当前位置:文档之家› verilog语言编写8位全加器教学文案

verilog语言编写8位全加器教学文案

verilog语言编写8位全加器教学文案
verilog语言编写8位全加器教学文案

v e r i l o g语言编写8

位全加器

8位全加器

一、实验目的

用verilog语言编写一个8位全加器,并在modelsim软件上进行仿真。

二、代码

1、源代码:

module add8(sum,cout,in1,in2,cin);

input [7:0] in1,in2;

input cin;

output [7:0] sum;

output cout;

assign {cout,sum}=in1+in2+cin;

endmodule

2、激励:

`timescale 1ns/100ps

module add8_tb;

reg[7:0] A,B;

reg CIN;

wire [7:0] SUM;

wire COUT;

add8 ul(

.sum(SUM),

.cout(COUT),

.in1(A),

.in2(B),

.cin(CIN)

);

initial

begin

A=8'd0;B=8'd0;CIN=1'b0;

#10 A=8'd20;B=8'd129;CIN=1'b1;

#10 A=8'd27;B=8'd19;CIN=1'b0;

#10 A=8'd157;B=8'd29;CIN=1'b0;

#10 A=8'd37;B=8'd68;CIN=1'b0;

#10 A=8'd11;B=8'd69;CIN=1'b0;

#10 A=8'd54;B=8'd67;CIN=1'b1;

#10 A=8'd211;B=8'd0;CIN=1'b0;

#10 A=8'd87;B=8'd43;CIN=1'b1;

#10 A=8'd23;B=8'd171;CIN=1'b0;

#10 A=8'd12;B=8'd12;CIN=1'b1;

#10 A=8'd112;B=8'd115;CIN=1'b0;

end

endmodule

三、实验过程

1、上机过程

2、仿真波形

3、波形说明

波形图中,从上至下依次为:输入加数A、输入加数B、输入进位CIN、输出进位COUT、输出和SUM。该程序实现的是A+B+CIN=SUM+COUT。

0+0+0=0;

20+129+1=150;

27+19+0=46;

157+29+0=186;

37+68+0=105;

11+69+0=80;

54+67+1=122;

211+0+0=211;

87+43+1=131;

23+171+0=194;

12+12+1=25;

112+115+0=227;

四、实验过程中碰到的问题

1、对于modelsim软件太陌生,在开始实验的时候,经常做完了上一步就忘了下一步是什么,而且对老师反复强调的很多问题也在手忙脚乱间给忽略了,比如,实验一定要在计算机某一个盘里建立一个独立的文件夹,每次都是实验进行到这一步的时候才想起来还没有建这个文件夹,造成很多返工的情况。

2、开始的时候,由于C语言的习惯,程序的注解全部是用汉字写的,还有在实验刚开始时,将独立文件夹建在桌面上,使得程序在运行过程中出现了大

量的汉字,最终结果就是程序莫名其妙的报错,还完全找不到错在哪里,不注重细节导致浪费大量时间。

四、实验心得

本次试验带我进入了verilog的大门,虽然磕磕绊绊,但是我发现我还是挺喜欢这样一个过程,我希望自己能认真努力,让自己的学习更进一步,让之后的实验能顺利一点。

实验一 八位全加器的设计

电子科技大学电子工程学院标准实验报告(实验)课程名称EDA技术与应用 姓名:孙远 学号:2010021030002 指导教师:窦衡 电子科技大学教务处制表

实验一八位全加器的设计 一、预习内容 1.结合教材中的介绍熟悉QuartusⅡ软件的使用及设计流程; 2.八位全加器设计原理。 二、实验目的 1.掌握图形设计方法; 2.熟悉QuartusⅡ软件的使用及设计流程; 3.掌握全加器原理,能进行多位加法器的设计。 三、实验器材 PC机一台、EDA教学实验系统一台、下载电缆一根(已接好)、导线若干 四、实验要求 1、用VHDL设计一个四位并行全加器; 2、用图形方式构成一个八位全加器的顶层文件; 3、完成八位全加器的时序仿真。 五、实验原理与内容 1、原理: 加法器是数字系统中的基本逻辑器件。例如:为了节省资源,减法器和硬件乘法器都可由加法器来构成。但宽位加法器的设计是很耗费资源的,因此在实际的设计和相关系统的开发中需要注意资源的利用率和进位速度等两方面的问题。多位加法器的构成有两种方式:并行进位和串行进位方式。并行进位加法器设有并行进位产生逻辑,运算速度快;串行进位方式是将全加器级联构成多位加法器。通常,并行加法器比串行级联加法器占用更多的资源,并且随着位数的增加,相同位数的并行加法器比串行加法器的资源占用差距也会越来越大。 实验表明,4 位二进制并行加法器和串行级联加法器占用几乎相同的资源。这样,多位数加法器由4 位二进制并行加法器级联构成是较好的折中选择。因此本实验中的8 位加法器采用两个4位二进制并行加法器级联而成。

