当前位置:文档之家› 单项式与单项式相乘教案

单项式与单项式相乘教案

单项式与单项式相乘教案
单项式与单项式相乘教案

学科:数学

课题:单项式与单项式相乘授课教师:

课上练习:

1、 练习:

).)((22x a ax )()()3(343y x y x -?-?-

22)2

1

(6abc b a ?- 523232)(4)3(b a b a -?-

11215--??n n n y x y x 3)21

()2(2mn mn m -?-?

)

104)(105.2)(102.1(9

11

3

???

(3)(-5a m

b)·(-2b 2

);

2、计算下列各题

(1))83(4322yz x xy -? (2))3

1

2)(73(3323c b a b a -

(3))125.0(2.3322n m mn - (4))5

3

(32)21(322yz y x xyz -??-

(5))2.1()25.2()31(522y x axy ax x ?-?? (6)3322)2()5.0(5

2

xy x xy y x ?---?

3、⑴思考:已知:81,4-==y x ,求代数式52241

)(1471x xy xy ??的值.

⑵一长方体的长为7108?cm ,宽为5106?cm ,高为9105?cm ,求长方体的体积.

七年级数学:单项式除以单项式导学案

初中数学新课程标准教材 数学教案( 2019 — 2020学年度第二学期 ) 学校: 年级: 任课教师: 数学教案 / 初中数学 / 七年级数学教案 编订:XX文讯教育机构

单项式除以单项式导学案 教材简介:本教材主要用途为通过学习数学的内容,让学生可以提升判断能力、分析能力、理解能力,培养学生的逻辑、直觉判断等能力,本教学设计资料适用于初中七年级数学科目, 学习后学生能得到全面的发展和提高。本内容是按照教材的内容进行的编写,可以放心修改调整或直接进行教学使用。 8.4单项式除以单项式(1) 学习目标:1、掌握单项式除以单项式法则。 2、能运用法则进行整式除法运算。 学习重点:会进行单项式除以单项式运算。 学习难点:单项式除以单项式商的符号的确定。 知识链接:同底数幂相除。 学习过程 一.知识回顾: 如何进行单项式与单项式相乘运算呢? 2 .同底数幂的除法如何进行运算呢? 3.填空: (1)、4x2y?3xy2=( ) (2) 、—4abc?(0.5ab)=( )

(3) 、 5abc?( )=-15a2b2c (4) 、 ( )?2a2 =24a7 二.自学探究: 1、由乘法和除法互为逆运算可知: -15a2b2c÷5abc=( ) 24a7÷2a2=( ) 思考: (1)、通过上面的式子,你认为如何进行单项式除以单项式的运算?(2)、类比单项式乘法法则,你能归纳出单项式除法法则吗? 2、归纳单项式除法法则: 1.分析范例: 例1:计算: (1)、32x5y3÷ 8x3y (2) 、—7a8b4c2÷49a7b4 (3).12(m+n)4÷3(m+n)2 (4) 、-1.25a4b3÷(-5a2b)2 注:学生示范,教师帮助学生查缺补漏。 例2、见课本68业。 解: 三.自我展示:

多项式与多项式相乘同步练习(含答案).doc

第 3 课时多项式与多项式相乘 要点感知多项式与多项式相乘,先用一个多项式的_____乘另一个多项式的_____,再把所得的积_____.( a+b)( p+q)=_____. 预习练习1- 1填空:(1)(a+4)(a+3)=a·a+a·3+4·_____+4×3=_____; (2)(2 x- 5y)(3 x-y)=2 x·3x+2x·_____+(- 5y) ·3x+( -5y) ·_____=_____. 1- 2计算:(x+5)(x-7)=_____;(2x-1)·(5x+2)=_____. 知识点 1直接运用法则计算 1.计算: (1)( m+1)(2 m- 1) ;(2)(2 a- 3b)(3 a+2b) ;(3)(2 x- 3y)(4 x2+6xy +9y2) ;(4)( y+1) 2;(5) a( a-3)+(2 -a)(2+ a). 2. 先化简,再求值:(2 x- 5)(3 x+2) - 6( x+1)( x- 2), 其中x= 1 . 5 知识点 2多项式乘以多项式的应用 3.若一个长方体的长、宽、高分别是3x- 4,2 x- 1 和x,则它的体积是 ( ) - 5x2+4x-11x2+4x-4x2-4x2+x+4 4. 为参加市里的“灵智星”摄影大赛,小阳同学将同学们参加“义务献爱心”活动的照片放大为长为 a 厘米,宽为

3 a 厘米的长方形形状,又精心在四周加上了宽 2 厘米的装饰彩框,那么小阳同学的这幅摄影作品照片占的面积是 4 _____平方厘米 . 5. 我校操场原来的长是 2x 米,宽比长少 10 米,现在把操场的长与宽都增加了 5 米,则整个操场面积增加了 _____ 平方米 . 知识点 3 ( x +p )( x +q )= x 2+( p +q ) x +pq 6. 下列多项式相乘的结果为 x 2+3x - 18 的是 ( ) A.( x - 2)( x +9) B.( x +2)( x - 9) C.( x +3)( x - 6) D.( x -3)( x +6) 7. 已知 ( x +1)( x - 3)= x 2 +ax +b ,则 a , b 的值分别是 ( ) =2 , b =3 =- 2, b =-3 =- 2, b =3 =2, b =- 3 8. 计算: (1)( x +1)( x +4) (2)( m - 2)( m +3) (3)( y +4)( y +5) (4)( t -3)( t +4). 9. 计算: (1)( - 2 n )( - - ) ; (2)( x 3 - 2)( x 3+3) - ( x 2 ) 3+ 2 · ; m m n x x

