当前位置:文档之家› 趋化因子及其受体的研究进展

趋化因子及其受体的研究进展

趋化因子及其受体的研究进展
趋化因子及其受体的研究进展

趋化因子及其受体的研究进展

摘要:趋化因子( chemokine)是一类一级结构相似小分子细胞因子,能够趋化细胞定向移动的,而且在免疫细胞和器官的发育、免疫应答过程、炎症反应、病原体感染、创伤修复及肿瘤形成和转移等方面发挥广泛的生理和病理作用。本文综述了对趋化因子及其受体的结构、分类和生物学功能的研究进展。

关键词: 细胞因子;趋化因子;趋化因子受体;趋化作用

Abstract:chemokine is similar to the primary structure of a class of small molecule cytokine, chemokine cell directional movement, but also in the development of immune cells and organs, immune response, inflammatory response, pathogen infection, wound healing andplay a wide range of physiological and pathological roles of tumor formation and metastasis. This paper reviews the progress on the study of the structure, classification and biological function of chemokines and their receptors.

Keywords: cell factor; chemokines; chemokine receptor; chemotactic effect

免疫细胞的定向迁移是集体免疫应答发生和完成的必须条件。趋化因子是一类控制细胞定向迁移的细胞因子。其功能行使由趋化因子受体介导。趋化因子与其受体的相互作用控制着各种免疫细胞在循环系统和组织器官间定向迁移,使之到达感染、创伤和异常增殖部位,执行清除感染源、促进创伤愈合和消灭异常增殖细胞,维持组织细胞的平衡的功能。因此,趋化因子系统在免疫系统功能行使的各个环节中处于关键地位,并由此在病原体的清除、炎症反应、病原体感染、细胞及器官的发育、创伤的修复、肿瘤的形成及其转移、移植免疫排斥等方面都起着重要的作用。以趋化因子及其受体为控制靶点,通过激活或拮抗趋化因子受体的信号传导来调控趋化因子系统的功能,可

望用于控制和治疗相关疾病[1]。

1 趋化因子与趋化因子受体

趋化因子是一类能趋化细胞定向移动的小分子分泌蛋白,由70至100个氨基酸组成。至今已发现了40多种人的趋化因子,属细胞因子中的最大家族。当成纤维细胞、内皮细胞、表皮细胞等组织细胞和免疫细胞在受到刺激物如生长因子、干扰素、病毒产物及细菌产物的诱导时可分泌出不同的趋化因子。在趋化因子的分子中都有4个保守的半胱氨酸(C)。根据靠近分子氨基端(N端)的前两个C间是否插入其它氨基酸,将它们分为4个亚类:CXC类(插入1个氨基酸残基),亦称为A类趋化因子,;CC类(不插入其它氨基酸残基),又称为B类趋化因子,;CX3C类(插入3个其它氨基酸), C类(N端仅1个C)。目前所发现的趋化因子主要属于A类和B类。在分子结构上,皆通过二硫键折叠成以自由的N-端、三个反向折叠的B-片层和A螺旋的羧基端(C-端)为特征的二级结构。

趋化因子受体是一类介导趋化因子行使功能的GTP-蛋白偶连的跨膜受体(GPCR),通常表达于免疫细胞、内皮细胞等细胞膜上[2]。分子由约330个氨基酸组成。7个跨膜区将分子分成细胞外自由的N-端、3个细胞外环、3个细胞内环和C-端几个部分。胞内第二环是与异三聚体G-蛋白偶连的部位,有特征的天门冬氨酸-精氨酸-酪氨酸盒(DRY box)氨基酸序列。与趋化因子受体偶连的异三聚体G-蛋白的A 亚基为GiPo,对百日咳毒素敏感。按趋化因子的分类,将同CC类趋化因子结合的受体称为CC类受体(CCR),同CXC类趋化因子结合的受体称为CXC类受体(CXCR),同样有C和CX3C受体[3]。

趋化因子N-端氨基酸残基的缺失突变体不能与其受体结合,证实了趋化因子的N-端序列在与受体结合及引起信号转导中的关键作用。C-端能够极大地增强N-端肽段的信号转导功能。1st-beta-片层结构能够和血管内皮细胞上的氨基葡聚糖GAG结合,可使其附着并富集于血管内皮细胞上。趋化因子受体胞外区的N端及一个以上的胞外环参与其配体的结合,而且N端的序列在很大程度上决定了受体对趋化因子的特异选择性。趋化因子受体的C端(胞内部分)大都为富含丝氨酸和苏氨酸残基的片段,其磷酸化可能参与受体活化后的信号传导和内

化。在配体-受体结合实验中,可以看到趋化因子与受体间结合的冗余现象,即一个趋化因子可与数个趋化因子受体结合,一个趋化因子受体可与数个趋化因子结合。因此,在体外趋化实验中表现为,一种趋化因子可以趋化表达不同趋化因子受体的免疫细胞做定向迁移,一种免疫细胞可以为多种趋化因子所趋化[4]。正是这种趋化因子及其受体相互作用的冗余才使趋化因子系统在体内的精细调控成为可能。在体内,各种趋化因子通过它们在组织中不同时相的表达和分布差异,以及趋化因子受体在不同免疫细胞类群上不同时相的表达和分布差异,调控着不同免疫细胞的定向迁移和相互作用,并由此决定了趋化因子与其受体作用的特异性。

2 趋化因子对免疫细胞的趋化作用

趋化因子的基本功能就是对表达有相应趋化因子受体的细胞的定向趋化作用。目前认为,免疫细胞克服血管内皮细胞屏障,在体液和组织间穿行包括4个步骤,即细胞随体液流动、细胞被稳固黏附到血管内皮上、细胞穿过内皮细胞间隙、细胞迁移到特定组织中。在此过程中,趋化因子控制着渗出细胞的选择性以及被选择细胞的稳固黏附。体外实验已证实趋化因子能使在血流速度下的淋巴细胞黏附在固相支持物上,不同的趋化因子特异地引导表达相应趋化因子受体的淋巴细胞的附着[5]。免疫细胞由于所表达的选择素与血管内皮细胞上的选择素受体的相互作用,与血管内皮有瞬间的非选择性的可逆性黏附,因此免疫细胞在血流中沿血管壁做滚动前行。局部组织中血管内皮细胞所分泌的趋化因子通过内皮细胞上的GAG被富集在血管内皮表面。表达相应趋化因子受体的免疫细胞在滚动前行中由于与血管内皮上趋化因子作用而促使免疫细胞整合素的上调,整合素与内皮细胞上的黏附分子的相互作用导致免疫细胞不可逆地黏附到血管内皮表面[6]。稳固黏附的免疫细胞在其分泌的特殊酶的作用下,穿过内皮细胞间隙和基底膜,并在趋化因子浓度梯度的引导下,移行至特定组织中。

3 趋化因子在抗炎方面的作用

大多数趋化因子在炎症中所扮演的角色是吸引特定的炎症细胞浸润于炎症部位参与炎症反应,其作用的发挥通过与其受体的结合来完成。因此,我们可以通过抑制炎症初期某些趋化因子的活动来减少

