、病原体感染、创伤修复及肿瘤形成和转移等方面发挥广泛的生理和病理作用。本文综述了对趋化因子及其受体的结构、分类和生物学功能的研究进展。 关键词: 细胞因子;趋化因子;趋化因子受体;趋化作用 Abstract:chemokine is similar to the primary structure of a class of small molecule cytokine, chemokine cell directional movement, but also in the development of immune cells and organs, immune response, inflammatory response, pathogen infection, wound healing andplay a wide range of physiological and pathological roles of tumor formation and metastasis. This paper reviews the progress on the study of the structure, classification and biological function of chemokines and their receptors. Keywords: cell factor; chemokines; chemokine receptor; chemotactic effect 免疫细胞的定向迁移是集体免疫应答发生和完成的必须条件。趋化因子是一类控制细胞定向迁移的细胞因子。其功能行使由趋化因子受体介导。趋化因子与其受体的相互作用控制着各种免疫细胞在循环系统和组织器官间定向迁移,使之到达感染、创伤和异常增殖部位,执行清除感染源、促进创伤愈合和消灭异常增殖细胞,维持组织细胞的平衡的功能。因此,趋化因子系统在免疫系统功能行使的各个环节中处于关键地位,并由此在病原体的清除、炎症反应、病原体感染、细胞及器官的发育、创伤的修复、肿瘤的形成及其转移、移植免疫排斥等方面都起着重要的作用。以趋化因子及其受体为控制靶点,通过激活或拮抗趋化因子受体的信号传导来调控趋化因子系统的功能,可

趋化因子家族及其受体基础研究进展

趋化因子家族及其受体基础研究进展 趋化因子(Chemokine)是一类小分子碱性蛋白,主要的功能是能够趋化细胞定向移动。 目前已经发现的趋化因子有50多种,随着研究的深入,趋化因子及其受体的结构、功能及在体内的作用已经被众多的研究者发现。趋化因子及其受体的相互作用,可以参与多种生理功能,比如细胞的生长、发育、分化、凋亡和分布等,在病理过程中也具有重要作用,如炎症反应、病原体感染、创伤修复及肿瘤形成和转移等。 趋化因子一般由70-125个氨基酸组成,分子量较小(6-14KD)。按照一级肽链结构特点,其N端半胱氨酸残基的位置和数目可将趋化因子分为4个亚族:CC、CXC、C和CX3C(C为半胱氨酸,X为任意氨基酸)。四类趋化因子结构相似性较高,氨基酸序列具有一定的同源性。根据趋化因子的表达方式以及其在免疫系统中的作用,可以将他们分为两类:内环境稳定性趋化因子和炎症性趋化因子。内环境稳定性趋化因子主要在归巢场所表达,有着维持内环境稳态的功能,并且对淋巴细胞归巢及成熟有着明确的作用。炎症性趋化因子由受到刺激的细胞表达,如炎性细胞因子的诱导、细菌毒素或其它破坏内环境稳定的因素的刺激,主要功能是募集效应细胞,在协调天然和获得性免疫反应中起重要作用。 大多数的趋化因子属于CC和CXC两个亚族族。其中CC亚族有28个成员(CCL1-CCL28),主要对中性粒细胞、单核细胞、肥大细胞、树突细胞、NK细胞、T和B淋巴细胞等具有强 大趋化活性,比较重要的有:单核细胞趋化蛋白(MCP-1/CCL2)、巨噬细胞炎症蛋白(MIP/CCL3)、正常T细胞表达和分泌,活化时表达下降的因子(RANTES/CCL5)等;CXC亚族有17个成员(CXCL1-CXCL17),CXC亚家族主要作用于中性粒细胞,这个亚族比较重要的趋化因子有: 白细胞介素-8(IL-8/CXCL8)、γ干扰素诱生的单核因子(Mig/CXCL9)、γ干扰素诱生蛋白10(IP-10/CXCL10)、基质细胞来源因子1(SDF-1/CXCL12)等。另外,CXC亚家族根据其第1 个半胱氨酸前有无谷氨酸-亮氨酸-精氨酸序列(Glu-Leu-Arg)进一步分为ELR+和ELR-两类, 前者具有促进血管新生作用。C亚家族包含两个趋化因子XCL1和XCL2,主要表达于胸腺,作用于CD8+ T淋巴细胞。CX3C亚家族只有一个趋化因子CX3CL1,也称为不规则趋化因子(fractalkine)或神经元趋化因子(neurotactin),是唯一膜结合性趋化因子,主要作用于单核细胞和中性粒细胞。 趋化因子要发挥生物学作用,必须与相应的受体结合才行。趋化因子受体(Chemokine Receptor)属于G蛋白偶联受体,具有7个富含疏水氨基酸的α螺旋穿膜区结构,主要表达