单项式乘以单项式教学设计

单项式乘以单项式教学设计 一、教学目标 1.知识与技能 使学生理解单项式乘法法则,会进行单项式的乘法运算。 2.过程与方法 通过单项式乘法法则的推导,发展学生的逻辑思维能力。 3. 情感态度价值观 让学生主动参与探究,形成独立思考、勇于探究的习惯。 二、教学重点、难点: 重点:掌握单项式乘法法则。 (这是因为要熟练地进行单项式的乘法运算,就得掌握和深刻理解运算法则,对运算法则理解得越深,运算才能掌握的越好) 难点:单项式乘法法则有关系数和指数在计算中的不同规定(这是因为单项式的乘法最终将转化为有理数的乘法、同底数的幂相乘、幂的乘方、积的乘方等运算,对于初学者来说,由于难于正确辨认和区别各种不同的运算及运算所使用的法则,易于将各种法则混淆,造成运算结果错误。) 三、教学过程 1、创设情境,导入新课 引入课本中的问题2: 光的速度约为3 X105千米/秒,太阳光照射到地球上需要的时间大约

是5 X102秒,你知道地球与太阳的距离约是多少千米吗?分析:距离二速度X时间;即(3X105 )X(5 X102 ); (1)怎样计算(3 X105 ) X(5 X102 ) ? (3X105)X(5X102) =(3 X5) X(105 X102) =15 X10 7 =1.5 X108 (千米) (2)如果将上式中的数字改为字母,比如ac5?bc5,怎样计算这个式子。 ac5?bc5是单项式ac5与be5相乘,我们可以利用乘法交换律、乘法结合律及同底数幂的运算性质来计算。 让学生回忆上学期单项式有关问题以及有关幂的运算来引入课题,以培养学生学习前后知识的连续性、一致性,由浅到深,循序渐渐,提高学生的学习兴趣,明确本节课的学习内容。 2、思考探索 2 5 3 2 通过计算4a2x5? 3a 3bx2,总结单项式乘以单项式的运算法则:单项式与单项式相乘,把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

人教版数学八年级上册教案 单项式除以单项式

年级 八年级 课题 单项式除以单项式 课型 新授 教学媒体 多 媒 体 教 学 目 标 知识 技能 经历探索整式除法运算法则的过程,能进行简单的整式除法运算(单项式除以单项式),并且结果都是整式. 过程 方法 理解单项式除以单项式的算理,发展有条理的思考及表达能力. 情感 态度 培养良好的合作意识,发展数学思维,体会数学的实际价值. 教学重点 掌握单项式除以单项式运算法则,并学会简单的整式除法运算. 教学难点 理解和体会单项式除以单项式的法则 教 学 过 程 设 计 教学程序及教学内容 师生行为 设计意图 一、情境引入 1,前面我们学习了同底数幂的除法,请同学们回答如下问题,看哪位同学回答很快而且准确. (1)叙述同底数幂的除法性质: ( ,m ,n 都是正整数,且m >n ) (2)计算: ① ② ③ ④ ⑤(1.90×1024)÷(5.98×1021) 可以从除法的意义去考虑: ( 1.90×1024)÷( 5.98×1021 )=2424 21 211.9010 1.90105.9810 5.9810?=?g =0.318×103. 二、探究新知 1.讨论如何计算: (1)8a 3÷2a [注:8a 3÷2a 就是(8a 3 )÷(2a )] (2)6x 3 y ÷3xy (3)12a 3b 3x 3÷3ab 2 再思考:你会计算2323312ab x b a ÷吗?你准备按怎样的顺序进行?对于被除式中的3 x ,除式并不含字母x ,你准备怎么处理呢? 2.单项式除以单项式法则: 教师提出问题,学生认真思考大胆回答。 学生计算要细心,教师要适当板演。 由学生完成上面练习,并得出单项式除单项式法则。 师生共同分析一下此题中对3 x 该怎么办。 让学生温故知新。学生复习同底数幂的除法,引 起学生的求知欲望。 让学生由除法 的意义自然过 渡到单项式除 以单项式。 学生弄清单项 式除以单项式法则的推导过程。

多项式与多项式相乘-同步练习(含答案)

第3课时 多项式与多项式相乘 要点感知 多项式与多项式相乘,先用一个多项式的_____乘另一个多项式的_____,再把所得的积_____.(a +b )(p +q )=_____. 预习练习1-1 填空:(1)(a +4)(a +3)=a · a +a ·3+4·_____+4×3=_____; (2)(2x -5y )(3x -y )=2x ·3x +2x ·_____+(-5y )·3x +(-5y )·_____=_____. 1-2 计算:(x +5)(x -7)=_____;(2x -1)· (5x +2)=_____. 知识点1 直接运用法则计算 1.计算: (1)(m +1)(2m -1); (2)(2a -3b )(3a +2b ); (3)(2x -3y )(4x 2+6xy +9y 2); (4)(y +1)2; (5)a (a -3)+(2-a )(2+a ). 2.先化简,再求值:(2x -5)(3x +2)-6(x +1)(x -2),其中x =51. 知识点2 多项式乘以多项式的应用 3.若一个长方体的长、宽、高分别是3x -4,2x -1和x ,则它的体积是( ) A.6x 3-5x 2+4x B.6x 3-11x 2+4x C.6x 3-4x 2 D.6x 3-4x 2+x +4 4.为参加市里的“灵智星”摄影大赛,小阳同学将同学们参加“义务献爱心”活动的照片放大为长为a 厘米,宽为43a 厘米的长方形形状,又精心在四周加上了宽2厘米的装饰彩框,那么小阳同学的这幅摄影作品照片占的面积是_____平方厘米. 5.我校操场原来的长是2x 米,宽比长少10米,现在把操场的长与宽都增加了5米,则整个操场面积增加了_____平方米. 知识点3 (x +p )(x +q )=x 2+(p +q )x +pq 6.下列多项式相乘的结果为x 2+3x -18的是( ) A.(x -2)(x +9) B.(x +2)(x -9) C.(x +3)(x -6) D.(x -3)(x +6) 7.已知(x +1)(x -3)=x 2+ax +b ,则a ,b 的值分别是( ) A.a =2,b =3 B.a =-2,b =-3 C.a =-2,b =3 D.a =2,b =-3 8.计算: (1)(x +1)(x +4) (2)(m -2)(m +3) (3)(y +4)(y +5) (4)(t -3)(t +4).

