当前位置:文档之家› 基因工程 考试 重点 噬菌体载体

基因工程 考试 重点 噬菌体载体

基因工程 考试 重点 噬菌体载体
基因工程 考试 重点 噬菌体载体

第二章 DNA重组克隆的单元操作

练习题

噬菌体载体(练习题)

一、填空题

1.噬菌体之所以被选为基因工程载体,主要有两方面的原因:一是;二是。2.第一个报道的全测序的单链DNA 噬菌体是φX174,DNA 长5386 个碱基对,共个基因,为一环状DNA 分子,基因组的最大特点是。

3.λ噬菌体的基因组DNA 为kb,有多个基因。在体内,它有两种复制方式,扩增时(早期复制)按复制,成熟包装(晚期复制)则是按复制。它有一个复制起点,进行向复制。λ噬菌体的DNA 既可以以线性存在又可以环状形式存在,并且能够自然成环。其原因主要是在λ噬菌体线性DNA 分子的两端各有一个个碱基组成的天然黏性末端。这种黏性末端可以自然成环。成环后的黏性末端部位就叫做位点。4.根据噬菌体的包装能力,将野生型λ噬菌体的基因组DNA 改造成插入型载体,该载体的最小分子大小约为kb,插入的外源片段最大不超过kb。

5.野生型的M13 不适合用作基因工程载体,主要原因是和。

6.黏粒(cosmid)是质粒—噬菌体杂合载体,它的复制子来自、COS 位点序列来

自,最大的克隆片段达到kb。

7.有两类改造型的λ噬菌体载体,即插入型和取代型。从酶切点看,插入型为个,取代型为个。

8.野生型的丸噬菌体DNA 不宜作为基因工程载体,原因是:(1) (2) (3) 。9.M13 单链噬菌体的复制分为三个阶段:(1) (2) (3) 。10.噬菌粒是由质粒和噬菌体DNA 共同构成的,其中来自质粒的主要结构是,而来自噬菌体的主要结构是。

11 .M13 单链噬菌体基因2 和基因4 之间的IG 区有三个最重要的功能,即(1)

(2) (3) 。

12.野生型的M13 有10 个基因,分为三个功能集团,其中与复制有关的两个基因是:和。

13.以λ噬菌体载体和黏粒载体构建文库时,起始DNA 的长度是不同的,前者为

kb,后者为kb。

14.λ噬菌体载体由于受到包装的限制,插入外源DNA 片段后,总的长度应在噬菌体基因组的的范围内。

二、判断题

1. 取代型载体(replacement vector)是指同一种限制性内切核酸酶在),DNA 中具有两个切

点,外源DNA 通过取代这两个切点间的片段被克隆。

2. 现在最常用的pUC 载体是pUCl8,它的分子量小,具有多克隆位点和易于选择的分子标记,并且是松弛型复制。另外,这种载体可在辅助质粒的帮助下合成单链DNA。

3. 噬菌粒(phagemid)pUCll8/pUCll9 载体是集质粒和丝状噬菌体有利特征于一身的载体,既能合成单链DNA,又能合成双链DNA。

4. λ噬菌体DNA 和M13 单链噬菌体DNA 在成熟前的DNA 复制都是用滚环模型。

5. M13 噬菌体每个世代裂解宿主后,可释放100 个子代噬菌体。

6. 以黏粒为载体的重组体虽然在平板上生长的速度不同,但是转化子中插入片段的扩增量

是相同的。

三、选择题(单选或多选)

1. 限制性内切核酸酶EcoRI 在野生型的丸噬菌体DNA 中有5 个切点、Hind Ⅲ有7 个切点,BamH I 也有5 个切点。调整这些酶切位点的数量,主要通过( )

(a)体内突变(b)完全酶切后连接

(c)部分酶切(d)先用甲基化酶修饰后再酶切

2. PBluescript Ml3 载体在多克隆位点的两侧引入了T7 和T3 两个噬菌体的启动子,这样

增加了该载体的功能,如:

(a) 可以对插入到多克隆位点的外源片段进行转录分析

(b) 利用这两个启动子的通用引物进行PCR 扩增

(c) 利用通用引物进行序列分析

(d) 利用这两个启动子进行定点突变

上述四种功能中哪一种是不正确的?( )

3. 下面关于细菌人工染色体(BAC)的特征描述,除了( C )外都是正确的。

(a) 通过电激法将大质粒转化大肠杆菌比酵母的转化率提高了10—100 倍

(b) BAC 载体在细菌中以环形超螺旋状态存在,使分离操作起来相对容易

(c) BAC 载体在大肠杆菌宿主保持高拷贝

(d) 克隆到BAC 载体上的外源片段可以直接进行测序以获得末端序列

4. 以黏粒为载体转染受体菌后,平板上生长的菌落会大小不一、生长速度不一的现象,其原因是( )

(a) 营养成分不足

(b) 重组后的质粒复制不稳定

(c) 重组后的黏粒整合到宿主染色体上

(d) 重组体中插入片段的大小不同

5. M13K07 是一种辅助噬菌体DNA,可用它帮助噬菌粒制备单链DNA,这是因为( )

(a) M13K07 能够进行滚环复制,得到大量的单链噬菌体DNA

(b) M13K07 能够提供成熟包装的蛋白

(c) M13K07 提供了成熟包装所需的信号

(d) M13K07 的10 个基因都是正常的

6. 黏粒(cosmid)是一种人工建造的载体,( )

(a) 它具有COS 位点,因而可进行体外包装

(b) 它具有质粒DNA 的复制特性

(c) 进入受体细胞后,可引起裂解反应

(d) 进入受体细胞后,可引起溶源化反应

7.Mu 噬菌体也是一种转座元件,这种转座元件( )

(a)可引起寄主的突变

(b)可用于细胞内的基因工程

(c)具有转座酶基因

(d)以上说法都正确

8.关于M13 的IGIX,下列说法中哪一项不妥当?( )

(a) 具有正负链的复制起点

(b) 具有噬菌体DNA 被包装的信号

(c) 具有150 个碱基的AT 富集区

(d) 具有八个回文序列,可形成五个发夹环

9. M13 噬菌体基因组编码10 个基因,在它的成熟过程中起调节作用的蛋白是( )

(a)gp2 蛋白(b)gp5 蛋白(c)gp7 蛋白(d)gp9 蛋白

四、简答题

1.在转导过程中,通常需要把受体菌和在供体中生长的噬菌体悬浮液分别铺在选择性培养基上,为什么?

2.如何将野生型的九噬菌体改造成为一个理想的载体?

3.用Sal I 切割从噬菌体J2 分离的DNA 时,得到8 个片段,分别是:1.3、2.8、3.6、5.3、7.4、7.6、8.1 和11.4kb。但是,用SaI I 切割从被感染的寄主细胞中分离到的J2 噬菌体DNA 时,只得到7 个片段,分别是:1.3、2.8、7.4、7.6、8.1、8.9 和11.4kb,根据这些

结果,您得到哪些信息?

4.在cⅠ基因正常时为什么也会出现浑浊的噬菌斑?不正常则是清亮的噬菌斑?

5.λ噬菌体DNA 被包装到噬菌体的头部,需要哪些基本条件?为什么?

五、问答题

1.为什么野生型的λ噬菌体DNA 不宜作为基因工程载体?

2.什么是蓝白斑筛选法?

3.蓝白斑筛选法为什么也会有假阳性?

4.什么是c I 筛选法?

5.λ噬菌体载体具有哪些优点与不足?

6.什么是M13 的IG 序列区?有何特点和功能?

7.将野生型的M13 改造成基因工程载体,首先是进行酶切位点的改造,请问M13 中的EcoRⅠ最初是如何引入的?

8.以置换型λ噬菌体作为载体进行克隆时,为什么说能够形成噬菌斑的就一定是重组体?9.M13 系列载体具有哪些优缺点?

10.黏粒载体具有哪些特点与不足?

11.辅助噬菌体DNA 和相应的噬菌粒是如何协同工作的?