趋化因子及其受体与大肠癌

趋化因子及其受体与大肠癌的关系 摘要 越来越多的研究表明肿瘤的微环境在肿瘤的发生发展中起着至关重要的作用,而趋化因子及其受体作为肿瘤微环境中关键信号分子,在肿瘤的发生发展中发挥着不可或缺的作用。关键词:趋化因子大肠癌趋化因子受体 大肠癌包括结肠癌与直肠癌,是消化系统最常见的恶性肿瘤。近年来,大肠癌的发病呈逐年上升趋势,给社会和家庭带来沉重负担。大量研究资料表明,大肠肿瘤是一个复杂的混合体,除癌细胞外还有炎症细胞、免疫细胞、内皮细胞、成纤维细胞等,这些基质细胞构成了肿瘤细胞的基本的微环境,并通过分子信号通路为肿瘤提供生存所需要的物质。而趋化因子及其受体作为肿瘤微环境中关键信号分子,在肿瘤的发生发展中发挥着不可或缺的作用。本文就这一方面进行综述。 1.趋化因子及其受体的分类结构 趋化因子是一类结构功能相似、具有趋化吸引和活化作用的碱基肝素结合性的小分子分泌蛋白,相对分子质量为8 000~10 000。目前研究发现并克隆出的趋化因子达50多种[1]。根据其分子结构中N端半胱氨酸的不同可分为CXC、CC、C和CX3C四个亚家族[2]。目前认为CXC亚家族主要作用于中性粒细胞、淋巴细胞和单核细胞。CC亚家族主要作用于单核细胞、淋巴细胞、嗜酸性粒细胞和嗜碱性粒细胞。CX3C亚家族主要作用于中性粒细胞和单核细胞。C亚家族仅作用于淋巴细胞。CXC趋化因子根据结构功能区第一个Cys前有无ELR (Glu-Leu-Arg)序列分为ELR+和ELR-两类。常见的ELR+CXC趋化因子有IL-8、上皮细胞嗜中性粒细胞活性蛋白(ENA-78)、中性粒细胞趋化蛋白-2(GCP-2)、肿瘤生长相关因子α/β/γ(GRO-α/β/γ)、中性粒细胞活化蛋白-2(NAP-2)等[3]。根据功能可把趋化因子分为2类[4]:一类称为炎症型趋化因子,主要趋化单核细胞、中性粒细胞和效应T细胞等效应细胞迁移至炎症发生部位,如RANTES/CCL5和IL-8/CCL2;另一类为自稳型趋化因子,趋化自稳免疫系统中的一些细胞,如SDF-1/CXCL12。 趋化因子受体是表达在中性粒细胞、淋巴细胞、巨噬细胞等炎症细胞和上皮细胞、成纤维细胞等结构细胞表面上的具有七次跨膜域的受体,属G蛋白偶联受体超家族成员,是介导相应趋化因子发挥生物学功能的关键受体。依据其结合的配体不同可分为CXCR、CCR、CR、CX3CR四类。 2.趋化因子及其受体的一般功能 趋化因子在正常和非正常生理状况下起着重要作用:1、促进细胞迁移;2、诱导和整合蛋白的活化;3、诱导细胞的呼吸爆发;4、诱导细胞因子的转录,促使多种淋巴因子的释放; 5、诱导次级淋巴器官的发育; 6、刺激血管的生成; 7、刺激骨髓细胞的生成并抑制干细胞的功能; 8、参与肿瘤细胞的移动、侵袭和转移; 9、作为免疫调节剂上调T细胞和抗原提呈功能;10、促进细胞增殖;11、促进抗原特异性Th1和Th2克隆活化[5]。不同类型的趋化因子通过与相应受体结合而发挥作用。但部分趋化因子与受体结合的特异性不强,及一种趋化因子可与多种受体结合,而一种趋化因子受体也可与多种趋化因子结合,不过亲和力有所不同[6]。 3.趋化因子及其受体在肿瘤中的双向调节作用