单项式与单项式相乘教案

14.1.4整式的乘法 第1课时单项式与单项式相乘 ◇教学目标◇ 【知识与技能】 会进行单项式乘单项式的运算. 【过程与方法】 经历探索单项式乘以单项式的过程,体会乘法结合律的作用和转化的思想,发展有条理的思考及语言表达能力. 【情感、态度与价值观】 培养学生推理能力、计算能力,通过小组合作与交流,增强协作精神. ◇教学重难点◇ 【教学重点】 单项式乘法运算法则的推导与应用. 【教学难点】 单项式乘法运算法则的推导与应用. ◇教学过程◇ 一、情境导入 前面我们学习了幂的运算,我们知道整式有两种单项式与多项式,那么整式的乘法应有几种,哪种最简单? 二、合作探究 探究点1单项式乘单项式法则 典例1计算4x2y·(-x)=.

[解析]根据单项式与单项式相乘,把它们的系数分别相乘,相同字母的幂分别相加,其余字母连同它的指数不变,作为积的因式,计算即可.4x2y·=-x3y. [答案]-x3y (-2x3y2)3·4xy2=. [答案]-32x10y8 探究点2求代数式的值 典例2如果x n y4与2xy m相乘的结果是2x5y7,求mn的值. [解析]由题意可知x n y4×2xy m=2x n+1y4+m=2x5y7, ∴n+1=5,4+m=7, ∴m=3,n=4, ∴mn=12. 探究点3法则应用 典例3计算(9×105)×(2.5×103)=.(用科学记数法表示) [解析](9×105)×(2.5×103)=9×2.5×105×103=22.5×108=2.25×109. [答案]2.25×109 探究点4幂的运算综合练习 典例4计算:(-3x2y2)2·2xy+(xy)3=. [解析](-3x2y2)2·2xy+(xy)3=9x4y4·2xy+x3y3=18x5y5+x3y3. [答案]18x5y5+x3y3 三、板书设计 单项式与单项式相乘 单项式乘单项式 ◇教学反思◇

单项式乘以多项式(教案设计)

整式的乘法(二) 单项式乘以多项式(教案) 学习目标 1.在具体情景中,了解单项式乘以多项式的意义,理解单项式与多项式的乘法法则; 2.能熟练、正确地运用法则进行单项式与多项式的乘法运算. 3.经历探索乘法运算法则的过程,让学生体验从“特殊”到“一般”的分析问题的方法,感受“转化思想”、“数形结合思想”,发展观察、归纳、猜测、验证等能力. 4.初步学会从数学角度提出问题,运用所学知识解决问题,发展应用意识.通过反思,获得解决问题的经验.发展有条理的思考及语言表达能力. 学习重点:在经历法则的探究过程中,深刻理解法则从而熟练地运用法则. 学习难点:正确判断单项式与多项式相乘的积的符号. 学习过程: 一、复习回顾 1、单项式与单项式怎样相乘. 单项式与单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.

2、单项式与单项式怎样相乘运用了哪些乘法运算律?除此之外,还有什么乘法运算律? 单项式与单项式相乘运用了乘法交换律、结合律, 一、联系生活设境激趣 问题一:1.在一次绿色环保活动中购买奖品如下表, ⑴有几种算法计算共花了多少钱?⑵各种算法之间有什么联系? 请列式:方法1: ; 方法2: . 联系……① 2.将等式15(5.20+3.40+0.70) =15×5.20+15×3.40+15×0.70 中的数字用字母代替也可得到等式:m(a+b+c) =ma+mb+mc;……② 问题二:三家连锁店以相同的价格m (单位:元/瓶) 销售某种商品,它们在一个月内的销售量(单位:瓶) 分别是a,b,c。你能用不同的方法计算它们在这个月内销售这种商品的总收入吗? 方法一:先求三家连锁店的总销量,再求总收入,即 总收入(单位:元)为:m(a+b+c) 方法二:先分别求三家连锁店的收入,再求它们的和,

单项式除以单项式教学设计示例

单项式除以单项式教学设计示例 一、教学目标 1.理解和掌握单项式除以单项式的运算法则. 2.运用单项式除以单项式的运算法则,熟练、准确地进行计算. 3.通过总结法则,培养学生的抽象概括能力. 4.通过法则的应用,训练学生的综合解题能力和计算能力. 二、教法引导 尝试指导法、观察法、练习法. 三、重点难点 重点准确、熟练地运用法则进行计算. 难点根据乘、除的运算关系得出法则. 四、课时安排 1课时. 五、教具 投影仪或电脑、自制胶片. 六、教学步骤 (一)教学过程 1.创设情境,复习导入 前面我们学习了同底数幂的除法,请同学们回答如下问题,看哪位同学回答很快而且准确. (l)叙述同底数幂的除法性质.

(2)计算:(1)(2)(3)(4) 学生活动:学生回答上述问题. (,m,n都是正整数,且m>n) 【教法说明】通过复习引起学生回忆,且巩固同底数幂的除法性质.同时为本节的学习打下基础,注意要指出零指数幂的意义. 2.指出问题,引出新知 思考问题:()(学生回答结果) 这个问题就是让我们去求一个单项式,使它与相乘,积为,这个过程能列出一个算式吗? 由一个学生回答,教师板书. 这就是我们这节课要学习的单项式除以单项式运算. 师生活动:因为 所以(在上述板书过程中填上所缺的项) 由得到,系数4和3同底数幂、a及、分别是怎样计算的?(一个学生回答)那么由得到又是怎样计算的呢? 结合引例,教师引导学生回答,并对学生的回答进行肯定、否定、纠正,同时板书. 一般地,单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式. 如何运用呢?比如计算:

八年级数学上册 13.1.2 单项式与多项式相乘教案 华东师大版1

课题:13.1.2 单项式与多项式相乘 【教学目标】 知识目标:解单项式乘以多项式的意义,理解单项式与多项式的乘法法则,会进行单项式与多项式的乘法运算。 能力目标:(1)经历探索乘法运算法则的过程,发展观察、归纳、猜测、验证等能力; (2)体会乘法分配律的作用与转化思想,发展有条理的思考及语言表达能力。 情感目标:充分调动学生学习的积极性、主动性 【教学重点】单项式与多项式的乘法运算 【教学难点】推测整式乘法的运算法则。 【教学过程】 一、复习引入 通过对已学知识的复习引入课题(学生作答) 1. 请说出单项式与单项式相乘的法则: 单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里出现的字母,则连同它的指数作为积的一个因式。 (系数×系数)×(同字母幂相乘)×单独的幂 例如: ( 2a2b3c) (-3ab) 解:原式=[2· (-3) ] · (a2·a) · (b3 · b) · c = -6a3b4c 2.说出多项式 2x2-3x-1的项和各项的系数 项分别为:2x2、-3x、-1 系数分别为:2、-3、-1 问:如何计算单项式与多项式相乘?例如: 2a2· (3a2 - 5b)该怎样计算? 这便是我们今天要研究的问题. 二、新知探究 已知一长方形长为(a+b+c),宽为m,则面积为:m(a+b+c) 现将这个长方形分割为宽为m,长分别为a、b、c的三个小长方形,其面积之和为ma+mb+mc 因为分割前后长方形没变所以m(a+b+c)=ma+mb+mc 上一等式根据什么规律可以得到?从中可以得出单项式与多项式相乘的运算法则该如何表述?(学生分组讨论:前后座为一组;找个别同学作答,教师作评) 结论单项式与多项式相乘的运算法则: 用单项式分别去乘多项式的每一项,再把所得的积相加。 用字母表示为:m(a+b+c)=ma+mb+mc 运算思路:单×多 转化 分配律 单×单 三、例题讲解 例计算:(1) (-2a2)· (3ab2– 5ab3) (2)(- 4x) ·(2x2+3x-1) 解:(1)原式= (-2a2)· 3ab2+ (-2a2)·(– 5ab3) ①=-6a3b2+ 10a3b3 ② (2)原式=(- 4x) ·2x2+(- 4x) ·3x+(- 4x) ·(-1) ①

单项式乘以单项式的教学设计

整式的乘法 单项式与单项式相乘 教学内容:冀教版七年级下册10.4 整式的乘法第一课时 教学目标: 知识与技能 理解并掌握单项式与单项式相乘的法则,能够熟练 地进行单项式的乘法计算。 过程与方法 经历单项式与单项式相乘的法则的探究过程,培养 学生的归纳、归纳、猜测、验证等能力. 情感态度与价值观 在单项式与单项式相乘的计算过程中培养学 生认真细心的作风. 教学重点:.对单项式运算法则的理解和应用。 教学难点:尝试与探究单项式与单项式的乘法运算规律。 教学方法:尝试教学法 教学用具:多媒体课件、投影仪、导学案 课时安排:一课时 教学过程: 一、准备尝试:(查漏补缺,学生分组采用记分制,比一比哪一组得 分最高) 1、指出下列公式的名称 指名学生回答。 2、只要认真,你就能全部计算正确,看谁一遍全部正确。 (1) (2) (3) n m n m a a a +=?mn n m a a =)(n n n b a ab =)(35x x ?3b b ?2 a a a ??

(4) (5) (6) (7) (8) 3、单项式中的数字因数叫做这个单项式的__________ 4、你能说出下列单项式的系数吗? -4x 2 y (-2x 2y)2 5、利用乘法交换律、结合律计算: 二、创设情境,导入新课: 1、现有长为x 米,宽为a 米的矩形,其面积为多少平方米? 2、长为x 米,宽为2a 米的矩形,面积为多少平方米? 3、长为2x 米,宽为3a 米的矩形,面积为多少平方米? 启发思考:在这里,求矩形的面积,会遇到223a x x a x a ???, 这是什么运算呢? 导入新课: 因式都是单项式,它们相乘,就是我们今天要学习的“单项式与单项式相乘”。 出示课题和教学目标。 三、出示尝试题: 1、尝试把上面的计算表示成更简单的结果。 (1)a x ax ?= (2)22x a ax ?= (3)236x a ax ?= 2)(a -32)(a -3 23)(y x 2 32a a a ??)(25n m 5351b a -= ???251346m m ?-4)(

多项式除以单项式--教学设计

第一章整式的乘除 1.7 整式的除法(第2课时) 一、学情分析: 学生的知识技能基础:学生对小学所学整数除法的运算掌握较为熟练,而本章内容又学习了同底数幂的除法,另外,上一节课中又学习了单项式的除法,并利用其解决了一些问题,这些知识储备为学生本节课的学习奠定了良好的知识技 能基础。 学生活动经验基础:在本章前内容的学习中,学生经历了探索、发现的数学活动,初步积累了数学活动的经验,有了一定的探究能力。同时前一节课中通过自主探究,得到了单项式除法的法则,为本节课探究多项式除以单项式运算奠定了基础。并且通过解决问题的练习,学生解决应用问题的能力也有了一定的提 高和良好的基础。为此,在教学中要求学生独立思考,小组合作交流竞争,类 比探究相结合,使学生在练习的过程中发现、分析并解决问题。 二、教学任务分析: 本课基于学生对整式乘法,整数除法以及对单项式除法的学习,提出了本 课的具体学习任务:掌握多项式除以单项式的运算,并能够综合运用所学知识解决实际问题。本课内容属“数与代数”这一数学学习领域,其必须服务于代数教学的远期目标:“让学生经历观察、操作、推理、想象等探索过程,能够在实际 情境中,抽象概括出所要研究的数学问题,增强学生的数感符号感。发展学生的合作交流能力、推理能力和有条理的表达能力”,并力争突破情感态度目标。 为此,本节课的教学目标是: 经历探索整式除法运算法则的过程,掌握多项式除以单项式的运算算理,发展有条理的思考及表达能力。培养独立思考和良好的合作意识,学习数学的兴趣和学习数学的信心,体会数学的实际价值。 本节课是继学习了单项式除法的基础上学习的,又对今后学习整式的混合运算奠定了基础,在教学中起着承上启下的作用,为此教学中力求突破以下重难点内容。

