当前位置:文档之家› 变压器漏感分析

变压器漏感分析

变压器漏感分析
变压器漏感分析

开关变压器漏感分析

浏览:1次作者:企业库时间:2010-1-10 0:13:55

电源装置,无论是直流电源还是交流电源,都要使用由软磁磁芯制成的电子变压器(软磁电磁元件)。虽然,已经有不用软磁磁芯的空芯电子变压器和压电陶瓷变压器,但是,到现在为止,绝大多数的电源装置中的电子变压器,仍然使用软磁磁芯。因此,讨论电源技术与电子变压器之间的关系:电子变压器在电源技术中的作用,电源技术对电子变压器的要求,电子变压器采用新软磁材料和新磁芯结构对电源技术发展的影响,一定会引起电源行业和软磁材料行业的朋友们的兴趣。本文提出一些看法,以便促成电源行业与电子变压器行业和软磁材料行业之间就电子变压器和软磁材料的有关问题进行对话,互相交流,共同发展。

1 电子变压器在电源技术中的作用

电子变压器和半导体开关器件,半导体整流器件,电容器一起,称为电源装置中的4大主要元器件。根据在电源装置中的作用,电子变压器可以分为:

1)起电压和功率变换作用的电源变压器,功率变压器,整流变压器,逆变变压器,开关变压器,脉冲功率变压器;

2)起传递宽带、声频、中周功率和信号作用的宽带变压器,声频变压器,中周变压器;

3)起传递脉冲、驱动和触发信号作用的脉冲变压器,驱动变压器,触发变压器;

4)起原边和副边绝缘隔离作用的隔离变压器,起屏蔽作用的屏蔽变压器;

5)起单相变三相或三相变单相作用的相数变换变压器,起改变输出相位作用的相位变换变压器(移相器);

6)起改变输出频率作用的倍频或分频变压器;

7)起改变输出阻抗与负载阻抗相匹配作用的匹配变压器;

8)起稳定输出电压或电流作用的稳压变压器(包括恒压变压器)或稳流变压器,起调节输出电压作用的调压变压器;

9)起交流和直流滤波作用的滤波电感器;

10)起抑制电磁干扰作用的电磁干扰滤波电感器,起抑制噪声作用的噪声滤波电感器;

11)起吸收浪涌电流作用的吸收电感器,起减缓电流变化速率的缓冲电感器;

12)起储能作用的储能电感器,起帮助半导体开关换向作用的换向电感器;

13)起开关作用的磁性开关电感器和变压器;

14)起调节电感作用的可控电感器和饱和电感器;

15)起变换电压、电流或脉冲检测信号的电压互感器、电流互感器、脉冲互感器、直流互感器、零磁通互感器、弱电互感器、零序电流互感器、霍尔电流电压检测器。

从以上的列举可以看出,不论是直流电源,交流电源,还是特种电源,都离不开电子变压器。有人把电源界定为经过高频开关变换的直流电源和交流电源。在介绍软磁电磁元件在电源技术中的作用时,往往举高频开关电源中的各种电磁元件为例证。同时,在电子电源中使用的软磁电磁元件中,各种变压器占主要地位,因此用变压器作为电子电源中软磁元件的代表,称它们为“电子变压器”。

2 电源技术对电子变压器的要求

电源技术对电子变压器的要求,像所有作为商品的产品一样,是在具体使用条件下完成具体的功能中追求性能价格比最好。有时可能偏重价格和成本,有时可能偏重效率和性能。现在,轻、薄、短、小成为电子变压器的发展方向,是强调降低成本。从总的要求出发,可以对电子变压器得出四项具体要求:使用条件,完成功能,提高效率,降低成本。

2.1 使用条件

电子变压器的使用条件,包括两方面内容:可靠性和电磁兼容性。以前只注意可靠性,现在由于环境保护意识增强,必须注意电磁兼容性。

可靠性是指在具体的使用条件下,电子变压器能正常工作到使用寿命为止。一般使用条件中对电子变压器影响最大的是环境温度。决定电子变压器受温度影响强度的参数是软磁材料的居里点。软磁材料居里点高,受温度影响小;软磁材料居里点低,对温度变化比较敏感,受温度影响大。例如锰锌铁氧体的居里点只有215℃,比较低,磁通密度、磁导率和损耗都随温度发生变化,除正常温度25℃而外,还要给出60℃,80℃,100℃时的各种参数数据。因此,锰锌铁氧体磁芯的工作温度一般限制在100℃以下,也就是环境温度为40℃时,温升必须低于60℃。钴基非晶合金的居里点为205℃,也低,使用温度也限制在100℃以下。铁基非晶合金的居里点为370℃,可以在150℃~180℃以下使用。高磁导坡莫合金的居里点为460℃至480℃,可以在200℃~250℃以下使用。微晶纳米晶合金的居里点为600℃,取向硅钢居里点为730℃,可以在300℃~400℃下使用。

电磁兼容性是指电子变压器既不产生对外界的电磁干扰,又能承受外界的电磁干扰。电磁干扰包括可听见的音频噪声和听不见的高频噪声。电子变压器产生电磁干扰的主要原因是磁芯的磁致伸缩。磁致伸缩系数大的软磁材料,产生的电磁干扰大。铁基非晶合金的磁致伸缩系数通常为最大(27~30)×10-6,必须采取减少噪声抑制干扰的措施。高磁导Ni50坡莫合金的磁致伸缩系数为25×10-6,锰锌铁氧体的磁致伸缩系数为21×10-6。以上这3种软磁材料属于容易产生电磁干扰的材料,在应用中要注意。3%取向硅钢的磁致伸缩系数为(1~3)×10-6,微晶纳米晶合金的磁致伸缩系数为(0.5~2)×10-6。这2种软磁材料属于比较容易产生电磁干扰的材料。6.5%硅钢的磁致伸缩系数为0.1×10-6,高磁导Ni80坡莫

合金的磁致伸缩系数为(0.1~0.5)×10-6,钴基非晶合金的磁致伸缩系数为0.1×10-6以下。这3种软磁材料属于不太容易产生电磁干扰的材料。由磁致伸缩产生的电磁干扰的频率一般与电子变压器的工作频率相同。如果有低于或高于工作频率的电磁干扰,那是由其他原因产生的。

2.2 完成功能

电子变压器从功能上区分主要有变压器和电感器2种。特殊元件完成的功能另外讨论。变压器完成的功能有3个:功率传送、电压变换和绝缘隔离。电感器完成功能有2个:功率传送和纹波抑制。

功率传送有2种方式。第一种是变压器传送方式,即外加在变压器原绕组上的交变电压,在磁芯中产生磁通变化,使副绕组感应电压,加在负载上,从而使电功率从原边传送到副边。传送功率的大小决定于感应电压,也就是决定于单位时间内的磁通密度变量ΔB。ΔB与磁导率无关,而与饱和磁通密度Bs和剩余磁通密度Br有关。从饱和磁通密度来看,各种软磁材料的Bs从大到小的顺序为:铁钴合金为2.3~2.4T,硅钢为1.75~2.2T,铁基非晶合金为1.25~1.75T,铁基微晶纳米晶合金为1.1~1.5T,铁硅铝合金为1.0~1.6T,高磁导铁镍坡莫合金为0.8~1.6T,钴基非晶合金为0.5~1.4T,铁铝合金为0.7~1.3T,铁镍基非晶合金为0.4~0.7T,锰锌铁氧体为0.3~0.7T。作为电子变压器的磁芯用材料,硅钢和铁基非晶合金占优势,而锰锌铁氧体处于劣势。

功率传送的第二种是电感器传送方式,即输入给电感器绕组的电能,使磁芯激磁,变为磁能储存起来,然后通过去磁变成电能释放给负载。传送功率的大小决定于电感器磁芯的储能,也就是决定于电感器的电感量。电感量不直接与饱和磁通密度有关,而与磁导率有关,磁导率高,电感量大,储能多,传送功率大。各种软磁材料的磁导率从大到小顺序为:Ni80坡莫合金为(1.2~3)×106,钴基非晶合金为(1~1.5)×106,铁基微晶纳米晶合金为(5~8)×105,铁基非晶合金为(2~5)×105,Ni50坡莫合金为(1~3)×105,硅钢为(2~9)×104,锰锌铁氧体为(1~3)×104。作为电感器的磁芯用材料,Ni80坡莫合金、钴基非晶合金、铁基微晶纳米晶合金占优势,硅钢和锰锌铁氧体处于劣势。

传送功率大小,还与单位时间内的传送次数有关,即与电子变压器的工作频率有关。工作频率越高,在同样尺寸的磁芯和线圈参数下,传送的功率越大。

电压变换通过变压器原绕组和副绕组匝数比来完成,不管功率传送大小如何,原边和副边的电压变换比等于原绕组和副绕组匝数比。

绝缘隔离通过变压器原绕组和副绕组的绝缘结构来完成。绝缘结构的复杂程度,与外加和变换的电压大小有关,电压越高,绝缘结构越复杂。

纹波抑制通过电感器的自感电势来实现。只要通过电感器的电流发生变化,线圈在磁芯中产生的磁通也会发生变化,使电感器的线圈两端出现自感电势,其方向与外加电压方向相反,从而阻止电流的变化。纹波的变化频率比基频高,电流纹波的电流频率比基频大,因此,更能被电感器产生的自感电势抑制。

电感器对纹波抑制的能力,决定于自感电势的大小,也就是电感量大小,与磁芯的磁导率有关,Ni80坡莫合金、钴基非晶合金、铁基微晶纳米晶合金磁导率大,处于优势,硅钢和锰锌铁氧体磁导率小,处于劣势。