细胞因子风暴研究进展

细胞因子风暴研究进展标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

细胞因子风暴研究进展 细胞因子风暴(英语:Cytokine storm)又称高细胞介质症(Hypercytokinemia),一种不适当的免疫反应,因为细胞因子与免疫细胞间的正回馈循环而产生。这也被认为是1918年流感大流行、2003年SARS事件、2009年H1N1流感大流行,以及H5N1高致病性禽流感中病毒致死的原因不过美国疾病控制与预防中心认为这一症状与H1N1之间的没有充分的证据可以展示其关联性。 症状为高烧、红肿、肿胀、极度疲倦与恶心。在某些情况下可能致命。治疗:当免疫系统对抗病原体时,细胞素会引导免疫细胞前往受感染处。同时,细胞素也会激活这些免疫细胞,被激活的免疫细胞则会产生更多的细胞素。通常来说,人体会检查并控制这个反馈循环。但是在有些情况下,情况会失控,导致一个地方聚集了太多被激活的免疫细胞。目前为止,还没有完全了解这一现象的具体成因,但是有推测认为可能是由于免疫系统对新的、高致病的病原体产生的过激反应。 细胞因子风暴有可能会对身体组织和器官产生严重的损伤,比如当其发生于肺部,过多的免疫细胞和组织液可能会在肺部积聚,阻塞空气进出,并导致死亡。 细胞因子风暴与各种感染性和非感染性疾病有关,甚至是治疗性干预尝试的不幸后果。已有研究证明其在移植物抗宿主病、多发性硬化症、胰腺炎或多器官功能障碍综合征中出现。随着研究的深入,对细胞因子风暴的细胞定位和分子机制有所了解,并有助于病毒性症状尤其是流行性感冒的治疗。 细胞因子是由细胞分泌出来用于细胞间信号传导和通信的多种小蛋白质,具有自分泌、旁分泌和/或内分泌活性,并且通过结合受体引发多种免疫应答。细胞因子的主要功能有控制细胞增殖和分化、血管发生、免疫、炎症反应的调节(表1)。 表一:与细胞因子风暴相关的因子主要类型及功能