噬菌体载体(参考答案)

一、填空题

1.它在细菌中能够大量繁殖,这样有利于外源DNA 的扩增;对某些噬菌体(如λ噬菌体) 的遗传结构和功能研究得比较清楚,其大肠杆菌宿主系统的遗传也研究得比较详尽2.10;基因的重叠

3.48.5;60;凯恩斯模型;滚环;双;12;COS

4.36;14

5.没有合适的限制性内切核酸酶识别位点;选择标记

6.质粒;丸噬菌体;45

7.1;2

8.(1)分子量大,(2)酶的多切点,(3)无选择标记

9.(1)SS---~RF;(2)RF---~RF;(3)RF-*SS

10.复制区;IG 区

11.(1)正链复制起点;(2)负链复制起点;(3)包装信号

12.基因Ⅱ;基因Ⅴ

13.100kb;200kb

14.75%一105%

二、判断题

1.错误。不一定是同一种酶,如果两种不同的限制性内切核酸酶在载体上各只有一个切点,两切点间的片段被取代后又不影响噬菌体的生活力,也是取代型载体。

2.错误。pUCl8 没有IG 区,不可能形成单链。

3.错误。如果没有助手噬菌体的存在,则不能形成单链DNA。

4.正确。

5.错误。M13 噬菌体不会使宿主裂解,导致噬菌体从细胞释放出来。

6.错误。由于重组体在乎板上生长的速度不同,转化子中插入片段的扩增量就不相同,三、选择题(单选或多选)

1.a;2.d;3.c;4.d;5.d;

6.a,b,c;7.d;8.d;9.b

四、简答题

1.答:

这些平板起对照作用。第一个对照实验可检测和估计自发突变为野生型的频率;第二

个对照实验确证噬菌体悬液中无菌情况(即不能有任何活的供体细菌)。

2.答:

(1)削减分子量(除去非必需区和整合区);(2)削减酶切位点;(3)添加选择标记;

(4)引入终止突变

3.答:

(1)J2 噬菌体是一种双链线性的DNA 分子;(2)基因组全长是47.5kb;(3)进入宿主

后成环状;(4)5.3 和3.6kb 的片段分别位于线性DNA 的两端。

4.答:

正常时,既有裂解途径也有溶源化途径。不正常则全部进入裂解途径。

5.答:

(1)两个COS 位点;(2)线性DNA;(3)大小在丸噬菌体基因组的75%一105%的范

围之内。

五、问答题

1.答:

(1)噬菌体DNA 没有容载能力,因为噬菌体的头部对DNA 包装的量是有限制的,

不能大于基因组的105%,所以要将λ噬菌体改造成载体,必须削减分子量。

(2)野生型的λDNA 对于一些常用的酶都有多个识别和切割位点,不便于克隆。

(3)没有可供选择的标记。

(4)野生型的λ噬菌体具有感染性,因此不够安全。

2.答:

这种方法是根据组织化学的原理来筛选重组体。主要是在λ载体的非必要区插入一

个带有大肠杆菌β—半乳糖苷酶的基因片段,携带有lac 基因片段的λ载体转入lac—

的宿主菌后,在含有5—溴—4—氯—3—引哚—β—D—半乳糖苷(X-gal)平板上形成浅

蓝色的噬菌斑。外源基因插入lac(或lac 基因部分被取代)后,重组的噬菌体将丧失分解

X-gal 的能力,转人lac—的宿主菌后,在含有5—溴—4—氯—3—引哚—β—D—半乳

糖苷(X-gal)平板上形成白色的噬菌斑,非重组的噬菌体则为蓝色噬菌斑。

3.答:

β—半乳糖苷酶的N 末端是非必需的,可以进行修饰,并不影响酶的活性或。肽的互

补性。如果插入的外源DNA 引起。肽的可读框的改变,或者插入片段在正确的可读框

中含有终止密码的话,就会形成白色噬菌斑。如果插入DNA 的碱基数正好是3 的倍数,或者插入的DNA 中不含有终止密码的话,仍然会形成蓝色噬菌斑。这种插人物的长度

可达几百个碱基对。M13 载体的这种性质可以用来检测和选择产

生新的终止密码或改变可读框,即移码突变。

4.答:

CⅠ基因的功能是促使噬菌体进入溶源化,但在正常情况下,它的噬菌斑是不清楚

的,有点浑浊。这是因为在λ噬菌体感染时,有少数细胞进入溶源化途径,这些细

胞生长在噬菌斑中,就造成了噬菌斑浑浊。由于cⅠ基因的产物——阻遏物的失活,

不会有溶源菌的形成,因此,形成的噬菌斑都是清亮的,很容易将重组体与非重组体区别开来。c I 阻遏物的名字就是指在该基因中插入一段DNA 后会使噬菌斑的形态变得清亮(c=clear)。

5.答:

优点:

(1)λ基因组中有1/3 的非必需区,可以被置换,改造成载体后,克隆的片段较大(可达20kb),而质粒载体的克隆片段只有几个kb;

(2)用噬菌体DNA 作为载体,即使不进行体外包装,转染的频率也比质粒转化的

效率高,包装后的效率就更高了;

(3)λ可通过溶源化反应整合到寄主染色体上,当不需要外源基因大量表达时,可让

它以溶源性存在,若要表达,可通过诱导即可进入裂解途径,释放出大量的噬菌体,得到的重组DNA 的拷贝数就会很多。

不足:

(1)需要包装比较麻烦,包装率又不稳定,购买包装蛋白的费用又高;

(2)没有质粒的用途广泛。

6.答:

在M13 基因组中的基因2 与基因4 之间有一个长度为507 个核苷酸的基因区间,简

称IG(intergenic region),占基因组的8%。该区具有以下特点:

(1)具有正、负链的复制起点;

(2)具有噬菌体DNA 被包装到噬菌体颗粒的包装信号;

(3)具有150 个碱基的AT 富集区;

(4)有5 个回文序列,能够形成5 个发夹环,回文序列A 是包装信号。

IG 区在M13 噬菌体的生命周期中的4 个过程中起重要作用:

(1)噬菌体DNA 成熟包装到噬菌体颗粒中的包装识别位点;

(2)RNA 引物合成的位点,合成的引物用于(一)链的合成;

(3)(+)链合成的起始位点,全长140bp,分成两个结构域,结构域A 长为40bp,是复

制起始的基本位点,它被gp2 识别,产生一个切口开始复制,并作为复制的终

止点。结构域B 长为100bp,起增强子作用,帮助gp2 在结构域A 起作用。

(4)(+)链合成的终止位点。

7.答:

用识别4 个碱基的限制酶HaeⅢ切割M13 双链DNA,发现HaeⅢ在M13 上有10

个切点。为了将M13 构建成克隆载体,首先用HaeⅢ将RFl 进行部分消化,使之

产生单一切点的全长的线性M13DNA。

HaeⅢ在M13 上有10 个切点,因此产生的线性DNA 的末端可能是这10 个切点的

任何一个部位产生的。将外源DNA 同线性的M13DNA 连接起来,只有在非必需

区插入并连接起来的重组体能够进行复制,从必需区插入的重组DNA 不能复制,

因此将会被丢失。

根据上述的原理,用HaeⅢ部分酶切野生型的RFMl3DNA,然后同lac 插人片段连

接,感染后筛选重组体M13mpl,该重组体中的插入片段是从IG 区的5868 位的

HaeⅢ位点插入的。

通过对lac 插入片段的序列分析发现,只要将β半乳糖苷酶基因内的密码子5 的碱

基G 换成A 即可产生一个EcoRI 的识别位点(G AATTC)。

因为知道G 中的06 甲基化将会导致G 同U 的配对,将单链的M13mpl 的(+)链用

甲基化试剂N—甲基—N—亚硝酸脲进行处理,用突变的DNA 去转染细菌,分离RF 型DNA,由于分离的RF DNA 并非都具有EcoRI 位点的突变体,所以用EcoRI

切割后,通过琼脂糖凝胶电泳进行检查,根据线性DNA 与环状DNA 的电泳迁移

率的不同,将线性化的DNA 分离出来,重新连接成环,再进行转染。分离到三个

克隆,每个克隆都有一个EcoRI 的位点,但所在位置有所不同,将它们分别命名

为:M13mp2、M13mp3、M13mp4。

8.答:

改造的置换型噬菌体载体,重组人外源片段之后,总体积不能超过λ基因组的105%,不能少于λ基因组的75%。以置换型λ噬菌体DNA 作为载体,首先要分离左、右两臂同外源DNA 重组。如果没有外源片段,仅是两臂连接,长度短于λ基因组的75%,不能被包入噬菌体颗粒,就不能感染寄主,也就不能形成噬菌斑。如果插入了外源片段后,总长度超过丸基因组105%后,也不能包入噬菌体颗粒,自然不能形成噬菌斑。9.答

M13 克隆系统具有很多优点:

(1)克隆的片段大:M13 噬菌体的DNA 在包装时不受体积的限制,所以容载能力

大,有报道,有些噬菌体颗粒可以包装比野生型丝状噬菌体DNA 长6~7 倍的

DNA(插入片段可达40kb)。

(2)可直接产生单链DNA,这对于DNA 测序、DNA 诱变、制备特异的单链DNA

探针都是十分有用的。

(3)单链DNA 和双链DNA 都可以转染宿主,并可根据人工加上的选择标记进行筛

选。

M13 克隆系列的不足:

(1)较大的外源片段插入后,在扩增过程中往往不够稳定,一般说,克隆的片段越

大,发生丢失的机率越大。

(2)单链载体分子感染的细胞中,往往是单链和双链混杂,分离双链比较麻烦。10.答:

主要特点有:

(1)具有质粒复制子,进入寄主细胞后能够像质粒一样进行复制,并且能够被氯霉

素扩增。

(2)具有质粒载体的抗生素抗性基因的选择标记。

(3)具有λ噬菌体的包装和转导特性。

(4)容载能力大。克隆的最大片段在45kb,最小片段为19kb。

(5)简化了筛选。如果载体的分子量在5kb 的话,得到的转导子几乎排除由载体自

连的可能性,因为要被成功包装,至少要7 个分子的载体自连,尽管如此,也是

不能被包装的,因为COS 位点太多了。

黏粒载体也有如下不足:

(1)如果两个黏粒之间有同源序列,可能会发生重组,结果会使被克隆的片段重排或

丢失。

(2)含不同重组DNA 片段的菌落生长速度不同,会造成同一个平板上菌落大小不

一。另外由于不同大小的插入片段对宿主细胞的作用不同,会造成文库扩增量

的比例失调。

(3)包装过程复杂,包装效率不稳定,代价高。

11.答:

虽然噬菌粒载体携带有M13 的IG 区,能够合成单链DNA,但是它没有M13 的功能基因,没有M13 基因2 的产物存在,所以不能合成单链DNA。而辅助噬菌体具有M13 的所有功能基因,但是IG 区是缺陷的,辅助噬菌体本身的DNA 不能进行单链复制,于是就可以为噬菌粒提供基因2 产物和包装蛋白。

辅助噬菌体必需具备如下条件:

(1)辅助噬菌体的DNA IG 区必需失去功能,其本身的DNA 不会被包装到成熟的

噬菌体颗粒中;

(2)由于辅助噬菌体的IG 区失活,其本身的基因不能表达,要使辅助噬菌体的所

有功能基因都能进行表达,必须在辅助噬菌体的基因组中导人新的复制起点;(3)辅助噬菌体的基因组中具有选择标记,便于识别和收集一定数量的辅助噬菌体。

扬州大学基因工程期末试题复习要点整理

基因工程期末试题复习要点整理 基因工程是70年代出现的一门科学,是生物学最具生命力和最引人注目的前沿科学之一,是现代生物技术的代表,是生命科学类专业中的一门重要的专业课。本课程主要介绍基因工程概述、重组DNA基本技术及原理、基因克隆、基因的分离及鉴定、基因工程的表达系统、基因工程的应用等。通过本课程的学习,使学生掌握基因工程技术的基本原理和了解该技术在动物、植物和微生物等方面的应用,为今后从事生物学教学、生物技术研究和产品开发,或进一步的研究生学习科研打下坚实的理论及专业基础。扬州大学试题纸 一、名词解释:共10题,每题2分,共20分。 1. 基因: 是DNA分子中含有特定遗传信息的一段核苷酸序列,是遗传物质的最小功能单位。 2. 定位克隆: 获取基因在染色体上的位置信息,然后采用各种方法对该基因进行定位和克隆 3. 融合基因: 是指应用DNA体外重组技术构建的一类具有来自两个或两个以上的不同基因核苷酸序列的新型基因。 4. 转化子: 导入外源DNA后获得了新遗传标志的细菌细胞或其他受体细胞,又称重组体。 5. 人工接头:是人工合成的具有一个或数个特定限制性内切酶识别和切割序列的双股平端DNA短序列。 6. RT-PCR: 是指以mRNA在反转录酶作用下合成cDNA第一链为模板进行的PCR。 7. ORF : 起始于AUG、止于UAA、UGA、UAG的连续的密码子区域,是潜在的编码区。 8. MCS: 指载体上人工合成的含有紧密排列的多种限制核酸内切酶的酶切位点的DNA片段。 9. gene targeting : 基因工程中利用活细胞染色体DNA可与外源DNA的同源性DNA序列发生重组的性质,来进行定点修饰改造染色体上某一目的基因的技术 10. 5’RACE: 是一种通过PCR进行cDNA末端快速克隆的技术,是以mRNA为模板反转录成cDNA第一链后用PCR技术扩增出某个特异位点到5’端之间未知序列的方法。 四、简答题:共4题,共20分。 1.简述获得目的基因常用的几种方法。(5分)

基因工程考试试题.doc

基因工程 一名词解释 DNA,1、限制与修饰系统:限制酶的生物学功能一般被认为是用来保护宿主细胞不受外源DNA的感染,可讲解外 来 从而阻止其复制和整合到细胞中。一般来说,与限制酶相伴而生的修饰酶是甲基转移酶,或者说是甲基化酶,能保护 自身的 DNA不被讲解。限制酶和甲基转移酶组成限制与修饰系统。 2、各种限制与修饰系统的比较 Ⅱ型Ⅰ型Ⅲ型 识别位点4~6bp,大多为回文序列二分非对称5~7bp 非对称 切割位点在识别位点中或靠近识别位点无特异性,至少在识别位点外100bp 识别位点下游 24~26bp 简答 1. 何谓 Star activity?简述Star activity的影响因素及克服方法? 答:在极端非标准条件下,限制酶能切割与识别序列相似的序列,这个改变的特征称为星星活性。 pH 引起星星活性的的因素:①高甘油浓度(>5%);②酶过量( >100U/μl );③低离子强度( <25mmol/L);④高(> ;⑤有机溶剂如DMSO (二甲基亚砜)、乙醇、乙二醇、二甲基乙酰胺、二甲基甲酰胺等;⑥用其它二价阳离子 星星活性的抑制措施:①减少酶的用量,避免过量酶切,减少甘油浓度;②保证反应体系中无有机溶剂或乙醇;③提高离子强度到100 ~ 150mM(在不抑制酶活性的前提下);④降低反应pH至;⑤使用Mg2+作为二价阳离子。 2. 试回答影响限制性内切核酸酶切割效率的因素?(影响酶活性的因素?) 答:外因:反应条件、底物纯度(是否有杂质、是否有盐离子和苯酚的污染)、何时加酶、操作是否恰当,反应体系的选择、反应时间的长短 内因:星星活性、底物甲基化、底物的构象 3、 DNA末端长度对酶切割的影响 答:限制酶切割 DNA 时,对识别序列两端的非识别序列有长度要求,也就是说在识别序列两端必须要有一定数量的 核苷酸,否则限制酶将难以发挥切割活性。在设计PCR引物时,如果要在末端引入一个酶切位点,为保证能够顺利切 割扩增的 PCR产物,应在设计的引物末端加上能够满足要求的碱基数目。一般需加 3 ~4 个碱基对。 4、何为载体?一个理想的载体应具备那些特点? 答:将外源 DNA 或目的基因携带入宿主细胞的工具称为载体。载体应具备:①在宿主细胞内必须能够自主复制(具 备复制原点);②必须具备合适的酶切位点,供外源DNA 片段插入,同时不影响其复制;③有一定的选择标记,用于 筛选;④其它:有一定的拷贝数,便于制备。 5 抗性基因( Resistant gene)是目前使用的最广泛的选择标记,常用的抗生素抗性有哪几种?并举两例说明其原理? 答:氨苄青霉素抗性基因( ampr)、四环素抗性基因(tetr )、氯霉素抗性基因( Cmr)、卡那霉素和新霉素抗性基因( kanr , neor )以及琥珀突变抑制基因supF 。 ⑴青霉素抑制细胞壁肽聚糖的合成,与有关的酶结合,抑制转肽反应并抑制其活性。氨苄青霉素抗性Ampr 编码一个酶,可分泌进入细胞的周质区,并催化β - 内酰胺环水解,从而解除氨苄青霉素的毒性。 ⑵四环素与核糖体 30S 亚基的一种蛋白质结合,从而抑制核糖体的转位。 Tetr 编码一个由 399 个氨基酸组成的膜 结合蛋白,可阻止四环素进入细胞。 6. 何为α - 互补?如何利用α - 互补来筛选插入了外源DNA 的重组质粒? 答:α - 互补指 lacZ 基因上缺失近操纵基因区段的突变体与带有完整的近操纵基因区段的β - 半乳糖苷酶阴性的突变体之间实现互补。α - 互补是基于在两个不同的缺陷β-半乳糖苷酶之间可实现功能互补而建立的。实现α- 互补主要有两部分组成:LacZ △ M15 ,放在 F 质粒或染色体上,随宿主传代;LacZ' ,放在载体上,作为筛选标记,当在 LacZ' 中插入一个片断后,将不可避免地导致产生无α- 互补能力的β-半乳糖苷酶片断。在诱导物IPTG 和底物 X-gal (同时可作为生色剂)的作用下,含重组质粒的菌落不能产生有活性的β-半乳糖苷酶,不能分解 X-gal ,呈现白色,而含非重组质粒的菌落则呈现兰色。以此达到筛选的目的。 7、试简述λ噬菌体的裂解生长状态Lytic growth 和溶原状态 Lysogenic state 两种循环的分化及其调节过程? 答:裂解生长状态是λ噬菌体在宿主中大量复制并组装成子代λ噬菌体颗粒,导致宿主细胞裂 解。溶原状态为λ噬菌体基因组 DNA 通过位点专一性重组整合到宿主染色体DNA 中随宿主的繁殖传到子代细胞。调节过程:由感染复数