2、实现框图: 1)四位加法器 四位加法器可以采用四个一位全加器级连成串行进位加法器,实现框图如下图所示,其中CSA为一位全加器。显然,对于这种方式,因高位运算必须要等低位进位来到后才能进行,因此它的延迟非常可观,高速运算肯定无法胜任。 通过对串行进位加法器研究可得:运算的延迟是由于进位的延迟。因此,减小进位的延迟对提高运算速度非常有效。下图是减少了进位延迟的一种实现方法。可见,将迭代关系去掉,则各位彼此独立,进位传播不复存在。因此,总的延迟是两级门的延迟,其高速也就自不待言。 2)八位加法器 用两个并行四位加法器实现一个八位加法器的框图如下:

华为verilog培训教程

共41页 资源类别: HDL 语言 内部公开 1.0 密级 版本文档编号 文档中心 Verilog HDL 入门教程 (仅供内部使用) yyyy/mm/dd 日期: 批准: 日期:中研基础 批准:2004.8.3 日期:中研基础拟制:版权所有 不得复制

修订记录 初稿完成 1.00 2004.8.3作者 描述 修订版本 日期 绝密请输入文档编号 Verilog HDL 入门教程 2004-08-16第2页,共41页 版权所有,侵权必究

目 录 28 5 结构建模..............................................................274.8 case 语句..........................................................254.7 条件语句..........................................................254.6.6 连接运算符....................................................254.6.5 条件运算符....................................................244.6.4 按位逻辑运算符................................................234.6.3 逻辑运算符....................................................224.6.2 关系运算符....................................................214.6.1 算术运算符. (21) 4.6 运算符和表达式.....................................................204.5.2 寄存器类型 ...................................................204.5.1 线网类型 (20) 4.5 数据类型..........................................................184.4.2 常量.........................................................184.4.1 值集合. (18) 4.4 数字值集合........................................................184.3 格式.............................................................174.2 注释.............................................................174.1.3 书写规范建议..................................................174.1.2 关键词.......................................................174.1.1 定义 (17) 4.1 标识符 (17) 4 Verilog HDL 基本语法 (16) 3.3.4 混合设计描述..................................................153.3.3 行为描述方式..................................................143.3.2 数据流描述方式................................................123.3.1 结构化描述方式 (12) 3.3 三种建模方式......................................................113.2 时延.............................................................113.1.3 模块语法......................................................103.1.2 模块的结构....................................................93.1.1 简单事例. (9) 3.1 模块 (9) 3 Verilog HDL 建模概述 (7) 2.4.2 能力..........................................................72.4.1 历史. (7) 2.4 Verilog HDL 简介.....................................................62.3 设计方法学.........................................................62.2 硬件描述语言.......................................................52.1 数字电路设计方法. (5) 2 HDL 设计方法学简介......................................................51 前言...................................................................绝密 请输入文档编号 Verilog HDL 入门教程 2004-08-16 第3页,共41页 版权所有,侵权必究

数字系统设计与verilog HDL课程设计

数字系统设计与verilog HDL课程设计 设计题目:实用多功能数字钟 专业:电子信息科学与技术 班级:0313410 学号:031341025 姓名:杨存智 指导老师:黄双林

摘要 本课程设计利用QuartusII软件Verilog VHDL语言的基本运用设计一个多功能数字钟,经分析采用模块化设计方法,分别是顶层模块、alarm、alarm_time、counter_time、clk50mto1、led、switch、bitel、adder、sound_ddd、sound_ddd_du模块,再进行试验设计和软件仿真调试,分别实现时分秒计时、闹钟闹铃、时分秒手动校时、时分秒清零,时间保持和整点报时等多种基本功能。 单个模块调试达到预期目标,再将整体模块进行试验设计和软件仿真调试,已完全达到分块模式设计功能,并达到设计目标要求。 关键字:多功能数字钟、Verilog、模块、调试、仿真、功能

目录 1.课程设计的目的及任务............................................................. 错误!未定义书签。 1.1 课程设计的目的 (3) 1.2 课程设计的任务与要求 (4) 2.课程设计思路及其原理 (4) 3.QuartusII软件的应用 (5) 3.1工程建立及存盘 (5) 3.2工程项目的编译 (5) 3.3时序仿真 (6) 4.分模块设计、调试、仿真与结果分析 (7) 4.1 clk50mto1时钟分频模块 (7) 4.2 adder加法器模块 (7) 4.3 hexcounter16 进制计数器模块 (7) 4.4 counter_time 计时模块 (8) 4.5 alarm闹铃模块 (8) 4.6 sound_ddd嘀嘀嘀闹铃声模块 (9) 4.7 sound_ddd_du嘀嘀嘀—嘟声音模块 (9) 4.8 alarm_time闹钟时间设定模块 (10) 4.9 bitsel将输出解码成时分秒选择模块 (10) 4.10 switch去抖模块 (11) 4.11 led译码显示模块 (11) 4.12 clock顶层模块 (12) 5.实验总结 (13) 5.1调试中遇到的问题及解决的方法 (13) 5.2实验中积累的经验 (14) 5.3心得体会 (14) 6.参考文献 (14) 1.1 课程设计的目的 通过课程设计的锻炼,要求学生掌握V erilog HDL语言的一般设计方法,掌握VerilogHDL语言的基本运用,具备初步的独立设计能力,提高综合运用所学的理论知识独立分析和解决问题的能力,基于实践、源于实践,实践出真知,实践检验真理,培养学生的