有害的免疫应答,在这个观点的基础上,3种类型的拮抗剂已引起了关注。第一,趋化因子受体的小分子抑制剂;第二,修饰的趋化因子或N-端肽;第三,抗趋化因子或趋化因子受体的中和的单克隆抗体。前两点我们在上文已作说明,关于第三点,我们知道嗜酸性粒细胞和Th2细胞在过敏性疾病中起主要作用,这两种细胞都表达CCR3,并通过该受体对某些趋化因子如EOZXIN、RANTES产生应答。Health[7]已经研制出CXCR3的一种单克隆抗体,它可以阻断由CCR3配基诱导的趋化吸引性和钙离子的流动。此外,单克隆抗体在体内已被证实是有效的拮抗剂。如用抗TNF-A抗体来治疗风湿性关节炎。这种作用的发挥可能是通过中和病人关节处过多的TNF-A而抑制趋化因子的产生。另外,我们还可以通过某些细胞因子如IL-2,IL-4对CCR3在T淋巴细胞及趋化因子上的表达的影响来调节趋化因子在炎症反应中的作用[8]。

4 趋化因子受体与病原微生物的感染

4.1 疟原虫受体疟原虫入侵红细胞是通过红细胞上的Duffy抗原受体介导。DARC是红细胞上能够结合多种趋化因子的趋化因子受体,是发现的第一个可以和不同类趋化因子结合的趋化因子受体,但不能引发信号转导[9]。在功能上可能是血液中的趋化因子池,以吸收并调节血液循环中过量的趋化因子。

4.2 HIV的辅助受体 HIV感染宿主细胞除需要细胞上的CD4为受体外,还需要趋化因子受体做为其辅助受体才能实现。HIV首先与宿主细胞上的CD4结合,进一步与相应的趋化因子受体CCR5或CXCR4结合,最终导致HIV核酸穿膜进入宿主细胞。主要的辅助受体是CCR5和CXCR4[10]。由于分离时病毒所利用的辅助受体的差别,将HIV分为嗜巨噬细胞株(M-株)和嗜T细胞株(T-株),前者主要侵染细胞表面表达有CCR5的巨噬细胞,后者主要侵染细胞表面表达有CXCR4的T淋巴细胞。通常在初始感染者上分离到的HIV都是M-株。由于HIV的高变异性,在持续感染一段时间后,从感染者身上还可以分离到能够利用其它的趋化因子受体的HIV,如CCR2、CCR3、CXCR2等[11;12]。参与辅助受体功能的结构主要是趋化因子受体的N-端、胞外区的一些部位,它们与其趋化因子结合区域有部分交叉重叠。

5小结

总的来说,在过去的几年里,趋化因子及其受体已引起了广泛的关注,除了它们在HIV发病机制方面的作用以外,人们也认识到它们在自身免疫及炎症方面的影响,同时在正常的内环境稳定包括淋巴组织的发展及细胞转运方面它们也发挥重要作用。此外,趋化因子及其受体还可能是免疫反应的主要管理者。它们使不同的细胞网络之间产生相互作用,通过这些细胞产生的特异性趋化因子或表达的特异性趋化因子受体的模式来发挥作用。因此,趋化因子及其受体在临床应用上有很大潜能,人们已经开始应用趋化因子及其受体治疗炎症性疾病,抗HIV感染及抗肿瘤治疗等。同时,趋化因子及其受体也是对生物信息学和基因组学产生重要影响的最前沿的分子家族,我们期待着趋化因子领域的深入研究和发展能带给我们更多的惊喜。

趋化因子SDF-1及受体CXCR4研究进展

趋化因子SDF-1及受体CXCR4研究进展 第23卷第1期 2OO6年2月 生物学杂志 JOURNALOFBIOLOGY V o1.23No.1 Feb,2006 趋化因子SDF一1及受体CXCR4研究进展 储子彦,陈晓萍,方晶晶 (浙江工业大学生物与环境工程学院,杭州I310014) 摘要:趋化因子(chenmklne)是一类一级结构相似,以对白细胞等多种细胞具有趋化定向运动作用为特征的小分子蛋白.功 能研究表明,趋化因子在胚胎发育,血管生成,炎症,肿瘤,史滋病等机体多种生理和病理过程中发挥重要作用,部分趋化 因子的衍生物或抑制物具有潜在的临床应用前景.不久的将来,趋化因子及其受体可能成为疾病治疗的分子靶点. 关键词:趋化因子;SDF一1;CXCR4 中图分类号:4文献标识码:A文章编号:1008—9632(2006)Oi一0011—03 趋化因子是一类重要的免疫调节因子,直接引导 自细胞,包括多种免疫活性细胞进行有方向性迁移,不 仅能精确地调节免疫系统的反应,还对组织,器官形 成,造血系统功能有调节作用. 1趋化因子与受体的结构 趋化因子分子结构中有4个保守的半胱氨酸,形 成2对二硫键,可分成4个亚类:(1)CC亚类,2对二硫 键间无其它氨基酸间隔;(2)CXC亚类,间隔1个氨基 酸;(3)Cx3C亚类,间隔3个氨基酸;(4)C亚类,仅有1

对二硫键. SDF一1(stromalcell—derivedfactor1)基质细胞来源 因子,属于趋化因子CXC亚家族,编码区含267bp,编码89个氨基酸残基多肽. CXCR4为SDF一1受体,高度保守,a螺旋跨膜7 次,由352个氨基酸组成,在人体内,编码基因位于人染 色体2q21,有一个胞外N端,3个胞内环,3个胞外环和 1个胞内C端,SDF—l与CXCR4的N端结合,并与CX—CR4和第二胞外环ECI_2(secondextracelluarloop)相互作用才能启动下游信号通路. 2SDF一1/CXCR4生物学意义 2.1与HW病毒感染的关系 CXCR4为嗜T细胞性SI株辅助受体,能与CD4协 同作用,参与CD4抗原与HW表面糖蛋白gpl20结合 介导病毒吸附侵入的过程,CXCR4的N端结构参与病 毒结合,有多个CXCR4结构域特别是第二细胞外环结 构能与HⅣ相互作用.趋化因子与受体的结合能阻断 受体与HⅣ的结合位点防治HⅣ进入细胞,同时趋化 因子对受体的封闭和下调作用也成为一个有效的防治 手段,故趋化因子及其衍生物是辅助受体拮抗剂主要 成分之一. Fig1Representationof313modelforSDF—ld(NMR} 围1SDF一1n的3D模型 除了SDF一1的衍生物,还发现CXCR4的其他抑制剂,如:AMD一3100通过与CXCR4的第二膜外环的负电荷区域结合,成为迄今为止与CXCR4结合最有效的 非肽类抑制剂. 2.2与造血细胞的关系 2.2.1SDF一1对造血于/祖细胞增殖和分化的影响