基因工程和细胞工程测试题(附答案,可用于考试)

5 高二生物《基因工程和细胞工程》测试题姓名班级 (时间:90分钟分数:100分) 一.选择题(本大题包括25题,每题2分,共50分。每题只有一个选项符合题意。) 1.以下说法正确的是() A.所有的限制酶只能识别一种特定的核苷酸序列 B.质粒是基因工程中惟一的运载体 C.运载体必须具备的条件之一是:具有多个限制酶切点,以便与外源基因连接D.质粒是广泛存在于细菌细胞中的一种颗粒状细胞器 2.植物体细胞杂交与动物细胞工程中所用技术与原理不.相符的是() A.纤维素酶、果胶酶处理和胰蛋白酶处理——酶的专一性 B.植物组织培养和动物细胞培养——细胞的全能性 C.植物体细胞杂交和动物细胞融合——生物膜的流动性 D.紫草细胞培养和杂交瘤细胞的培养——细胞分裂 3.有关基因工程的叙述正确的是() A.限制性内切酶只在获得目的基因时才用 B.重组质粒的形成在细胞内完成 C.质粒都可作运载体 D.蛋白质的结构可为合成目的基因提供资料 4.能克服远缘杂交障碍培育农作物新品种的技术是() A.基因工程 B.组织培养 C.诱变育种 D.杂交育种 5.下列关于动物细胞培养的叙述,正确的是( ) A.培养人的效应T细胞能产生单克隆抗体 B.培养人的B细胞能够无限地增殖 C.人的成熟红细胞经过培养能形成细胞株 D.用胰蛋白酶处理肝组织可获得单个肝细胞 6.PCR技术扩增DNA,需要的条件是( ) ①目的基因②引物③四种脱氧核苷酸 ④DNA聚合酶等⑤mRNA⑥核糖体 A、①②③④ B、②③④⑤ C、①③④⑤ D、①②③⑥ 7.以下对DNA的描述,错误的是() A.人的正常T淋巴细胞中含有人体全部遗传信息 B.同种生物个体间DNA完全相同 C.DNA的基本功能是遗传信息的复制与表达 D.一个DNA分子可以控制多个性状 8. 蛋白质工程中直接需要进行操作的对象是() A.氨基酸结构 B.蛋白质空间结构 C.肽链结构 D.基因结构 9.细胞工程的发展所依赖的理论基础是() A.DNA双螺旋结构模型的建立 B.遗传密码的确立及其通用性的发现 C.生物体细胞全能性的证明 D.遗传信息传递的“中心法则”的发现 10.下列不是基因工程中的目的基因的检测手段的是:() A.分子杂交技术 B.抗原—抗体杂交 C.抗虫或抗病的接种 D.基因枪法 11.在以下4种细胞工程技术中,培育出的新个体中,体内遗传物质均来自一个亲本的是() A.植物组织培养 B. 单克隆抗体 C. 植物体细胞杂交 D.细胞核移植 12.动物细胞融合与植物细胞融合相比特有的是() A.基本原理相同 B.诱导融合的方法类 C.原生质体融合 D.可用灭活的病毒作诱导剂 13.下列哪一项属于克隆() A.将鸡的某个DNA片段整合到小鼠的DNA分子中 B.将抗药菌的某基因引入草履虫的细胞内 C.将鼠骨髓细胞与经过免疫的脾细胞融合成杂交瘤细胞

基因克隆载体上的各种常用蛋白标签

基因克隆载体上的各种常用蛋白标签 蛋白标签(proteintag)是指利用DNA体外重组技术,与目的蛋白一起融合表达的一种多肽或者蛋白,以便于目的蛋白的表达、检测、示踪和纯化等。随着技术的不断发展,研究人员相继开发出了具有各种不同功能的蛋白标签。目前,这些蛋白标签已在基础研究和商业化产品生产等方面得到了广泛的应用。 美国GeneCopoeia(复能基因)为客户提供50多种蛋白标签,可以满足客户的不同需求,包括各种最新型的标签,如:SNAP-Tag?、Halo Tag?、AviTag?、Sumo等;也提供齐全的各种常用标签,如eGFP、His、Flag等等标签。 以下是部分蛋白标签的特性介绍,更加详细的介绍可在查询产品的结果列表里面看到各种推荐的蛋白标签和载体。 TrxHIS His6是指六个组氨酸残基组成的融合标签,可插入在目的蛋白的C末端或N末端。当某一个标签的使用,一是能构成表位利于纯化和检测;二是构成独特的结构特征(结合配体)利于纯化。组氨酸残基侧链与固态的镍有强烈的吸引力,可用于固定化金属螯合层析(IMAC),对重组蛋白进行分离纯化。使用His-tag有下面优点: 标签的量小,只有~0.84KD,而GST和蛋白A分别为~26KD和~30KD,一般不影响目标蛋白的功能; His标签融合蛋白可以在非离子型表面活性剂存在的条件下或变性条件下纯化,前者在纯化疏水性强的蛋白得到应用,后者在纯化包涵体蛋白时特别有用,用高浓度的变性剂溶解后通过金属螯和去除杂蛋白,使复性不受其它蛋白的干扰,或进行金属螯和亲和层析复性; His标签融合蛋白也被用于蛋白质-蛋白质、蛋白质-DNA相互作用研究; His标签免疫原性相对较低,可将纯化的蛋白直接注射动物进行免疫并制备抗体。 可应用于多种表达系统,纯化的条件温和; 可以和其它的亲和标签一起构建双亲和标签。 Flag标签蛋白 Flag标签蛋白为编码8个氨基酸的亲水性多肽(DYKDDDDK),同时载体中构建的Kozak序列使得带有FLAG的融合蛋白在真核表达系统中表达效率更高。FLAG作为标签蛋白,其融合表达目的蛋白后具有以下优点: FLAG作为融合表达标签,其通常不会与目的蛋白相互作用并且通常不会影响目的蛋白的功能、性质,这样就有利用研究人员对融合蛋白进行下游研究。 融合FLAG的目的蛋白,可以直接通过FLAG进行亲和层析,此层析为非变性纯化,可以纯化有活性的融合蛋白,并且纯化效率高。 FLAG作为标签蛋白,其可以被抗FLAG的抗体识别,这样就方便通过Western Blot、ELISA等方法对含有FLAG的融合蛋白进行检测、鉴定。

(整理)分子生物学与基因工程复习题

一、名词解释 1、分子生物学 2、基因工程 3、DNA的变性与复性 4、细胞学说 5、遗传密码的简并性 6、DNA半保留复制、半不连续复制 7、SD序列 8、开放阅读框(ORF) 9、多顺反子 10、蓝白斑筛选 11、中心法则 12、限制修饰系统 13、断裂基因 14、单链结合蛋白 15、核酶 16、密码子家族 17、TA克隆 18、PCR 19、SNP 20、操纵子学说 21、DNA重组技术 22、减色效应-增色效应 23、可变剪接 24、反转录 25、同尾酶 26、加帽反应 27、蓝白斑筛选 28、表观基因组学 29、DNA的溶解温度 30、DNA的大C值 31、重叠基因 32、引物酶 33、逆转录 34、限制性内切酶 35、载体的选择标记 36、DNA甲基化