2.3 提高效率

提高效率是对电源和电子变压器的普遍要求。虽然,从单个电子变压器来看,损耗不大。例如,100V A电源变压器,效率为98%时,损耗只有2W并不多。但是成十万个、成百万个电源变压器,总损耗可能达到上十万W,甚至上百万W。还有,许多电源变压器一直长期运行,年总损耗相当可观,有可能达到上千万kW·h。显然,提高电子变压器的效率,可以节约电力。节约电力后,可以少建发电站。少建发电站后,可以少消耗煤和石油,可以少排放CO2,SO2,NOx,废气,污水,烟尘和灰渣,减少对环境的污染。既具有节约能源,又具有保护环境的双重社会经济效益。因此,提高效率是对电子变压器的一个主要要求。

电子变压器的损耗包括磁芯损耗(铁损)和线圈损耗(铜损)。铁损只要电子变压器投入工作,一直存在,是电子变压器损耗的主要部分。因此,根据铁损选择磁芯材料,是电子变压器设计的主要内容,铁损也成为评价软磁材料的一个主要参数。铁损与电子变压器磁芯的工作磁通密度和工作频率有关,在介绍软磁材料的铁损时,必须说明是在什么工作磁通密度下和什么工作频率下的损耗。例如,P0.5/400,表示在工作磁通密度0.5T和工作频率400Hz 下的铁损。P0.1/100k表示在工作磁通密度0.1T和工作频率100kHz下的铁损。

软磁材料包括磁滞损耗、涡流损耗和剩余损耗。涡流损耗又与材料的电阻率ρ成反比。ρ越大,涡流损耗越小。各种软磁材料的ρ从大到小的顺序为:锰锌铁氧体为108~109μΩ·cm,铁镍基非晶合金为150~180μΩ·cm,铁基非晶合金为130~150μΩ·cm,钴基非晶合金为120~140μΩ·cm,高磁导坡莫合金为40~80μΩ·cm,铁硅铝合金为40~60μΩ·cm,铁铝合金为30~60μΩ·cm,硅钢为40~50μΩ·cm,铁钴合金为20~40μΩ·cm。

因此,锰锌铁氧体的ρ比金属软磁材料高106~107倍,在高频中涡流小,应用占优势。但是当工作频率超过一定值以后,锰锌铁氧体磁性颗粒之内的绝缘体被击穿和熔化,ρ变得相当小,损耗迅速上升到很高水平,这个工作频率就是锰锌铁氧体的极限工作频率。

金属软磁材料厚度变薄,也可以降低涡流损耗。根据现有的电子变压器使用金属软磁材料带材的经验,工作频率和带材厚度的关系为:工频50~60Hz用0.50~0.23mm(500~230μm),中频400Hz至1kHz用0.20~0.08mm(200~80μm),1kHz至20kHz用0.10~0.025mm(100~25μm),中高频20kHz至100kHz用0.05~0.015mm(50~15μm),高频100kHz至1MHz 用0.02~0.005mm(20~5μm),1MHz以上,厚度小于5μm。金属软磁材料带材只要降到一定厚度,涡流损耗可显著减少。不论是硅钢、坡莫合金,还是钴基非晶合金和微晶纳米晶合金都可以在中、高频电子变压器中使用,和锰锌铁氧体竞争。

2.4 降低成本

降低成本是对电子变压器的一个主要要求,有时甚至是决定性的要求。电子变压器作为一种商品和其他商品一样,都面临着市场竞争。竞争的内容包括性能和成本两个方面,缺一不可。不注意成本,往往会在竞争中被淘汰。

电子变压器的成本包括材料成本、制造成本和管理成本。降低成本要从这三个方面来考虑。

软磁材料成本在电子变压器的材料成本中占有相当大的比例。根据现行的市场价格,每kg 重量的软磁材料的价格从小到大的顺序是:锰锌软磁铁氧体,硅钢,铁基非晶合金,Ni50坡莫合金,钴基非晶合金,Ni80坡莫合金。锰锌铁氧体在中高频范围内广泛应用,硅钢在工频范围内广泛应用,最主要的原因之一就是价格便宜。

制造成本与设计和工艺有关。电子变压器所用的磁芯、线圈和总体结构的加工和装配工艺是复杂还是简单?需要人工占的比例多大?是否需要工模具?质量控制中需要检测的工序和参数有多少?要用什么检测仪器和设备?这些都是降低制造成本时要考虑的问题。

管理成本一般约占材料和制造成本之和的30%左右。如果管理得好,充分利用人力和财力,有可能降到20%左右。充分利用人力,是指工时利用率要高,减少管理人员和工人比例等等。充分利用财力,是指缩短生产周期,减少库存,加快资金流转等等。

所以,一个好的电子变压器设计者,除了要了解电子变压器的理论和设计方法而外,还要了解各种软磁材料,电磁线,绝缘材料的性能和价格;还要了解磁芯加工和热处理工艺,线圈绕制和绝缘处理工艺和结构组装工艺;还要了解实现质量控制的检测参数和仪器设备;还要了解生产管理的基本知识以及电子变压器的市场动态等等。只有知识全面的设计者,才能设计出性能好,价格低的电子变压器。

3 新软磁材料在电子变压器中的应用

电子变压器中的软磁材料,根据上面的分析,在工频及中频范围内主要采用硅钢,在高频范围内主要采用软磁铁氧体。现在硅钢遇到非晶纳米晶合金的挑战,软磁铁氧体既遇到非晶纳米晶合金的挑战,又遇到软磁复合材料的竞争。在挑战和竞争中,不但使新软磁材料迅速发展,也使硅钢和软磁铁氧体得到发展。新发展起来的软磁材料在电子变压器中的应用,使电子变压器的性能提高,成本下降。而且也使电源技术在向短、小、轻、薄的变革中遇到的难点——磁性元件小型化问题逐步得到解决。

下面分别介绍硅钢,软磁铁氧体,非晶纳米晶合金,软磁复合材料在电子变压器中应用的一些新进展。这里不介绍薄膜软磁材料,它是用于1MHz以上的,高频小型电子变压器的新一代软磁材料,留待以后专文介绍。

3.1 硅钢

电源技术中的工频电子变压器大量使用3%取向硅钢,现在厚度普遍从0.35mm减到0.27mm 或0.23mm。国内生产的23Q110的0.23mm厚,3%取向硅钢,饱和磁通密度Bs为1.8T,其P1.7/50为1.10W/kg;27QG095的0.27mm厚,3%Hi B取向硅钢,Bs为1.89T,P1.7/50为0.95W/kg。日本生产的0.23mm厚,3%取向硅钢Bs为1.85T,P1.7/50为0.85W/kg。与国内产品相差不多。但是0.23mm厚的3%取向硅钢经过特殊处理,即用电解法将表面抛光至镜面,再涂张力涂层,最后细化磁畴,可以使P1.7/50下降到0.45W/kg。同时,对要求损耗低的电子变压器,日本还进一步把厚度减薄到0.15mm,经过特殊处理,可以使P1.3/50

下降到0.082~0.11W/kg和铁基非晶合金水平基本相当。

日本还用温度梯度炉高温退火新工艺,使0.15mm厚,3%取向硅钢的Bs达到1.95~2.0T,经过特殊处理,使P1.3/50为0.15W/kg,P1.7/50为0.35W/kg。采用三次再结晶新工艺,制成更薄的硅钢,Bs为2.03T,P1.3/50为0.19W/kg(0.075mm厚),0.17W/kg(0.071mm厚)和0.13W/kg0.032mm厚)。

电源装置中的中频(400Hz至10kHz)电子变压器,除了使用0.20~0.08mm厚,3%取向硅钢外,日本已采用6.5%无取向硅钢。6.5%硅钢,磁致伸缩近似为零,可制成低噪声电子变压器,磁导率为16000~25000。ρ比3%硅钢高一倍,中频损耗低,例如:0.10mm厚的6.5%无取向硅钢P1/50为0.6W/kg,P1/400为6.1W/kg,P0.5/1K为5.2W/kg,P0.1/10k为8.2W/kg,Bs为1.25T。采用温轧法可以生产6.5%取向硅钢,Bs提高到1.62~1.67T。0.23mm厚的6.5%取向硅钢P1/50为0.25W/kg。日本已用6.5%硅钢制成1kHz音频变压器,在1.0T时,噪声比3%取向硅钢下降21dB,铁损下降40%,还用6.5%硅钢取代3%取向硅钢用于8kHz电焊机中,铁芯重量从7.5kg减少到3kg。6.5%硅钢国内已进行小批量生产。

与研制6.5%硅钢的同时,日本还开发了硅含量呈梯度分布的硅钢。

1)中高频低损耗梯度硅钢,表层硅含量6.5%,电阻率高,磁导率高,磁通集中在表面,涡流也集中表面,损耗小。内部硅含量低于6.5%。总的损耗低于6.5%硅钢。例如:0.20mm 厚的6.5%硅钢的P0.1/10k为16W/kg,梯度硅钢为13W/kg;P0.05/20k6.5%硅钢为14W/kg,梯度硅钢为9W/kg。由于总的硅平均含量低于6.5%,Bs比6.5%硅钢高,可达1.90T。延伸性即加工性也比6.5%硅钢好。已经用这种梯度硅钢制成家用电器逆变器用电感器,由于Bs 高,损耗低,既体积小,又发热少。

2)低剩磁梯度硅钢,表层硅含量高,磁致伸缩小,中心层硅含量低,磁致伸缩大。表层与中心层存在的磁致伸缩差而引发应力。出现的弹性能导致剩磁低,一般饱和磁通密度Bs为1.96T,剩磁Br为0.34T。ΔB=Bm-Br超过1.0T(Bm为工作磁通密度)。损耗也低,P1.2/50为1.27W/kg。可以用于脉冲变压器,单方向磁通变化电源变压器等。作为电源变压器铁芯时,还可以抑制合闸时的突发电流浪涌。