verilog课程设计—交通灯

课程论文 论文题目基于DE2的交通灯设计完成时间 课程名称Verilog语言设计 任课老师 专业 年级

1.交通信号控制器设计要求与思路 1.1设计背景 FPGA是一种用户根据各自需要而自行构造逻辑功能的数字集成电路,其种类很多,内部结构也不同,但共同的特点是体积小、使用方便。本文介绍了用VerilogHDL语言设计交通灯控制器的方法,并在QuartusII系统对FPGA芯片进行编译下载,由于生成的是集成化的数字电路,没有传统设计中的接线问题,所以故障率低、可靠性高,而且体积非常小。本文通过EDA设计,利用VerilogHDL语言模拟仿真交通灯控制电路。 1.2设计要求 根据交通灯控制器要实现的功能,考虑用两个并行执行的always语句来分别控制A方向和B方向的3盏灯。这两个always语句使用同一个时钟信号,以进行同步,也就是说,两个进程的敏感信号是同一个。每个always语句控制一个方向的3种灯按如下顺序点亮,并往复循环:绿灯----黄灯----红灯,每种灯亮的时间采用一个减法计数器进行计数,计数器用同步预置数法设计,这样只需改变预置数据,就能改变计数器的模,因此每个方向只要一个计数器进行预置数就可以。为便于显示灯亮的时间,计数器的输出均采用BCD码,显示由4个数码管来完成,A方向和B方向各用两个数码管。设定A方向红灯、黄灯、绿灯亮的时间分别为:35s、5s、35s,B方向的红灯、黄灯、绿灯亮的时间分别为:35s、5s、35s。假如要改变这些时间,只需要改变计数器的预置数即可。 1.3设计思路 两个方向各种灯亮的时间能够进行设置和修改,此外,假设B方向是主干道,车流量大,因此B方向通行的时间应该比A方向长。交通灯控制器的状态转换表见下表。表中,1表示灯亮,0表示灯不亮。A方向和B方向的红黄绿分别用R1、Y1、G1、R2、Y2、G2来表示。

Verilog HDL数字时钟课程设计

课程设计报告 课程设计名称:EDA课程设计课程名称:数字时钟 二级学院:信息工程学院 专业:通信工程 班级:12通信1班 学号:1200304126 姓名:@#$% 成绩: 指导老师:方振汉 年月日

目录 第一部分 EDA技术的仿真 (3) 1奇偶校验器 (3) 1.1奇偶校验器的基本要求 (3) 1.2奇偶校验器的原理 (3) 1.3奇偶校验器的源代码及其仿真波形 (3) 28选1数据选择器 (4) 2.18选1数据选择器的基本要求 (4) 2.28选1数据选择器的原理 (4) 2.38选1数据选择器的源代码及其仿真波形 (5) 34位数值比较器 (6) 3.14位数值比较器的基本要求 (6) 3.24位数值比较器的原理 (6) 3.34位数值比较器的源代码及其仿真波形 (7) 第二部分 EDA技术的综合设计与仿真(数字时钟) (8) 1概述 (8) 2数字时钟的基本要求 (9) 3数字时钟的设计思路 (9) 3.1数字时钟的理论原理 (9) 3.2数字时钟的原理框图 (10) 4模块各功能的设计 (10) 4.1分频模块 (10) 4.2计数模块(分秒/小时) (11) 4.3数码管及显示模块 (13) 5系统仿真设计及波形图........................... 错误!未定义书签。5 5.1芯片引脚图.................................... 错误!未定义书签。5 5.2数字时钟仿真及验证结果 (16) 5.3数字时钟完整主程序 (17) 6课程设计小结 (23) 7心得与体会 (23) 参考文献 (24)