37、端粒 38、端粒酶 39、前导链 40、启动子 41、反式作用因子 42、同义密码子 43、多克隆位点(MCS) 44、基因组计划 45、C值悖论 46、顺式作用元件 47、胸腺嘧啶二聚体 48、寄主的限制修饰现象 49、拓扑异构酶 50、DNA的溶解 51、拓扑异构体 52、间隔基因 53、假基因 54、同源异型蛋白 55、翻译 56、多重PCR 57、抗终止作用 58、SD序列 59、空载tRNA 60、cDNA RACE 61、分子杂交 62、cDNA文库 63、载体 64、RT-PCR 65、反义RNA 66、延伸tRNA 67、起始tRNA 68、探针 69、反式剪接 70、增强子 71、动物基因工程 72、基因组 73、限制性内切酶 74、单顺反子

75、密码子 76、转录 77、RNA干扰 78、中心法则 79、回环模型 80、TATA box 81、前导链 82、目的基因 83、RFLP 84、RACE 二、判断 1、大肠杆菌DNA生物合成中,DNA聚合酶I主要起聚合作用。( ) 2、DNA半保留复制时,后随链的总体延伸方向与先导链的延伸方向相反。( ) 3、原核生物DNA的合成是单点起始,真核生物为多点起始。() 4、以一条亲代DNA(3’→ 5’)为模板时,子代链合成方向5’→ 3’,以另一条亲代DNA链 5’→ 3’为模板时,子代链合成方向3’→ 5’。() 5、RNA的生物合成不需要引物。() 6、大肠杆菌RNA聚合酶全酶由4个亚基(α2ββ’)组成。( ) 7、大肠杆菌在多种碳源同时存在的条件下,优先利用乳糖。 ( ) 8、在DNA生物合成中,半保留复制与半不连续复制指相同概念。() 9、逆转录同转录类似,二者均不需要引物。() 10、真核生物染色体核心组蛋白的乙酰化、组蛋白H1的磷酸化,都会使基因得以失活。() 11、在原核细胞中,起始密码子AUG可以在mRNA上的任何位置,但一个mRNA上只有一个起 始位点。( ) 12、蛋白质生物合成过程中,tRNA在阅读密码时起重要作用,他们的反密码子用来识别mRNA上的密码子。( ) 13、表观遗传效应是不可遗传的。( ) 14、cAMP与CAP结合、CAP介导正性调节发生在有葡萄糖及cAMP较高时。( ) 15、DNA甲基化永久关闭了某些基因的活性,这些基因在去甲基化后,仍不能表达。 () 16、RNA聚合酶催化的反应无需引物,也无校对功能。( ) 17、基因是存在于所有生命体中的最小遗传单位 18、人类基因组中大部分DNA不编码蛋白质 19、蛋白质生物合成过程中,tRNA在阅读密码时起重要作用,他们的反密码子用来识别 mRNA上的密码子。 ( )

基因工程期末考试重点知识整理教学文案

基因工程期末考试重点知识整理

基因工程 第一章基因工程概述 1、基因工程的概念(基因工程基本技术路线PPT) 基因工程(Gene Engineering),是指在基因水平上的遗传工程,它是用人为方法将大分子(DNA)提取出来,在离体条件下用适当的工具酶进行切割后,把它与作为载体的DNA分子连接起来,然后与载体一起导入某一更易生长、繁殖的受体细胞中,以让外源遗传物质在其中“安家落户”,进行正常的复制和表达,从而获得新物种的一种崭新的育种技术. 2、基因工程的历史 基因工程准备阶段:1972,第一个重组DNA分子的构建,构建人:Paul Berg 及其同事PPT 基因工程诞生:1973,Cohen & Boyer首次完成重组质粒DNA对大肠杆菌的转化 基因工程发展阶段的几个重要事件: 一系列新的基因工程操作技术的出现; 各种表达克隆载体的成功构建; 一系列转基因菌株、转基因植物、转基因动物等的出现 3、基因工程的内容(P9) 4、基因克隆的通用策略(P12)(基因组文库(鸟枪法)+分子杂交筛选)

第二章分子克隆工具酶 5、限制性核酸内切酶的概念、特点、命名、分类(问答) 概念:一类能识别双链DNA中特殊核苷酸序列,并使每条链的一个磷酸二酯键断开的内脱氧核糖核酸酶,主要存在于细菌体内 特点(参加PPT) 命名:依次取宿主属名第一字母,种名头两个字母,菌株号,然后加上序号。如:从Haemophilus influenze Rd中提取到的第三种限制型核酸内切酶被命名为Hind Ⅲ,Hin指来源于流感嗜血杆菌,d表示来菌株Rd,Ⅲ表示序号。 分类:依据酶的亚单位组成、识别序列的种类以及是否需要辅助因子可分为:Ⅰ型酶、Ⅱ型(Ⅱs型)酶和Ⅲ型酶。 真核细胞中有4中DNA聚合酶:α,β,γ,线粒体DNA聚合酶 原核生物中3中DNA聚合酶:Ⅰ,Ⅱ,Ⅲ

分子生物学与基因工程复习资料

分子生物学与基因工程 绪论 1、分子生物学与基因工程的含义 从狭义上讲,分子生物学主要是研究生物体主要遗传物质-基因或DNA的结构及其复制、转录、表达和调节控制等过程的科学。 基因工程是一项将生物的某个基因通过载体运送到另一种生物的活体细胞中,并使之无性繁殖和行使正常功能,从而创造生物新品种或新物种的遗传学技术。 2、分子生物学与基因工程的发展简史,特别是里程碑事件,要求掌握其必要的理由 上个世纪50年代,Watson和Crick提出了的DNA双螺旋模型; 60年代,法国科学家Jacob和Monod提出了的乳糖操纵子模型; 70年代,Berg首先发现了DNA连接酶,并构建了世界上第一个重组DNA分子; 80年代,Mullis发明了聚合酶链式反应(Polymerase Chain Reaction,PCR)技术; 90年代,开展了“人类基因组计划”和模式生物的基因组测序,分子生物学进入“基因组时代” 3、分子生物学与基因工程的专业地位与作用。 核酸概述 1、核酸的化学组成 2、核酸的种类与特点:DNA和RNA的区别 (1)DNA含的糖分子是脱氧核糖,RNA含的是核糖;

(2)DNA含有的碱基是腺嘌呤(A)、胞嘧啶(C)、鸟嘌呤(G)和胸腺嘧啶(T),RNA含有的碱基前3个与DNA完全相同,只有最后一个胸腺嘧啶被尿嘧啶(U)所代替; (3)DNA通常是双链,而RNA主要为单链; (4)DNA的分子链一般较长,而RNA分子链较短。 3、DNA作为遗传物质的直接和间接证据; 间接: (1)一种生物不同组织的细胞,不论年龄大小,功能如何,它的DNA含量是恒定的,而生殖细胞精子的DNA含量则刚好是体细胞的一半。多倍体生物细胞的DNA含量是按其染色体倍数性的增加而递增的,但细胞核里的蛋白质并没有相似的分布规律。 (2)DNA在代谢上较稳定。 (3)DNA是所有生物的染色体所共有的,而某些生物的染色体上则没有蛋白质。(4)DNA通常只存在于细胞核染色体上,但某些能自体复制的细胞器,如线粒体、叶绿体有其自己的DNA。 (5)在各类生物中能引起DNA结构改变的化学物质都可引起基因突变。 直接:肺炎链球菌试验、噬菌体侵染实验 4、DNA的变性与复性:两者的含义与特点及应用 变性:它是指当双螺旋DNA加热至生理温度以上(接近100oC)时,它就失去生理活性。这时DNA双股链间的氢键断裂,最后双股链完全分开并成为无规则线团的过程。简而言之,就是DNA从双链变成单链的过程。