最近报导,日本开发出用于中高频电子变压器的硅钢新品种——添加铬(Cr)的硅钢。在4.5%硅钢中,添加4%铬,电阻率可达82μΩ·cm,而一般3%取向硅钢电阻率为44μΩ·cm,牌号为“HiFreqs”。0.1mm厚添加铬的硅钢损耗低,P0.2/5k为20.5W/kg,P0.1/10k为10W/kg,P0.05/20k为5W/kg;延伸性即加工性好,与3%硅钢一样,可以进行冲剪,铆固加工;耐腐蚀性好,在盐水和湿气中,不涂层也不腐蚀。已用这种添加铬的硅钢制成25kHz开关电源用滤波电感器,铁芯损耗为22W/kg,比6.5%硅钢(36W/kg)和铁基非晶合金(29W/kg)小。还用它制成70kHz感应加热装置的电子变压器,比0.1mm厚3%取向硅钢发热显著减少,寿命延长4倍以上。

3.2 软磁铁氧体

软磁铁氧体的特点是:饱和磁通密度低,磁导率低,居里温度低,中高频损耗低,成本低。前三个低是它的缺点,限制了它的使用范围,现在正在努力改进。后两个低是它的优点,有

利于进入高频市场,现在正在努力扩展。

以100kHz,0.2T和100℃下的损耗为例,TDK公司的PC40为410mW/cm3,PC44为300mW/cm3,PC47为250mW/cm3。TOKIN公司的BH1为250mW/cm3,损耗不断在下降。国内金宁生产的JP4E也达到300mW/cm3。

不断地提高工作频率,是另一个努力方向。TDK公司的PC50工作频率为500kHz至1MHz。FDK公司的7H20,TOKIN的B40也能在1MHz下工作。Philips公司的3F4,3F45,3F5工作频率都超过1MHz。国内金宁的JP5,天通的TP5A工作频率都达到500kHz至1.5MHz。东磁的DMR1.2K的工作频率甚至超越3MHz,达到5.64MHz。

磁导率是软磁铁氧体的弱项。现在国内生产的产品一般为10000左右。国外TDK公司的H5C5,Philips公司的3E9,分别达到30000和20000。

采用SHS法合成MnZn铁氧体材料的研究,值得注意。用这种方法的试验结果表明,可以大大降低铁氧体的制造能耗和成本。国内已有试验成功的报导。

3.3 非晶和纳米晶合金

铁基非晶合金在工频和中频领域,正在和硅钢竞争。铁基非晶合金和硅钢相比,有以下优缺点。

1)铁基非晶合金的饱和磁通密度Bs比硅钢低,但是,在同样的Bm下,铁基非晶合金的损耗比0.23mm厚的3%硅钢小。一般人认为损耗小的原因是铁基非晶合金带材厚度薄,电阻率高。这只是一个方面,更主要的原因是铁基非晶合金是非晶态,原子排列是随机的,不存在原子定向排列产生的磁晶各向异性,也不存在产生局部变形和成分偏移的晶粒边界。因此,妨碍畴壁运动和磁矩转动的能量壁垒非常小,具有前所未有的软磁性,所以磁导率高,矫顽力小,损耗低。

2)铁基非晶合金磁芯填充系数为0.84~0.86,

与硅钢填充系数0.90~0.95相比,同样重量的铁基非晶合金磁芯体积比硅钢磁芯大。

3)铁基非晶合金磁芯的工作磁通密度为

1.35T~1.40T,硅钢为1.6T~1.7T。铁基非晶合金工频变压器的重量是硅钢工频变压器的重量的130%左右。但是,即使重量重,对同样容量的工频变压器,磁芯采用铁基非晶合金的损耗,比采用硅钢的要低70%~80%。

4)假定工频变压器的负载损耗(铜损)都一样,负载率也都是50%。那么,要使硅钢工频变压

器的铁损和铁基非晶合金工频变压器的一样,则硅钢变压器的重量是铁基非晶合金变压器的1 8倍。因此,国内一般人所认同的抛开变压器的损耗水平,笼统地谈论铁基非晶合金工

频变压器的重量、成本和价格,是硅钢工频变压器的130%~150%,并不符合市场要求的性能价格比原则。国外提出两种比较的方法,一种是在同样损耗的条件下,求出两种工频变压器所用的铜铁材料重量和价格,进行比较。另一种方法是对铁基非晶合金工频变压器的损耗降低瓦数,折合成货币进行补偿。每瓦空载损耗折合成5~11美元,相当于人民币42~92元。每瓦负载损耗折合成0.7~1.0美元,相当于人民币6~8.3元。例如一个50Hz,5kV A 单相变压器用硅钢磁芯,报价为1700元/台;空载损耗28W,按60元人民币/W计,为1680元;负载损耗110W,按8元人民币/W计,为880元;则,总的评估价为4260元/台。用铁基非晶合金磁芯,报价为2500元/台;空载损耗6W,折合成人民币360元;负载损耗110W,折合成人民币880元,总的评估价为3740元/台。如果不考虑损耗,单计算报价,5kV A铁基非晶合金工频变压器为硅钢工频变压器的147%。如果考虑损耗,总的评估价为89%。

5)现在测试工频电源变压器磁芯材料损耗,是在畸变小于2%的正弦波电压下进行的。而实际的工频电网畸变为5%。在这种情况下,铁基非晶合金损耗增加到106%,硅钢损耗增加到123%。如果在高次谐波大,畸变为75%的条件下(例如工频整流变压器),铁基非晶合金损耗增加到160%,硅钢损耗增加到300%以上。说明铁基非晶合金抗电源波形畸变能力比硅钢强。

6)铁基非晶合金的磁致伸缩系数大,是硅钢的3~5倍。因此,铁基非晶合金工频变压器的噪声为硅钢工频变压器噪声的120%,要大3~5dB。

7)现行市场上,铁基非晶合金带材价格是0.23mm3%取向硅钢的150%,是0.15mm3%取向硅钢(经过特殊处理)的40%左右。

8)铁基非晶合金退火温度比硅钢低,消耗能量小,而且铁基非晶合金磁芯一般由专门生产厂制造。硅钢磁芯一般由变压器生产厂制造。

根据以上比较,只要达到一定生产规模,铁基非晶合金在工频范围内的电子变压器中将取代部分硅钢市场。在400Hz至10kHz中频范围内,即使有新的硅钢品种出现,铁基非晶合金仍将会取代大部分0.15mm以下厚度的硅钢市场。

值得注意的是,日本正在大力开发FeMB系非晶合金和纳米晶合金,其Bs可达1.7~1.8T,而且损耗为现有FeSiB系非晶合金的50%以下,如果用于工频电子变压器,工作磁通密度达到1.5T以上,而损耗只有硅钢工频变压器的10%~15%,将是硅钢工频变压器的更有力的竞争者。日本预计在2005年就可以将FeMB系非晶合金工频变压器试制成功,并投入生产。

非晶纳米晶合金在中高频领域中,正在和软磁铁氧体竞争。在10kHz至50kHz电子变压器中,铁基纳米晶合金的工作磁通密度可达0.5T,损耗P0.5/20k≤25W/kg,因而,在大功率电子变压器中有明显的优势。在50kHz至100kHz电子变压器中,铁基纳米晶合金损耗P0.2/100k为30~75W/kg,

铁基非晶合金P0.2/100k为30W/kg,可以取代部分铁氧体市场。

非晶纳米晶合金经过20多年的推广应用,已经证明其具有下述优点:

1)不存在时效稳定性问题,纳米晶合金在200℃以下,钴基非晶合金在100℃以下,经过长期使用,性能无显著变化;

2)温度稳定性比软磁铁氧体好,在-55℃至150℃范围内,磁性能变化5%~10%,而且可逆;

3)耐冲击振动,随电源整机在30g下的振动试验中,均未发生过性能恶化问题;

4)铁基非晶合金脆性大大改善,带材平整度良好,可以剪切加工,也可以制成搭接式卷绕磁芯,经过5次弯折或拆卸,性能无显著变化。

3.4 软磁复合材料

经过争论,现在对磁粉芯等已经取得了一致认识,即认为它属于软磁复合材料。软磁复合材料是将磁性微粒均匀分散在非磁性物中形成的。与传统的金属软磁合金和铁氧体材料相比,它有很多独特的优点:磁性金属粒子分散在非导体物件中,可以减少高频涡流损耗,提高应用频率;既可以采取热压法加工成粉芯,也可以利用现在的塑料工程技术,注塑制造成复杂形状的磁体;具有密度小,重量轻,生产效率高,成本低,产品重复性和一致性好等优点。缺点是由于磁性粒子之间被非磁性体分开,磁路隔断,磁导率现在一般在100以内。不过,采用纳米技术和其他措施,国外已有磁导率超过1000的报导,最大可达6000。

软磁复合材料的磁导率受到很多因素的影响,如磁性粒子的成分,粒子的形状,尺寸,填充密度等。因此,根据工作频率可以进行调整。

磁粉芯是软磁复合材料的典型例子。现在已在20kHz至100kHz甚至1MHz的电感器中取代了部分软磁铁氧体。例如铁硅铝磁粉芯,硅含量为8.8%,铝为5.76%,剩余全为铁。粒度为90~45μm,45~32μm和32~30μm。用硅树脂作粘接剂,1%左右硬脂酸作润滑剂,在2t/cm2压力下,制成 13× 8×5的环形磁芯,在氢气中用673°K,773°K,873°K 退火,使磁导率达到100,300,600。在100kHz下损耗低,已经代替软磁铁氧体和MPP磁粉芯用于电感器中。

已经有人对大功率电源的电感器用软磁复合材料——磁粉芯进行了开发研究。在20kHz以下,磁导率基本不变。在1.0T下,磁导率为100左右。50Hz~20kHz损耗小,可制成100kg 重量以上的大型的磁芯,而且在20kHz下音频范围,噪声比环形铁氧体磁芯降低10dB。可以在大功率电源中代替硅钢和软磁铁氧体。