Verilog课程设计

一.实验目的 (1)学习RISC_CPU的基本结构和原理; (2)了解Verilog HDL仿真和综合工具的潜力; (3)展示Verilog设计方法对软/硬件联合设计和验证的意义; (4)学习并掌握一些常用的Verilog语法和验证方法。 二.实验原理 CPU即中央处理单元的英文缩写,它是计算机的核心部件。计算机进行信息处理可分为两个步骤: (1)将数据和程序(即指令序列)输入计算机的存储器中。 (2)从第一条指令的地址起开始执行该程序,得到所需结果,结束运行。CPU的作用是协调并控制计算机的各个部件并执行程序的指令序列,使其有条不紊地进行。因此它必须具有以下基本功能。 ①取指令——当程序忆在存储器中时,首先根据程序入口地址取出一条程序,为此要发出指令地址及控制信号。 ②分析指令——即指令译码,这是对当前取得的指令进行分析,指出它要求什么操作,并产生相应的操作控制命令。 ③执行指令——根据分析指令时产生的“操作命令”形成相应的操作控制信号序列,通过运算器、存储器及输入/输出设备的执行,实现每条指令的功能,其中包括对运算结果的处理以及下条指令地址的形成。 将CPU的功能进一步细化,可概括如下: (1)能对指令进行译码并执行规定的动作; (2)可以进行算术和逻辑运算; (3)能与存储器和外设交换数据; (4)提供整个系统所需要的控制。 尽管各种CPU的性能指标和结构细节各不相同,但它们所能完成的基本功能相同。由功能分析,可知任何一种CPU内部结构至少应包含下面这些部件:(1)算术逻辑运算部件(ALU); (2)累加器; (3)程序计数器;

(4)指令寄存器和译码器; (5)时序和控制部件。 三.实验内容 通过我们自己动手,设计出一个CPU的软核和固核。这个CPU是一个简化的专门为教学目的而设计的RISC_CPU。在设计中我们不但关心CPU总体设计的合理性,而且还使得构成这个RISC_CPU的每一个模块不仅是可仿真的也都可以综合成门级网表。因而从物理意义上说,这也是一个能真正通过具体电路结构而实现的CPU。为了能在这个虚拟的CPU上运行较为复杂的程序并进行仿真,把寻址空间规定为8K(即13们地址线)字节。 四.实验代码 1.源代码 //----------------------------------clk_gen.v------------------------------ `timescale 1ns/1ns //时间单位1ns,时间单位1ns module clk_gen(clk,reset,fetch,alu_ena); //模块名clk_gen,参数列表(clk,reset,fetch,alu_ena)input clk,reset; //输入clk,reset output fetch,alu_ena; //输出fetch,alu_ena wire clk,reset; //wire型变量clk,reset reg fetch,alu_ena; //reg寄存器型变量fetch,alu_ena reg[7:0]state; //reg寄存器型变量8位的state parameter S1=8'b00000001,S2=8'b00000010,S3=8'b00000100,S4=8'b00001000,S5=8'b00010000,S6=8'b001 00000,S7=8'b01000000,S8=8'b10000000,idle=8'b00000000; //参数型定义8位二进制常量s1,s2,s3,s4,s5,s6,s7,s8,idle always@(posedge clk) //always块时钟触发 if(reset) //如果reset为真 begin //执行begin,and顺序块 fetch<=0; //fetch非阻塞赋值赋为0 alu_ena<=0; //alu_ena非阻塞赋值赋为0 state<=idle; //idle非阻塞赋值给state end else //reset为假执行下面begin语句 begin case(state) //case表达式(state) S1:begin alu_ena<=1; //alu_ena非阻塞赋值赋为1 state<=S2; //state非阻塞赋值赋为S2 end S2:begin alu_ena<=0; //alu_ena非阻塞赋值赋为0 state<=S3; //state非阻塞赋值赋为S3 end

Verilog HDL 综合实用教程

《Verilog HDL 综合实用教程》读书笔记——锁存器、触发器
加入收藏
2007-08-29 00:23
?
转发分享 人人网 开心网 新浪微博 搜狐博客 百度收藏 谷歌收藏 qq 书签 豆瓣 淘江湖 Facebook Twitter Digg Yahoo!Bookmarks
锁存器:
推导出锁存器的一般规则是,如果变量未在 always 语句所有可能的执行过程中被赋值, 就推导出锁存器。如果变量在 if 的所有分支中都被赋值则综合成组合逻辑。 case、casez、casex 可转成 if、else 形式。当 case 中不是所有情况都列举出或使用 default 语句时、在 case 语句前对 case 中赋值对象赋初值也可避免综合出锁存器。若不 是以上各种情况且须综合成组合逻辑可以使用综合命令,如下: 例: always @ (Toggle) case (Toggle) //synthesis full_case 2'b01: NextToggle = 2'b10; 2'b10: NextToggle = 2'b01; end case end module 上例中的//synthesis full_case 是综合命令,告知综合工具 case 中已是全部列举可能的 情况,这样综合后无锁存器。(正常的 case 语句是有优先级的,先出现的优先级最高,若 case 中各分支是互斥时,综合成译码逻辑。当使用 casex 时用综合命令//synthesis parallel-case 告知综合工具该 casex 是互斥的)。 触发器: 沿控制的用触发器,且沿控制的赋值用非阻塞的方式“Zee<=A;”。 当 always 中是沿敏感时,此 always 中有 if……else if……且在这些 if……else if 中有多 于 1 个对同一变量赋值时,这个变量很可能被综合成有异步置位或清零的触发器。 例: always @ (negedge Reset or negedge Set or negedge CLKA) if (!Reset) NextState<=12; else if (!Set) NextState<=5;

