当前位置:文档之家› 与圆有关的轨迹问题

与圆有关的轨迹问题

与圆有关的轨迹问题
与圆有关的轨迹问题

课题:与圆有关的轨迹问题

一、设计理念:

本课主要复习应用轨迹方面的问题,我准备用一个课时来教授。我仔细研究2010年江苏高考考试说明和各大市高考模拟试卷后总结出,轨迹问题特别是与圆有关的轨迹问题依然是学生不可掉以轻心的一块内容,本节课我以求轨迹方程的常见方法作为核心内容,以无锡二模的18题为生长点,在此基础上进行发散,紧紧围绕本课重点。几道例题力求一题多变,多题一解,将求轨迹问题串到一条线上,尽量使学生能够做到融会贯通,在解决卷面求轨迹问题的同时,增强对几何图形直观的认识。

二、教学目标:

知识目标:1.引导学生掌握常见的求轨迹问题的方法,同时增强学生对平面几何图形更直观的认识 能力目标:培养学生的创新思维,使学生的解题能力得到进一步的提高,为以后的学习奠定基础。 德育目标:培养学生勇于探索、敢于创新的精神,从探索中获得成功的体验。

三、教学重点、难点:重点是求圆中的轨迹问题;难点是如何灵活运用几种方法来解决各种求轨迹问题。

四.授课类型:复习课

五、教学方法与教学手段:以学生为主体,教师为主导的问题探究式教学。 六.教学过程: 引入:

在无锡市2010届高三数学调研测试(二)解答题中出现这样一道题目: 18.在等腰ABC ?中,已知AB

AC =,且点(1,0)B -。点(

2,0)D 为

AC 中

点。(1)求点C 的轨迹方程(2)已知直线:40,l x y +-=求边BC 在直线l

上的射影EF 长的最大值。文科班大部分学生对第一小题中的轨迹问题一筹莫展,结合2010年江苏高考考试说明我们可以了解到直线和圆的知识是解析几何中的重中之重,虽然考纲中必做题部分对轨迹方程并没有明确要求,但在样卷的解答题中依然出现了轨迹方程问题,我们还是不能掉以轻心,今天我们利用一节课的时间来研究一下解析几何中简单的一些求轨迹的问题,特别是与圆有关的轨迹问题。

一.回忆解析几何中常见的轨迹:

(1)在平面内,到两定点的距离相等的点的轨迹是连接两定点的线段的垂直平分

线.

(2)平面内到角的两边距离相等的点的轨迹是这个角的平分线. (3)平面内到定点的距离等于定长的点的轨迹是以定点为圆心的圆.

(4)平面内到定点的距离与到定直线(定点不在此定直线上)的距离之比等于常数的点的轨迹是圆锥曲线.当常数大于1时表

示双曲线;

当常数等于1时,表示抛物线;当常数大于0而小于1时表示椭圆.定点和定直线分别是圆锥曲线的焦点和相应的准线.

(5)平面内到定直线的距离等于某一定值的点的轨迹是与这条直线平行的两条直线. 二.例题选讲 [例1]已知P(5,0)和圆162

2

=+y x

,过P 任意作直线l 与圆交于A 、B 两点,则弦AB 的中点M

的轨迹为 . 解一:探究:M 是弦的中点,可利用垂径定理。

设轨迹上任一点),(y x M ,连结OM 。

0PM PM =?∴⊥OM OM

,

05052

2

2

=+-=+-∴y x x y x x 即)(51616

052

222=????=+=+-x y x y x x 令。

)5

16

00522<

≤=+-∴x y x x (方程为 ∴弦AB 的中点M 的轨迹为圆的一部分。

反思总结:这题我们利用平面几何知识得到动点满足的关系式,这种求轨迹的方法叫做“几何法”。

解决上题的过程中,帮大家回忆求轨迹问题的步骤:1、建系;2、设点;3、列式;4、化简;5、检验。

解二:设轨迹上任一点),(y x M ,连结OM ,PM OM ⊥

∴M

在以OP 为直径的圆上,且圆的方程为

0522=+-y x x ,以下同解一。

反思总结:像这种先分析、说明动点的轨迹满足某种特殊曲线(如圆、椭圆、双曲线、抛物线等)的定义或特征,再

求出该曲线的相关参量,从而得到轨迹方程的方法叫做“定义法”

解三:设AB 的直线方程为

)5(-=x k y ,设),(),,(),,(2211y x M y x B y x A 。

,0162510)1(16

)

5(22222

2=-+-+????=+-=k x k x k y x x k y ???

???

?+-=+=+=+=1521522212221k k y y y k k x x x ,消去k 得:0522=+-y x x 。(消k 时也要注意0=k 的情况)以下同解一。 反思总结:求轨迹方程有时很难直接找到动点的横坐标、纵坐标之间的关系,则可借助中间变量(参数),使x,y 之间

建立起联系,然而再从所求式子中消去参数,得出动点的轨迹方程,这种方法叫做“参数法”。

回顾:解一是利用几何法,直接得到M 的轨迹方程,但要注意轨迹并不是整个圆,而是在已知圆内的一部分。解二需要对特殊曲线的定义和特征有比较深入的理解。解三利用的是“设而不求”,虽然显得比较复杂,

但是在解决有关圆锥曲线轨迹问题时,却是比较重要的方法。

[变题1]如果将例一中的P(5,0)改为P(3,0),结果会如何呢?

方法同解一。(思考与例1有何区别?)

[变题2]如果在例1的情况下改成求PA 中点D 的轨迹方程,又该如何处理?

解:设D (x,y ),则A (2x-5,2y ),∵点A 在圆上 ∴ 162522

2=+-)()(y x

化简得:04

952

2

=++-y x x 反思总结:这种将要求的点的轨迹转移到已知点的轨迹上去的方法,叫做“转

移法”。

[变题2]已知弦AB 在圆9)2()

1(22

=++-y x 内运动,且,2=AB 则

AB 中点M 的轨迹为 .