有人用钴/二氧化硅(Co/SiO2)纳米复合软磁材料制作不同于薄膜的大尺寸磁芯。钴粒子平均尺寸为30μm,填充度40%至90%,经过搅拌后,退火形成Co/SiO2纳米复合粉,然后压制成环形磁芯。磁导率在300MHz以下,都可达到16。镍锌铁氧体的磁导率为12,而且在100MHz以后迅速下降。证明在高频和超高频下,软磁复合材料也可取代部分铁氧体市场。

4 新磁芯结构在电子变压器中的应用

4.1 搭接式卷绕磁芯

搭接式卷绕磁芯最早用于非晶合金配电变压器。它既有卷绕磁芯优点,激磁电流小,空载损耗低,又可以打开装卸线圈,消除一般卷绕磁芯的缺点,不需要用专用绕线机绕制线圈,生产效率提高,线圈出现问题时也便于更换和维修。现有3%取向硅钢的厚度已减薄到0.23mm 和0.27mm,用它们制造搭接式卷绕磁芯比非晶合金更容易。因此,搭接式卷绕磁芯有可能用于500V A以上的硅钢电源变压器,尤其是大容量整流电源和不停电电源中的硅钢电源变压器。

4.2 立体三角形磁芯

立体布置的三角形三相磁芯,现在正在国内风行。最早出现立体三角形磁芯可追溯到20世纪30年代,但是,由于磁芯需要特殊剪切加工,线圈需要专用绕线机绕制,而未能推广应用。现在可以用计算机控制磁芯剪切加工,已经有专用绕线机绕线。国内有5—6家企业在申请立体三角形磁芯变压器的专利。立体布置的三角形三相磁芯与平面布置的三柱式三相磁芯相比,磁通分布均匀,不会出现局部饱和,激磁电流和磁通的对称性好。问题是各个柱的截面要形成接近圆形相当困难,绕组平均匝长增加,负载损耗也会增加。可用于30kV A以上的大型变压器。

4.3 正交形磁芯

把C型磁芯的一半旋转90°,再接合在一起,就形成正交形磁芯。可以用直流控制绕组控制正交形磁芯的电感。日本索尼公司已经用软磁铁氧体制成这种磁芯,叫SX形磁芯,并且已经用于各种电视机的开关电源,作为驱动变压器,控制它的电感,使电路出现电压谐振或者电流谐振,而实现软开关条件。日本东北大学和东北电力公司已经用硅钢制成这种磁芯,用于功率补偿器和移相器,控制电力系统的有功和无功功率。与晶闸管功率补偿器和移相器相比,具有高次谐波少,电磁干扰小,控制电路简单等特点。

4.4 磁性液体磁芯

有人曾设想过,用注塑机加工变压器磁芯,可以避免硅钢磁芯冲片,热处理,叠片,组装等多道工序。现在正在开发磁性液体磁芯可以实现这种设想,用工程塑料做成磁芯外壳,中间注入磁性液体,表面再用磁性片封住。这样,大量生产的中小型电源变压器的加工效率可以显著提高,使成本降低,与叠片式硅钢磁芯相比具有明显的优势。

5 结语

电子变压器在电源技术中起着重要作用。电源技术要求电子变压器能适应外界使用条件,减少电磁干扰;完成功率传送,电压变换,绝缘隔离和纹波抑制等功能;提高效率,降低成本。新软磁材料和新磁芯结构在电子变压器中的应用,不但推动了电子变压器的发展,而且也推动了电源技术的发展。各种新的动态值得注意。

开关变压器漏感分析

开关变压器第一讲变压器基本概念与工作原理现代电子设备对电源的工作效率、体积以及安全要求等技术性能指标越来越高,在开关电源中决定这些技术性能指标的诸多因素中,基本上都与开关变压器的技术指标有关。开关电源变压器是开关电源中的关键器件,因此,在这一节中我们将非常详细地对与开关电源变压器相关的诸多技术参数进行理论分析。在分析开关变压器的工作原理的时候,必然会涉及磁场强度H和磁感应强度B以及磁通量等概念,为此,这里我们首先简单介绍它们的定义和概念。在自然界中无处不存在电场和磁场,在带电物体的周围必然会存在电场,在电场的作用下,周围的物体都会感应带电;同样在带磁物体的周围必然会存在磁场,在磁场的作用下,周围的物体也都会被感应产生磁通。现代磁学研究表明:一切磁现象都起源于电流。磁性材料或磁感应也不例外,铁磁现象的起源是由于材料内部原子核外电子运动形成的微电流,亦称分子电流,这些微电流的集合效应使得材料对外呈现各种各样的宏观磁特性。因为每一个微电流都产生磁效应,所以把一个单位微电流称为一个磁偶极子。因此,磁场强度的大小与磁偶极子的分布有关。在宏观条件下,磁场强度可以定义为空间某处磁场的大小。我们知道,电场强度的概念是用单位电荷在电场中所产生的作用力来定义的,而在磁场中就很难找到一个类似于“单位电荷”或“单位磁场”的带磁物质来定义磁场强度,为此,电场强度的定义只好借用流过单位长度导体电流的概念来定义磁场强度,但这个概念本应该是用来定义电磁感应强度的,因为电磁场是可以互相产生感应的。幸好,电磁感应强度不但与流过单位长度导体的电流大小相关,而且还与介质的属性有关。所以,电磁感应强度可以在磁场强度的基础上再乘以一个代表介质属性的系数来表示。这个代表介质属性的系数人们把它称为导磁率。在电磁场理论中,磁场强度H的定义为:在真空中垂直于磁场方向的通电直导线,受到的磁场的作用力F跟电流I和导线长度的乘积I 的

开关电源占空比的选择与开关变压器初次级线圈匝数比的计算

开关电源占空比的选择与开关变压器初次级线圈匝数比的计算 作者:陶显芳发布时间:2011-07-04文章来源:华强北·电子市场价格指数浏览量:50466 下面是开关电源设计务必掌握的知识 1、开关电源占空比的选择与计算 2、开关变压器初次级线圈匝数比的计算 希望从事开关电源设计的工程师对此感兴趣 概述:占空比是脉冲宽度调制(PWM)开关电源的调制度,开关电源的稳压功能就是通过自动改变占空比来实现的,开关电源的输出电压与占空比成正比,开关电源输出电压的变化范围基本上就是占空比的变化范围。由于开关电源输出电压的变化范围受到电源开关管击穿电压的限制,因此,正确选择占空比的变化范围是决定开关电源是否可靠工作的重要因素;而占空比的选择主要与开关电源变压器初、次级线圈的匝数比有关,因此,正确选择开关电源变压器初、次级线圈的匝数比也是一个非常重要的因素。 开关电源占空比和开关电源变压器初、次级线圈的匝数比的正确选择涉及到对开关电源变压器初、次级线圈感应电动势的计算。因此,下面我们先从分析开关电源变压器初、次级线圈感应电动势开始。 1.1占空比的定义 占空比一般是指,在开关电源中,开关管导通的时间与工作周期之比,即: (1)式中:D为占空比,Ton为开关管导通的时间,Toff为开关管关断的时间,T为开关电源的工作周期。 对于一个脉冲波形也可以用占空比来表示,如图1所示。 在反激式开关电源中,开关管导通的时候,变压器次级线圈是没有功率输出的,如果把(1)中的D记为D1,(2)式中的D记为D2,则D1、D2有下面关系: 1.2开关变压器初次级线圈的输出波形

图2a是输出电压为交流的开关电源工作原理图。为了便于分析,我们假说变压器初次级线圈的变压比为1:1(即N1=N2,L1=L2),当开关K又导通转断开时,变压器初级、次 级线圈产生感应电动势为: (6)式中:为变压器初级线圈的励磁电流,由此可知,变压器初、次级线圈产生 的反电动势主要是由励磁电流产生的。我们从(5)可以看出,当变压器初、次级线圈的负载电阻R很大或者开路的情况下,变压器初、次级线圈产生的感应电动势峰值是非常高的,如果这个电压直接加到电源开关管两端,电源开关管一定会被击穿。 为了便于分析,我们引进一个半波平均值的概念,我们把Upa、Upa-分别定义为变压器初、次级线圈感应电动势正、负半周的半波平均值。半波平均值就是把反电动势等效成一 个幅度等于Upa或Upa-的方波,如图2b中的Upa-所示。

很实用-很准的计算变压器资料

MOSFET开关管工作的最大占空比Dmax: 式中:Vor为副边折射到原边的反射电压,当输入为AC220V时反射电压为135V;VminDC为整流后的最低直流电压;VDS为MOSFET功率管导通时D与S极间电压,一般取10V。 变压器原边绕组电流峰值IPK为: 式中:η为变压器的转换效率;Po为输出额定功率,单位为W。 变压器原边电感量LP: 式中:Ts为开关管的周期(s);LP单位为H。 变压器的气隙lg:

式中:Ae为磁芯的有效截面积(cm2);△B为磁芯工作磁感应强度变化值(T);Lp单位取H,IPK单位取A,lg单位为mm。 变压器磁芯 反激式变换器功率通常较小,一般选用铁氧体磁芯作为变压器磁芯,其功率容量AP为 式中:AQ为磁芯窗口面积,单位为cm2;Ae为磁芯的有效截面积,单位为cm2;Po 是变压器的标称输出功率,单位为W;fs为开关管的开关频率;Bm为磁芯最大磁感应强度,单位为T;δ为线圈导线的电流密度,通常取200~300A/cm2,η是变压器的转换效率;Km 为窗口填充系数,一般为0.2~0.4;KC为磁芯的填充系数,对于铁氧体为1.0。 根据求得的AP值选择余量稍大的磁芯,一般尽量选择窗口长宽之比较大的磁芯,这样磁芯的窗口有效使用系数较高,同时可以减少漏感。 变压器原边匝数NP: 式中:△B为磁芯工作磁感应强度变化值(T),Ae单位为cm2,Ts单位为s。 变压器副边匝数Ns:

式中:VD为变压器二次侧整流二极管导通的正向压降。 功率开关管的选择 开关管的最小电压应力UDS 一般选择DS间击穿电压应比式(9)计算值稍大的MOSFET功率管。 绕组电阻值R: 式中:MUT为平均每匝导线长度(cm);N为导线匝数; 为20℃时导线每cm的电阻值(μΩ)。 绕组铜耗PCU为: 原、副边绕组电阻值可通过求绕组电阻值R的公式求出,当求原边绕组铜耗时,电流用原边峰值电流IPK来计算;求副边绕组铜耗时,电流用输出电流Io来计算。 磁芯损耗 磁芯损耗取决于工作频率、工作磁感应强度、电路工作状态和所选用的磁芯材料的性能。对于双极性开关变压器,磁芯损耗PC:

变压器的漏感与分布电容影响分析

变压器的漏感与分布电容影响分析 漏感与分布电容对输出波形的影响开关电源变压器一般可以等效成图2-43所示电路。在图2-43中,Ls为漏感,也可称为分布电感,Cs为分布电容,为励磁电感,R为等效负载电阻。其中分布电容Cs还应该包括次级线圈等效到初级线圈一侧的分布电容,即次级线圈的分布电容也可以等效到初级线圈回路中。图2-43 开关电源变压器等效电路设次级线圈的分布电容为C2,等效到初级线圈后的分布电容为C1,则有下面关系式:上式中,Wc2为次级线圈分布电容C2存储的能量,Wc1为C2等效到初级线圈后的分布电容C1存储的能量;U1、U2分别为初、次级线圈的电压,U2 = nU1,n = N2/N1为变压比,N1 、N2分别为初、次级线圈的匝数。由此可以求得C1为:C1 = n2C2 (2-121)(2-120)式不但可以用于对初、次级线圈分布电容等效电路的换算,同样可以用于对初、次级线圈电路中其它电容等效电路的换算。所以,C2亦可以是次级线圈电路中的任意电容,C1为C2等效到初级线圈电路中的电容。由此可以求得图2-43中,变压器的总分布电容Cs为:Cs = Cs1 + C1 = Cs1 +n2C2 (2-122)(2-122)式中,Cs为变压器的总分布电容,Cs1为变压器初级线圈的分布电容;C1为次级线圈电路中总电容C2(包括分布电容与电路中的电容)等效到

初级线圈电路中的电容;n = N2/N1为变压比。图2-43开关变压器的等效电路与一般变压器的等效电路,虽然看起来基本没有区别,但开关变压器的等效电路一般是不能用稳态电路进行分析的;即:图2-43中的等效负载电阻不是一个固定参数,它会随着开关电源的工作状态不断改变。例如,在反激式开关电源中,当开关管导通时,开关变压器是没有功率输出的,即负载电阻R等于无限大;而对于正激式开关电源,当开关管导通时,开关变压器是有功率输出的,即负载电阻R既不等于无限大,也不等于0 。因此,分布电感与分布电容对正激式开关电源和反激式开关电源工作的影响是不一样的。图2-44和图2-45分别是开关电源变压器与电源开关管连接时的工作原理图和各点工作电压的波形图。在图2-44中,当开关管Q1导通时,无论是对正激式开关电源或反激式开关电源,分布电感Ls都会对流过开关管Q1的电流Id起到限制作用,即降低Id的电流上升率,这对保护开关管是有好处的;因为,开关管刚导通的时候,电流在管芯内部是以扩散的形式由一个点向整个面扩散的,如果电流上升率太大,很容易使开关管因局部面积电流密度过大造成损伤。分布电感Ls和分布电容Cs可以看成是一个串联振荡回路,当开关管Q1开始导通的时候,输入脉冲电压的上升率大于串联振荡回路自由振荡电压的上升率,因此,振荡回路开始吸收能量,输入电压对Ls和Cs进行充电,此时,振荡

开关电源变压器的漏感

开关电源变压器的漏感 任何变压器都存在漏感,但开关变压器的漏感对开关电源性能指标的影响特别重要。由于开关变压器漏感的存在,当控制开关断开的瞬间会产生反电动势,容易把开关器件过压击穿;漏感还可以与电路中的分布电容以及变压器线圈的分布电容组成振荡回路,使电路产生振荡并向外辐射电磁能量,造成电磁干扰。因此,分析漏感产生的原 理和减少漏感的产生也是开关变压器设计的重要内容之一。 开关变压器线圈之间存在漏感,是因为线圈之间存在漏磁通而产生的;因此,计算出线圈之间的漏磁通量就可以计算出漏感的数值。要计算变压器线圈之间存在的漏磁通,首先是要知道两个线圈之间的磁场分布。我们知道螺旋线圈中的磁场分布与两块极板中的电场分布有些相似之处,就是螺旋线圈中磁场强度分布是基本均匀的,并且磁场能量基本集中在螺旋线圈之中。另外,在计算螺旋线圈之内或之外的磁场强度分布时,比较复杂的情况可用麦克斯韦定理或毕-沙定理,而比较简单的情况可用安培环路定律或磁路的克希霍夫定律。 图2-30是分析计算开关变压器线圈之间漏感的原理图。下面我们就用图2-30来简单分析开关变压器线圈之间产生漏感的原理,并进行一些比较简单的计算。 在图2-30中,N1、N2分别为变压器的初、次级线圈,Tc 是变压器铁芯。r 是变压器铁芯的半径,r1、r2分别是变压器初、次级线圈的半径;d1为初级线圈到铁芯的距离,d2为初、次级线圈之间的距离。为了分析计算简单,这里假设变压器初、次级线圈的匝数以及线大比特电子变压器论坛 h t t p ://b b s .b i g -b i t .c o m

径相等,流过线圈的电流全部集中在线径的中心;因此,它们之间的距离全部是两线圈之间的中心距离,如虚线所示。 设铁芯的截面积为S ,S=πr2;初级线圈的截面积为S1,S1=πr 21;次级线圈的截面积为S2,S2=πr22;初级线圈与铁芯的间隔截面积为Sd1,Sd1=S1-S ;次级线圈与初级线圈的间隙截面积为Sd2,Sd2=S2-S1;电流I1流过初级线圈产生的磁场强度为H1, 在面积S1之内产生的磁通量为φ1,在面积Sd2之内产生的磁通量 为φ1';电流I2流过次级线圈产生的的磁场强度为H2,磁通量为φ2。 图2.30 由此可以求得电流I2流过变压器次级线圈N2产生的磁通量为:大比特电子变压器论坛 h t t p ://b b s .b i g -b i t .c o m

开关变压器第十三讲开关变压器漏感分析

开关变压器第一讲变压器基本概念与工作原理 现代电子设备对电源的工作效率、体积以及安全要求等技术性能指标越来越高,在开关电源中决定这些技术性能指标的诸多因素中,基本上都与开关变压器的技术指标有关。开关电源变压器是开关电源中的关键器件,因此,在这一节中我们将非常详细地对与开关电源变压器相关的诸多技术参数进行理论分析。在分析开关变压器的工作原理的时候,必然会涉及磁场强度H和磁感应强度B以及磁通量等概念,为此,这里我们首先简单介绍它们的定义和概念。在自然界中无处不存在电场和磁场,在带电物体的周围必然会存在电场,在电场的作用下,周围的物体都会感应带电;同样在带磁物体的周围必然会存在磁场,在磁场的作用下,周围的物体也都会被感应产生磁通。现代磁学研究表明:一切磁现象都起源于电流。磁性材料或磁感应也不例外,铁磁现象的起源是由于材料内部原子核外电子运动形成的微电流,亦称分子电流,这些微电流的集合效应使得材料对外呈现各种各样的宏观磁特性。因为每一个微电流都产生磁效应,所以把一个单位微电流称为一个磁偶极子。因此,磁场强度的大小与磁偶极子的分布有关。在宏观条件下,磁场强度可以定义为空间某处磁场的大小。我们知道,电场强度的概念是用单位电荷在电场中所产生的作用力来定义的,而在磁场中就很难找到一个类似于“单位电荷”或“单位磁场”的带磁物质来定义磁场强度,为此,电场强度的定义只好借用流过单位长度导体电流的概念来定义磁场强度,但这个概念本应该是用来定义电磁感应强度的,因为电磁场是可以互相产生感应的。幸好,电磁感应强度不但与流过单位长度导体的电流大小相关,而且还与介质的属性有关。所以,电磁感应强度可以在磁场强度的基础上再乘以一个代表介质属性的系数来表示。这个代表介质属性的系数人们把它称为导磁率。在电磁场理论中,磁场强度H的定义为:在真空中垂直于磁场方向的通电直导线,受到的磁场的作用力F跟电流I和导线长度的