七年级数学下册 单项式与单项式相乘教案

1.4 整式的乘法 第1课时 单项式与单项式相乘 1.复习幂的运算性质,探究并掌握单项式乘以单项式的运算法则;(重点) 2.能够熟练运用单项式乘以单项式的运算法则进行计算并解决实际问题.(难点) 一、情境导入 根据乘法的运算律计算: (1)2x ·3y ;(2)5a 2b ·(-2ab 2). 解:(1)2x ·3y =(2×3)·(x ·y )=6xy ; (2)5a 2b ·(-2ab 2)=5×(-2)·(a 2·a )·(b ·b 2)=-10a 3b 3. 观察上述运算,你能归纳出单项式乘法的运算法则吗? 二、合作探究 探究点:单项式与单项式相乘 【类型一】 直接利用单项式乘以单项式法则进行计算 计算: (1)(-23a 2b )·56 ac 2; (2)(-12 x 2y )3·3xy 2·(2xy 2)2; (3)-6m 2n ·(x -y )3·13 mn 2(y -x )2. 解析:运用幂的运算法则和单项式乘以单项式的法则计算即可. 解:(1)(-23a 2b )·56ac 2=-23×56a 3bc 2=-59 a 3bc 2; (2)(-12x 2y )3·3xy 2·(2xy 2)2=-18x 6y 3×3xy 2×4x 2y 4=-32 x 9y 9; (3)-6m 2n ·(x -y )3·13mn 2(y -x )2=-6×13 m 3n 3(x -y )5=-2m 3n 3(x -y )5. 方法总结:(1)在计算时,应先进行符号运算,积的系数等于各因式系数的积;(2)注意按顺序运算;(3)不要丢掉只在一个单项式里含有的字母因式;(4)此性质对于多个单项式相乘仍然成立. 【类型二】 单项式乘以单项式与同类项的综合 已知-2x 31y 2与7x 53y 54的积与x 4y 是同类项,求m 2+n 的值. 解析:根据-2x 3m +1y 2n 与7x 5m -3y 5n -4的积与x 4y 是同类项可得出关于m ,n 的方程组, 进而求出m ,n 的值,即可得出答案.

《单项式的乘法》教案

《单项式的乘法》教案 教材分析 【地位和作用】本课是版七年级下册第十一单元第三节。单项式与单项式相乘,综合用到了上册学的有理数的乘法、乘法交换律和结合律,本章前两节学习的同底数幂的乘法(直接应用),幂的乘方,积的乘方。是学生在利用以上运算的知识的结合和具体运用,也是学生以后学习单项式乘以多项式,多项式乘以多项式的基础。通过本课重点培养学生的数学自信,有助于以后知识的顺利学习。 【新课标要求】《数学课程标准》中提出:理解数与代数运算的知识,提高发现和提出问题的能力,能否使用恰当的语言有条理的表达数学思想的过程,观察、实验、归纳的方法,能从现实生活中发现并提出简单的数学问题的观念。 【教材编写特点】从实际生活中的面积计算素材,作为新知识的形成和应用的背景,使学生经历实际问题“数学化”的过程以及数学知识应用于实际的过程,体验数学的价值。 学生分析 【学生能力特点】学生已经具备抽象思维、逻辑思维、自我评价的能力,具有思维活跃,但缺乏数学自信,学习数学感觉有困难。 【学生知识背景】七年级的学生通过之前的学习和生活实践,已经掌握同底数幂的乘法等方法,能够通过探究推导出单项式的乘法法则,学会发现问题的规律。 【学生发展区域】通过学习本课,学生可以获得在合作交流中获取知识的方法、观察、发现、归纳、概括的能力、理解特殊到一般再到特殊的认知规律观念的提升,数学自信心的提升。 教学目标 知识与技能 1.学生会用单项式的乘法法则,能够熟练地进行单项式的乘法计算; 2.通过自主探究和学习例题,提升归纳、概括能力以及运算能力; 过程与方法 1.通过面积的两不同算法,探索单项式运算法则的过程; 2.通过尝试运用乘法交换律、结合律和同底数幂的乘法法则,概括出单项式乘法法则;

单项式与多项式相乘教案

.()单项式与多项式相乘教案

————————————————————————————————作者:————————————————————————————————日期:

9.10(2)单项式与多项式相乘 教学目标: 1.理解和掌握单项式与多项式相乘法则及推导. 2.熟练运用法则进行单项式与多项式相乘的计算. 3.培养灵活运用知识的能力,通过用文字概括法则,提高学生 数学表达能力,渗透公式恒等变形的数学美. 教学重点、难点 重点:单项式与多项式乘法法则及其应用. 难点:单项式与多项式相乘时结果的符号的确定 教学过程设计: 一、复习旧知,作好铺垫 1. 复习乘法分配律:m (a+b+c )=ma+mb+mc 2. 什么叫多项式、多项式 的项和各项系数 复习多项 式的有关 概念、单项 式乘法法 则、乘法分 配率为新 课做铺垫 设计问题情境 “求通过学生探究归纳通过例题的教学,理