解:连结OM ,则OM ⊥AB ,连结OA 。

2

2

2

AM

OM OA +=,

,即8)2()1(1)2()1(92222=++-+++-=∴y x y x ∴M 的轨迹是以(1,-2)为圆心,22为半径的圆。

[变题4]直线0=+-

m y x 交圆422=+y x 于A 、B 两点,求弦AB 中点

轨迹方程。

解:连结OM ,则OM ⊥AB ,得),(y x P ,∴

11-=?x

y

,即

)22(0<<-=+x y x 。

回顾:以上三道例题分别是圆中过定点弦的中点、定长弦中点、平行弦中点轨迹问题,由于圆的特殊性,这类问题都可用几何法来解决,而且较其它方法简单。,这种方法在其他圆锥曲线中就比较困难。

再回到我们引入的问题18. (1)解:设C (x,y ),∵D(2,0)为AC 的中点,∴A (4-x,-y ),

由AB=AC ,得2

2

AC AB =∴2

222

2)42()

5()

(y x y x +-=+-, 整理得4)

1(22

=+-y x ,

又∵A,B,C 三点不共线,∴y ≠0,则点C 的轨迹方程为4

)

1(22

=+-y x (y ≠0) 反思总结:上题中,动点所满足的条件能直接用一个等式表示,从而求出方程,这种求 轨迹的方法叫做“直接法”。

[例2]已知平行四边形ABCD 的顶点A 在圆12

2

=+y x 上运动,B 、C 的坐

标分别为(2,0),(3,3),求顶点D 的轨迹方程。

练习:如图,圆O 1与圆O 2的半径都是1,O 1O 2=4,过动点P 分别作圆O 1、圆O 2 的切线PM 、PN (M 、N 分别为切点),使得.PM

=试建立适当的坐

标系,并求动点P 的轨迹方程(05年江苏)

七.课堂小结:这堂课我们学习了与圆有关的轨迹问题。主要有这几种方法:直接法、定义法、几何法、参数法、转移

法,另外还借助向量,“设而不求”。这些方法都要掌握。

八.作业布置

课题:与圆有关的轨迹方程

课题:与圆有关的轨迹方程 北京市第八十中学 王伟 一、教学时间:10.27 二、教学目标: 1、掌握求曲线的方程的一些常见方法; 2、建立数形结合思想,培养学生运用解析几何的基本思想方法; 3、培养学生的创新意识, 提高学生的分析问题、解决问题的能力; 三、教学重难点: 重点:求与圆有关的轨迹方程的方法; 难点:建立动点坐标之间的等量关系; 四、教学用具:计算机、投影仪、圆规、三角板; 五、教学过程: (一)复习提问导入新课: 1什么叫曲线的方程、方程的曲线? 2求曲线的方程的步骤是什么? 学生回答 教师点评:明确解析几何的基本思想方法是在坐标系的基础上,用坐标表示点,用方程表示曲线,通过方程的特征间接地来研究曲线的性质。其主要问题是1、根据已知条件求曲线的方程,2、通过方程研究平面曲线的性质。 (二)新课: 今天我们一起来研究与圆有关的轨迹方程; 例1已知定点A (6,0),点B 是圆 2+y x 求点P 的轨迹方程。 解法一:作PQ ∥OB 交x 轴于点Q , ∵P 为AB 中点,∴PQ 为△OAB 的中位线 ∴Q(3,0),|PQ|= OB 21 ∴|PQ|=2 3,由圆的定义知,P 在以Q (3,0)为圆心,半径r=|PQ|=23的圆上,∴点P 的轨迹方程是:49)3(22=+-y x ; 1、解法一由学生探讨,寻求解答,展示思维过程; 2、教师点评,总结解法一:定义法; 用计算机演示动点P 的轨迹图形,学生观察运动变化规律。 教师提问:例1的解答还有其他方法吗? 学生观察分析:动点P 的轨迹依赖圆上点B 的变化;

解法二:设P ),(),,(11y x B y x ,由中点坐标公式得: ?? ???+=+=202611y y x x ∴???=-=y y x x 26211∵B ),(11y x 在圆922=+y x 上,∴92121=+y x ∴9)2()62(22=+-y x ∴4 9)3(22=+-y x 教师总结解法二:坐标转移法,并把例1进行的拓展: 变化A 点的位置探求点P 的轨迹方程(1) A 在圆上 (2)A 在圆内 变化P 点位置探求点P 的位置关系(1)P 分AB 的比为2:1 (2)P 在的延长线上,使BP AB = 学生回答在上述四种情况中如何解答? 例2 自圆外一点A (6,0)引圆922=+y x 的割线ABC ,求弦BC 的中点P 的轨迹方程。 定义法 解法一:∵OP ⊥AP,取OA 中点M 则M(3,0),|PM|=3, 由圆的定义得P 点轨迹方程为0622=-+x y x 几何法 1 解法二:设P ),(y x ,连OP ,则OP ⊥BC 14 ,-=-?⊥x y x y k k BC OP 即,即0422=-+x y x ,当0=x 时P 点坐标为(0,0)是方程的解,∴BC 中点P 的轨迹方程为0422=-+x y x (在圆的内部分) 几何法2 解法三 :设P ),(y x ,连OP ,=),(y x ,=),6(y x --,∵⊥, ∴·=0,0)()6(=-+-y y x x ,0622=-+x y x (在圆的内部分) 几何法2 解法四 :设P ),(y x ,连OP ,OP =),(y x ,PA =),6(y x --,∵OP ⊥PA , ∴OP ·=0,0)()6(=-+-y y x x ,0622=-+x y x (在圆的内部分) 坐标转移法 解法五:设 ),,(),,(2211y x C y x B ),(y x P 则 4212 1=+y x …..①

求圆的轨迹方程练习题汇总

求圆的轨迹方程练习 1、 点P 00(,)x y 是圆224x y +=上的动点,点M 为OP (O 为原点)中点,求 动点M 的轨迹方程。 2、 已知两定点A(-2,0)、B(1,0),若动点P 满足|PA |=2|PB |,则点P 轨迹方程所包围的图形面积等于 3、 等腰三角形ABC 底边一个端点B(1,-3),顶点A(0,6),求另一个端点C 的轨迹方程。 4、设A 为圆22(1)1x y -+=上的动点,PA 是圆的切线且|PA |=1,求P 的轨迹方程。 5、 已知BC 是圆2225x y +=的动弦,且|BC |=6,求BC 中点轨迹方程。 6、 长为2a 的线段AB 的两个端点A 和B 分别在x 轴和y 轴上滑动,求线 段AB 的中点的轨迹方程。 7、 已知点M 与两个定点O (0,0),A(3,0)的距离的比为12 ,求点M 的轨迹方程。 8、 已知半径为1的动圆与圆22(5)(7)16x y -++=相切,求动圆圆心轨迹方程。 9、 点A(0,2)是圆2216x y +=内定点,B,C 是这个圆上的两动点,若BA CA ⊥, 求BC 中点M 的轨迹方程,并说明它的轨迹。 10、 已知点M (x,y )与两个定点A 、B 距离的比是一个正数m ,求点M 的 轨迹方程,并说明轨迹是什么图形(考虑 11m m =≠和两种情形) 1、22x y 1+= 2、4π 3、22(6)82x y +-=(除(-1,15)、(1,-3)) 4、22(1)2x y -+= 5、2216x y += 6、222x y a += 7、 224x+1y +=() 8、22(5)(7)x y 25-++=或22(5)(7)x y 9-++= 9、解法一:设BC 中点M (x,y)