详解开关电源变压器的漏感

详解开关电源变压器的漏感 任何变压器都存在漏感,但开关变压器的漏感对开关电源性能指标的影响 特别重要。由于开关变压器漏感的存在,当控制开关断开的瞬间会产生反电动势,容易把开关器件过压击穿;漏感还可以与电路中的分布电容以及变压器线圈 的分布电容组成振荡回路,使电路产生振荡并向外辐射电磁能量,造成电磁干扰。因此,分析漏感产生的原理和减少漏感的产生也是开关变压器设计的重要 内容之一。 开关变压器线圈之间存在漏感,是因为线圈之间存在漏磁通而产生的;因此,计算出线圈之间的漏磁通量就可以计算出漏感的数值。要计算变压器线圈 之间存在的漏磁通,首先是要知道两个线圈之间的磁场分布。我们知道螺旋线 圈中的磁场分布与两块极板中的电场分布有些相似之处,就是螺旋线圈中磁场 强度分布是基本均匀的,并且磁场能量基本集中在螺旋线圈之中。另外,在计 算螺旋线圈之内或之外的磁场强度分布时,比较复杂的情况可用麦克斯韦定理 或毕-沙定理,而比较简单的情况可用安培环路定律或磁路的克希霍夫定律。 在设铁芯的截面积为S,S=πr2;初级线圈的截面积为S1,S1=πr21;次级 线圈的截面积为S2,S2=πr22;初级线圈与铁芯的间隔截面积为Sd1,Sd1=S1-S; 次级线圈与初级线圈的间隙截面积为Sd2,Sd2=S2-S1;电流I1流过初级线圈产生的磁场强度为H1,在面积S1之内产生的磁通量为φ1,在面积Sd2之内产生的磁通量为φ1’;电流I2流过次级线圈产生的的磁场强度为H2,磁通量为φ2。 由此可以求得电流I2流过变压器次级线圈N2产生的磁通量为: 电流I2流过变压器次级线圈N2产生的磁通量 (2-95)、(2-96)式中,μ0sd2H2=φ2就是变压器次级线圈N2对初级线圈 N1的漏磁通;因为,这一部分磁通没有穿过变压器初级线圈N1。漏磁通可以等

变压器漏感分析

首先我们要感谢小鹏同学,能促成此次活动小鹏同学辛苦了。 原创:我们不是科学家只是使用者我对此的理解为学习的资料系统化活学活用,实践整理为自己的东西能把不明白的人讲明白的东西(这里说句题外话会做的工程师是死记硬搬了别人东西那么你只能是同 等级下最低的那个工程师,会做能把不会的人说明白了,是你把别人的东西活学活用转换成了自己的东西徒弟多了人际也就打开了,我经常跟我教过的人说我教你的东西你要实践对比验证,知道是别人的,做了才是你自己的),所以不需要查字典对原创二字解释,对你自己理解有帮助就好,当然照篇翻的肯定是不行的,当然有些太深奥的东西不要去深究我们是使用者理解就好,当然透彻的研究更好,但是我们不是专业科研人员只是使用者所以我们不会有太多的时间研究我 们所用到的各种知识。我这就是犯病了非得研究漏感还整到这个点。就像上面说的我们是使用者注重的是理解,会有错误的地方,有能帮我纠正想法的十分感谢,辉哥对磁这一块我比较佩服,辉哥指点指点。大家都知道减小漏感的方法我们来研究一下为什么会减小。 设计上: 减小初级绕组的匝数NP; 增大绕组的宽度(例如选EE型磁芯,以增加骨架宽度b); 减小各绕组之间的绝缘层; 增加绕组之间的耦合程度。 工艺上: 每一组绕组都要绕紧,并且要分布平均

引出线的地方要中规中矩,尽量成直角,紧贴骨架壁 不能绕满一层的要平均疏绕满一层 1、漏感是什么,通俗的大家都理解没有耦合到副边的磁通(能量)我翻阅了基本资料,说法都不同,个人更喜欢用下图理解Np导线流过I就会产生一个磁场,这个磁场穿过相邻的导线Ns就会在Ns上感应一个电压抵消外界磁场的作用,此感应电流同样作用在Ns上,NpNs 电流方向相反,根据右手定律磁场方向也相反,Ns的磁场阻值下图d2部分的磁通二次穿过Ns。下图d2面积中的磁通能量为漏感。 磁芯截面积S=πr2 Np截面积Sp=πr12 Ns截面积 Ss=πr22

基于ANSYS的漏感变压器仿真计算

基于ANSYS的漏感变压器仿真计算 0 引言 随着微波炉的普及,微波炉的需求越来越多,大量制造时需要考虑节约成本以及性能要求,漏感变压器作为微波炉核心器件之一,影响着微波炉整体性能以及制造费用。 漏感变压器作为一种特殊的变压器,他不但能起到变压的作用;同时由于漏感的存在,还能起到稳定电压的作用,这是由于当初级电压变化时产生的磁通量没有全部锁定在铁芯中形成主磁通,而是有一部分分布在线圈与空气之间。当初级电压变化时,次级的感应电动势的变化就不会如理想变压器那么剧烈,也就起到了稳压的作用。 由于漏感分布在线圈和空气中,传统的分析方法是采用路的分析方法,无法计算漏感确切的分布位置以及强度,长期以来只能靠经验来判定。另一方面,传统的计算方法只能得到宏观特性,不能得到精细的变压器内部结构。再加上铁芯的材料一般都是非线性的,这使得计算求解更加困难,只能用线性B-H曲线代替求解,使得计算不准确。要想得到变压器的精确数据,就只有依靠数值计算和计算机技术。 ANSYS是基于有限元法的一款计算软件,可用来分析电磁场领域的多项问题。它充分利用了各种计算方法的优点,发展出了适用于不同情况的电磁分析模块,其中Emag模块主要应用于低频电磁分析,其主要特点是:非线性磁场分析和场路耦合分析,这对于计算非线性材料非常有用,尤其是磁性材料,主要应用于电击、变压器、电磁开关以及感应加热等领域。 1 变压器基本原理与漏磁场 ,U1为初级线圈电压,N1为初级线圈的匝数,U2为次级线圈电压,N2为次级线圈的匝数,对初级线圈加上一定的电压,按电磁感应定律,会在次级线圈上得到感应电动势,在没有电阻、漏磁及铁损的情况下,变压器是理想变压器,原线圈和副线圈的匝数比等于原电压和副电压之比。 ,如果在原线圈两端外加一正弦交流电压U1,则原线圈中将有交变电流I1通过,因而在铁心中将激励一交变磁通。为了便于分析问题,将总磁通分成等效的两部分磁通,其中一部分磁通沿着铁心闭合,同时与原、副线圈相交链,称为互感磁通或主磁通,用φ表示;另一部分磁通主要沿非铁磁材料(如空气)闭合且仅与原线相交链,称为原线圈漏磁通,表示为φ1,还有一部分只与次级线圈相交链的称为副线圈漏磁通,表示为φ2。主磁通占总磁通的绝大部分,而漏磁通只占很小的一部分(0.1%~0.2%)。 如果仅仅是依靠空气和线圈之间的漏感,是不能达到漏感变压器稳定电压的要求的,因此人为的在初、次级线圈中间加入漏磁冲片,引导部分磁场从这里穿过,形成高漏磁。 2 漏感变压器二维耦合仿真 ANSYS是以麦克斯韦方程组作为电磁场分析的出发点。在电磁场计算中,经常对麦克斯韦方程组进行简化,以便能运用分离变量法、格林函数法等求解得到电磁场的解析解。在实际工程中,ANSYS利用有限元方法,根据具体情况给定的边界条件和初始条件,用数值解法去求其数值解。有限元方法计算未知量(自由度)主要是磁位或者通量,关心的物理量可以由这些自由度导出。根据甩户选择的单元类型和单元选项的不同,ANSYS计算的自由度也不同,可以使标量磁位、矢量磁位或者是边界通量。 对于变压器,需要研究随时间变化的外加场产生的磁场、次级屯压等参数,故采用二维矢量位方法。矢量位方法每个节点有3个自由度,Ax,Ay,Az,表示遭x,y,z方向上的磁矢量位自由度。在电压馈电或电路耦合分析中又为磁矢量位自由度增加了另外3个自由度:电位(VO-LT)、电流(CURR)、电动势降(EMF)。由矢量磁位可首先计算出磁通密度。他的值在

变压器漏感

变压器漏感产生的因素: 1.绕线的方式 2.绕线时是否采用屏蔽铜皮,绕线的紧密程度等有关系。 3.变压器所使用的材质不同,漏感也会有所区别。 4.变压器是否开气隙对漏感影响也非常大。由于气隙的原因,气隙之间会存在一个相对的大气空间,磁力线通过气隙空间时会向四周扩散,也就是漏磁!气隙越深,漏感会越大; 5.变压器绕组材料和圈数,对漏感也有些影响。线径的大小、普通漆包线和纱包线等对变压器的漏感的影响也不一样。线径越小绕制越紧密、绝缘性能越好漏感会相应降低!线圈的匝数越多漏感也会越大。 6.变压器工作频率低,测试漏感的频率低,也是漏感大的因数。 解决变压器产生漏感的方法: 1.变压器绕线方法,具体的绕线方式如下:(1)双线并绕法:将初、次级线圈的漆包线合起来并绕,即所谓双线并绕.这样初、次级线间距离最小,可使漏感减小到最小值.但这种绕法不好绕制,同时两线间的耐压值较低.(2)逐层间绕法:为克服并绕法耐压低、绕制困难的缺点,用初、次级分层间绕法,即1、3、5行奇数层绕初级绕组,2、4、6等偶数层绕次级绕组.这种绕法仍可保持初、次级间的耦合,又可在初、次级间垫绝缘纸,以提高绝缘程度。(3)夹层式绕法:把次级绕组绕在初级绕组的中间,初级分两次绕.这种绕法只在初级绕组中多一个接头,工艺简单,便于批量生产.为减小分布参数的影响,初级采用双线并绕连接的结构,次级采用分段绕制,串联相接的方式,即所谓堆叠绕法或者叫三明治绕法。降低绕组间的电压差,提高变压器的可靠性。还有平绕法、乱绕法等其他方法。这两种绕线方法由于漏感与上述的绕线方法相比会相对偏大,所以一般不采用。 2.采用屏蔽铜皮漏感会相应减少。绕线越紧,漏感一般越小。为了减少变压器初、次级线圈之间的漏感,在绕制变压器线圈的时候可以把初、次级线圈层与层之间互相错开。 3.材质选择不同,例如PC95材质和PC40材质;由于这两种材质的磁导率和饱和磁感应强度不一样,在进行变压器设计时变压器的初次级线圈的匝数和工作磁场都会不一样。线圈匝数和变压器的工作磁场对变压器的漏感会产生直接影响。频率较高的情况下用于PC95。 4.在变压器体积允许的前提下增大铁芯截面积以减少绕组匝数,这是因为变压器漏感与绕组匝数的平方成正比;降低变压器原、副边绕组间的绝缘层厚度;增加绕组高度;变压器原、副边绕组交错绕制都可以降低漏感。 注意:(1)另外漏感不可能无限制的减少,因为为了降低漏感必然会加大线圈的