趋化因子及其受体在免疫细胞中的作用

趋化因子及其受体在免疫细胞中的作用研究概述 趋化因子是目前成员最多的细胞因子家族,在人和小鼠中大概有50个内源性趋化因子。这些因子大约结合20多个跨膜受体。趋化因子的主要作用是控制免疫细胞的迁移模式,对细胞运动至关重要。趋化因子系统在初始T细胞产生,决定细胞的分化(如效应细胞和记忆细胞),影响调节性T细胞的功能,调节免疫细胞迁移和定位,已达到体内平衡。趋化因子在急性炎症和淋巴系统中对免疫反应的产生和调节具有重要作用。趋化因子在炎性疾病及癌症中的作用使其成为新的药物靶点。 趋化因子可以控制骨髓、血液及外周组织中的免疫细胞运输。CXCL12由CAR细胞产生,可以使发育中的中性粒细胞、B细胞和单核细胞保留在骨髓中。DC前体、肥大细胞前体和发育中的嗜酸性粒细胞通过未知机制保留在骨髓中。在没有CXCR4信号传导或CXCR2信号传导的情况下,嗜中性粒细胞离开骨髓并进入血液。B细胞通过CB2信号进入骨髓,并通过S1P1信号传导进入血液。B细胞可以使用CCR7、CXCR4和CXCR5信号进入淋巴结构。单核细胞响应CCR2信号进入血液以及CXCR4信号传导减少。单核细胞分化为促炎症(CCR2+)和抗炎(CX3CR1+)单核细胞。抗炎单核细胞可以通过CX3CL1进入外周组织。DC前体通过未知机制进入血液,并可以通过CCL20离开外周组织。在人类中,CXCL14也可能在抗炎单核细胞和DC前体迁移到外周组织中起作用。肥大细胞前体通过未知机制离开骨髓,并在CXCR2介导的信号后迁移至肠道。CCR3信号通过CCL11和CCL24(人和小鼠)以及CCL26(人)后,嗜酸性粒细胞进入血液并离开外周组织。

表皮生长因子在皮肤科临床应用的安全性研究进展

表皮生长因子在皮肤科临床应用的安全性研究进展 在上皮细胞增殖分化当中,表皮生长因子和受体通路起着关键性的作用,一般来讲,在皮肤科临床应用当中,将表皮生长因子当做外用制剂,红斑等不良反应发生率比较低,而且均能耐受。本文针对表皮生长因子在皮肤科临床应用的安全性研究进展进行了论述,希望有一定的参考价值。 标签:表皮生长因子;皮肤科;安全性 在很早的时期,相关专家在进行神经生长因子的研究过程中,在某些小动物的身上找到了表皮生长因子,通过实践发现,在上皮细胞增殖、分化等方面表皮生长因子起着关键性的作用。在现代医学临床当中,表皮生长因子被广泛的运用到其中,尤其是糖尿病足溃疡、烧伤等疾病当中,表皮生长因子可以让创面达到愈合的目的,并且使得瘢痕组织形成进一步的降低。 美国FDA曾经表示,某医药公司研究了一种治疗糖尿病的药物,名称为促糖尿病溃疡愈合凝胶药Regranex,这种药物中的某些成分可能造成致癌风险的发生。Regranex当中包含某种物质,如,贝卡普勒明,这种成分是血小板生长因子亚型,在治疗创面方面有着非常显著的效果。此次深入的分析和研究了保险计划数据库中的成人糖尿病。结果显示,患者癌症死亡率有所上升。所以,表皮生长因子在创伤愈合临床应用当中被人们所质疑。但是,肿瘤和慢性创伤之间人们认为存在相应的关联性,如,溃疡。溃疡被定义为是一种皮肤恶性病变,属于慢性伤口或者是陈旧性瘢痕,对于其的机制尚不清楚。有关专家通过研究得出,肿瘤微环境存在慢性创伤的特性,创伤愈合时,Hedgehog、Notch等发挥效应的通路,对于肿瘤干细胞而言,促进其的进一步生长,另外,炎症反应过程中不同的炎症因子也能够很大程度的促进肿瘤干细胞的生长。所以,此次研究中,主要对表皮生长因子在皮肤科临床应用的安全性进行了分析。 1 EGF及EGFR表达水平和肿瘤生长及转移的可能机制 在很早的时期,专家们对表皮生长因子进行了研究,并且提出了该方面能够诱导肿瘤进一步的生长,然而,该提出的内容在临床上不具有意义,这是由于人体内因为多方面的内源性机制,可以对正常细胞起到保护作用,从而使得非程序的有丝分裂情况不会出现。但是,EGF及EGFR和肿瘤之间有着一定的关联性[1-2]。 其实,表皮生长因子受体,我们也可以将其叫做酪氨酸激酶受体,通过对其进行配体,或者让其能够突变磷酸化,从而使其处于激活状态下,然后通过各种下游信号通路,将其进行核内传递,在上皮细胞增值等方面,表皮生长因子具有十分重要的作用。对于肿瘤来讲,预后不良的信号有EGFR过度表达,或者是过度活化,对于肿瘤的发生及发展具有促进作用。相关专家研究过程中发现,在很多种肿瘤发生发展当中,EGFR起着关键性的作用,如,肺癌等。可以说,表皮生长因子受体抑制剂在我国现代肿瘤医学临床治疗运用方面逐渐的成熟。

第六章 表皮生长因子受体抑制常见不良反应及其处理

第六章表皮生长因子受体抑制剂常见不良反应及其处理 表皮生长因子及其受体信号通路在非小细胞肺癌(NSCLC)发生发展中发挥了重要作用,它调控肿瘤细胞增殖、生存和凋亡、血管生成、肿瘤转移等多个生物学过程,是NSCLC治疗的重要靶点之一。针对表皮生长因子受体(EGFR)的靶向药物包括小分子抑制剂(如吉非替尼和厄洛替尼)和单克隆抗体(如西妥昔单抗等)。小分子药物已作为晚期NSCLC的二、三线治疗方案广泛用于临床,EGFR单抗联合化疗一线治疗晚期NSCLC同样也取得了较好的疗效。 EGFR抑制剂(EGFR TKIs)无论是小分子药物还是单克隆抗体,均具有良好的安全性和耐受性,常见不良反应有皮肤毒性和腹泻,罕见不良反应有间质性肺炎、肝功能异常、口腔炎、脱发、口腔干燥等,无威胁患者生命的血液学毒性。与化疗毒副反应的处理措施不同,应用此类药物出现不良反应并非停药的指征,反而是肿瘤对靶向药物敏感的临床信号。许多研究发现皮疹与EGFR TKIs治疗的疗效相关,中重度皮疹患者总体生存明显优于轻度或无皮疹的患者。因此,正确处理EGFR TKIs 引起的不良反应具有十分重要的临床意义。 第一节皮肤毒性 皮肤毒性是最常报道的不良反应,发生率在2/3左右,常见反应包括痤疮样皮疹、甲沟炎及甲裂、毛发改变、皮肤干燥、超敏反应、粘膜炎等(表1)。EGFR TKIs的皮肤毒性/皮疹不属于过敏反应,而是皮肤EGFR受到抑制的结果。正常上皮和滤泡角细胞存在EGFR表达,EGFR在上皮细胞增殖分化等方面发挥重要作用,它可以剌激表皮细胞生长,抑制其分化,保护细胞抵抗紫外线相关损伤,抑制炎症并加速创面愈合。有证据提示EGFR表达或活性改变可伴有上皮异常增生和分化;皮肤毒性的机制还包括上皮角化过度和滤泡阻塞或炎症性反应。 表1 EGFR TKIs相关性皮肤毒性反应 EGFR TKIs引起的皮疹通常为痤疮样皮疹,呈丘疹脓疱样改变。皮疹的发生率随研究和药物而异,在BR.21研究中,皮疹发生率为79%,多为轻中度,3级和4级皮疹发生率分别为8%和1%。单抗皮疹发生率相对较高,在FLEX研究中,接受西妥昔单抗治疗的患者痤疮样重度皮疹的发生率