考点练习(必修二):与圆有关的轨迹问题(附答案)

与圆有关的轨迹问题 1. 动点P 与定点A(-1,0),B(1,0)的连线的斜率之积为-1,则点P 的轨迹为( ) A.221x y += B. ()2 2 11x y x +=≠± C. ()2 2 11x y x +=≠ D. ()2 2 10x y x +=≠ 2. 点P (4,-2)与圆x 2+y 2=4上任一点连线的中点的轨迹方程是( ) A .(x -2)2+(y +1)2=1 B .(x -2)2+(y +1)2=4 C .(x +4)2+(y -2)2=4 D .(x +2)2+(y -1)2=1 3. 设点A 为圆(x -1)2+y 2=1上的动点,P A 是圆的切线,且|P A |=1,则点P 的轨迹方程为( ) A .y 2=2x B .(x -1)2+y 2=4 C .y 2=-2x D .(x -1)2+y 2=2 4. 已知两定点A(-2,0),B(1,0),如果动点P 满足|P A|=2|P B|,则点P 的轨迹所包围的图形的面积等于________. 5. 自A(4,0)引圆x 2+y 2=4的割线ABC ,求弦BC 中点P 的轨迹方程. 6. 已知动点M 到点A(2,0)的距离是它到点B(8,0)的距离的一半. (1)求动点M 的轨迹方程; (2)若N 为线段A M 的中点,试求点N 的轨迹. 7. 已知线段AB 的长为4,且端点A ,B 分别在x 轴与y 轴上,则线段AB 的中点M 的轨迹方程为________.

8. 点P(4,﹣2)与圆x2+y2=4上任一点连线的中点轨迹方程是() A. (x﹣2)2+(y+1)2=1 B.(x﹣2)2+(y+1)2=4 C. (x+4)2+(y﹣2)2=1 D.(x+2)2+(y﹣1)2=1 9. 已知△ABC的边AB长为2a,若BC边上的中线为定长m,求顶点C的轨迹. 10. 在平面直角坐标系xOy中,已知圆P在x轴上截得线段长为22,在y轴上截得线段长为2 3. (1)求圆心P的轨迹方程; (2)若P点到直线y=x的距离为 2 2,求圆P的方程. 11. 已知圆的方程是x2+y2-2ax+2(a-2)y+2=0,其中a≠1,且a∈R. (1)求证:a取不为1的实数时,圆过定点; (2)求圆心的轨迹方程. 12. 设定点M(-3,4),动点N在圆x2+y2=4上运动,以OM,ON为邻边作平行四边形MONP,求点P的轨迹. 13. 已知圆x2+y2=4上一定点A(2,0),B(1,1)为圆内一点,P,Q为圆上的动点. (1)求线段AP中点的轨迹方程; (2)若∠PBQ=90°,求线段PQ中点的轨迹方程.

完整的圆锥曲线轨迹方程求法

圆锥曲线轨迹方程的解法 目录 一题多解 (2) 一.直接法 (3) 二. 相关点法 (6) 三. 几何法 (10) 四. 参数法 (12) 五. 交轨法 (14) 六. 定义法 (16)

一题多解 设圆C :(x -1)2+y 2=1,过原点O 作圆的任意弦OQ ,求所对弦的中点P 的轨迹方程。 一.直接法 设P (x,y ),OQ 是圆C 的一条弦,P 是OQ 的中点,则CP ⊥OQ ,x ≠0,设 OC 中点为M (0,21),则|MP |=21|OC |=21,得(x -21)2+y 2=41 (x ≠0),即点P 的 轨迹方程是(x -21)2+y 2=41 (0<x ≤1)。 二.定义法 ⊥⊥OPC =90°,⊥动点P 在以M (0,2 1 )为圆心,OC 为直径的圆(除去原点 O )上,|OC |=1,故P 点的轨迹方程为(x -21)2+y 2=41 (0<x ≤1) 三.相关点法 设P (x,y ),Q (x 1,y 1),其中x 1≠0, ⊥x 1=2x,y 1=2y ,而(x 1-1)2+y 2=1 ⊥(2x -1)2+2y 2=1,又x 1≠0, ⊥x ≠0,即(x -21)2+y 2=41 (0<x ≤1) 四.参数法 ①设动弦PQ 的方程为y=kx ,代入圆的方程(x -1)2+kx 2=1, 即(1+k 2)x 2-2x =0,⊥.12 221k x x +=+ 设点P (x,y ),则2 2211],1,0(112k k kx y k x x x +==∈+=+= 消去k 得(x - 21)2+y 2=4 1 (0<x ≤1) ②另解 设Q 点(1+cos θ,sin θ),其中cos θ≠-1,P (x,y ), 则,2sin ],1,0(2cos 1θθ=∈+= y x 消去θ得(x -21)2+y 2=4 1 (0<x ≤1)

与圆有关的轨迹方程

求与圆有关的轨迹方程 [概念与规律]求轨迹方程的基本方法。 (1)直接法:这是求动点轨迹最基本的方法,在建立坐标系后,直接根据等量关系式建立方程。 (2)转移法(逆代法):这方法适合于动点随已知曲线上点的变化而变化的轨迹问题,其步骤是:设动点M(x,y),已知曲线上的点为N (x o, y o), 求出用x,y表示x o,y o的关系式,将(x o, y o)代入已知曲线方程,化简后得动点的轨迹方程。 (3)几何法:这种方法是根据已知图形的几何性质求动点轨迹方程。 (4)参数法:这种方法是通过引入一个参数来沟通动点(x,y)中x,y之间的关系,后消去参数,求得轨迹方程。 (5)定义法:这是直接运用有关曲线的定义去求轨迹方程。 [讲解设计]重点和难点 例1 已知定点A(4,o ),点B是圆x2+y2=4上的动点,点P分AB的比为2:1,求点P的轨迹方程。 例2 自A(4,0)引圆x2+y2=4的割线ABC求弦BC中点P的轨迹方程。 方法一:(直接法)设P(x,y),连接OP则OPL BC 』-=一止 当x^0 时,k op ■ k AP=—1,即TT x—4 即x2+ y2—4x = O.① 当x= O时,P点坐标(0,0)是方程①的解, BC中点P的轨迹方程为x2+ y2—4x= O(在已知圆内的部分). 方法二:(定义法) 由方法一知OPtAP,取OA中点M 则M2,0), |PM =2 I OA = 2, 由圆的定义知,P的轨迹方程是(x —2)2+ y2= 4(在已知圆内的部分). 例3 已知直角坐标平面上的点Q(2, 0)和圆C: x2+y2=1,动点M到圆C的切线长与|MQ|的比等于常数 (0),求动点M的轨迹方程,并说明它表示什么曲线。 设直线MN切圆于N,则动点M组成的集合是:P={M||MN|= J'|MQ|} T圆的半径|ON|=1,二|MN|2=|MO|2-|ON|2=|MO|2-1 , 设点M的坐标为(x, y),则j 整理得(x-4)2+y2=7 . ???动点M的轨迹方程是(x-4 )2+y2=7 . 它表示圆,该圆圆心的坐标为(4 , 0),半径为越 例4 如图,已知两条直线11:2x-3y+2=0 , I2: 3x-2y+3=0,有一动圆(圆心和半径都在变化)与丨1,丨2都相交, 并且I 1与I 2被截在圆内的两条线段的长度分别是26和24,求圆心M的轨迹方程。 设动圆的圆心为M(x,y),半径为r,点M到直线1* 2的距离分别为d1和dz 由弦心距、半径、半弦长间的关系得,