3. 单项式与单项式相乘的法则 二、设计情境,问题导入 我们已经学习了单项式与单项式相乘,在这个基础上我们学习整式的乘法中的单项式与多项式相乘,即单项式与多项式相乘 (给出课题) 想一想: 如何求图中长方形的面积。学生尝试回答。 S=5a·(5a+3 b ) 你能求出答案吗? 三、合作探究、归纳法则 在上述算式中 ①可以运用乘法分配律吗? 5a·(5a+3b ) =5a·5a+5a·3b ②单项式与单项式相乘法则 5a·(5a+3b ) =25a2+15ab 按以上的分析,写出-3x·(ax 2-2x )的计算步骤 -3x·(ax 2-2x ) =(-3·x )·(ax 2)+(-3·x )·(-2x ) =-3ax 3+6x 2 通过以上两题,让学生总结回答,归纳出单项式与多项式相乘的法则: 535

七年级下册数学单项式与单项式相乘教案

4整式的乘法 第1课时单项式与单项式相乘 【知识与技能】 使学生理解并掌握单项式与单项式相乘的法则,能够熟练地进行单项式的乘法计算. 【过程与方法】 通过探究单项式与单项式相乘的法则,培养了学生归纳、概括能力,以及运算能力. 【情感态度】 通过单项式的乘法法则在生活中的应用培养学生的应用意识. 【教学重点】 掌握单项式与单项式相乘的法则. 【教学难点】 分清单项式与单项式相乘中,幂的运算法则. 一、情景导入,初步认知 京京用同样大小的纸精心制作的两幅画,如图所示,第一幅画的画面大小与纸的大小相同,第二幅画的画面在纸的上、下方各留有18x米的空白,你能表示出两幅画的面积吗? 教师提出以下问题,引导学生对两个代数式进行分析: 问题1:以上求矩形的面积时,会遇到x·mx,(mx)·3 4 x,这是什么运算

呢? 问题2:什么是单项式?我们知道,整式包括单项式和多项式,从这节课起我们就来研究整式的乘法,先学习单项式乘以单项式. 【教学说明】以上设计从实际问题出发,引出了单项式乘法,使学生体会到数学知识来源于生活,并能解决生活中的问题. 二、思考探究,获取新知 继续引导学生分析实例中出现的算式,教师提出以下三个问题: 问题1:对于实际问题的结果x·mx,(mx)·3 4 mx可以表达得更简单些吗? 说说你的理由? 问题2:类似地,3a2b·2ab3和(xyz)·y2z可以表达的更简单一些吗? 问题3:如何进行单项式与单项式相乘的运算? 【教学说明】 组织学生先独立思考,再以四人为小组讨论,鼓励学生大胆发表自己的见解,全班共同交流,得出单项式乘法的法则.得出法则后,教师再提出有思维价值的问题,引导学生对探究的过程进行反思,明确算理,体会数学知识之间的联系. 【归纳结论】 单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式. 问题4:在你探索单项式乘法运算法则的过程中,运用了哪些运算律和运算法则? 学生回答:运用了乘法的交换律、结合律和同底数幂乘法的运算性质. 【教学说明】实际教学中,视学生情况而定,以上四个问题可同时给出,也可以逐一给出.教师通过问题1和问题2,让学生独立思考,自主探究,经历知识形成的过程,在探究中发现和总结出规律,获得体验.教师应鼓励学生灵活运用乘法交换律、结合律和同底数幂的运算性质等知识探索单项式乘单项式的运算法则,并理解算理,在探究的基础上运用自己的语言描述单项式乘法的法则. 三、运用新知,深化理解 1.见教材P14例1. 2.下列运算正确的是(D)

《单项式乘以多项式》教学反思

《单项式乘以多项式》教学反思《单项式乘以多项式》教学反思 《单项式乘以多项式》教学反思1 这节课的重难点是掌握单项式与多项式相乘的法则并会运用。 一复习引入 复习单项式乘以单项式的法则 二引入新课 举出三个例子,提问学生它们等于什么?你是怎么样计算的? 如何进行单项式与多项式相乘的运算? 分小组讨论,让学生自己探索出单项式乘以多项式的法则,在探索过程中运用的以前学生的乘法分配律,推出单项式乘以多项式转化成单项式乘以单项式。 单项式乘以多项式法则 单项式与多项式相乘,就是根据分配律用单项式乘以多项式每一项,再把所得积相加。 注意在进行运算时的运算顺序以及符号的确定。 例题讲解 评讲例一中的(1)、(3)。第一道题主要讲述了做题过程的书写。第二道题,单项式带着负号,给学生强调连同负号把它看成整体,乘以多项式的每一项,首先要确定每

一项的符号,再进行单项式乘以多项式中的每一项,不能漏乘,最后合并同类项,化简到最简形式。 跟踪训练这种类型的题. 课堂练习 这节课以学生练习为主,学生对法则的巩固和运用。 1、在教学过程我始终围绕学习目标和学习重难点展开。我首先复习了单项式乘以单项式的知识,然后让学生自己得出本节课的研究内容。充分调动了学生的学习的积极性和主动性,以学生为主体地位。 2、单项式乘以多项式,这一部分的内容是依据乘法分配律。要注意运算时的运算顺序以及确定的符号,在这过程中强调不要漏乘。 《单项式乘以多项式》教学反思2 1.教学过程始终围绕教学目标展开。我首先复习了单项式乘以单项式的知识,然后让学生自己得出本节课的研究内容,并举出了一个单项式乘以多项式的实例。在进行单项式乘以多项式的法则的生成教学时。我先在具体情境中让学生用不同方法计算长方形面积从而抽象出一个单项式乘以多项式的等式,并引导学生用学过的知识来说明这个等式的正确性。在这点上,我认为自己处理的比较好。在接下来的知识应用中用适量例题来掌握法则的.运用。例题难度呈阶梯形,层层深入。用适