基于Verilog的课程设计

基于Verilog的课程设计 直流电机的PWM控制 指导老师:翁嘉民 班级:1031电气自动化技术成员:李高峰9112 王俊才9186 孟令朋9143

目录 1.绪论 (3) 直流电机介绍 (3) 1.1.1直流电机的特点 (3) 1.1.2直流电机的应用 (3) 介绍 (4) 介绍 (4) V ERILOG HDL硬件描述语言 (5) 1.4.1V ERILOG HDL硬件描述语言介绍 (5) 1.4.2V ERILOG HDL功能 (5) PWM脉冲宽度调制介绍 (6) 直流电机的PWM控制 (7) 2.设计原理 (8) 设计原理框图 (8) 原理图 (9) 模块设计 (9) 2.3.1 MOTO_TEST模块 (9) 2.3.4计数器模块 (12) 7实训心得 (13) 参考文献 (13)

直流电机的PWM控制器的设计 1.绪论 直流电机介绍 直流电机是实现直流电能与机械能之间相互转换的一种电力机械,按照直流电机的用途分为直流电动机和直流发电机两类。能够将机械能转换成直流电能的电机称为直流发电机;能够将直流电能转换成机械能的电机称为直流电动机。 1.1.1直流电机的特点 从直流电机与交流电机相比中可以看出,直流电机具有优良的调速性能和启动性能。直流电机具有宽广的调速范围,平滑的无级调速特性,可实现频繁的无级快速启动、制动和反转;过载能力大,能承受频繁的冲击负载;能满足自动化生产系统中各种特殊运行的要求。而直流发电机则能提供无脉动的大功率直流电源,且输出电压可以精确地调节和控制。 1.1.2直流电机的应用 直流电机是交通、工矿、建筑等行业中的常见动力机械,是机电行业人员的重要工作对象和工具。在某些要求调速范围广、速度快、精密度高、控制性能优异的场合,直流电机的应用目前仍占有较大的比重,如大型可逆式轧钢机、内燃机车、矿井卷扬机、造纸和印刷机械、宾馆高速电梯、城市电车、电动自行车、龙门刨床、电力机车、地铁列车、船舶机械、大型精密机床和大型起重机等生产机械中。

8位全加器实验报告

实验1 原理图输入设计8位全加器 一、实验目的: 熟悉利用QuartusⅡ的原理图输入方法设计简单组合电路,掌握层次化设计的方法,并通过一个8位全加器的设计把握利用EDA软件进行电子线路设计的详细流程。 二、原理说明: 一个8位全加器可以由8个1位全加器构成,加法器间的进位可以串行方式实现。即将低位加法器的进位输出cout与其相邻的高位加法器的最低进位输入信号cin相接。而一个1位全加器可以按照本章第一节介绍的方法来完成。 三、实验内容: 1:完全按照本章第1节介绍的方法与流程,完成半加器和全加器的设计,包括原理图输入、编译、综合、适配、仿真。 2:建立一个更高的原理图设计层次,利用以上获得的1位全加器构成8位全加器,并完成编译、综合、适配、仿真和硬件测试。 四、实验环境: 计算机、QuartusII软件。 五、实验流程: 实验流程: 根据半加器工作原 理,建立电路并仿 真,并将元件封装。 ↓ 利用半加器构成一位 全加器,建立电路并 仿真,并将元件封 装。 ↓ 利用全加器构成8位全 加器,并完成编译、综 合、适配、仿真。 图1.1 实验流程图

六、实验步骤: 1.根据半加器工作原理建立电路并仿真,并将元件打包。(1)半加器原理图: 图1.2 半加器原理图(2)综合报告: 图1.3 综合报告: (3)功能仿真波形图4: 图1.4 功能仿真波形图

时序仿真波形图: 图1.5 时序仿真波形图 仿真结果分析:sout为和信号,当a=1,b=0或a=0,b=1时,和信号sout为1,否则为0.当a=b=1时,产生进位信号,及cout=1。 (4)时序仿真的延时情况: 图1.6 时序仿真的延时情况 (5)封装元件: 图1.7 元件封装图 2. 利用半加器构成一位全加器,建立电路并仿真,并将元件封装。 (1)全加器原理图如图: 图2.1 全加器原理图

CPLD入门教程

目录 前言 (2) 第一章 MAX+plusII 软件和license的获得 (6) 第二章 MAX+plusII 软件的安装和license及驱动的设置 2.1 MAX+plusII 软件的安装 (7) 2.2 MAX+plusII 软件的license设置 (8) 2.3 MAX+plusII 软件的驱动设置 (12) 第三章用VHDL语言设计三人表决器 3.1打开MAX+plusII (22) 3.2新建VHDL文档 (23) 3.3输入设计文件 (24) 3.4保存文件 (25) 3.5检查编译 (27) 3.6创建symbol (32) 3.7波形防真 (33) 3.8下载验证 (40) 第四章用原理图输入的方式设计三人表决器 (47) 第五章用verilog-HDL语言设计三人表决器 (51)