解析几何求圆的轨迹方程专题一师用

专题一求圆的轨迹方程 教学目标: 1、掌握直线与圆的标准方程与一般方程,能根据问题的条件选择适当的 形式求圆的方程; 2、掌握直线与圆的位置关系,可以应用直线与圆的位置关系求圆的方程 3、理解圆的标准方程与一般方程之间的关系,会进行互化。 教学重难点: 1、掌握圆的标准方程与一般方程,能根据问题的条件选择适当的形式求圆 的方程; 2、会求曲线的轨迹方程(圆) 教学过程: 第一部分知识点回顾 一、圆的方程 : 1 .圆的标准方程:x a? y b 2 r2o 2 ?圆的一般方程:x2 y2 Dx Ey F 0(D2+ E2—4F 0) 特别提醒:只有当D2+ E2—4F 0时,方程x2 y2 Dx Ey F 0才表示圆心为(D, E),半径为1~E2~4F的圆 2 2 2 思考:二元二次方程Ax2 Bxy Cy2 Dx Ey F 0表示圆的充要条件是什么? 答案:(A C 0,且 B 0 且D2 E2 4AF 0 ));

3 .圆的参数方程:y a r s°s (为参数),其中圆心为(a,b),半径为 r 。圆的参数方程的主要应用是三角换元: (3) 已知P( 1, -3)是圆y ;;煮(为参数,0 2 )上的点,则圆的 普通方程为,P 点对应的 值为,过P 点的圆的切线方程是 (答:x 2 y 2=4 ; — ; x ,3y 4 0); 3 (4) 如果直线l 将圆:x 22-240平分,且不过第四象限,那么I 的斜率 的取值范围是_ (答: [0 , 2]); (5) 方程x 22 - 0表示一个圆,则实数k 的取值范围为(答:k 丄); (6) 若 M {(x, y) | y 3sos (为参数,0 )}, N (x, y) | y x b , 若MN ,则b 的取值范围是(答:-33& ) 二、点与圆的位置关系:已知点M x 0 ,y 0 及圆C: x-a $ y b ? r 2 r 0 , (1) 点 M 在圆 C 外 |CM | r x 0 a 2 y 。b 2 r 2; (2) 点 M 在圆 C 内 CM| r x 0 a 2 y 。b 2 r 2; (3) 点 M 在圆 C 上 CM r x 0 a $ y 0 r 2。女口 点P(5a+1,12a)在圆(x -1 )2 + y 2=1的内部,则a 的取值范围是(答: 2 ^22, r x r cos , y r sin ; x y t x r cos ,y r sin (0 r .,t)。 X i ,y i ,B X 2,y 2为直径端点的圆方程 x x 1 x X 2 y y 1 y y 2 0 如 (1) 圆C 与圆(X 1)2 y 2 1关于直线y x 对称, 则圆 C 的方程为 (答: x 2 (y 1)2 1); (2) 圆心在直线2x y 3上,且与两坐标轴均相切的圆的标准方程是 (答: (x 3)2 (y 3)2 9或(x 1)2 (y 1)2 1 );

一类动点轨迹问题的探求---“阿波罗尼斯圆”(1)

一类动点轨迹问题的探求 专题来源:学习了“椭圆的标准方程”后,对于,我们可以进一步研究: 2PA PB a +=,各自的轨迹方程如何? 2,2, 2PA PA PB a PA PB a a PB -=== 引例:已知点与两定点的距离之比为,那么点的坐标应满足什(,)M x y (0,0),(3,0)O A 1 2 M 么关系?(必修2 P103 探究·拓展) 探究 已知动点与两定点、的距离之比为,那么点的轨迹是什么? M A B (0)λλ>M 背景展示 阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德被称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,主要研究成果集中在他的代表作《圆锥曲线》一书,阿波罗尼斯圆是他的研究成果之一 类题1: (1994,全国卷) 已知直角坐标平面上点Q (2,0)和圆C :x 2+y 2=1,动点M 到圆C 的切线长与|MQ |的比等于常数λ(λ>0).求动点M 的轨迹方程,说明它表示什么曲线. 本小题考查曲线与方程的关系,轨迹概念等解析几何的基本思想以及综合运用知识的能力. 解:如图,设MN 切圆于N ,则动点M 组成的集合是 P={M ||MN |=λ|MQ |},式中常数λ>0. ——2分 因为圆的半径|ON |=1,所以|MN |2=|MO |2-|ON |2=|MO |2-1. ——4分 设点M 的坐标为(x ,y ),则 ——5分 ()222 2 21y x y x +-=-+λ整理得(λ2-1)(x 2+y 2 )-4λ2x +(1+4λ2)=0. 经检验,坐标适合这个方程的点都属于集合P .故这个方程为所求的轨迹方程. ——8分

与圆有关的轨迹方程的求法培训资料

与圆有关的轨迹方程 的求法

与圆有关的轨迹方程的求法 若已知动点P 1(α ,β)在曲线C 1:f 1(x,y )=0上移动,动点P (x,y )依动点P 1而动,它满足关系: ? ??βα=βα=),(),(y y x x ① 则关于α 、β反解方程组①,得???=β=α) ,(),(y x h y x g ② 代入曲线方程f 1(x,y )=0,即可求得动点P 的轨迹方程C :f (x,y )=0. 例1、(求轨迹):已知线段AB 的端点B 的坐标是(4,3),端点A 在圆4)1(22=++y x 上运动,求线段AB 的中点M 的轨迹方程. 【例2】已知点A (3,0),点P 在圆x 2+y 2=1的上半圆周上,∠AOP 的平分线交PA 于Q ,求点Q 的轨迹方程. 【法一】如图所示,设P (x 0,y 0)(y 0>0),Q (x ,y ). ∵OQ 为∠AOP 的平分线,∴ 3 1||||==OQ OP QA PQ , ∴Q 分PA 的比为31 .