基因工程期末考试重点知识整理

基因工程 第一章基因工程概述 1、基因工程的概念(基因工程基本技术路线PPT) 基因工程(Gene Engineering),是指在基因水平上的遗传工程,它是用人为方法将大分子(DNA)提取出来,在离体条件下用适当的工具酶进行切割后,把它与作为载体的DNA分子连接起来,然后与载体一起导入某一更易生长、繁殖的受体细胞中,以让外源遗传物质在其中“安家落户”,进行正常的复制和表达,从而获得新物种的一种崭新的育种技术. 2、基因工程的历史 基因工程准备阶段:1972,第一个重组DNA分子的构建,构建人:Paul Berg及其同事PPT 基因工程诞生:1973,Cohen & Boyer首次完成重组质粒DNA对大肠杆菌的转化 基因工程发展阶段的几个重要事件: 一系列新的基因工程操作技术的出现; 各种表达克隆载体的成功构建; 一系列转基因菌株、转基因植物、转基因动物等的出现 3、基因工程的内容(P9) 4、基因克隆的通用策略(P12)(基因组文库(鸟枪法)+分子杂交筛选) 第二章分子克隆工具酶 5、限制性核酸内切酶的概念、特点、命名、分类(问答) 概念:一类能识别双链DNA中特殊核苷酸序列,并使每条链的一个磷酸二酯键断开的内脱氧核糖核酸酶,主要存在于细菌体内 特点(参加PPT) 命名:依次取宿主属名第一字母,种名头两个字母,菌株号,然后加上序号。

如:从Haemophilus influenze Rd中提取到的第三种限制型核酸内切酶被命名为Hind Ⅲ,Hin指来源于流感嗜血杆菌,d表示来菌株Rd,Ⅲ表示序号。 分类:依据酶的亚单位组成、识别序列的种类以及是否需要辅助因子可分为:Ⅰ型酶、Ⅱ型(Ⅱs型)酶和Ⅲ型酶。 真核细胞中有4中DNA聚合酶:α,β,γ,线粒体DNA聚合酶 原核生物中3中DNA聚合酶:Ⅰ,Ⅱ,Ⅲ 6、几个基本概念 粘性末端:两条多聚核苷酸链上磷酸二酯键断开的位置是交错的,对称地分布在识别序列中心位置两侧,这样形成的DNA片段末端称为~。 平末端:两条多聚核苷酸链上磷酸二酯键断开的位置处在识别序列的对称结构中心,这样切割的结果产生的DNA片段末端是平齐的,称之为~。 同裂酶:一些来源不同的限制性核酸内切酶具有相同的识别序列。如:BamHI和BstI均可识别GGATCC。 同尾酶:有些限制性内切酶虽然识别序列不同,但是切割DNA分子产生相同的DNA末端。如:TaqI:TCGA;ClaI:A TCGA T;AccI:GTCGAC 星星活性:某些限制性核酸内切酶在特定条件下,可以在不是原来的识别序列处切割DNA,这种现象称为Star活性。 DNA物理图谱:(多为质粒图谱)

基因工程载体

基因工程课程论文: 基因工程载体的探索 学号:A09120248 姓名:金文杰 班级:生技1203 任课教师:任桂萍

基因工程载体的探索 摘要基因工程是要按人们的意愿去有目的地改造,创建生物遗传性,因此其最基本的工程就是要得到目的基因或核酸序列的克隆。基因工程载体是基因工程所必需的工具,是能将分离或合成的基因导入细胞的DNA分子,有质粒DNA、病毒DNA、λ噬菌体的衍生物三种主要类型。植物、动物、微生物所用的质粒可能不同,在不同条件下所需的质粒也不同,所选用的质粒按需要选用。在基因操作过程中使用载体有两个用途:一是用它作为运载工具,将目的基因转移到宿主细胞中去;二是利用它在宿主细胞内对目的基因进行大量的复制。较常见的几种载体有:质粒pUC19、M13、科斯载体等。 关键词:载体、质粒、λ噬菌体、病毒DNA 一、理想载体要求: 对理想的基因工程载体一般至少有以下几点要求;能在宿主细胞中复制繁殖,而且最好要有较高的自主复制能力;容易进入宿主细胞,而且进入效率越高越好;容易插入外来核酸片段,插入后不影响其进入宿主细胞和在细胞中的复制,这就要求载体DNA上要有合适的限制性核酸内切酶位点,且每种酶的切位点最好只有一个;容易从宿主细胞中分离纯化出来,这才便于重组操作;有容易被识别筛选的标志,当其进入宿主细胞、或携带着外来的核酸序列进入宿主细胞都能容易被辨认和分离出来。这才介于克隆操作。 二、常见质粒 1、质粒pUC19最常用的大肠杆菌克隆用质粒pUC19,此质粒的复制起点处序列经过改造,能高频率起动质粒复制,使一个细菌pUC19的拷贝数可达500-700个;质粒携带一个抗氨芐青霉素基因,编码能水解β-内酰胺环,从而被坏氨芐青霉素的酶,当用pUC19转化细菌后放入含氨芐青霉素的培养基中,凡不含pUC19者都不能生长,结果长出的细菌就是都含有pUC19的;pUC19还携带细菌lac操纵元中的lacI和lacZ基因编码,β-半乳糖苷酶N端状146个氨基酸的段落,当培养基中含有诱导物IPTG(isopropyl-thiogalactoside异丙基-硫代半乳糖苷)和Xgal(5-bromo-4- chloro-3-indolyl-β-D-galactopyranoside)时,lacZ ' 基因被诱导表达产生的β-半乳糖苷酶N端肽与宿主菌表达的C端肽互补而具有β-半乳糖苷酶活性(质粒和宿主编码的肽段各自都没有酶活性,两都融为一体而具酶活性,称为α-互补,α-complementation),半乳糖苷酶水解Xgal而使菌落呈现蓝色;在lacZ '中间又插入了一段人工设计合成的DNA序列,其中密集多个常用的限制性核酸内切酶的位点,使外来的基因和序列能很方便地被插入此位置,当外来序列插入后则破坏了lacZ '编码的半乳糖苷酶活性,生长的菌落就呈白色,这种颜色标志的变化就很容易区分和挑选含有和不含有插入序列或基因的转化菌落,称为蓝白筛选法。 根据用途可以对质粒进行改造,例如:根据鼠李糖乳杆菌D- ldhD-乳酸脱氢酶基因序列, 设计扩增同源臂 D1和 D2的引物,扩增同源臂D1的引物为 Lr-d1-H和 Lr-d1-X,扩增同源臂 D2的引物为Lr-d2-E和Lr-d2-A。分析载体pU C19-CM和D-ldh基因的序列,分别在引物Lr-d1-H和Lr-d1-X的5’端添加H ind 和Xho酶切位点;在引物 Lr-d2-E和Lr-d2-A 的5端添加 EcoR和Apa酶切位点。利用这2对引物扩增得到的同源臂分别插入到载体pUC19-CMHind和Xho酶切位点、EcoR和Apa酶切位点中,得到自杀质粒 pUC19-CM-D测序确定序列插入的正确性利用引物 Pkd3-cm-1和 Pkd3-cm-2从质粒pKD3上扩增到氯霉素抗性基因CM, 大小为1200bp。质粒 pUC19和基因CM分别经Pst和Sac内切酶处理后连接, 转入大肠杆菌 JM 109中,PCR酶切鉴定及测序结果表明基因 CM 正确插入到质粒 pU C19中, 载体 pU C19-CM 构建成功。由同源臂 D1引物 Lr-d1-H和Lr- d1-X扩增长约为180bp左右的基因片段,由同源臂 D2的引物Lr-d2-E和L r-d2-A 扩增出了约237 bp的基因片段。将2个同源臂片段和 pUC19-CM 载体经酶切处理连接后, 转化至大肠杆菌 JM 109中,PCR酶切鉴

基因工程复习题

第二章《基因工程》复习题 一、选择题 1. 限制性核酸内切酶是由细菌产生的,其生理意义是(D) A 修复自身的遗传缺陷 B 促进自身的基因重组 C 强化自身的核酸代谢 D 提高自身的防御能力 2.生物工程的上游技术是(D) A 基因工程及分离工程 B 基因工程及发酵工程 C 基因工程及细胞工程 D 基因工程及蛋白质工程 3. 基因工程操作的三大基本元件是:(I 供体 II 受体 III 载体 IV 抗体 V 配体) (A) A. I + II + III B. I + III + IV C. II + III + IV D. II + IV + V 4. 多聚接头( Polylinker )指的是(A) A. 含有多种限制性内切酶识别及切割顺序的人工 DNA 片段 B. 含有多种复制起始区的人工 DNA 片段 C. 含有多种 SD 顺序的人工 DNA 片段 D. 含有多种启动基因的人工 DNA 片段