趋化因子及其受体的研究进展

趋化因子及其受体的研究进展 摘要:趋化因子( chemokine)是一类一级结构相似小分子细胞因子,能够趋化细胞定向移动的,而且在免疫细胞和器官的发育、免疫应答过程、炎症反应、病原体感染、创伤修复及肿瘤形成和转移等方面发挥广泛的生理和病理作用。本文综述了对趋化因子及其受体的结构、分类和生物学功能的研究进展。 关键词: 细胞因子;趋化因子;趋化因子受体;趋化作用 Abstract:chemokine is similar to the primary structure of a class of small molecule cytokine, chemokine cell directional movement, but also in the development of immune cells and organs, immune response, inflammatory response, pathogen infection, wound healing andplay a wide range of physiological and pathological roles of tumor formation and metastasis. This paper reviews the progress on the study of the structure, classification and biological function of chemokines and their receptors. Keywords: cell factor; chemokines; chemokine receptor; chemotactic effect 免疫细胞的定向迁移是集体免疫应答发生和完成的必须条件。趋化因子是一类控制细胞定向迁移的细胞因子。其功能行使由趋化因子受体介导。趋化因子与其受体的相互作用控制着各种免疫细胞在循环系统和组织器官间定向迁移,使之到达感染、创伤和异常增殖部位,执行清除感染源、促进创伤愈合和消灭异常增殖细胞,维持组织细胞的平衡的功能。因此,趋化因子系统在免疫系统功能行使的各个环节中处于关键地位,并由此在病原体的清除、炎症反应、病原体感染、细胞及器官的发育、创伤的修复、肿瘤的形成及其转移、移植免疫排斥等方面都起着重要的作用。以趋化因子及其受体为控制靶点,通过激活或拮抗趋化因子受体的信号传导来调控趋化因子系统的功能,可

表皮生长因子研究进展

表皮生长因子对动物胃肠道发育影响 的研究进展 摘要:1962年,Cohen等首次发现了表皮生长因子(epidermal growth factor,EGF),它是一种广泛存在于人或其它动物体内的由53个氨基酸组成小分子多肽。EGF通过与细胞膜上的表皮生长因子受体(epidermal growth factor receptor ,EGFR)结合,共同调控细胞分化、分裂和增殖等重要的生物学过程。 关键词:EGF;EGFR;胃肠道 1 EGF的发现 1962年,美国纳什维尔市范德比特大学医学院Steanley-Cohen等首次在小鼠颌下腺中发现了一种小分子蛋白,将其注入新生鼠,可使之眼脸早开、牙齿早萌、体重减轻和毛发生长延迟,将其加入培养液中培养表皮细胞时,发现其可直接促进表皮细胞的生长与分化,因此将其命名为表皮生长因子(epidermal growth factor,EGF) [1]。1975年Gregor从人尿中提取出人表皮生长因子(hEGF),由于其可抑制胃酸分泌,又称抑胃素[2]。迄今为止,发现了许多与EGF同源的蛋白,包括EGF家族成员与EGF结构相似的蛋白,后者能结合EGF受体、表现出相似的生物学功能。EGF 家族包括TGF-α、HB-EGF(heparin-binding EGF-like growth factor)、AR(amphiregulin)、NRG(neuroregulin)、EPR(epiregulin)、HRG(heregulin)、BTC(Betacellulin)。现在还发现,在许多蛋白质分子中存在着类似EGF的结构域,即大小在50个氨基酸残基左右,内部具有完全保守的3对二硫键[3]。这类分子从低等动物到哺乳动物均有发现。凝血系统中的凝血因子Ⅵ、Ⅸ、Ⅹ和ⅩⅡ中都含有3个典型的类EGF结构域[4,5]。 2 EGF的化学结构及分布 人EGF是由53个氨基酸组成的多肽,链内含有3对二硫键,定位于4号染色体长臂。EGF 序列位于前体蛋白肽链的C末端附近,分子量为6045Da,等电点PI4.6,具有热稳定性。EGF 含159个碱基对和6个半胱酸残基,从而在6~20、14~3l和33~42之间分别形成三个环,这些环状结构使EGF对蛋白酶具有较高的稳定性,活性中心位于48~53个氨基酸残基之间。研究表明,该二硫键对EGF生物活性的发挥起重要作用[6]。

趋化因子家族及其受体基础研究进展

趋化因子家族及其受体基础研究进展 趋化因子(Chemokine)是一类小分子碱性蛋白,主要的功能是能够趋化细胞定向移动。 目前已经发现的趋化因子有50多种,随着研究的深入,趋化因子及其受体的结构、功能及在体内的作用已经被众多的研究者发现。趋化因子及其受体的相互作用,可以参与多种生理功能,比如细胞的生长、发育、分化、凋亡和分布等,在病理过程中也具有重要作用,如炎症反应、病原体感染、创伤修复及肿瘤形成和转移等。 趋化因子一般由70-125个氨基酸组成,分子量较小(6-14KD)。按照一级肽链结构特点,其N端半胱氨酸残基的位置和数目可将趋化因子分为4个亚族:CC、CXC、C和CX3C(C为半胱氨酸,X为任意氨基酸)。四类趋化因子结构相似性较高,氨基酸序列具有一定的同源性。根据趋化因子的表达方式以及其在免疫系统中的作用,可以将他们分为两类:内环境稳定性趋化因子和炎症性趋化因子。内环境稳定性趋化因子主要在归巢场所表达,有着维持内环境稳态的功能,并且对淋巴细胞归巢及成熟有着明确的作用。炎症性趋化因子由受到刺激的细胞表达,如炎性细胞因子的诱导、细菌毒素或其它破坏内环境稳定的因素的刺激,主要功能是募集效应细胞,在协调天然和获得性免疫反应中起重要作用。 大多数的趋化因子属于CC和CXC两个亚族族。其中CC亚族有28个成员(CCL1-CCL28),主要对中性粒细胞、单核细胞、肥大细胞、树突细胞、NK细胞、T和B淋巴细胞等具有强 大趋化活性,比较重要的有:单核细胞趋化蛋白(MCP-1/CCL2)、巨噬细胞炎症蛋白(MIP/CCL3)、正常T细胞表达和分泌,活化时表达下降的因子(RANTES/CCL5)等;CXC亚族有17个成员(CXCL1-CXCL17),CXC亚家族主要作用于中性粒细胞,这个亚族比较重要的趋化因子有: 白细胞介素-8(IL-8/CXCL8)、γ干扰素诱生的单核因子(Mig/CXCL9)、γ干扰素诱生蛋白10(IP-10/CXCL10)、基质细胞来源因子1(SDF-1/CXCL12)等。另外,CXC亚家族根据其第1 个半胱氨酸前有无谷氨酸-亮氨酸-精氨酸序列(Glu-Leu-Arg)进一步分为ELR+和ELR-两类, 前者具有促进血管新生作用。C亚家族包含两个趋化因子XCL1和XCL2,主要表达于胸腺,作用于CD8+ T淋巴细胞。CX3C亚家族只有一个趋化因子CX3CL1,也称为不规则趋化因子(fractalkine)或神经元趋化因子(neurotactin),是唯一膜结合性趋化因子,主要作用于单核细胞和中性粒细胞。 趋化因子要发挥生物学作用,必须与相应的受体结合才行。趋化因子受体(Chemokine Receptor)属于G蛋白偶联受体,具有7个富含疏水氨基酸的α螺旋穿膜区结构,主要表达