前言 编写本入门教程(V1.2)的目点是为了让FPGA/CPLD初学者快速地入门。该教程的特点是通过基本概念讲解和实际的例子来让初学者迅速了解FPGA/CPLD。该教程是共享文件,可以复制、下载、转载,如果转载该文章请注明出处:https://www.doczj.com/doc/db6521975.html,;该教程未经许可,不得用于商业用途。 FPGA/CPLD是电子设计领域中最具活力和发展前途的一项技术,它的影响丝毫不亚于70年代单片机的发明和使用。 FPGA/CPLD的基本知识: 1.什么是FPGA/CPLD FPGA (Field Programmable Gate Array)是现场可编程门阵列,CPLD是复杂的可编程逻辑器件(Complex Programmable Logic Device)的简称,不同厂家有不同的称呼,Xilinx把SRAM工艺,要外挂配置用的EEPROM的PLD叫FPGA,把Flash工艺(类似EEPROM工艺),乘积项结构的PLD叫CPLD; Altera把自己的PLD产品MAX系列(EEPROM工艺),FLEX/ACEX/APEX系列(SRAM工艺)都叫作CPLD,即复杂PLD(Complex PLD),由于FLEX/ACEX/APEX系列也是SRAM工艺,要外挂配置用的EPROM,用法和Xilinx的FPGA一样,所以很多人把Altera的FELX/ACEX/APEX系列产品也叫做FPGA. 但由于FPGA和CPLD功能基本相同,只是工艺和实现形式不同,所以初学者可以不要详细区分,我们可以统称为FPGA/CPLD。 2.FPGA/CPLD的用途:

Verilog HDL课程设计

人民武装学院Verilog HDL课程设计洗衣机控制器的设计 学生姓名: 周云 学号: PB102027115 专业: 电子信息科学与技术 年级: 2010 级 指导老师: 周骅老师 时间: 2011年12月22日

目录 引言...................................................................................................................... - 3 - 一、设计内容...................................................................................................... - 4 - 1.设计内容.................................................................................................... - 4 - 2.功能............................................................................................................ - 4 - 二、洗衣机控制器的工作原理.......................................................................... - 6 - 1. 洗衣机的工作状态.................................................................................. - 6 - 2. 全自动洗衣过程...................................................................................... - 7 - 3.单独执行某个洗衣程序............................................................................ - 8 - 三、洗衣机的状态转换图.................................................................................. - 9 - 1.洗衣机的状态转换图................................................................................ - 9 - 2. 设计思路.................................................................................................. - 9 - 四、设计程序.................................................................................................... - 11 - 1.全自动洗衣机主程序.............................................................................. - 11 - 2.全自动洗衣机测试程序.......................................................................... - 15 - 五、步骤及仿真图............................................................................................ - 17 - 1.在代码提示框架中完成核心子模块wash_ctrl.v的设计 ................... - 17 - 2.对核心子模块wash_ctrl.v 进行时序仿真 ........................................... - 17 - 六、功能图........................................................................................................ - 20 - 1.设计顶层图形文件,编译.................................................................... - 20 - 2.功能引脚锁定.......................................................................................... - 20 - 心得体会............................................................................................................ - 22 -

4位全加器实验报告.doc

四位全加器 11微电子黄跃1117426021 【实验目的】 采用modelsim集成开发环境,利用verilog硬件描述语言中行为描述模式、结构描述模式或数据流描述模式设计四位进位加法器。 【实验内容】 加法器是数字系统中的基本逻辑器件。多位加法器的构成有两种方式:并行进位和串行进位方式。并行进位加法器设有并行进位产生逻辑,运算速度快;串行进位方式是将全加器级联构成多位加法器。通常,并行加法器比串行级联加法器占用更多的资源,并且随着位数的增加,相同位数的并行加法器比串行加法器的资源占用差距也会越来越大。 实现多位二进制数相加的电路称为加法器,它能解决二进制中1+1=10的功能(当然还有 0+0、0+1、1+0). 【实验原理】 全加器 除本位两个数相加外,还要加上从低位来的进位数,称为全加器。图4为全 加器的方框图。图5全加器原理图。被加数A i 、加数B i 从低位向本位进位C i-1 作 为电路的输入,全加和S i 与向高位的进位C i 作为电路的输出。能实现全加运算 功能的电路称为全加电路。全加器的逻辑功能真值表如表2中所列。 信号输入端信号输出端 A i B i C i S i C i 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 1 1 0 1 1 0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 1 1 1 1