七年级下册数学单项式除以单项式教案

第1课时单项式除以单项式 【知识与技能】 理解单项式除以单项式的法则,发展有条理的思考及语言表达能力. 【过程与方法】 通过引导学生观察、对比、独立思考、合作探究等方式使学生经历探索单项式除以单项式法则的过程,能进行简单的整式除法运算. 【情感态度】 培养独立思考和良好的合作意识,发展数学思维,体会数学的实际价值. 【教学重点】 掌握单项式除以单项式的运算法则,并学会简单的整式除法运算. 【教学难点】 理解和体会单项式除以单项式的法则. 一、情景导入,初步认知 1.两数相除,____号得正,____号得负,并把____相除。 2.同底数幂的除法法则是什么? 3.零指数幂的意义是什么? 4.计算: (1)x5·x2÷(x3)2=________; (2)(a-b)6÷(a-b)3=________. 【教学说明】 引导学生先通过预习,能够复习与单项式除法相关联的知识:有理数的除法,同底数幂的除法等,掌握相关的运算法则是解题的关键.通过预习,能够进行简单的单项式的除法计算. 二、思考探究,获取新知 1.计算: (1)8m3n2÷2m2n;

(2)-36x4y3z2÷4x3z. 解:(1)8m3n2÷2m2n=(8÷2)·(m3÷m2)·(n2÷n)=4m3-2n2-1=4mn (2)-36x4y3z2÷4x3z=(-36÷4)x4-3·y3·z2-1=-9xy3z 2.请同学们认真探讨,在进行单项式的除法时,要怎么做? (1)如何来计算单项式的除法,首先看第1(1)题的系数,系数怎么办? (2)同底数幂怎么办? (3)仅在被除式里含有的字母怎么办,如第1(2)题中的y3? (4)单项式的除法法则是什么? (5)我们要理解记忆运算法则,用自己的话说.系数怎么办?系数相除. (6)同底数幂怎么办?同底数幂相除. (7)其余的怎么办?其余都不变. 【教学说明】 通过两道探究题目,学生充分探讨后,师生一起总结单项式的除法法则,探究与问题结合,体现探究学习数学法则的重要性,结合有理数的除法法则,同底数幂的除法等相关知识,总结单项式除法法则,以便后面灵活应用法则进行相关的计算. 【归纳结论】 单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式. 三、运用新知,深化理解 1.见教材P28例1 2.8x6y4z÷( )=4x2y2,括号内应填的代数式为(C). A.2x3y2 B.2x3y2z C.2x4y2z D.12x4y2z 3.下列计算中,正确的是(D). A.8x9÷4x3=2x3 B.4a2b3÷4a2b3=0 C.a2m÷am=a2 D.2ab2c÷ 1 - 2 ab2=-4c 4.若x m y n÷1 4 x3y=4x2则(B).

苏科版数学七下《单项式乘单项式》word教案

苏科版数学七下《单项式乘单项式》w o r d教 案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

课题第9章从面积到乘法公式 课 时 分 配 本课(章节)需课时 本节课为第课时 为本学期总第课时 9.1单项式乘单项式 教学目标1.熟练运用单项式乘单项式法则进行运算; 2.经过单项式乘单项式法则的运用。 3.体验运用法则的价值;培养学生观察、比较、归纳及运算的能力。 重点单项式乘单项式法则 难点运用单项式乘单项式法则解答实际问题 教学方法讲练结合、探索交流课型新授课教具投影仪 教师活动学生活动 情景设置: 同学们,现在我们家里都有电视机,大家都知道电视机的横切面是个长方形,下面我们一起来研究这样一个问题:将几台型号相同的电视机叠放在一起组成“电视墙”,计算图中这些电视墙的面积。 (每一个小长方形的长为a,宽为b) 我们可以看到,“电视墙”是一个长方形,由9个小长方形组成。 从整体上看,“电视墙”的面积为长方形的长与宽的积:3a·3b;学生回答 由学生自己先做(或互相讨论),然后回答,若有答不全的,教师(或其他学生)补充.

从局部看,“电视墙”中的每个小长方形的面积都是ab ,“电视墙”的面积是这些小长方形的面积和:9ab 。 于是,我们有:3a ·3b = 9ab. 新课讲解: 1.探索研究 一起来观察上面这个等式:3a ·3b = 9ab ,根据上学期的学习,同学们知道,3a 、3b 都是单项式,9ab 也是个单项式,那么计算时是否有一定的规律性?4ab 2·5b 这两个单项式的积是20ab 3吗? 请学生回答,教师加以总结归纳: 两个单项式3a 与3b 相乘,只要把两个单项式的系数3与3相乘,再把这两个单项式的字母a 与b 相乘,即3a ·3b =(3×3)·(a ·b )= 9ab. 4ab 2·5b 这两个单项式的积是20ab 3。 同学们回答的太棒了,两个单项式相乘,实际上是运用了乘法交换律与结合律。由此,我们可以得到单项式乘单项式法则: 单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里含有的字母,则连同它们的指数作为积的一个因式。 2.例题 计算:(1)3 1 a 2·(6a b ); (2)(2x )3·(-3xy 2). 解: (1)31 a 2·(6a b ) = (3 1 ×6)·(a 2·a )·b = 2a 3b ;(教师规范格式) (2)(2x )3·(-3xy 2). = 8x 3·(-3xy 2) 学生板演 板演 动手练习

公开课)单项式与多项式相乘

14.1.4整式的乘法 ——第二课时 单项式与多项式相乘导学案 主备人:陈育娟 审核:八年级数学科组 预习+展示+反馈 学习目标: 1.理解单项式与多项式相乘的法则,能运用单项式与多项式相乘的法则进行计算. 2.理解算理,发展学生的运算能力,体会转化和“几何直观” 观念,体会转化、数形结合和程序化思想. 学习重点: 单项式与多项式相乘的法则的运用. 教学过程: 一、课前准备 (一)复习旧知 1、合并同类项:系数 ,字母及其指数 。 2、同底数幂相乘,底数 ,指数 。公式:m n a a ?= (m 、n 都是正整数) 3、幂的乘方,底数 ,指数 。公式:()m n a = (m 、n 都是正整数) 4、积的乘方,等于把 ,再把所得的 。 公式:()n ab = (n 是正整数) 5、单项式与单项式相乘 公式:单项式×单项式=(系数×系数)×(同底数幂×同底数幂)×(单独的幂) 注意:单项式与单项式相乘的结果仍是 。 6、乘法分配律:()p a b += ▲注意符号法则:两数相乘, 。 (二)课前小测 1、计算3 2)(x x ?-所得的结果是( ) A.5x B.5x - C.6x D.6 x - 2、(江苏省)计算23()a 的结果是( ) A .5 a B .6 a C .8 a D .2 3a 3、计算:() 2 3ab =( ) A .22a b B .23a b C .26 a b D .6 ab 4、化简:3 22)3(x x -的结果是( ) A .56x - B .53x - C .52x D .5 6x 5、下面计算正确的是( ) A.453 3 =-a a B.n m n m +=?6 32 C.10 9222=? D.10 552a a a =? 6、下列计算中,正确的是( ) A .()6 33xy y x =? B.6326)3()2(x x x =-?- C. 2 222x x x =+ D. () 2 3 6ab ab = 7、(2009年日照)计算() 4 323b a --的结果是( ) A.12881b a B.7612b a C.7612b a - D.12881b a -