IL17细胞因子及其受体家族研究进展

白介素IL-17细胞因子及其受体家族研究进展 白介素-17(IL-17)主要由T辅助细胞TH17产生。IL-17可以直接或间接诱导多种细胞因子、趋化因子、炎症因子与抗微生物蛋白来识别介导自身免疫与慢性感染的靶基因,最近的研究已经证明,IL-17与肿瘤的发生密切相关。 白介素-17(IL-17)已经发现的成员有6个,分别就是:IL-17A、IL-17B、IL-17C、IL-17D、IL-17E(也被称为IL-25)与IL-17F。随着研究的深入,IL-17产生细胞除了TH17细胞外,还有很多其它类型的细胞可以产生,比如:巨噬细胞、树突状细胞、CD-T细胞、自然杀伤T(NKT)细胞、CD8+ T细胞、调节性T细胞(Tregs)、嗜中性粒细胞、肥大细胞、骨髓源性抑制细胞(MDSCs)与淋巴组织诱导物(LTi)细胞等,在上皮细胞、周细胞、平滑肌细胞与肿瘤细胞中也可产生白介素IL-17。在IL-17家族的6个成员中,IL-17A就是IL-17家族的原型,IL-17F与之同源性最高(50%),并且编码基因定位于染色体的同一区域6p12,其它与IL-17A同源性较差,只有16%-30%,且定位在不同的染色体上。但这些细胞因子在人、鼠种属间的保守性较高(62-80%)。IL-17家族成员以同源二聚体或异源二聚体的形式发挥功能。IL-17A、IL-17E、IL-17F就是重要的促炎症因子,而IL-17B、IL-17C、IL-17D的功能还尚待研究。 白介素IL-17受体(IL-17R)家族由5个成员组成:IL-17RA、IL-17RB、IL-17RC、IL-17RD、IL-17RE。IL-17R由27个氨基酸的N-末端信号肽、293氨基酸胞外结构域、21个氨基酸的跨膜结构域与525个氨基酸异常长的胞质尾巴构成的单程跨膜蛋白。IL-17受体家族成员之间可以组合成不同的复合物,如IL-17RA与IL-17RC复合体介导细胞对IL-17A与IL-17F的反应,IL-17RA与IL-17RB复合体介导细胞对IL-17E的反应。IL-17RA作为这个家族迄今为止最大的分子,编码的基因位于染色体22上,就是至少4个配体传递信号的通用亚基。其她受体的编码基因位于染色体3上。L-17RA广泛表达,特别就是在造血组织中表达水平高。 IL-17RB能结合IL-17B与IL-17E,它主要表达于各种内分泌组织及肾、肝与TH2细胞。 IL-17RD负调控FGF介导的Ras-MAPK及PI3K信号通路。人的IL-17RD也能抑制FGF依赖的ERK激活与FGF依赖的增殖,但鼠的IL-17RD却能结合TAK1激活MAP2K4-JNK信号通路。IL-17受体家族中被了解最少的成员就是IL-17RE,近来研究表明IL-17C可能就是它的配体。

第15章细胞因子及其受体

15 细胞因子及其受体 免疫受体是由一个由固有免疫系统和适应性免疫系统叠加而成的免疫系统,又是一个弥散系统,在体内往复循环的免疫细胞之间没有固定的有线”连接。这样的一个系统有效运转有赖于不同细胞之间的有序分工合作,信息交换与密切协调。细胞因子(cytokine)是免疫细胞之间以及免疫细胞与其他组织之间相互交换的语言。所谓细胞因子是指是有免疫细胞或非免疫细胞(如血管内皮细胞,表皮细胞和成纤维细胞等)经刺激而合成分泌的一类生物活性分子,他们之间的信息交换与相互调节,参与免疫应答和炎症反应过程。15-1细胞因子的主要特点(General Characteristics Of Cytokines)内分泌素也具有相对分子质量小,浓度低等特点,能够远距离调解组织器官的功能。细胞因子与与内分泌素不同,他们不由专门腺体分泌,而是来自多种不同的组织和细胞,以近距离调节为主。虽然已经发现200余种细胞因子,从人类基因组计划的测序结果来看,还有更多的细胞因子将被发现,他们具有如下一些基本特征: (1)半衰期短,不在细胞内储存而是在被活化

后开始合成并且分泌的。 (2)多效(重叠)性(pleiotropism):多种细胞可以产生同一种细胞因子,一种细胞因 子可以对不同细胞发挥不同作用。 (3)丰裕性(redundant):两种以上的的细胞因子具有相同的或者相似的生物学作用的 现象比较常见。 (4)协同性(synergy):两种细胞因子同时作用于一个靶细胞的效应大于他们单独效应 之和,即为协同作用。 (5)拮抗性(antagonism):有是有两种细胞因子有相互抑制的作用,即为拮抗性。(6)网络性:细胞因子能够诱导或抑制其他细胞因子的合成,形成细胞因子功能和调节 网络。 (7)效应延迟:靶细胞对细胞因子的反应通常发生在几个小时内,需要新mRNA和蛋白质 分子的原位合成。 (8)效应范围:近距离作用为主。多数细胞因子在血液中是检测不到的,他们发挥作用 的方式以旁分泌(paracrine)和自分泌 (autocrine)为主,前者指其对临近细胞