5.下列五个 DNA 片段中含有回文结构的是(D) A. GAAACTGCTTTGAC B. GAAACTGGAAACTG C. GAAACTGGTCAAAG D. GAAACTGCAGTTTC 6. 若将含有 5' 末端 4 碱基突出的外源 DNA 片段插入到含有 3' 末端 4 碱基突出的载体质粒上,又必须保证连接区域的碱基对数目既不增加也不减少,则需用的工具酶是(D) I T 4 -DNA 聚合酶 II Klenow III T 4 -DNA 连接酶 IV 碱性磷酸单酯酶 A. III B. I + III C. II + III D. I + II + III 7.下列有关连接反应的叙述,错误的是(A) A. 连接反应的最佳温度为 37 ℃ B. 连接反应缓冲体系的甘油浓度应低于 10% C. 连接反应缓冲体系的 ATP 浓度不能高于 1mM D. 连接酶通常应过量 2-5 倍 8. T 4-DNA 连接酶是通过形成磷酸二酯键将两段 DNA 片段连接在一起,其底物的关键基团是(D) A. 2' -OH 和 5' –P B. 2' -OH 和 3' -P C. 3' -OH 和 5' –P D. 5' -OH 和 3' -P

基因工程 重点复习

质粒拷贝数即一个细胞内质粒的数量与染色体数量之比。每种质粒在相应的宿主细胞内保持相对稳定的拷贝数。根据在每个细胞中的分子数(拷贝数)多寡,质粒可分为两大复制类型:严谨型质粒:分子量大,低拷贝数,1-3拷贝 松弛型质粒:分子量小,高拷贝数,10-60拷贝 天然存在的野生型质粒由于分子量大、拷贝数低、单一酶切位点少、遗传标记不理想等缺陷,不能满足克隆载体的要求,因此往往需要以多种野生型质粒为基础进行人工构建。 理想的载体应该有两种抗菌素抗性基因。 穿梭质粒载体;人工构建的、具有两种不同复制起点和选择标记、可以在两种不同的寄主细胞中存活和复制的质粒载体。 优点;①利用大肠杆菌进行基因克隆、表达 ②也能利用其它细胞系统(酵母、枯草杆菌、哺乳动物细胞等)进行基因表达。 ③可以自如地在两种不同寄主细胞之间来回转移基因。 蓝白斑筛选的机理 由α-互补产生的Lac+ 细菌较易识别,它在生色底物X-gal(5-溴-4氯-3-吲哚-β-D-半乳糖苷)下存在下被IPTG(异丙基硫代-β-D-半乳糖苷)诱导形成蓝色菌落。当外源片段插入到载体的多克隆位点上后会导致读码框架改变, 表达蛋白失活, 产生的氨基酸片段失去α-互补能力, 因此在同样条件下含重组质粒的转化子在生色 诱导培养基上只能形成白色菌落。 在麦康凯培养基上,α-互补产生的Lac+细菌由于含β-半乳糖苷酶,能分解麦康凯培养基中的乳糖,产生乳酸,使pH下降,因而产生红色菌落,而当外源片段插入后,失去α-互补能力,因而不产生β-半乳糖苷酶,无法分解培养基中的乳糖,菌落呈白色。 这样,LacZ基因上缺失近操纵基因区段的突变株与带有完整近操纵基因区段的β-半乳糖苷酶阴性的不同突变株之间实现互补,这种互补现象叫做 -互补 蛋白质分离纯化的一般程序可分为以下几个步骤:(一)材料的预处理及细胞破碎 分离提纯某一种蛋白质时,首先要把蛋白质从组织或细胞中释放出来并保持原来的天然状态,不丧失活性。所以要采用适当的方法将组织和细胞破碎。常用的破碎组织细胞的方法有:1. 机械破碎法2. 渗透破碎法(二) 蛋白质的抽提通常选择适当的缓冲液溶剂把蛋白质提 取出来。抽提所用缓冲液的pH、离子强度、组成成分等条件的选择应根据欲制备的蛋白质的性质而定。(三)蛋白质粗制品的获得选用适当的方法将所要的蛋白质与其它杂蛋白分离开来。根据蛋白质溶解度的差异进行的分离。常用方法:1. 等电点沉淀法2. 盐析法 (四)样品的进一步分离纯化 用等电点沉淀法、盐析法所得到的蛋白质一般含有其他蛋白质杂质,须进一步分离提纯才能得到有一定纯度的样品。常用的纯化方法有:凝胶过滤层析、离子交换纤维素层析 蛋白筛选(SDS)实验原理是:在电场的作用下,带电粒子能在聚丙烯凝胶中迁移,其迁移速度与带电粒子的大小、构型和所带的电荷有关。十二烷基磺酸钠(SDS)能与蛋白质的结合,改变蛋白质原有的构象,使其变成近似于雪茄烟形的长椭圆棒,其短轴长度一样,而长轴与分子量大小成正比。在SDS-PAGE中,SDS-复合物的迁移率不再受蛋白的电荷和形状的影响,而只与蛋白质的分子量正相关。在一定浓度的凝胶中,由于分子筛效应,则电泳迁移率就成为蛋白质分子量的函数,实验证实分子量在15kD~200 kD 的范围内,电泳迁移与分子量的对数呈直线关系,用此法可根据已知分子量白质的电泳迁移率和分子量的对数做出标准曲线,再根据未知蛋白质的电泳迁移率求得分子量。同时也可根据不同分离级分的蛋白条带的多少来判定分离纯化产物的纯度。

基因工程复习要点

一 1.载体的功能 1.运送外源基因高效转入受体细胞 2.为外源基因提供复制能力或整合能力 3.为外源基因的扩增或表达提供必要的条件 2.基因工程学科建立的理论和技术发明 1.三大理论:DNA是遗传物质、1953年提出DNA的双螺旋结构、提出中心法则和遗传密码 2.三大技术:工具酶的发现、载体的发现、逆转录酶的发现 3.质粒的特点 质粒是一类存在于细菌和真菌细胞中能独立于染色体DNA而自主复制的共价、闭合、环状DNA分子,也称cccDNA.通常在1~100范围内。 自主复制性、可扩增性、可转移性、不相容性 4.描述PBR322质粒筛选过程 PBR322质粒有两个标记基因,氨苄青霉素抗性基因和四环素抗性基因。 若在康四环素抗性基因上插入外源DNA,则 1.先将转化液涂布在含有氨苄青霉素的平板上,未长的菌落是未导入质粒的菌落 2.再将上述平板上存活的菌落影印到含有四环素平板上,在四环素上不长但在氨苄青霉素 上长的转化子即为重组子。 5.简述PUC系列质粒筛选重组子的过程 PUC是在PBR322质粒上改造的 若在lacZ’标记基因上插入外源DNA,则 将转化液涂布在含有Amp的平板上,蓝色菌落为非重组子,白色菌落为重组子,没长的未导入质粒。 6.基因工程操作的基本流程 1.离:从供体细胞中分离出基因组DNA 2.切、连:用限制性核酸内切酶分别将外源DNA和载体分开,用DNA连接酶将含有外源基 因的DNA片段接到载体分子上,构成重组DNA分子 3.转、增:将重组DNA导入受体细胞,段时间培养转化细胞,以扩增DNA重组分子或使其 整合到受体细胞的基因组中 4.筛:筛选经转化处理的细胞,获得外源基因高效稳定的基因工程菌或细胞 5.表达:筛选好的菌或细胞导入到受体中使其高效稳定表达 7.为什么说逆转录酶的发现对基因工程学科的建立至关重要 1.对分子生物学的中心法则进行修正和补充 2.使真核基因的制备成为可能可将mRNA反转录形成DNA用于获得目的基因 3.在致癌病毒的研究中发现癌基因,为肿瘤发病机理的研究提供有价值线索 8.蓝白斑筛选 是一种基因工程常用的重组菌筛选方法。野生型大肠杆菌产生的β-半乳糖苷酶可以将无色