∴???????=-=????? ??????=+?+=+=+?+=y y x x y y y x x x 3413443311031)1(43311313000000即 又因2020y x +=1,且y 0>0,∴19164391622 =+??? ??-y x . ∴Q 的轨迹方程为)0(16 9)43 (22>=+-y y x . 例3、已知圆,422=+y x 过A (4,0)作圆的割线ABC ,则弦BC 中点的轨迹方程为( ) A .4)1(22=+-y x B .)10(4)1(22<≤=+-x y x C .4)2(22=+-y x D .)10(4)2(22<≤=+-x y x 变式练习 1:已知定点)0,3(B ,点A 在圆122=+y x 上运动,M 是线段AB 上的一点,且 3 1=,则点M 的轨迹方程是 解:设),(),,(11y x A y x M .∵31=,∴),3(3 1),(11y x y y x x --=--, ∴???????-=--=-y y y x x x 31)3(3111,∴??? ????=-=y y x x 3413411.∵点A 在圆122=+y x 上运动,∴ 12121=+y x ,∴1)34()134(22=+-y x ,即16 9)43(22=+-y x ,∴点M 的轨迹方程是16 9)43(22=+-y x . 2:已知定点)0,3(B ,点A 在圆122=+y x 上运动,AOB ∠的平分线交AB 于点M ,则点M 的轨迹方程是 .

与圆的轨迹方程

与圆的轨迹方程文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

求与圆有关的轨迹方程 [概念与规律] 求轨迹方程的基本方法。 (1)直接法:这是求动点轨迹最基本的方法,在建立坐标系后,直接根据等量关系式建立方程。 (2)转移法(逆代法):这方法适合于动点随已知曲线上点的变化而变化的轨迹问 题,其步骤是:? 设动点M(x,y),已知曲线上的点为N(x 0,y ), ? 求出用x,y表示x 0,y 的关系式, ? 将(x 0,y )代入已知曲线方程,化简后得动点的轨迹方程。 (3)几何法:这种方法是根据已知图形的几何性质求动点轨迹方程。 (4)参数法:这种方法是通过引入一个参数来沟通动点(x,y)中x,y之间的关系,后消去参数,求得轨迹方程。 (5)定义法:这是直接运用有关曲线的定义去求轨迹方程。 [讲解设计]重点和难点 例1 已知定点A(4, 0),点B是圆x2+y2=4 上的动点,点P分AB的比为2:1,求点P的轨迹方程。 例2 自A(4,0)引圆x2+y2=4的割线ABC,求弦BC中点P的轨迹方程。 方法一:(直接法)设P(x,y),连接OP,则OP⊥BC, 当x≠0时,k OP·k AP=-1,即 即x2+y2-4x=0. ① 当x=0时,P点坐标(0,0)是方程①的解, ∴BC中点P的轨迹方程为x2+y2-4x=0(在已知圆内的部分). 方法二:(定义法) 由方法一知OP⊥AP,取OA中点M,则M(2,0),|PM|=|OA|=2, 由圆的定义知,P的轨迹方程是(x-2)2+y2=4(在已知圆内的部分). 例3 已知直角坐标平面上的点Q(2,0)和圆C:x2+y2=1,动点M到圆C的切线长 > 设直线MN切圆于N,则动点M组成的集合是:P={M||MN|=√2|MQ|}

圆锥曲线轨迹方程经典例题

轨迹方程经典例题 一、轨迹为圆的例题: 1、 必修2课本P 124B 组2:长为2a 的线段的两个端点在x 轴和y 轴上移动,求线段AB 的中点M 的轨迹方程: 必修2课本P 124B 组:已知M 与两个定点(0,0),A (3,0)的距离之比为 2 1 ,求点M 的轨迹方程;(一般地:必修2课本P 144B 组2:已知点M(x ,y )与两个定点21,M M 的距离之比为一个常数m ;讨论点M(x ,y )的轨迹方程(分m =1,与m ≠1进行讨论) 2、 必修2课本P 122例5:线段AB 的端点B 的坐标是(4,3),端点A 在圆 1)1(22=++y x 上运动,求AB 的中点M 的轨迹。 (2013新课标2卷文20)在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为22,在y 轴上截得线段长为32。 (1)求圆心的P 的轨迹方程; (2)若P 点到直线x y =的距离为 2 2 ,求圆P 的方程。 如图所示,已知P (4,0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程. 解:设AB 的中点为R ,坐标为(x ,y ),则在Rt △ABP 中,|AR |=|PR |.又因为R 是弦AB 的中点,依垂径定理:在Rt △OAR 中,|AR |2=|AO |2-|OR |2=36-(x 2+y 2)又|AR |=|PR |=22)4(y x +-所以有(x -4)2+y 2=36-(x 2+y 2),即x 2+y 2-4x -10=0因此点R 在一个圆上,而当R 在此圆上运动时,Q 点即在所求的轨迹上运动. 设Q (x ,y ),R (x 1,y 1),因为R 是PQ 的中点,所以x 1= 2 ,241+= +y y x ,代入方程x 2+y 2-4x -10=0,得24 4)2()24( 22+? -++x y x -10=0整理得:x 2+y 2=56,这就是所求的轨迹方程. 在平面直角坐标系xOy 中,点)3,0(A ,直线42:-=x y l .设圆C 的半径为1,圆心在l 上. (1)若圆心C 也在直线1-=x y 上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使MO MA 2=,求圆心C 的横坐标a 的取值范围. (2013陕西卷理20)已知动圆过定点)0,4(A ,且在y 轴上截得弦MN 的长为8.