趋化因子及其受体与大肠癌

趋化因子及其受体与大肠癌的关系 摘要 越来越多的研究表明肿瘤的微环境在肿瘤的发生发展中起着至关重要的作用,而趋化因子及其受体作为肿瘤微环境中关键信号分子,在肿瘤的发生发展中发挥着不可或缺的作用。关键词:趋化因子大肠癌趋化因子受体 大肠癌包括结肠癌与直肠癌,是消化系统最常见的恶性肿瘤。近年来,大肠癌的发病呈逐年上升趋势,给社会和家庭带来沉重负担。大量研究资料表明,大肠肿瘤是一个复杂的混合体,除癌细胞外还有炎症细胞、免疫细胞、内皮细胞、成纤维细胞等,这些基质细胞构成了肿瘤细胞的基本的微环境,并通过分子信号通路为肿瘤提供生存所需要的物质。而趋化因子及其受体作为肿瘤微环境中关键信号分子,在肿瘤的发生发展中发挥着不可或缺的作用。本文就这一方面进行综述。 1.趋化因子及其受体的分类结构 趋化因子是一类结构功能相似、具有趋化吸引和活化作用的碱基肝素结合性的小分子分泌蛋白,相对分子质量为8 000~10 000。目前研究发现并克隆出的趋化因子达50多种[1]。根据其分子结构中N端半胱氨酸的不同可分为CXC、CC、C和CX3C四个亚家族[2]。目前认为CXC亚家族主要作用于中性粒细胞、淋巴细胞和单核细胞。CC亚家族主要作用于单核细胞、淋巴细胞、嗜酸性粒细胞和嗜碱性粒细胞。CX3C亚家族主要作用于中性粒细胞和单核细胞。C亚家族仅作用于淋巴细胞。CXC趋化因子根据结构功能区第一个Cys前有无ELR (Glu-Leu-Arg)序列分为ELR+和ELR-两类。常见的ELR+CXC趋化因子有IL-8、上皮细胞嗜中性粒细胞活性蛋白(ENA-78)、中性粒细胞趋化蛋白-2(GCP-2)、肿瘤生长相关因子α/β/γ(GRO-α/β/γ)、中性粒细胞活化蛋白-2(NAP-2)等[3]。根据功能可把趋化因子分为2类[4]:一类称为炎症型趋化因子,主要趋化单核细胞、中性粒细胞和效应T细胞等效应细胞迁移至炎症发生部位,如RANTES/CCL5和IL-8/CCL2;另一类为自稳型趋化因子,趋化自稳免疫系统中的一些细胞,如SDF-1/CXCL12。 趋化因子受体是表达在中性粒细胞、淋巴细胞、巨噬细胞等炎症细胞和上皮细胞、成纤维细胞等结构细胞表面上的具有七次跨膜域的受体,属G蛋白偶联受体超家族成员,是介导相应趋化因子发挥生物学功能的关键受体。依据其结合的配体不同可分为CXCR、CCR、CR、CX3CR四类。 2.趋化因子及其受体的一般功能 趋化因子在正常和非正常生理状况下起着重要作用:1、促进细胞迁移;2、诱导和整合蛋白的活化;3、诱导细胞的呼吸爆发;4、诱导细胞因子的转录,促使多种淋巴因子的释放; 5、诱导次级淋巴器官的发育; 6、刺激血管的生成; 7、刺激骨髓细胞的生成并抑制干细胞的功能; 8、参与肿瘤细胞的移动、侵袭和转移; 9、作为免疫调节剂上调T细胞和抗原提呈功能;10、促进细胞增殖;11、促进抗原特异性Th1和Th2克隆活化[5]。不同类型的趋化因子通过与相应受体结合而发挥作用。但部分趋化因子与受体结合的特异性不强,及一种趋化因子可与多种受体结合,而一种趋化因子受体也可与多种趋化因子结合,不过亲和力有所不同[6]。 3.趋化因子及其受体在肿瘤中的双向调节作用

IL17细胞因子及其受体家族研究进展

白介素IL-17细胞因子及其受体家族研究进展 白介素-17(IL-17)主要由T辅助细胞TH17产生。IL-17可以直接或间接诱导多种细胞因子、趋化因子、炎症因子与抗微生物蛋白来识别介导自身免疫与慢性感染的靶基因,最近的研究已经证明,IL-17与肿瘤的发生密切相关。 白介素-17(IL-17)已经发现的成员有6个,分别就是:IL-17A、IL-17B、IL-17C、IL-17D、IL-17E(也被称为IL-25)与IL-17F。随着研究的深入,IL-17产生细胞除了TH17细胞外,还有很多其它类型的细胞可以产生,比如:巨噬细胞、树突状细胞、CD-T细胞、自然杀伤T(NKT)细胞、CD8+ T细胞、调节性T细胞(Tregs)、嗜中性粒细胞、肥大细胞、骨髓源性抑制细胞(MDSCs)与淋巴组织诱导物(LTi)细胞等,在上皮细胞、周细胞、平滑肌细胞与肿瘤细胞中也可产生白介素IL-17。在IL-17家族的6个成员中,IL-17A就是IL-17家族的原型,IL-17F与之同源性最高(50%),并且编码基因定位于染色体的同一区域6p12,其它与IL-17A同源性较差,只有16%-30%,且定位在不同的染色体上。但这些细胞因子在人、鼠种属间的保守性较高(62-80%)。IL-17家族成员以同源二聚体或异源二聚体的形式发挥功能。IL-17A、IL-17E、IL-17F就是重要的促炎症因子,而IL-17B、IL-17C、IL-17D的功能还尚待研究。 白介素IL-17受体(IL-17R)家族由5个成员组成:IL-17RA、IL-17RB、IL-17RC、IL-17RD、IL-17RE。IL-17R由27个氨基酸的N-末端信号肽、293氨基酸胞外结构域、21个氨基酸的跨膜结构域与525个氨基酸异常长的胞质尾巴构成的单程跨膜蛋白。IL-17受体家族成员之间可以组合成不同的复合物,如IL-17RA与IL-17RC复合体介导细胞对IL-17A与IL-17F的反应,IL-17RA与IL-17RB复合体介导细胞对IL-17E的反应。IL-17RA作为这个家族迄今为止最大的分子,编码的基因位于染色体22上,就是至少4个配体传递信号的通用亚基。其她受体的编码基因位于染色体3上。L-17RA广泛表达,特别就是在造血组织中表达水平高。 IL-17RB能结合IL-17B与IL-17E,它主要表达于各种内分泌组织及肾、肝与TH2细胞。 IL-17RD负调控FGF介导的Ras-MAPK及PI3K信号通路。人的IL-17RD也能抑制FGF依赖的ERK激活与FGF依赖的增殖,但鼠的IL-17RD却能结合TAK1激活MAP2K4-JNK信号通路。IL-17受体家族中被了解最少的成员就是IL-17RE,近来研究表明IL-17C可能就是它的配体。