变压器线圈怎样计算

比如:我知道铁芯的截面积,窗高,中心距,最大片宽,匝电势。如何计算线圈的其他数据,或是有没有现成的公式套进去计算就可以。说的易懂一点谢谢大家问题补充: 先谢谢2楼的,我基础不好,大家有没有电力变压器的例题啊比如S9-100/10的或是其他的容量。是不是计算还有差异啊 答:只要知道铁芯中柱的截面积、导磁率即可以计算匝数,知道功率就能计算线径。 例题: 变压器初级电压220V,次级电压12V,功率为100W,求初、次级匝数及线径。 选择变压器铁芯横截面积: S=1.25×根号P=1.25×根号100=1.25×10≈13(平方CM), EI形铁芯中间柱宽为3CM,叠厚为4.3CM,即3×4.3 求每伏匝数:N=4.5×100000/B×S B=硅钢片导磁率,中小型变压器导磁率在6000~12000高斯间选取,现今的硅钢片的导磁率一般在10000高斯付近,取10000高斯。 公式简化:N=4.5×100000/10000×S=45/S N=45/13≈3.5(匝)

初、次级匝数: N1=220×3.5=770(匝) N2=12×3.5=42(匝) 在计算次级线圈时,考虑到变压器的漏感及线圈的铜阻,故须增加5%的余量。 N2=42×1.05≈44(匝) 求初、次级电流: I1=P/U=100/220≈0.455(A) I2=P/U=100/12≈8.33(A) 求导线直径:(δ是电流密度,一般标准线规为每M㎡:2~3A间选取,取2.5A) D=1.13×根号(I/δ) D=1.13×根号(0.455/2.5)=0.48(MM) D=1.13×根号(8.33/2.5)=2.06(MM) 初级线径:∮0.48,匝数:770;次级线径:∮2.06,匝数:44

高频变压器漏感与分布电容

摘要:反激变换器的高频运行表明功率变压器寄生参数对变换器的性能影响很大。变压器的寄生参数主要是漏感和分布电容,而设计过程中往往很少考虑分布电容。该文给出了适用于工程分析的变压器高频简化模型,分析高频高压场合变压器寄生参数对反激变换器的影响。继而给出寄生参数的确定方法,并基于此分析,提出控制寄生参数的工程方法,研究不同的绕组绕制方法和绕组位置布局对分布电容大小的影响,并通过实验验证了文中分析的正确性及抑制方法的实用性。 关键词:电力电子;分布电容;反激变换器;变压器;高频高压 0 引言 单端反激变换器具有拓扑结构简单,输入输出隔离,升降压范围宽,易于实现多路输出等优点,在中小功率场合具有一定优势,特别适合作为电子设备机内辅助电源的拓扑结构。变压器作为反激变换器中的关键部件,对变换器的整机性能有着很大影响。随着变换器小型化的发展趋势,需要进一步提高变换器的开关频率以减小变压器等磁性元件的体积、重量[1-3]。但高频化的同时,变压器的寄生参数对变换器工作的影响却不容忽视[4-12]。变压器的寄生参数主要是漏感和分布电容。以往,设计者在设计反激变压器时,往往只对变压器的漏感加以重视。然而,在高压小功率场合,变压器分布电容对反激变换器的运行特性及整机效率会有很大影响,不可忽视[8-13]。对设计者而言,正确的理解这些寄生参数对反激变换器的影响,同时掌握合理控制寄生参数的方法,对设计出性能良好的变压器,进而保证反激变换器高性能的实现颇为重要。为此,文中首先给出变压器寄生参数对反激变换器的影响分析,同时给出这些寄生参数的确定方法,并对变压器的不同绕法以及绕组布局对分布电容的影响进行了研究,对绕组分布电容及绕组间分布电容产生的影响作了分析,最后进行了实验验证。1 变压器寄生参数对反激变换器的影响如图1,给出考虑寄生参数后的高压输入低压输出RCD 箝位反激变换器拓扑。其中,Ll、Lm 分别表示原边漏感和磁化电感,C11 为原边绕组分布电容,C13、C24 表示原边与副边绕组不同接线端之间的分布电容。根据反激变换器的工作原理,反激变压器铁心工作于单向磁化状态,且需要一定的储能能力。为防止铁心饱和,通常在变压器磁路中留有较大气隙,但这会使得变压器有较大漏磁,造成较大的漏感。当功率开关管关断时,由于漏感的存 在,会在开关管上激起很高的电压尖峰[12-14]。漏感能量吸收方法有多种,图1 电路是采用RCD 箝位

气隙与漏感的关系

气隙与漏感的关系 磁芯饱和就相当于变压器的一次侧是个空心线圈(相当于短路),它的电流会很大,一直上升到烧坏变压器或者保险管为止。 磁芯气隙是磁芯空气间隙的简称,一般铁氧体,和硅钢的磁芯都不是一个整体的闭合体,是由E字体对接的对接口处有意无意留下的间隙就是磁芯气隙,所以人们不需要磁芯气隙时可以采用环型变压器,用到磁芯气隙时就故意加大对接的缺口,或在缺口处垫非导磁材料,如高温纸。 高频变压器才开气隙,是为了防止铁芯磁饱合,因为UPS中有高次诣波,所以要开气隙,但变压器开气隙的原理和电感是不一样的。变压器都是硅钢片拼成的,两个对着的硅钢片之间的间隙叫气隙。气隙大了当然磁阻就大了。变压器留气隙是为了防止在工作中产生磁饱和!气隙是在铁芯交合处留的缝隙!和绕线无关。有了气隙的确是增加了磁阻,但却是有益的!气隙的作用是减小磁导率,使线涠特性较少地依赖于磁芯材料的起始磁导率。气隙可以避免在交流大信号或直流偏置下的磁饱和现象,更好地控制电感量。然而,在气隙降低磁导率的情况下要求线圈圈数较多,相关的铜损也增加,所以需要适当的折中。 一般反激式电源,在气隙较小时,气隙越小,功率越小,气隙越大,功率越大,一般气隙能调到满足最大输出功率即可当然任何条件下不能进入饱和区即输入电流不能出现上冲现象。在磨气隙时可用一小条水沙纸(加水磨速度较快较平),底下垫玻璃,要气隙大就磨中间,想减小点气隙就磨两边。 反激电源变压器漏感是一个非常关键的参数,由于反激电源需要变压器储存能量,要使变压器铁芯得到充分利用,一般都要在磁路中开气隙,其目的是改变铁芯磁滞回线的斜率,使变压器能够承受大的脉冲电流冲击,而不至于铁芯进入饱和非线形状态,磁路中气隙处于高磁阻状态,在磁路中产生漏磁远大于完全闭合磁路。 变压器初次极间的耦合,也是确定漏感的关键因素,要尽量使初次极线圈靠近,可采用三明治绕法,但这样会使变压器分布电容增大。选用铁芯尽量用窗口比较长的磁芯,可减小漏感,如用EE、EF、EER、PQ型磁芯效果要比EI型的好。 反激电源变压器磁芯工作在单向磁化状态,所以磁路需要开气隙,类似于脉动直流电感器。部分磁路通过空气缝隙耦合。为什么开气隙的原理本人理解为:由于功率铁氧体也具有近似于矩形的工作特性曲线(磁滞回线),在工作特性曲线上Y轴表示磁感应强度(B),现在的生产工艺一般饱和点在400mT以上,一般此值在设计中取值应该在200-300mT比较合适、X轴表示磁场强度(H)此值与磁化电流强度成比例关系。磁路开气隙相当于把磁体磁滞回线向X轴向倾斜,在同样的磁感应强度下,可承受更大的磁化电流,则相当于磁心储存更多的能量,此能量在开关管截止时通过变压器次级泻放到负载电路,反激电源磁芯开气隙有两个作用,其一是传递更多能量,其二防止磁芯进入饱和状态。 反激电源的变压器工作在单向磁化状态,不仅要通过磁耦合传递能量,还担负电压变换输入输出隔离的多重作用。所以气隙的处理需要非常小心,气隙太大可使漏感变大,磁滞损耗增加,铁损、铜损增大,影响电源的整机性能。气隙太小有可能使变压器磁芯饱和,导致电源损坏。 当在变压器铁芯中留有气隙时,由于空气的导磁率只有铁芯导磁率的几千分之一,磁动势几乎都降在气隙上面。因此,留有气隙的变压器铁芯,其平均导磁率将会大大下降;不但

变压器漏感测量方法

正确理解变压器输出阻抗及其测量方法 每台变频电源内部往往都配一台输出变压器,其漏感与直流电阻及外接电容共同组成二阶RLC滤波电路,以滤除逆变高次谐波。通常L和C的大小不是一成不变的,需要根据电源整机功率、基波频率、载波频率等参数确定L和C的大小。那么我们如何测量变压器的漏感是否满足呢? 分析: 次级串联(电源高档输出)时: 将初级短路 Uo =ω*L2*I2+e2+ r2*I2 =ω*L2*I2+N*(ω*L1*(N*I2))+r2*I2+N*(r1*(N*I2)) =ω*I2*(L2+N*N*L1)+I2*(r2+N*N*r1) =ω*I2*L+I2*R 那么L= L2+N*N*L1; R= r2+N*N*r1; 可知,这个L和R就是变压器等效的输出电感和输出电阻。也就是说,将初级短路,次级串联,测得的电感量即为电源高档输出时的实际滤波电感量。 次级并联(电源低档输出)时: 将初级短路