高一数学 必修二与圆有关的轨迹问题

高一数学 4.1.2 与圆有关的轨迹问题课时 1 【学习目标】 1.初步理解用代数方法处理几何问题的思想,坐标法 3. 初步学习用代入法,定义法求点的轨迹方程,了解求点的轨迹方程的方法,步骤。【学习重点】求点的轨迹方程的方法,步骤。 【学习难点】求点轨迹的过程中寻找动点满足的几何关系 复习案 1、复习P92直线的点斜式方程的推导过程初步体会求点的轨迹的过程,方法 2、复习P118圆的标准方程方程的推导过程初步体会求点的轨迹的过程,方法。 学习案 动点M的坐标(x,y)满足的关系式称为点M的轨迹方程 例1、已知线段AB的端点B的坐标是(4,3),端点A在圆22 (1)4 x y ++=上运动,求线段AB的中点M的轨迹方程。(试着作图,当点A在圆上运动时,追踪中点M的轨迹) 小结 当动点M的变化是由点P的变化引起的,并且已知点P在某一曲线C上运动时,常用代入法(也称相关点法)求动点M的轨迹方程,其步骤是:(1)设动点M的坐标为(x,y);(2)用点M的坐标表示点P的坐标;(3)将所得点P的坐标代入曲线C的方程,即得点M的轨迹方程 变式训练、 1、过原点O做圆2280 x y x +-=的弦OA求弦OA的中点M的轨迹方程 例2若Rt ABC ?的斜边的两端点A、B的坐标分别为(-3,0)(7,0)求直角顶点C的轨迹方程例3、已知点A(-3,0),B(3,0),动点P满足2 PA PB =,求点P 的轨迹方程分析:找出动点满足的关系式,代入动点的坐标,可得轨迹方程,由轨迹方程确定曲线的形状. 课堂小结 总结:求曲线的轨迹方程的步骤 (1)建立适当坐标系,设出动点M的坐标(x,y) (2)列出点M满足条件的集合 (3)用坐标表示上述条件,列出方程 (4)将上述方程化简。 (5)证明化简后的以方程的解为坐标的解都是轨迹上的点。 练习 1、一动点到A(-4,0)的距离是到B(2,0)的距离的2倍,求动点的轨迹方程 2、已知两定点A(-2,0),B(1,0),若动点P满足2 PA PB =,则点P的轨迹方程 3、已知圆的方程为:2266140 x y x y +--+=,求过点() 3,5 A--的直线交圆得到的弦PQ 的中点M的轨迹方程 4、等腰三角形的顶点A的坐标是(4,2),底边一个端点B的坐标是(3,5),求另一个端点C的轨迹方程。

与圆有关的轨迹方程(终审稿)

与圆有关的轨迹方程公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

求与圆有关的轨迹方程 [概念与规律] 求轨迹方程的基本方法。 (1)直接法:这是求动点轨迹最基本的方法,在建立坐标系后,直接根据等量关系式建立方程。 (2)转移法(逆代法):这方法适合于动点随已知曲线上点的变化而变化的轨迹问题,其步骤 是:设动点M(x,y),已知曲线上的点为N(x 0,y ), 求出用x,y表示x 0,y 的关系式, 将(x 0,y )代入已知曲线方程,化简后得动点的轨迹方程。 (3)几何法:这种方法是根据已知图形的几何性质求动点轨迹方程。 (4)参数法:这种方法是通过引入一个参数来沟通动点(x,y)中x,y之间的关系,后消去参数,求得轨迹方程。 (5)定义法:这是直接运用有关曲线的定义去求轨迹方程。 [讲解设计]重点和难点 例1 已知定点A(4, 0),点B是圆x2+y2=4 上的动点,点P分AB的比为2:1,求点P 的轨迹方程。 例2 自A(4,0)引圆x2+y2=4的割线ABC,求弦BC中点P的轨迹方程。 方法一:(直接法)设P(x,y),连接OP,则OP⊥BC, 当x≠0时,k OP·k AP=-1,即 即x2+y2-4x=0. ① 当x=0时,P点坐标(0,0)是方程①的解, ∴BC中点P的轨迹方程为x2+y2-4x=0(在已知圆内的部分). 方法二:(定义法) 由方法一知OP⊥AP,取OA中点M,则M(2,0),|PM|=|OA|=2, 由圆的定义知,P的轨迹方程是(x-2)2+y2=4(在已知圆内的部分). 例3 已知直角坐标平面上的点Q(2,0)和圆C:x2+y2=1,动点M到圆C的切线长与|MQ|设直线MN切圆于N,则动点M组成的集合是:P={M||MN|=√2|MQ|} ∵圆的半径|ON|=1,∴|MN|2=|MO|2-|ON|2=|MO|2-1, 设点M的坐标为(x,y),则√(x2+x2?1)=√(x?2)2+x2

求轨迹方程的一般方法

求轨迹方程的一般方法 (一)求轨迹方程的一般方法: 1. 定义法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。 2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。 3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ), y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。 4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。 5:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。 一:用定义法求轨迹方程 例1:已知ABC ?的顶点A ,B 的坐标分别为(-4,0),(4,0),C 为动点,且满足 ,sin 4 5 sin sin C A B = +求点C 的轨迹。 【变式】:已知圆 的圆心为M 1,圆 的圆心为M 2,一动圆与 这两个圆外切,求动圆圆心P 的轨迹方程。 二:用直译法求轨迹方程 例2:一条线段AB 的长等于2a ,两个端点A 和B 分别在x 轴和y 轴上滑动,求AB 中点P 的轨迹方程? 【变式】: 动点P (x,y )到两定点A (-3,0)和B (3,0)的距离的比等于2(即 2| || |=PB PA ),求动点P 的轨迹方程? 三:用参数法求轨迹方程 此类方法主要在于设置合适的参数,求出参数方程,最后消参,化为普通方程。注意参数的取值范围。 例3.过点P (2,4)作两条互相垂直的直线l 1,l 2,若l 1交x 轴于A 点,l 2交y 轴于B 点,求线段AB 的中点M 的轨迹方程。

与圆有关的轨迹方程

求与圆有关的轨迹方程 [概念与规律] 求轨迹方程的基本方法。 (1)直接法:这是求动点轨迹最基本的方法,在建立坐标系后,直接根据等量关系式建立方程。 (2)转移法(逆代法):这方法适合于动点随已知曲线上点的变化而变化的轨迹问题,其步骤是:? 设动点M (x ,y ),已知曲线上的点为N (x 0,y 0), ? 求出用x ,y 表示x 0,y 0的关系式, ? 将(x 0,y 0)代入已知曲线方程,化简后得动点的轨迹方程。 (3)几何法:这种方法是根据已知图形的几何性质求动点轨迹方程。 (4)参数法:这种方法是通过引入一个参数来沟通动点(x ,y )中x ,y 之间的关系,后消去参数,求得轨迹方程。 (5)定义法:这是直接运用有关曲线的定义去求轨迹方程。 [讲解设计]重点和难点 例1 已知定点A (4, 0),点B 是圆x 2+y 2=4 上的动点,点P 分AB 的比为2:1,求点P 的轨迹方程。 例2 自A (4,0)引圆x 2+y 2=4的割线ABC ,求弦BC 中点P 的轨迹方程。 方法一:(直接法)设P (x ,y ),连接OP ,则OP ⊥BC , 当x ≠0时,k OP ·k AP =-1,即 即x 2+y 2-4x =0. ① 当x =0时,P 点坐标(0,0)是方程①的解, ∴BC 中点P 的轨迹方程为x 2+y 2-4x =0(在已知圆内的部分). 方法二:(定义法) 由方法一知OP ⊥AP ,取OA 中点M ,则M (2,0),|PM |=|OA |=2, 由圆的定义知,P 的轨迹方程是(x -2)2+y 2=4(在已知圆内的部分). 例3 已知直角坐标平面上的点Q (2,0)和圆C :x 2+y 2=1,动点M 到圆C 的切线长与|MQ|的比等于常数λ(λ>0),求动点M 的轨迹方程,并说明它表示什么曲线。 设直线MN 切圆于N ,则动点M 组成的集合是:P={M||MN|=√2|MQ|} ∵圆的半径|ON|=1,∴|MN|2=|MO|2-|ON|2=|MO|2-1, 设点M 的坐标为(x ,y ),则√(x 2+x 2?1)=√(x ?2)2 +x 2 整理得(x-4)2+y 2=7. ∴动点M 的轨迹方程是(x-4)2+y 2=7.