细胞因子的免疫应用及研究进展

细胞因子的免疫应用及研究进展 摘要:细胞因子( cytokine) 是一类由各种免疫细胞和非免疫细胞产生的具有生物活性的多肽或糖蛋白。通常所说的细胞因子包括淋巴细胞因子、单核细胞因子及其他细胞产生的细胞因子。细胞因子具有强大的免疫调节和免疫激活作用,有关细胞因子方面的研究已成为当今基础免疫学和临床免疫学研究中十分活跃的领域,并取得了令人瞩目的成绩,特别是近年来由于分子生物学技术的发展,使得细胞因子的研究和应用进入了一个全新的阶段。本文主要对其应用做一个综述。 关键词:细胞因子、免疫、应用 1.细胞因子的特性 尽管细胞因子种类繁多,功能复杂广泛,但其也有一些共同的特点,主要表现为: ①多为糖蛋白,分子质量一般为10~25ku,有的为8~10ku。②通过与受体的特异性结合而发挥其相应的生物学效应。这类结合的细胞因子亲和力较高,在极低浓度下亦显示出生物学活性。③一般在局部发挥效应,这种效应既可针对产生该细胞因子并且具有受体的细胞———即自分泌(autocrine)作用,也可针对邻近的细胞———即旁分泌(paracrine)作用。④分泌期短,一般仅为数天,且其半衰期也很短。⑤一种细胞因子可作用于多种靶细胞,并显示出多种生物学功能,即具有多效性;同时多种细胞因子也可作用于同一种细胞发挥相似的生物学作用。⑥细胞因子之间通过合成分泌的相互调节、受体表达的相互调控、生物学效应的相互影响而组成一个相互协同又相互制约的复杂的免疫反应协调网络,共同维持机体免疫系统的平衡。⑦细胞因子具有强大的免疫调节作用,是机体发挥免疫功能不可缺少的成分。 2.细胞因子的应用 大多数细胞因子是机体免疫应答的产物,对机体免疫系统具有强大的调节作用,是机体发挥免疫功能,清除病原体不可缺少的成分,与疾病的发生、发展有着密切的关系;另一方面,体内分泌的细胞因子过多,亦可引起病理性反应。因此,细胞因子在疾病的诊断、治疗和预防等方面有着极为广阔的应用前景。进入20世纪80年代以来,细胞因子的临床应用已成为医学研究和产品开发的重要领域,进入临床应用的细胞因子逐年增多,它们在人类和动物疾病的诊断、治疗和预防等方面发挥着越来越重要的作用。 2.1在诊断和治疗方面的应用 细胞因子一方面可以治疗某些疾病,如免疫缺陷性疾病、病毒性疾病、细菌性疾病及肿瘤等,另一方面可以导致和/ 或促进某些疾病的发生和发展,如自身免疫性疾病、移植排斥反应等。因此,细胞因子在疾病的诊断和治疗方面发挥着独特作用并取得了较为明显的效果。支气管哮喘患者体内的IL24、IL25、IL210及IL213等Th2型细胞因子浓度显著升高,在其作用下IgE合成增多,IgE与嗜碱性粒细胞和肥大细胞上的高亲和力受体结合,从而引起本病的发生。应用IFN2γ和抗IL24抗体或IL24R可减少Th2型细胞因子产生,从而抑制过敏反应,达到治疗的目的。在多发性硬化症患者的病灶中IL22和IFN2γ产生明显增加,而在恢复