第15章细胞因子及其受体

15 细胞因子及其受体 免疫受体是由一个由固有免疫系统和适应性免疫系统叠加而成的免疫系统,又是一个弥散系统,在体内往复循环的免疫细胞之间没有固定的有线”连接。这样的一个系统有效运转有赖于不同细胞之间的有序分工合作,信息交换与密切协调。细胞因子(cytokine)是免疫细胞之间以及免疫细胞与其他组织之间相互交换的语言。所谓细胞因子是指是有免疫细胞或非免疫细胞(如血管内皮细胞,表皮细胞和成纤维细胞等)经刺激而合成分泌的一类生物活性分子,他们之间的信息交换与相互调节,参与免疫应答和炎症反应过程。15-1细胞因子的主要特点(General Characteristics Of Cytokines)内分泌素也具有相对分子质量小,浓度低等特点,能够远距离调解组织器官的功能。细胞因子与与内分泌素不同,他们不由专门腺体分泌,而是来自多种不同的组织和细胞,以近距离调节为主。虽然已经发现200余种细胞因子,从人类基因组计划的测序结果来看,还有更多的细胞因子将被发现,他们具有如下一些基本特征: (1)半衰期短,不在细胞内储存而是在被活化

后开始合成并且分泌的。 (2)多效(重叠)性(pleiotropism):多种细胞可以产生同一种细胞因子,一种细胞因 子可以对不同细胞发挥不同作用。 (3)丰裕性(redundant):两种以上的的细胞因子具有相同的或者相似的生物学作用的 现象比较常见。 (4)协同性(synergy):两种细胞因子同时作用于一个靶细胞的效应大于他们单独效应 之和,即为协同作用。 (5)拮抗性(antagonism):有是有两种细胞因子有相互抑制的作用,即为拮抗性。(6)网络性:细胞因子能够诱导或抑制其他细胞因子的合成,形成细胞因子功能和调节 网络。 (7)效应延迟:靶细胞对细胞因子的反应通常发生在几个小时内,需要新mRNA和蛋白质 分子的原位合成。 (8)效应范围:近距离作用为主。多数细胞因子在血液中是检测不到的,他们发挥作用 的方式以旁分泌(paracrine)和自分泌 (autocrine)为主,前者指其对临近细胞

表皮生长因子类药物近期研究概况及展望

表皮生长因子类药物近期研究概况及展望 1 表皮生长因子作用及特点 表皮生长因子系列主要包括表皮生长因子(EGF)、胰岛素生长因子(IGF-1)、碱性纤维原细胞生长因子(bFGF)、酸性纤维原细胞生长因子(aFGF)。其有滋润皮肤,消除皱纹,修复创伤,预防色斑等作用,另外对于人体骨骼系统、血液、呼吸、分泌、生殖、免疫和神经系统均都有很好的调节作用。 但表皮生长因子作为蛋白质多肽类药物,存在分子量大,难以透过皮肤角质层,稳定性差,半衰期短,对温度、PH等外界环境敏感等缺点。 2 表皮生长因子类国内外研究概况 2.1国内市售生长因子类产品概况 目前,国内市售的生长因子及其衍生物剂型均为外用制剂,包括溶液剂、冻干粉、凝胶剂、滴眼液等。具体如下注射用鼠神经生长因子、冻干鼠表皮生长因子、重组人表皮生长因子衍生物滴眼液、重组人表皮生长因子凝胶、重组人表皮生长因子滴眼液、重组牛碱性成纤维细胞生长因子凝胶、外用重组人碱性成纤维细胞生长因子、外用重组人表皮生长因子衍生物、外用重组人表皮生长因子、外用重组牛碱性成纤维细胞生长因子、重组牛碱性成纤维细胞生长因子眼用凝胶、重组牛碱性成纤维细胞生长因子外用溶液、重组牛碱性成纤维细胞生长因子滴眼液、外用重组牛碱性成纤维细胞生长因子(融合蛋白)、外用冻干重组人酸性成纤维细胞生长因子等。 2.2表皮生长因子传统剂型研制及应用概况 由上海大江集团股份有限公司制药公司于2002年研制了外用冻干重组人表皮生长因子,并申报国家一类新药。2003年由上海信谊药业有限公司研制出了重组人表皮生长因子喷雾剂的制备方法。2009年由河北东方康星生物制药有限公司研制了外用冻干鼠皮生长因子。2009年由第四军医大学研制出了一种多肽、蛋白类药物口腔黏膜吸收剂型的组方及制备方法。有关生长因子溶液剂、乳膏剂、凝胶剂临床应用及其与其他药物连用治疗皮肤创伤等报道较多,暂不详述。中国人民解放军军事医学科学院陆兵选取重组人表皮生长因子为模型药物,研究了其稳定性,并将其分别制备成亲水性凝胶剂及W/O型乳膏剂,工艺简单,质量可靠,使用方便。此外重组人表皮生长因子滴眼液也有见报道。

表皮生长因子受体抑制剂耐药研究进展

?8l? doi:10.3%9/j.issn.1674-0904.2009.01.028表皮生长因子受体抑制剂耐药研究进展 陈萍,李慧艳综述,侯梅△审校 (四川大学华西医院肿瘤中心,成都610041) 【关键词】EGFR抑制剂;耐药 【中图分类号】R730.5[文献标识码】A[文章编号】1674-090#(2009)oi—0081—03 EGFR(表皮生长因子受体)抑制剂现已在临床中广泛使用,不论是单用还是与化疗药物联合使用都表现出了较强的作用,延长了患者的生存时间,改善了患者的生存质量,但由于最终几乎所有的患者都会产生耐药,限制了其长期疗效。因此,对其耐药机制的研究对于阐明耐药机理、克服耐药以及研发新的抗肿瘤药物都具有非常重要的意义。EGFR抑制剂耐药的机制主要包括以下几个方面:酪氨酸受体高表达,下游效应蛋白活化;非依赖于EGFR的血管生成增加;下游区介质活化,信号途径激活以及EGFR激酶区域特异性继发突变。现就EGFR抑制 对EFGR抑制剂的获得性耐药与IGF一1R受体增加有关【1J。一项研究得出结论,使用EFGR抑制剂时,可以诱导EGFR:IGF—lR异二聚体形成,IGF-IR及其下游的信号调节物活化,细胞凋亡减少,导致肿瘤细胞对EGFR耐药,而抑制IGF—lR受体表达可以预防或延缓对EGFR的耐药…2。另一项研究用人转化生长因子.acDNA(一种EGFR的配体)转染结肠癌细胞,结果显示转化生长因子.Ot的组成型表达以及它之后的EGFR激活,可导致下游的细胞分裂素活化蛋白激酶丢失及Akt的激活,这又使得减少增殖、增加凋亡的异种移植物减少【3J。 剂耐药机制研究进展综述如下: 1酪氨酸受体高表达,下游效应蛋白活化 2非依赖于EGFR的血管生成增加 细胞内存在许多转导增殖刺激的酪氨酸激酶(tyrosinekinase,TK)受体,包括EGFR、胰岛素样生长因子l受体(IGF一1R:insulin—likegrowthfactor-Ireceptor)、VEGFR、血小板衍生生长因子受体(PDG-FR)以及肝细胞生长因子受体(c.MET)。其中,IGF—lR途径是相当重要的一条途径。 人IGF.IR是一种跨膜的酪氨酸蛋白受体,对细胞的分裂分化和增殖具有重要的调控作用。IGF-1R与其配体结合通过启动2条信号传递链:Ras/Raf/MEK/ERK和P13K/PKB/AKT,促进有丝分裂及细胞生长。促分裂原活化蛋白激酶(MAP激酶)途径,在导致细胞增殖的信号传导方面至关重要,且常被成倍增加的致癌性因子(ras、raf、mos等)所激活。IGF—IR诱导肿瘤生长的另~个机制是P13激酶途径。另外,IGF-lR受体途径还与其他生长因子相互作用,相互影响。 [收稿日期】2008—08—20;[修回日期】2008—09—24[作者简介】陈萍(1984一),女,四川遂宁人。在读硕士,研究方向为肿瘤多药耐药及其逆转。 【通讯作者】△侯梅,教授,E—m蚰:hotmall8@咖.COin 人体大部分肿瘤的生长和转移都依赖于病理条件下的血管生成(angiogenesis),肿瘤血管生成有别于生理条件下严格受控的血管形成过程(Vasculo-genesis)。血管生成在肿瘤的发生、发展和转移中都起着非常重要的作用,因此可以通过抑制血管生成来达到控制肿瘤的目的。 调节血管生成的最主要的生长因子是血管内皮生长因子(VEGF)与碱性成纤维细胞生长因子(bF-GF)。而EGFR能调控多种血管生成因子,包括VEGF和bFGF【41。EGFR抑制剂能够通过抑制EGFR活化从而下调肿瘤诱导VEGF介导的血管生成。但肿瘤细胞具有较大的易变性,并且肿瘤细胞分泌的促血管生成因子不止一种,采用抗VEGF处理后,可能诱导肿瘤细胞发生突变,分泌其它血管因子替代VEGF诱导内皮细胞生成血管,导致肿瘤耐药性的产生。Viloria.Petit等在动物体内培育出耐EGFR抑制剂的细胞株,体外分离培养后,耐药株对EGFR抑制剂非常敏感,而将耐药株注人动物体内却显示出较强的耐药性,他们的研究也提示了血管生成调控的改变可能会诱导肿瘤对EGFR抑制剂产生耐药【5|。