与圆有关的轨迹问题

课题:与圆有关的轨迹问题 一、设计理念: 本课主要复习应用轨迹方面的问题,我准备用一个课时来教授。我仔细研究2010年江苏高考考试说明和各大市高考模拟试卷后总结出,轨迹问题特别是与圆有关的轨迹问题依然是学生不可掉以轻心的一块内容,本节课我以求轨迹方程的常见方法作为核心内容,以无锡二模的18题为生长点,在此基础上进行发散,紧紧围绕本课重点。几道例题力求一题多变,多题一解,将求轨迹问题串到一条线上,尽量使学生能够做到融会贯通,在解决卷面求轨迹问题的同时,增强对几何图形直观的认识。 二、教学目标: 知识目标:1.引导学生掌握常见的求轨迹问题的方法,同时增强学生对平面几何图形更直观的认识 能力目标:培养学生的创新思维,使学生的解题能力得到进一步的提高,为以后的学习奠定基础。 德育目标:培养学生勇于探索、敢于创新的精神,从探索中获得成功的体验。 三、教学重点、难点:重点是求圆中的轨迹问题;难点是如何灵活运用几种方法来解决各种求轨迹问题。 四.授课类型:复习课 五、教学方法与教学手段:以学生为主体,教师为主导的问题探究式教学。 六.教学过程: 引入: 在无锡市2010届高三数学调研测试(二)解答题中出现这样一道题目: 18.在等腰ABC ?中,已知AB AC = ,且点(1,0)B -。 点(2,0)D 为AC 中 点。(1)求点C 的轨迹方程(2)已知直线:40,l x y +-=求边BC 在直线l 上的射影EF 长的最大值。文科班大部分学生对第一小题中的轨迹问题一筹莫展,结合2010年江苏高考考试说明我们可以了解到直线和圆的知识是解析几何中的 重中之重,虽然考纲中必做题部分对轨迹方程并没有明确要求,但在样卷的解答题中依然出现了轨迹方程问题,我们还是不能掉以轻心,今天我们利用一节课的时间来研究一下解析几何中简单的一些求轨迹的问题,特别是与圆有关的轨迹问 题。 一.回忆解析几何中常见的轨迹: (1)在平面内,到两定点的距离相等的点的轨迹是连接两定点的线段的垂直平分 线. (2)平面内到角的两边距离相等的点的轨迹是这个角的平分线. (3)平面内到定点的距离等于定长的点的轨迹是以定点为圆心的圆. (4)平面内到定点的距离与到定直线(定点不在此定直线上)的距离之比等于常数的点的轨迹是圆锥曲线.当常数大于1时表 示双曲线;当常数等于1时,表示抛物线;当常数大于0而小于1时表示椭圆.定点和定直线分别是圆锥曲线的焦点和相应的准线. (5)平面内到定直线的距离等于某一定值的点的轨迹是与这条直线平行的两条直线. 二.例题选讲 [例1]已知P(5,0)和圆1622 =+y x ,过P 任意作直线l 与圆交于A 、B 两点,则弦AB 的中点 M 的轨迹为 . 解一:探究:M 是弦的中点,可利用垂径定理。 设轨迹上任一点),(y x M ,连结OM 。 0PM PM =?∴⊥OM OM , 05052 2 2 =+-=+-∴y x x y x x 即)(516 16 052 222=????=+=+-x y x y x x 令。 )5 16 00522< ≤=+-∴x y x x (方程为 ∴弦AB 的中点M 的轨迹为圆的一部分。 反思总结:这题我们利用平面几何知识得到动点满足的关系式,这种求轨迹的方法叫做“几何法”。 解决上题的过程中,帮大家回忆求轨迹问题的步骤:1、建系;2、设点;3、列式;4、化简;5、检验。 解二:设轨迹上任一点 ),(y x M ,连结OM , PM OM ⊥∴M 在以OP 为直径的圆上,且圆的方程为 0522=+-y x x ,以下同解一。

解析几何 求圆的轨迹方程(专题一)师用

专题一 求圆的轨迹方程 教学目标: 1、 掌握直线与圆的标准方程与一般方程,能根据问题的条件选择适当的形式求圆的方程; 2、 掌握直线与圆的位置关系,可以应用直线与圆的位置关系求圆的方程 3、 理解圆的标准方程与一般方程之间的关系,会进行互化。 教学重难点: 1、 掌握圆的标准方程与一般方程,能根据问题的条件选择适当的形式求圆的方程; 2、 会求曲线的轨迹方程(圆) 教学过程: 第一部分 知识点回顾 一、圆的方程: 1.圆的标准方程:()()2 2 2 x a y b r -+-=。 2.圆的一般方程:22220(D E 4F 0)+-x y Dx Ey F ++++=> 特别提醒:只有当2 2 D E 4F 0+->时,方程220x y Dx Ey F ++++=才表示圆心为(,)22 D E --,半径为 221 42 D E F +-的圆 思考:二元二次方程2 2 0Ax Bxy Cy Dx Ey F +++++=表示圆的充要条件是什么? 答案: (0,A C =≠且0B =且2 2 40D E AF +->)); 3.圆的参数方程:{ cos sin x a r y b r θθ=+=+(θ为参数) ,其中圆心为(,)a b ,半径为r 。圆的参数方程的主 要应用是三角换元: 222cos ,sin x y r x r y r θθ+=→==;22x y t +≤cos ,sin (0)x r y r r t θθ→==≤≤。 4.()()1122A ,,,x y B x y 为直径端点的圆方程()()()()12120x x x x y y y y --+--=如 (1)圆C 与圆22 (1)1x y -+=关于直线y x =-对称,则圆C 的方程为____________ (答:2 2 (1)1x y ++=); (2)圆心在直线32=-y x 上,且与两坐标轴均相切的圆的标准方程是__________ (答:9)3()3(2 2 =-+-y x 或1)1()1(2 2 =++-y x ); (3)已知(1,3)P -是圆 { cos sin x r y r θθ==(θ 为参数,02)θπ≤<上的点,则圆的普通方程为________, P 点对应的θ值为_______,过P 点的圆的切线方程是___________