表2 全加器逻辑功能真值表 图4 全加器方框图 图5 全加器原理图 多位全加器连接可以是逐位进位,也可以是超前进位。逐位进位也称串行进位,其逻辑电路简单,但速度也较低。 四位全加器 如图9所示,四位全加器是由半加器和一位全加器组建而成: 图9 四位全加器原理图 【实验步骤】 (1)建立新工程项目: 打开modelsim软件,进入集成开发环境,点击File→New project建立一

verilog课程设计—交通灯1

课程设计 课程名称__EDA技术综合设计与实践__ 题目名称交通灯控制系统 学生学院信息工程学院 专业班级通信工程08(4) 学号 3108002925 学生姓名高高 指导教师李学易 2011 年12 月26 日

基于FPGA 的交通灯控制器的设计 摘要:Verilog 是广泛应用的硬件描述语言,可以用在硬件设计流程的建模、综合和模拟等多个阶段。随着硬件设计规模的不断扩大,应用硬件描述语言进行描述的CPLD 结构,成为设计专用集成电路和其他集成电路的主流。现代城市在日常运行控制中,越来越多的使用红绿灯对交通进行指挥和管理。而一套完整的交通灯控制系统通常要实现自动控制和手动控制去实现其红绿灯的转换。 基于FPGA 设计的交通灯控制系统电路简单、可靠性好。本设计利用Verilog HDL 语言、采用层次化混合输入方式,可控制4个路口的红、黄、绿、左转四盏信号灯,让其按特定的规律进行变化。在QUARTUSⅡ下对系统进行了综合与仿真。仿真结果表明系统可实现十字路口红绿灯及左转弯控制和倒计时显示,并能够自动控制交通灯转变。通过应用Verilog HDL 对交通灯控制器的设计,达到对Verilog HDL 的理解 关键词:FPGA;交通灯自动控制;V erilog HDL;Quartus Ⅱ 1.交通信号控制器设计要求与思路 1.1设计要求 在交通灯系统中(图1),路口1、2、3、4均需要红、黄、绿、左转四盏灯(用RYGL分别表示) ,并且每个路口都需要一个倒数的计时器,假设绿灯每次维持的时间是40 s ,黄灯为5 s ,左转灯10s,红灯60s,黄灯亮时以一定的频率闪动。交通灯系统大多是自动控制来指挥交通的,但有时需要由交警手动控制红绿灯,所以要求设 计的该交通信号系统需要具有该功能。 实现设计目标如下: (1)设计一个十字路口的交通灯控制电路,每条路配有红、黄、绿交通信号灯,通过电路对十字路口的两组交通灯的状态实现自动循环控制; (2)实现东西车道和南北车道上的车辆交替运行,绿灯每次维持的时间是40 s ,黄灯为5 s ,左转灯10s,红灯60s; (3)要求黄灯亮5 秒后,红灯才能转为绿灯,黄灯亮时以一定的频率闪动; (4)东西车道和南北车道每次通行的时间不同且可调; 图1 交通灯系统示意图

八位加法器设计实验报告

实验四:8位加法器设计实验 1.实验目的:熟悉利用quartus原理图输入方法设计简单组合电路,掌握层次化设计方法。 2.实验原理:一个八位加法器可以由八个全加器构成,加法器间的进位可以串行方式实现,即将低位加法器的进位输出cout与相邻的高位加法器的最低进位输入信号cin相接。 3.实验任务:完成半加器,全加器,八位加法器设计,使用例化语句,并将其设计成一个原件符号入库,做好程序设计,编译,程序仿真。 1)编译成功的半加器程序: module h_adder(a,b,so,co); input a,b; output so,co; assign so=a^b; assign co=a&b; endmodule 2)编译成功的全加器程序: module f_adder(ain,bin,cin,cout,sum); output cout,sum;input ain,bin,cin; wire net1,net2,net3; h_adder u1(ain,bin,net1,net2); h_adder u2(.a(net1),.so(sum),.b(cin),.co(net3));

or u3(cout,net2,net3); endmodule 3)编译成功的八位加法器程序: module f_adder8(ain,bin,cin,cout,sum); output [7:0]sum; output cout;input [7:0]ain,bin;input cin; wire cout0, cout1, cout2 ,cout3, cout4,cout5,cout6; f_adder u0(.ain(ain[0]),.bin(bin[0]),.cin(cin),.sum(sum[0]),.cout(cout0)); f_adder u1(.ain(ain[1]),.bin(bin[1]),.cin(cout0),.sum(sum[1]),.cout(cout1 )); f_adder u2(.ain(ain[2]),.bin(bin[2]),.cin(cout1),.sum(sum[2]),.cout(cout2 )); f_adder u3(.ain(ain[3]),.bin(bin[3]),.cin(cout2),.sum(sum[3]),.cout(cout3 )); f_adder u4(.ain(ain[4]),.bin(bin[4]),.cin(cout3),.sum(sum[4]),.cout(cout4 )); f_adder