趋化因子受体_CXCR7及其配体_CXCL12、CXCL11与非小细胞肺癌关系

四综述四 D O I :10.3760/c m a .j .i s s n .1673-436X.2014.08.013作者单位:200433上海长海医院呼吸内科通信作者:韩一平,E m a i l :y p h a n 2006@163.c o m 趋化因子受体C X C R 7及其配体C X C L 12 二C X C L 11与非小细胞肺癌关系 万善志 韩一平 ?摘要? 趋化因子受体C X C R 7及C X C L 12二C X C L 11在生物体中发挥重要作用,尤其在肿瘤细胞生长二增殖二侵袭二转移等过程中的作用成为近年来的研究热点之一三本文就C X C R 7二C X C L 12二C X C L 11的理化和生物学特性及其在非小细胞肺癌中的研究进展和意义进行综述三 ?关键词? 趋化因子;趋化因子受体;C X C R 7;C X C L 12;C X C L 11; 非小细胞肺癌R e l a t i o n s h i p o f c h e m o k i n e r e c e p t o rC X C R 7a n d i t s l i g a n dC X C L 12,C X C L 11w i t hn o n -s m a l l c e l l l u n g c a n c e r W a n S h a n z h i ,H a nY i p i n g .D e p a r t m e n t o f R e s p i r a t o r y M e d i c i n e ,S h a n g h a iC h a n g h a i H o s p i t a l ,S h a n g h a i 200433,C h i n a C o r r e s p o n d i n g a u t h o r :H a nY i p i n g ,E m a i l :y p h a n 2006@163.c o m ?A b s t r a c t ? C h e m o k i n e r e c e p t o rC X C R 7a n d i t s l i g a n dC X C L 12,C X C L 11p l a y a n i m p o r t a n t r o l e i n t h eb o d y .E s p e c i a l l y ,t h e i r f u n c t i o n i nt h e p r o c e s so f c e l l g r o w t h ,p r o l i f e r a t i o n ,i n v a s i o na n d m e t a s t a s i so f t u m o r b e c o m e s o n e o f t h eh o t r e s e a r c h t o p i c i nr e c e n t y e a r s .T h i s p a p e r r e v i e w s t h e p h y s i c o c h e m i c a l a n d b i o l o g i c a l c h a r a c t e r i s t i c s ,t h er e s e a r c h p r o g r e s sa n d s i g n i f i c a n c e o f C X C R 7a n di t sl i g a n d C X C L 11,C X C L 12i nn o n -s m a l l c e l l l u n g c a n c e r .?K e y w o r d s ? C h e m o k i n e ;C h e m o k i n er e c e p t o r ;C X C R 7;C X C L 11;C X C L 12;N o n - s m a l lc e l ll u n g c a n c e r 趋化因子是一组由不同类型细胞分泌的可溶性 细胞因子,根据氨基酸N 端关键性半胱氨酸残基空 间排列位置的不同,可分为C X C 二C C 二C X 3C 和C 4个亚族[1] , 在细胞活化二分化和运动中发挥着趋化吸引作用[2 ],通过与细胞表面的G 蛋白耦联受体 (G P C R )结合后可引发细胞发生定向性迁移或趋化行为[3] ,在胚胎发生二血管生成二创口愈合二T h 1/T h 2 细胞衍化二白细胞稳态和淋巴器官发育二炎症性疾病二过敏性疾病二促瘤和抗瘤反应中都有着重要作用三 趋化因子受体属7次跨膜G P C R 超家族[4] , 到目前为止已发现20种趋化因子受体,包括C C R 1-11二C X C R 1-7二X C R 1二C X 3C R 1, 是细胞运动与黏附的主要调节因子,通过G 蛋白介导进行信号转导一直被认为是趋化因子受体的最大特点 [1] 三但也有研 究发现[5-6 ],趋化因子受体还可通过非G 蛋白依赖 性的信号转导发挥功能三研究发现,趋化因子及其 受体不仅具有结构同源性和功能相似性,两者还可形成复杂的相互作用网络,在炎症二感染二组织损伤二过敏二血管性疾病及恶性肿瘤发生发展过程中发挥 重要作用[7-8] ,尤以在肿瘤发生发展及转移中作用最 为显著,两者相互作用可促进肿瘤细胞的播散二迁移三肿瘤细胞及间质细胞也可以通过自分泌及旁分 泌方式产生大量趋化因子,产生协同作用促进肿瘤 细胞增殖二转移[ 9] 三有文献报道趋化因子参与乳腺癌二黑色素瘤二胃癌及肺癌等肿瘤细胞转移至特定器 官(淋巴结二骨二骨髓二肝二肺等)的生物学过程[ 10-11] 三本文就趋化因子及其受体本身功能及在非小细胞肺癌(N S C L C ) 中的作用进行综述三1 趋化因子受体C X C R 7C X C R 7又称孤儿受体R D C 1或C C X -C K R 2, 1989年从狗甲状腺c D N A 文库中克隆出来, 早期一直认为是肠内血管活性肽(V I P )的G P C R ,随着研究发展有专家对V I P 与R D C 1的结合提出了质疑,认为其是与降钙素基因相关肽结合的受体,后来研究又认为R D C 1可能是肾上腺素受体,这些假设最终都被否定[12-15 ]三事实上,R D C 1基因在哺乳动物 (人类二小鼠二大鼠二狗等)中表达高度保守,在小鼠中 四 716四国际呼吸杂志2014年4月第34卷第8期 I n t JR e s p i r ,A p r i l 2014,V o l .34,N o .8