轨迹方程的五种求法例题

动点轨迹方程的求法 一、直接法 按求动点轨迹方程的一般步骤求,其过程是建系设点,列出几何等式,坐标代换,化简整理,主要用于动点具有的几何条件比较明显时. 例1已知直角坐标平面上点Q (2,0)和圆C :,动点M 到圆C 的切线长与的比等于常数(如图),求动点M 的轨迹方程,说明它表示什么曲线. 【解析】:设M (x ,y ),直线MN 切圆C 于N ,则有 ,即 , .整理得,这就是动点 M 的轨迹方程.若,方程化为,它表示过点和x 轴垂直的一条直线;若λ≠1,方程化为,它表示以为圆心,为半径的圆. 二、代入法 若动点M (x ,y )依赖已知曲线上的动点N 而运动,则可将转化后的动点N 的坐标入已知曲线的方程或满足的几何条件,从而求得动点M 的轨迹方程,此法称为代入法,一般用于两个或两个以上动点的情况. 例2 已知抛物线,定点A (3,1),B 为抛物线上任意一点,点P 在线段AB 上,且有BP :PA =1:2,当点B 在抛物线上变动时,求点P 的轨迹方程,并指出这个轨迹为哪种曲线. 【解析】:设,由题设,P 分线段AB 的比,∴ 解得.又点B 在抛物线上,其坐标适合抛物线方程,∴ 整理得点P 的轨迹方程为其轨迹为抛物线. 三、定义法 若动点运动的规律满足某种曲线的定义,则可根据曲线的定义直接写出动点的轨迹方程.此法一般用于求圆锥曲线的方程,在高考中常填空、选择题的形式出现. 例3 若动圆与圆外切且与直线x =2相切,则动圆圆心的轨迹方程是 12 2 =+y x MQ ()0>λλλ=MQ MN λ=-MQ ON MO 2 2λ=+--+2 222)2(1y x y x 0)41(4)1()1(222222=++--+-λλλλx y x 1=λ45= x )0,4 5 (2 222 222)1(3112-+=+-λλλλy x )-()0,12(2 2-λλ1 3122-+λλ12 +=x y ),(),,(11y x B y x P 2== PB AP λ.2121,212311++=++= y y x x 2 1 23,232311-=-=y y x x 12+=x y .1)2 3 23()2123( 2+-=-x y ),3 1 (32)31(2-=-x y 4)2(2 2 =++y x

与圆有关的轨迹方程的求法

与圆有关的轨迹方程的求法 若已知动点P 1(α ,β)在曲线C 1:f 1(x,y )=0上移动,动点P (x,y )依动点P 1而动,它满足关系: ? ? ?βα=βα=),() ,(y y x x ① 则关于α 、β反解方程组①,得?? ?=β=α) ,() ,(y x h y x g ② 代入曲线方程f 1(x,y )=0,即可求得动点P 的轨迹方程C :f (x,y )=0. 例1、(求轨迹):已知线段AB 的端点B 的坐标是(4,3),端点A 在圆4)1(2 2 =++y x 上运动,求线段AB 的中点M 的轨迹方程. 【例2】已知点A (3,0),点P 在圆x 2+y 2 =1的上半圆周上,∠AOP 的平分线交P A 于Q ,求点Q 的轨迹方程. 【法一】如图所示,设P (x 0,y 0)(y 0>0),Q (x ,y ). ∵OQ 为∠AOP 的平分线,∴ 3 1 ||||==OQ OP QA PQ , ∴Q 分P A 的比为 3 1. ∴???????=-=? ???? ?????? =+?+=+=+?+=y y x x y y y x x x 3413443311031)1(433 1131300000 0即 又因 202 y x + =1,且 y 0>0,∴19 16439162 2 =+ ??? ?? - y x . ∴Q 的轨迹方程为)0(16 9 )43 (22>= +-y y x .

例3、已知圆,42 2 =+y x 过A (4,0)作圆的割线ABC ,则弦BC 中点的轨迹方程为( ) A .4)1(2 2=+-y x B .)10(4)1(22<≤=+-x y x C .4)2(2 2 =+-y x D .)10(4)2(22<≤=+-x y x 变式练习 1:已知定点)0,3(B ,点A 在圆12 2=+y x 上运动,M 是线段AB 上的一点,且 MB AM 3 1 =,则点M 的轨迹方程是 解:设),(),,(11y x A y x M .∵MB AM 31=,∴),3(3 1 ),(11y x y y x x --=--, ∴???????-=--=-y y y x x x 31)3(3111,∴??? ???? =-=y y x x 3413411.∵点A 在圆122=+y x 上运动,∴12121=+y x ,∴1)34( )134(22=+-y x , 即169)43(22=+-y x ,∴点M 的轨迹方程是16 9 )43(22=+-y x . 2:已知定点)0,3(B ,点A 在圆12 2 =+y x 上运动,AOB ∠的平分线交AB 于点M ,则点M 的轨迹方程是 . 解:设),(),,(11y x A y x M .∵OM 是AOB ∠的平分线,∴3 1==OB OA MB AM , ∴31=. 由变式1可得点M 的轨迹方程是16 9 )43(22=+-y x . 3:已知直线1+=kx y 与圆42 2 =+y x 相交于A 、B 两点,以OA 、OB 为邻边作平行四边形OAPB ,求点P 的轨迹方程. 解:设),(y x P ,AB 的中点为M .∵OAPB 是平行四边形,∴M 是OP 的中点,∴点M 的坐标为)2 ,2(y x ,且AB OM ⊥.∵直线1+=kx y 经过定点)1,0(C ,∴CM OM ⊥,∴ 0)12 (2)2()12,2()2,2(2=-+=-?=?y y x y x y x ,化简得1)1(2 2=-+y x .∴点P 的轨 迹方程是1)1(2 2=-+y x . 4、圆9)1()2(2 2=++-y x 的弦长为2,则弦的中点的轨迹方程是 王新敞 5、已知半径为1的动圆与圆16)7()5(2 2=++-y x 相切,则动圆圆心的轨迹方程是( )

相关主题
文本预览
相关文档 最新文档