动物生理学

神经生长因子概述及研究进展 摘要神经生长因子是一种对神经生长、分化起到营养作用的肽类,其作用有:a . 神经生长因子引起神经解剖结构和功能变化,促进神经末梢合成和释放递质,有助于组织重构的形成;b . 神经生长因子能够增强变应原特异性抗体的表达,促进肥大细胞、嗜酸性粒细胞、淋巴细胞等在组织聚集,诱导其释放炎症介质,改变免疫应答平衡状态;c . 神经生长因子可能启动肾上腺髓质细胞冗余性,使其向神经细胞转变,导致髓质细胞内分泌功能削弱,使肾上腺素合成、释放和再摄取功能障碍,最终导致循环中肾上腺素达不到维持组织舒张状态所需水平。G-蛋白Rab3a对神经生长抑制因子抑制神经元细胞生长具有很重要的影响。神经生长因子对于启动神经-内分泌- 免疫网络功能失衡的作用也非常重要。 关键词神经生长因子;抑制因子受体;神经再生;抗肿瘤作用 一、神经生长因子概念,结构,功能及生物学效应[1] 1.1 神经因子的概念,结构神经生长因子nerve growth factor 略称NGF。NGF包含α、β、γ三个亚单位,活性区是β亚单位,由两个118个氨基酸组成的单链通过非共价键结合而成的二聚体,与人体NGF的结构具有高度的同源性,生物效应也无明显的种间特异性。αNGF亚基功能尚不清楚;γ亚基具有蛋白酶活性;β亚基具有生物活性的NGF[1]。 1.2 神经生长因子的功能神经生长因子是具有神经元营养和

促突起生长双重生物学功能的一种神经细胞生长调节因子,它对中枢及周围神经元的发育、分化、生长、再生和功能特性的表达均具有重要的调控作用。中枢神经系统与周围神经系统最大区别之一在于神经元损伤后难于再生修复,这也是困扰神经科学基础与临床研究的世界性难题。早在1985年,Schwab等人[2]就提出了关于中枢神经再生抑制的两条假设:其一,中枢神经元神经突再生能力与其周围微环境密切相关,周围神经系统环境要比中枢神经系统环境更适合神经突再生;其二,成熟的中枢神经系统中很可能存在神经突再生抑制因子。其作用机制:NGF与受体结合,通过受体介导的内吞机制产生内在化,形成由轴膜包绕、含有NGF、并保持其生物活性的小泡,经轴突沿微管逆行转运至胞体,经酪氨酸蛋白激酶、脂酰肌醇钙、内源性环腺苷酸等第二信使体系的转导,启动一系列级联反应,对靶细胞的某些结构或功能蛋白基因表达进行调控而发挥其生物效应。 1.3 神经生长因子的生物效应神经损伤后,NGF受体增加,反映在损伤修复过程中对NGF的需求。靶区NGF的水平也明显升高。神经生长因子的神经保护作用:当NGF的效应神经元受到损伤时,例如切断轴突、药物损害,甚至缺血、缺氧等,神经元将发生一系列的病理改变,包括死亡,实验研究证实NGF通过:(1)抑制毒性氨基酸的释放;(2)抑制钙离子超载;(3)抑制超氧自由基的释放;(4)抑制细胞凋亡等机制而明显减轻或防止这些继发性病理损害的发生。神经生长因子的神经营养作用:在胚胎发育的一定时期内,NGF 为效应神经元生存所必须。体外实验证实,如果培养液中不加NGF,