Uo =ω*L2*I2+e2+ r2*I2 =ω*L2`*I2+N/2*(ω*L1*(N/2*I2))+r2`*I2+N/2*(r1*(N/2*I2)) =ω*I2*(L2`+N*N/4*L1)+I2*(r2`+N*N/4*r1) =ω*I2*L+I2*R 那么L`= L2`+N*N/4*L1; R`= r2`+N*N/4*r1; 可知,这个L`和R`就是变压器等效的输出电感和输出电阻。也就是说,将初级短路,次级并联,测得的电感量即为电源低档输出时的实际滤波电感量。 综上,电源的高档和低档输出时,滤波电感量是不同的,高档是电感量为L=L2+N*N*L1,而低档时电感量为L`=L2`+N*N/4*L1,其实还有一个隐含条件没有利用 也就是电感量与匝数的平方成正比,那么L2`= L2/4。这时L`= L2/4+N*N/4*L1= L/4,也就是说并联的漏感为串联漏感的1/4。目前已经通过试验结果的推算和LCR表的测量证明这一结论的正确性。 附录:

变压器耦合系数-漏感

Wiki: 漏電感 搜索维基百科 漏电感,或漏感,(英文:Leakage inductance )是,变压器中一次绕线与二次绕线的耦合系数[1]数值较小时,构成变压器的绕线的一部分不会有变压作用,而是与Choke Coil 有等效成分所产生的。若一次绕线与二次绕线完全耦合(耦合系数k=1)为理想的变压器时,漏电感的数值为零。但一般变压器的耦合系数多为1以下,因为未完全耦合,所以绕线的一部分才会有电感的功能。在等效电路上,漏电感指的是与变压器的一次绕线或二次绕线与Choke Coil L e 以串联方式连接。 漏电感的定义有电气学会及工业会测量法的两种定义[2]。 L e1与L e2是漏电感 目录: 1. 漏电感的产生 2. 实际测量漏电感 3. L 等效电路 (简易等效电路) 4. 利用漏电感 5. 脚注 6. 相关项目 7. 外部链接 1. 漏电感的产生 变压器耦合系数搜索 鼎丰水冷电电抗器 品质卓越 江苏鼎丰专业生产各种规格电抗器 一流的技术,铸造卓越的品质 https://www.doczj.com/doc/db14916783.html, 纵横绕线机一般纳税生产商 专业生产绕线机自动绕线机环型绕线机 电磁线圈变压器生产线状物体成型分装 https://www.doczj.com/doc/db14916783.html, 电感器首选万达电 子 万达电子是一家专业生产电感器的公司, 品质稳定,价格合理,欢迎您的垂询. https://www.doczj.com/doc/db14916783.html, 星宇智能-接地选线专家 YH-B811小电流接地选线装置 暂态信号.故障分量.白金品质.尊贵无限 https://www.doczj.com/doc/db14916783.html, 大比特电子变压器论坛 h t t p ://b b s .b i g -b i t .c o m

开关电源变压器设计资料完整版

开关电源变压器设计 开关变压器是将DC 电压﹐通过自激励震荡或者IC 它激励间歇震荡形成高频方波﹐通过变 压器耦合到次级,整流后达到各种所需DC 电压﹒ 变压器在电路中电磁感应的耦合作用﹐达到初﹒次级绝缘隔离﹐输出实现各种高频电压﹒ 目的﹕减小变压器体积﹐降低成本﹐使设备小形化﹐节约能源﹐提高稳压精度﹒ N 工频变压器与高频变压器的比较﹕ 工频 高频 E =4.4f N Ae Bm f=50HZ E =4.0f N Ae Bm f=50KHZ N Ae Bm 效率﹕ η=60-80 % (P2/P2+Pm+ P C ) η>90% ((P2/P2+Pm ) 功率因素﹕ Cosψ=0.6-0.7 (系统100W 供电142W) Cosψ>0.90 (系统100W 供电111W) 稳压精度﹕ ΔU%=1% (U20-U2/U20*100) ΔU<0.2% 适配.控制性能﹕ 差 好 体积.重量 大 小 EMI 滤波电路 整流滤波 隔离变压器 整流滤波电路 PWM 控制电路 间隙震荡﹒功率因素改善﹒保 光电 耦合 电路 取样﹒放大 AC AC DC DC SPS 开关电源方框图 IC 分立元件 (典形電路)

开关变压器主要工作方式 一.隔离方式: 有隔离; 非隔离 (TV&TVM11) 二.激励方式: 自激励; 它激励 (F + & IC) 三.反馈方式: 自反馈; 它反馈 (F- & IC) 四.控制方式: PWM: PFM (T & T ON ) 五.常用电路形式: FLYBACK & FORWARD 一.隔离方式: 二.激励方式: P=300V S1=120 S1=110V S2=57V F + 激勵 S3=16V 分 立 元 件 S2 S1 P=300V 220V*√2-VD F - 取樣 分 立元件震蕩 S1=120 S2=12V S1=40V IC P=40V S1=120F+=5V S2=5V S1=85V P=300 S3= ±12V 有隔离:P-S 不共用地 非隔离:P-S 共用地﹐俗稱熱底板 它激励﹕用集成IC 它激励间歇震荡 自激励﹕用变压器F+自激励震荡

平面变压器漏感的分析和研究

The Analysis and Comparison of Leakage Inductance in Different Winding Arrangements for Planar Transformer Ziwei Ouyang, Ole C. Thomsen, Michael A. E. Andersen Department of Electrical Engineering, Technical University of Denmark Kgs. Lyngby, 2800, Denmark zo@elektro.dtu.dk Abstract -- The coupling of the windings can be easily increased by using multiply stacked planar windings connection. Interleaving is a well-known technique used to reduce leakage inductance and minimize high-frequency winding losses. The paper aims to analyze leakage inductance based on magneto motive force (MMF) and energy distribution in planar transformer and correct the formula of leakage inductance proposed by previous publications. The investigation of different winding arrangements shows significant advantages of interleaving structure. In this work, a novel half turn structure is proposed to reduce leakage inductance further. Some important issues are presented to acquire desired leakage inductance. The design and modeling of 1 kW planar transformer is presented. In order to verify the analytical method for leakage inductance in this paper, finite element analysis (FEA) and measurement with impedance analyzer are presented. Good matching between calculation, FEA 2D simulation and measurement results is achieved. Index Terms-- leakage inductance, magneto motive force (MMF), finite element analysis (FEA), interleaving, half turn, planar transformer I. I NTRODUCTION In recent years, planar transformers have become increasingly popular in high frequency power converter design because of the advantages they achieved in terms of increased reliability, reproducibility, and increased power density. In terms of circuit performance one of the advantages of planar transformer is low profile and repeatable leakage inductance [1]. The leakage inductance causes the main switch current at the device input to vary at a low slope between zero and rated value and reduces the rate of commutation between output diodes. In addition, the stored energy in the leakage inductance leads to the generation of voltage spikes on the main switch which, besides creating EMI problems, increases the switching losses and lowers the efficiency [2]. Therefore, most designers expect the leakage inductance to be as small as possible. However, in some applications such as a phase-shift-modulated soft switching DC/DC converter, the magnitude of the leakage inductance determines the achievable load range under zero-voltage operation, and a relatively large leakage inductance is desirable. This paper aims to calculate the leakage inductance stored in planar transformer by analyzing magneto motive force (MMF) and energy distribution. Section ?? defines leakage inductance using the perspective of energy. The energy associated with leakage inductance should be equal to the sum of energy stored in each element layer inside the core window. The section also analyzes the magnetic field strength in each layer and finite element analysis 2D model is simulated to demonstrate the correctness of the analytical method. As presented in previous publications [3-5], the formula (see eqn.6) is generally used to calculate the leakage inductance. However, it must be noted that the formula doesn’t provide precise results. It assumes that the magnetic field strength along the height of insulator layer between non-interleaved sections varies linearly but actually it should keep constant during the whole area of insulator layer. In order to correct the previous formula, a new formula suited for symmetrical winding arrangement is proposed in this paper. The error analysis on the two calculations is also presented. Section ??? proposes a novel half turn structure to reduce leakage inductance further. The MMF distribution curve for half turn arrangement is analyzed and leakage inductance is computed. Section ?V describes some important issues to require desired leakage inductance including copper thickness, the thickness of insulator layer and the number of turns. Section V evaluates the good matching between calculation, FEA 2D simulation and measurement with impedance analyzer (PSM1735+ Impedance Analysis Interface and Kelvin Fixture) which indicates the correctness of the analytical method and the proposed calculation. Section V provides the conclusion. II. B ASIC D EFINITION AND C ALCULA TION FOR L EAKAGE I NDUCTANCE A. Basic Definition of Leakage Inductance Not all the magnetic flux generated by AC current excitation on the primary side follows the magnetic circuit and link with the other windings. The flux linkage between two windings or parts of the same winding is never complete. Some flux leaks from the core and returns to the air, winding layers and insulator layers, thus these flux causes imperfect coupling. If the secondary is short-circuited, the main flux which links both windings will be negligible because the primary and secondary ampere turns almost cancel. So the leakage flux parts don’t lose their individual identities. It is seen from Fig.1 that within the winding area the mutual repulsion causes the leakage flux to lie approximately parallel to the winding interface. The leakage inductance referred to the primary can be accessed by the energy stored in a

相关主题
文本预览
相关文档 最新文档