(推荐)II型细胞因子及其受体研究进展

II型细胞因子及其受体研究进展 目前已经发现的细胞因子有200多种,随着基因测序技术的快速发展,相信会有更多的因子被发现,并且随着细胞工程技术和蛋白重组技术的发展,一定会有更多的细胞因子重组蛋白被纯化制备。细胞因子功能多样,不同因子间可以相互作用,同一因子可以有不同的功能,因此,细胞因子构成了一个复杂的网络功能图。而细胞因子想要发挥作用,必须与相应的受体结合行。细胞因子与其受体结合后,会对细胞产生作用,可以刺激细胞生长增殖分化,调控机体免疫应答,为在细胞及分子水平研究某些自身免疫性疾病、肿瘤、免疫缺陷疾病的发病机理提供数据,为临床治疗和诊断提供指导依据。 细胞因子受体一般分成四个类型:Ⅰ型细胞因子受体(Type ⅠCytokine Receptor)、Ⅱ型细胞因子受体家族(Type ⅡCytokine Receptor)、TNF超家族受体以及趋化因子受体。在本文,将主要介绍Ⅱ型细胞因子及其受体的研究进展及其应用。 Ⅱ型细胞因子受体家族(Type ⅡCytokine Receptor ),也称干扰素受体家族(Interferon receptors family)。主要包含Ⅱ型白介素(IL-10,IL-19,IL-20,IL-22等)受体,Ⅰ型干扰素(IFNA,IFNB)受体和Ⅱ型干扰素(IFNG)受体。此类受体的结构特点治是在膜外区近氨基端含有四个保守半胱氨酸残基细无Trp-Ser-X-Trp-Ser序列,一般为具有高亲和力的异二聚体或多聚体。II型细胞因子受体的细胞外结构域由串联Ig样结构域组成,细胞内结构域通常与属于Janus激酶(JAK)家族的酪氨酸激酶相关。

趋化因子受体CCR研究概述

趋化因子受体CCR研究概述 趋化因子要发挥生物学作用,必须与相应的受体结合才行。趋化因子受体(Chemokine Receptor)属于G蛋白偶联受体,具有7个富含疏水氨基酸的α螺旋穿膜区结构,主要表达于骨髓来源的各白细胞亚群,同时也表达于上皮细胞、血管内皮细胞、神经细胞等类型的细胞。趋化因子受体根据其结合的配体不同也分为4个亚家族:CCR、CXCR、XCR和CX3CR。其中CCR亚族已克隆11种(CCR1-CCR11),CXCR亚族6种(CXCR1-CXCR6),另俩个亚族分别各有1种:XCR1和CX3CR1。本文主要论述CCR的研究进展。 CCR1对多种人类CC趋化因子有反应,包括钙动员、腺苷酸环化酶抑制、细胞外酸化和趋化性增加。CCR1已经从多个种属获得克隆,如恒河猴、兔、小鼠和大鼠,并且这些序列之间存在高度的序列同源性,人和恒河猴的相似性为87%。人CCR1序列的大部分显著特征是保守的,其存在的变化主要限于N末端和细胞外环,可能参与配体结合的区域。人和小鼠CCR1蛋白以高亲和力结合人和小鼠CCL3和CCL5。通过靶向基因破坏研究和通过有效的CCR1拮抗剂的研究,提供了对CCR1的生理和病理生理作用的了解。 CCR2的cDNA可以编码两个蛋白质CCR2A和CCR2B。CCR2B是主要表达形式,并且在慢性炎症中起作用,特别是动脉粥样硬化和多发性硬化疾病。CCR2的mRNA可以在单核细胞、血源性树突状细胞、天然杀伤细胞和T淋巴细胞中检测到,但不能在嗜中性粒细胞或嗜酸性

粒细胞中检测到。抗体研究显示CCR2B在单核细胞

、活化记忆T细胞、B细胞和嗜碱性粒细胞中表达。CCR2通过与配体结合,产生许多生物学信号,包括腺苷酸环化酶的抑制、细胞内钙动员和细胞趋化性的增加。CCR2已从许多物种克隆,包括小鼠、大鼠和恒河猴。序列高度同源并且显示与人CCR2的78-95%氨基酸一致。小鼠CCR2特异性结合了具有高亲和力的与MCP-1和MCP-3。在诱发的腹膜巨噬细胞以及几只小鼠器官中检测到CCR2 mRNA表达。Spiropiperidine家族的成员是CCR2的拮抗剂之一,可以特异性的阻断CCL2与CCR2的结合,而不会抑制CXCR1、CCR1或CCR3与相应配体的结合。小鼠敲除CCR2的结果表明,CCR2在动脉粥样硬化形成中起重要作用。 CCR3主要在嗜酸性粒细胞发现,在调节这些细胞的迁移中起重要作用。近期研究结果显示CCR3中和单克隆抗体7B11,阻断嗜酸细胞活化趋化因子与CCR3转染子或嗜酸性粒细胞的结合。CCR3可能更多参与TH2反应,并在哮喘和特应性皮炎在内的过敏反应中发挥重要作用。CCR3由几组显示为HIV-1共同受体,并且在脑的小胶质细胞上表达,其可能潜在地促进HIV-1对AIDS的感染,从而导致艾滋病、痴呆等疾病。此外,CCR3也被证明在树突细胞上表达,并且可能在HIV-1感染中发挥作用。 CCR4最初是从人类嗜碱性白血病细胞系文库克隆出来的。许多研究表明CCR4是TH2淋巴细胞的选择性标记,并被T细胞受体激活上调。CCR4可在血液中的记忆T细胞检测到,参与全身性的淋巴细胞免疫反应。CCR4可能在肝损伤的病理生理学中起作用。 CCR5除了作为趋化因子受体外,还被证明在HIV-1的关键细胞进入共感受器的病理学上起作用。最近的三篇研究论文表明,人类CCR5基因(CCR5-32)中的32个碱基对缺失导致了氨基酸的移码并产生严重截短。CCR5也可以通过将修饰的CC趋化因子(intrakine)靶向内质网来阻断新合成的CCR5的表面表达而失活。CCR5配体还包括来自M-Tropic HIV-1菌株的gp120包膜糖蛋白,其需要CD4结合。CCR5拮抗剂包括Met-RANTES和AOP RANTES,它们都是N 末端修饰的RANTES蛋白,它们是有效的CCR5拮抗剂,并抑制巨噬细胞和淋巴细胞中M-tropic HIV-1毒株的感染。虽然CCR5在TH1和TH2系上均表达,但在几个TH2克隆中没有表达,其表达受到白介素IL-2的显著影响。这些结果表明,趋化因子受体基因表达的灵活程序可以控制效应T细胞的组织特异性迁移并发挥作用。 CCR6主要表达于脾脏、淋巴结、阑尾和胎肝。在各种白细胞亚群中,在淋巴细胞(CD4(+)和CD8(+)T细胞和B细胞)中检测到CCR6 mRNA,而在自然杀伤细胞、单核细胞或粒细胞中未检测到。CD4(+)和CD8(+)T细胞中CCR6 mRNA的表达被IL-2强烈上调。由活化的巨噬细胞、树突状细胞和内皮细胞产生的CCL20(LARC)是CCR6唯一的高亲和力配体和有效的激动剂。

相关主题
文本预览
相关文档 最新文档