基因工程复习题答案

基因工程原理复习题思考题 基因工程绪论 1、基因工程的定义与特征。 定义:在体外把核酸分子(DNA的分离、合成)插入载体分子,构成遗传物质的新组合(重组DNA),引入原先没有这类分子的受体细胞内,稳定地复制表达繁殖,培育符合人们需要的新品种(品系),生产人类急需的药品、食品、工业品等。 特征:1、具跨越天然物种屏障的能力。 2、强调了确定的DNA片段在新寄主细胞中的扩增。 2、试述基因工程的主要研究内容。 1)、目的基因的分离 2)、DNA的体外重组(载体、受体系统等) 3)、重组DNA分子转移到受体细胞及其筛选 4)、基因在受体细胞内的扩增、表达、检测及其分析。 3、基因工程在食品工业上有何应用发展? 主要是通过基因重组,使各种转基因生物提高生产谷氨酸、调味剂、酒类和油类等有机物的产率;或者改良这些有机物组成成分,提高利用价值。 4、转基因是一把双刃剑,请客观谈谈对转基因及转基因食品安全性的认识。 转基因技术所带来的好处是显而易见的,在人类历史进步和发展中起到了积极作用。 首先,通过该项技术可以提供人们所需要的特性,改良培育新品种; 第二,延长食品保存时间或增加营养成分; 第三,将抗虫防菌基因转入到作物中,使作物本身产生抵抗病虫害侵袭的能力,减少了农药的使用量,有利于环境保护; 第四,转基因技术及基因食物在医学方面得到广泛研究和应用。 人们对转基因技术的主要担忧在于环境方面。外源基因的导入可能会造就某种强势生物,产生新物种或超级杂草、损害非目标生物、破坏原有生物种群的动态平衡和生物多样性,也即转基因生物存在潜在的环境安全问题。 转基因作物的大面积种植已有数年,食用转基因食品的人群至少有10亿之多,但至今仍未有转基因食品对生命造成危害的实例;更何况目前每一种基因工程食品在上市前,都要经过国家法律认可,食品卫生部门和环境部门的严格检测。只有测试合格了,才能投放市场。因此公众完全可以安全地消费、大胆地食用转基因食品。 第一章 DNA的分子特性与利用 1、原核生物和真核生物的基因表达调控有何差别? 1)原核基因表达调控的三个水平:转录水平调控、翻译水平调控、蛋白质加工水平的调控原核基因表达调控主要是在转录水平上的调控。 2)真核生物基因表达的特点: ● 1.基因组DNA存在的形式与原核生物不同; ● 2.真核生物中转录和翻译分开进行; ● 3.基因表达具有细胞特异性或组织特异性; ● 4.真核基因表达的调控在多个水平上进行:DNA水平的调控、转录水平调控、转 录后水平调控、翻译水平调控、蛋白质加工水平的调控; 2、什么是基因?根据基因的产物,基因可分为哪三类? 基因是具有生物学功能的、在染色体上占据一定位置的一段核苷酸序列,是分子遗传的功能

克隆载体与表达载体教程文件

克隆载体:大多是高拷贝的载体,一般是原核细菌,将需要克隆的基因与克隆载体的质粒相连接,再导入原核细菌内,质粒会在原核细菌内大量复制,形成大量的基因克隆,被克隆的基因不一定会表达,但一定被大量复制。克隆载体只是为了保存基因片段,这样细胞内不会有很多表达的蛋白质而影响别的工作。 克隆载体(Cloning vector ):携带插入外源片段的质粒或噬菌体,从而产生更多物质或蛋白质产物。(这是为“携带”感兴趣的外源DNA、实现外源DNA的无性繁殖或表达有意义的蛋白质所采用的一些DNA 分子。) 其中,为使插入的外源DNA序列可转录、进而翻译成多肽链而设计的克隆载体又称表达载体。 是否含有表达系统元件,即启动子--核糖体结合位点--克隆位点--转录终止信号,这是用来区别克隆载体和表达载体的标志。 表达载体:有的是高拷贝的,有的是低拷贝的,各有各的用处,是一些用于工程生产的细菌,被导入的目标基因会在此类细菌中得到表达,生产出我们需要的产物,导入的基因是由克隆载体产出的。表达载体具有较高的蛋白质表达效率,一般因为具有强的启动子。 表达载体(Expression vectors)就是在克隆载体基本骨架的基础上增加表达元件(如启动子、RBS、终止子等),是目的基因能够表达的载体。如表达载体pKK223-3是一个具有典型表达结构的大肠杆菌表达载体。其基本骨架为来自pBR322和pUC的质粒复制起点和氨苄青霉素抗性基因。在表达元件中,有一个杂合tac强启动子和终止子,在启动子下游有RBS位点(如果利用这个位点,要求与ATG之间间隔5-13bp),其后的多克隆位点可装载要表达的目标基因。 (RBS位点:1974年Shine和Dalgarno首先发现,原核生物,在mRNA上有核糖体的结合位点,它们是起始密码子AUG和一段位于AUG上游3~10 bp处的由3—9bp组成的序列。这段序列富含嘌呤核苷酸,刚好与16S rRNA 3,末端的富含嘧啶的序列互补,是核糖体RNA的识别与结合位点。根据发现者的名字,命名为Shine-Dalgarno序列,简称S-D序列。 由于它正好与30S小亚基中的16s rRNA3’端一部分序列互补,因此S-D序列也叫做核糖体结合序列。 真核生物存在于真核生物mRNA的一段序列,其在翻译的起始中有重要作用。加Kozark sequence(GCCACC), Kozak sequence是用来增强真核基因的翻译效率的。是最优化的ATG环境,避免ribosome出现leaky scan) 克隆载体目的在于复制足够多的目标质粒,所以常带有较强的自我复制元件,如复制起始位点等,往往在菌体内存在多拷贝,所以抽质粒会抽出一大堆。但不具备表达元件。而表达质粒有复杂的构成,为的是控制目标蛋白的表达,如各种启动子(T7),调节子(LacZ)等,而且以pET为代表的表达载体在菌体内都是低拷贝的,防止渗漏表达。 克隆载体只是把你要的基因片段拿到就可以了,不管读码框什么的,但是表达载体是不但要你的目的基因连在上面,而且要表达蛋白,所以就要求你的读码框不能乱了,否则就不能得到你想到的表达产物。 1.载体即要把一个有用的基因(目的基因——研究或应用基因)通过基因工程手段送到生物细胞(受体细胞),需要运载工具(交通工具)携带外源基因进入受体细胞,这种运载工具就叫做载体(vector)。 2. 载体的分类 按功能分成:(1)克隆载体: 都有一个松弛的复制子,能带动外源基因,在宿主细胞中复制扩增。它是用来克隆和扩增DNA片段(基因)的载体。(2)表达载体:具有克隆载体的基本元件(ori,Ampr,Mcs等)还具有转录/翻译所必需的DNA顺序的载体。 按进入受体细胞类型分:(1)原核载体(2)真核载体(3)穿梭载体(sbuttle vector)指在两种宿主生物体内复制的载体分子,因而可以运载目的基因(穿梭往返两种生物之间). 克隆载体顾名思义就是质粒拷贝数比较高,在做上游克隆时比较方便, 其重点在于质粒的复制.

基因工程复习重点

考试题型 一、填空(共10题 10分) 二、单项选择题(共20题 20分) 三、英文名词解释(共8题 32分) 四、简答题(共6题 30分) 五、综合题(共1题 8分) 幻灯片2 第一章 1、名词解释: Gene Engineering HGP(Human Genome Project) Gene Therapy 基因诊断 2、简述重组DNA操作一般步骤。 3、了解基因工程发展史上的重大事件。 4、了解基因工程研究内容。 5、简述基因工程的主要操作内容。 6、请举两个基因工程应用的具体例子并加以说明。 幻灯片3 第二章第三章第四章 1、名词解释: 载体(Vector)、质粒(Plasmid)、穿梭载体(shuttle vector)、质粒的不相容性、多克隆位点(multiple cloning sites,MCS)、a-互补、粘性末端、 cos位点、考斯质粒(Cosmid)、穿梭载体(Shuttle vector)、pBR322、pSC101、噬菌粒(phagemid or phasmid)、人造染色体载体、细菌人造染色体(BAC)、酵母人造染色体(YAC)、工具酶、限制修饰系统(R-M System)、同位酶、同尾酶、同裂酶、星星活性(Star activity)、 Klenow酶、T-载体 幻灯片4 2、载体的功能及其应具备的条件。 3、质粒的基本特征是什么?质粒的不相容性的分子机制是什么? 4、在构建质粒载体时,对天然质粒进行修饰改造? 5、正选择标记lacZ′的显色原理( a-互补的原理)是什么,有何应用? 6、λ噬菌体的包装限制是什么? 7、核酸限制性内切酶类型及主要特性是什么? 8、限制性内切酶如何命名?命名原则是什么? 9、限制性内切酶基本特征是什么? 10、简述影响限制性核酸内切酶酶切的反应条件的因素。 幻灯片5 11、引起星星活性的因素是什么?如何抑制? 12、 DNA连接酶的基本功能是什么? 13、大肠杆菌DNA聚合酶I的基本功能是什么? 14、大肠杆菌DNA聚合酶I 大片段的基本功能是什么? 15、S1核酸酶的基本功能是什么? 16、碱性磷酸酶的的基本功能是什么?根据来源不同可分为几种?它们之间有何区别? 17、质粒提取原理、试剂、过程。

相关主题
文本预览
相关文档 最新文档