Verilog语言基础教程

Verilog HDL Verilog HDL是一种硬件描述语言,用于从算法级、门级到开关级的多种抽象 设计层次的数字系统建模。被建模的数字系统对象的复杂性可以介于简单的门和完整的电子数字系统之间。数字系统能够按层次描述,并可在相同描述中显式地进行时序建模。 Verilog HDL 语言具有下述描述能力:设计的行为特性、设计的数据流特性、设计的结构组成以及包含响应监控和设计验证方面的时延和波形产生机制。所有这些都使用同一种建模语言。此外,Verilog HDL语言提供了编程语言接口,通过该接口可以在模拟、验证期间从设计外部访问设计,包括模拟的具体控制和运行。 Verilog HDL语言不仅定义了语法,而且对每个语法结构都定义了清晰的模拟、仿真语义。因此,用这种语言编写的模型能够使用Verilog仿真器进行验证。语言从C编程语言中继承了多种操作符和结构。Verilog HDL提供了扩展的建模能力,其中许多扩展最初很难理解。但是,Verilog HDL语言的核心子集非常易于学习和使用,这对大多数建模应用来说已经足够。当然,完整的硬件描述语言足以对从最复杂的芯片到完整的电子系统进行描述。 =============================== 中文版Verilog HDL简明教程:第1章简介 Verilog HDL是一种硬件描述语言,用于从算法级、门级到开关级的多种抽象设计层次的数字系统建模。被建模的数字系统对象的复杂性可以介于简单的门和完整的电子数字系统之间。数字系统能够按层次描述,并可在相同描述中显式地进行时序建模。 Verilog HDL 语言具有下述描述能力:设计的行为特性、设计的数据流特性、设计的结构组成以及包含响应监控和设计验证方面的时延和波形产生机制。所有这些都使用同一种建模语言。此外,Verilog HDL语言提供了编程语言接口,通过该接口可以在模拟、验证期间从设计外部访问设计,包括模拟的具体控制和运行。 Verilog HDL语言不仅定义了语法,而且对每个语法结构都定义了清晰的模拟、仿真语义。因此,用这种语言编写的模型能够使用Verilog仿真器进行验证。语言从C编程语言中继承了多种操作符和结构。Verilog HDL提供了扩展的建模能力,其中许多扩展最初很难理解。但是,Verilog HDL语言的核心子集非常易于学习和使用,这对大多数建模应用来说已经足够。当然,完整的硬件描述语言足以对从最复杂的芯片到完整的电子系统进行描述。 历史 Verilog HDL语言最初是于1983年由Gateway Design Automation公司为其模

verilog课程设计

课程设计 设计题目:基于FPGA的乐曲演奏电路设计 ?指导教师:蒋俊华 ?学院:物理与电子学院 ?专业:电子信息科学与技术 ?姓名:郭志勇 ?学号:10230******* ?实验地点:特种功能实验室(实验室502)

摘要:本文根据层次化的设计思路并在EDA开发工具Quartus II 9.0 (32-Bit) 平台上,采用Verilog语言、原理图、定制LPM-ROM块以及实例化的设计方法,利用数控分频的原理实现了基于FPGA片上系统(本实验用的是康芯GW48系列EDA设备)乐曲演奏的设计。 关键词 FPGA,EDA,Verilog,数控分频器 一. 概述部分: (1)设计所要实现的功能 能够很好的演奏出“梁祝”的谱子,将音乐通过实验箱上的喇叭播放出;演奏发音相对应的简谱码输出显示由在数码管5显示;高八度音指示由发光管D5指示 (2)设计所采用的基本思想 根据层次化的设计思路,可把乐曲硬件演奏电路分为3个模块,音乐节拍发生模块,音符译码电路模块,数控分频模块。 音乐节拍发生模块的设计:将编辑好的音符填入MIF文件中再定制LPM-ROM块将音符数据加载入ROM再通过计数器逐步计数rom块的地址来提取音符;音符译码电路模块、数控分频模块的设计:都是由verilog代码实例化生成 通过输入原理图的方法将各个模块连接起来生成一个block块的.qpf文件作为最终的顶层文件。 二.系统设计部分 (1)整个设计的组织结构

(2)各个子单元的设计思路 音乐节拍发生模块的设计: LPM-ROM块该模块为音乐曲谱的存放块。其中设置了“梁祝”乐曲全部音符所对应的分频预置数。其利用LPM_ROM宏模块将共设定256个音符,每个音符宽度为4位。 Mif文件存放乐曲中的音符数据,它是利用LPM-ROM来实现的,将乐谱中相应的音符放在一个连续的地址上。它首先是编写音符数据文件,将乐谱中相应的音符存放在一个连续的地址上。因为1拍的时间定为1秒,提供的是4Hz的时钟频率(即1/4拍的整数倍),则需将这个音符存储在相应次数的连续几个地址上。.mif文件如下:

相关主题
文本预览
相关文档 最新文档