单项式乘以单项式教学设计

教学设计 整式的乘法——单项式乘以单项式 隔河头初级中学:杨晓倩 【课题】单项式乘以单项式 【教学内容及内容分析】 在七年级上册的学习中,学生已经学习了数的运算、字母表示数、合并同类项、去括号等内容,具备了由数的运算转化为式的运算的知识基础,类比有理数运算学习整式的运算是本章的重点,是代数知识学习的重点内容,可以帮助学生认识到代数与现实世界、学生生活、相关学科联系十分密切,为数学本身和其他学科的研究提供了语言、方法和手段.本单元提前安排了同底数幕的乘法、幕的乘方、积的乘方等知识,然后通过实例引入了整式的乘法,使学生通过对乘法分配律等法则的运用探索整式乘法的运算法则以及一些重要的公式,所以,本节知识既是对前面所学知识的综合应用,也为下面学习乘法公式、整式除法以及八年级学习因式分解打好基础? 本单元共分3课时,由浅入深地学习单项式乘单项式、单项式乘多项式、多项式乘多项式,三节课的知识环环相扣,每节课新知识的学习既是对前一节所学知识的应用,也为后一节学习奠定基础?所以在教学时要注意引导学生发现各知识点之间的联系,善于应用转化的思想,化未知为已知,形成较完整的知识结构? 【教学目标】 1、通过探索单项式乘法法则的过程,在具体情境地中了解单项式乘法的意义,理解单项式乘法法则 2、会利用法则进行单项式的乘法运算。 【教学重难点】 重点:单项式乘法法则及其应用? 难点:理解运算法则及其探索过程? 【旧知回顾】 活动内容:教师提出问题,弓I导学生复习幕的运算性质 问题1:前面学习了哪三种幕的运算?运算方法分别是什么? m n _ mn (1)同底数幕相乘,底数不变,指数相加。 a a ^ a (m,∏是正整数) (2)幕的乘方,底数不变,指数相乘。(a m)∏ = a m∏ (m,∏是正整数)

单项式与单项式相乘》说课稿

《单项式与单项式相乘》说课稿 各位老师: 大家好!我是公桥职高的彭凌波,今天我说课的内容是沪科版七年级数学下册第八章第二节第一课时单项式与单项式相乘,下面我从教材分析、学情分析、教学目的的确定、教学方法的选择、教学过程的设计等几个方面对本节课进行分析说明。 一、教材分析 本节课主要讲解的是单项式乘以单项式,是在前面学习了幂的运算性质的基础上学习的,学生学习单项式的乘法并熟练地进行单项式的乘法运算是以后学习多项式乘法的关键,单项式的乘法综合用到了有理数的乘法、幂的运算性质,而后续的多项式乘以单项式、多项式乘以多项式都要转化为单项式的乘法,因此单项式的乘法将起到承前启后的作用,在整式乘法中占有独特的地位。 二、学情分析 农村学生学习基础较薄弱,学习意识不高,课前没能做好预习工作,但是他们的观察能力、记忆能力和想象能力发展迅速,要抓住学生好动、好奇、好表现的特点,积极采用形象生动、形式多样的教学方法,让每一位学生都积极参与到课堂教学当中,激发学生兴趣,有效地培养学生能力,促进学生个性发展。 三、教学目的 1.使学生理解单项式乘法法则,会进行单项式的乘法运算。 2.通过单项式乘法法则的推导,发展学生的逻辑思维能力。 教学目的的第一条的确定是考虑到学生对单项式的概念、有理数乘法、幂的运算都较为熟练,在此基础上导出的单项式乘法法则学生能够达到“理解”的要求,同时由于单项式乘法的所有内容已包含在这节课中,学生能按照一定的步骤完成单项式的乘法运算,据此确定了教学目的的第一条。而单项式法则的导出过程是发展学生逻辑思维能力的极好素材,据此确定了教学目的的第二条。 四、教学重点、难点: 重点:掌握单项式乘法法则。 (这是因为要熟练地进行单项式的乘法运算,就得掌握和深刻理解运算法则,对运算法则理解得越深,运算才能掌握的越好) 难点:单项式乘法法则有关系数和指数在计算中的不同规定(这是因为单项式的乘法最终将转化为有理数的乘法、同底数的幂相乘、幂的乘方、积的乘方等运算,对于初学者来说,由于难于正确辨认和区别各种不同的运算及运算所使用的法则,易于将各种法则混淆,造成运算结果错误。) 四、教学方法 本节课在教学过程的不同阶段采用不同的教学方法,以适应教学的需要。 1、在新课学习阶段的单项式的乘法法则的推导过程中,采用了引导发现法。通过教师设计的问题,引导学生将需要解决的问题转化成用已学过的知识可解决的问题,让学生即掌握了新的知识,又培养了学生探索探索问题的能力,充分体现了教师的主导作用和学生的主体作用,使学生始终处在观察思考之中。引导发现法的使用对实现教学目的的第二条起了很

相关主题
文本预览
相关文档 最新文档