(推荐)II型细胞因子及其受体研究进展

II型细胞因子及其受体研究进展 目前已经发现的细胞因子有200多种,随着基因测序技术的快速发展,相信会有更多的因子被发现,并且随着细胞工程技术和蛋白重组技术的发展,一定会有更多的细胞因子重组蛋白被纯化制备。细胞因子功能多样,不同因子间可以相互作用,同一因子可以有不同的功能,因此,细胞因子构成了一个复杂的网络功能图。而细胞因子想要发挥作用,必须与相应的受体结合行。细胞因子与其受体结合后,会对细胞产生作用,可以刺激细胞生长增殖分化,调控机体免疫应答,为在细胞及分子水平研究某些自身免疫性疾病、肿瘤、免疫缺陷疾病的发病机理提供数据,为临床治疗和诊断提供指导依据。 细胞因子受体一般分成四个类型:Ⅰ型细胞因子受体(Type ⅠCytokine Receptor)、Ⅱ型细胞因子受体家族(Type ⅡCytokine Receptor)、TNF超家族受体以及趋化因子受体。在本文,将主要介绍Ⅱ型细胞因子及其受体的研究进展及其应用。 Ⅱ型细胞因子受体家族(Type ⅡCytokine Receptor ),也称干扰素受体家族(Interferon receptors family)。主要包含Ⅱ型白介素(IL-10,IL-19,IL-20,IL-22等)受体,Ⅰ型干扰素(IFNA,IFNB)受体和Ⅱ型干扰素(IFNG)受体。此类受体的结构特点治是在膜外区近氨基端含有四个保守半胱氨酸残基细无Trp-Ser-X-Trp-Ser序列,一般为具有高亲和力的异二聚体或多聚体。II型细胞因子受体的细胞外结构域由串联Ig样结构域组成,细胞内结构域通常与属于Janus激酶(JAK)家族的酪氨酸激酶相关。

第六章 表皮生长因子受体抑制常见不良反应及其处理

第六章表皮生长因子受体抑制剂常见不良反应及其处理 表皮生长因子及其受体信号通路在非小细胞肺癌(NSCLC)发生发展中发挥了重要作用,它调控肿瘤细胞增殖、生存和凋亡、血管生成、肿瘤转移等多个生物学过程,是NSCLC治疗的重要靶点之一。针对表皮生长因子受体(EGFR)的靶向药物包括小分子抑制剂(如吉非替尼和厄洛替尼)和单克隆抗体(如西妥昔单抗等)。小分子药物已作为晚期NSCLC的二、三线治疗方案广泛用于临床,EGFR单抗联合化疗一线治疗晚期NSCLC同样也取得了较好的疗效。 EGFR抑制剂(EGFR TKIs)无论是小分子药物还是单克隆抗体,均具有良好的安全性和耐受性,常见不良反应有皮肤毒性和腹泻,罕见不良反应有间质性肺炎、肝功能异常、口腔炎、脱发、口腔干燥等,无威胁患者生命的血液学毒性。与化疗毒副反应的处理措施不同,应用此类药物出现不良反应并非停药的指征,反而是肿瘤对靶向药物敏感的临床信号。许多研究发现皮疹与EGFR TKIs治疗的疗效相关,中重度皮疹患者总体生存明显优于轻度或无皮疹的患者。因此,正确处理EGFR TKIs 引起的不良反应具有十分重要的临床意义。 第一节皮肤毒性 皮肤毒性是最常报道的不良反应,发生率在2/3左右,常见反应包括痤疮样皮疹、甲沟炎及甲裂、毛发改变、皮肤干燥、超敏反应、粘膜炎等(表1)。EGFR TKIs的皮肤毒性/皮疹不属于过敏反应,而是皮肤EGFR受到抑制的结果。正常上皮和滤泡角细胞存在EGFR表达,EGFR在上皮细胞增殖分化等方面发挥重要作用,它可以剌激表皮细胞生长,抑制其分化,保护细胞抵抗紫外线相关损伤,抑制炎症并加速创面愈合。有证据提示EGFR表达或活性改变可伴有上皮异常增生和分化;皮肤毒性的机制还包括上皮角化过度和滤泡阻塞或炎症性反应。 表1 EGFR TKIs相关性皮肤毒性反应 EGFR TKIs引起的皮疹通常为痤疮样皮疹,呈丘疹脓疱样改变。皮疹的发生率随研究和药物而异,在BR.21研究中,皮疹发生率为79%,多为轻中度,3级和4级皮疹发生率分别为8%和1%。单抗皮疹发生率相对较高,在FLEX研究中,接受西妥昔单抗治疗的患者痤疮样重度皮疹的发生率

相关主题
文本预览
相关文档 最新文档