当前位置:文档之家› EWB仿真实验三 计数器

EWB仿真实验三 计数器

EWB仿真实验三 计数器
EWB仿真实验三 计数器

西南科技大学城市学院

《数字电子技术》实验报告

专业:建智1501 组员:陈萍学号:201541472

实验三计数器和译码显示电路的应用

一、实验验目的

1、掌握中规模集成计数器的使用及其功能测试方法。

2、掌握计数器的扩展使用及其测试方法。

3、掌握用置位法和复位法实现任意进制计数器及其测试方法。

4、熟悉EWB中字信号发生器的使用方法。

二、实验内容

1、测试7448BCD码译码器的逻辑功能和七段式数码管组成译码、显示电路。

2、测试74160同步十进制计数器的逻辑功能。

3、用74160设计任意进制计数器。

三、操作

1、测试7448 BCD码译码器的逻辑功能和七段式数码管组成译码、显示电路。

①从数字集成电路库中选择7448 BCD码译码器,按“F1”键了解该集成电路的功能。

、、直接接高电平,从仪器库中选择“字

②将7448的功能输入端LT RBI BI/RBO

信号发生器”,将图标下沿的输出端口连接到电路的ABCD输入端(注意:高低位要对应),打开面板,按照真值表中输入的要求,编辑字信号并进行其它参数的设置(其中频率设置

为1Hz)。

③从指示元件库中选择数码管,接至电路输出端。

④单击字信号发生器“Step”(单步)输出方式,记录数码管显示的字符与用“F1”键查看到的真值表比较。记录测试结果。

⑤将电路图复制到下表:

2、用74160(同步十进制计数器)、带译码功能的数码管和时钟源组成计数、译码、显示电路。将电路图复制到下表:

3、用2片74160(同步十进制计数器)、带译码功能的数码管和时钟源组成100进制计数器。将电路图复制到下表:

4、用2片74160(同步十进制计数器)、基本门电路、带译码功能的数码管和时钟源组成计数范围为1-60的计数器。将电路图复制到下表:

EWB仿真实验及结论

E W B仿真实验及结论 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

E W B仿真实验及结论 1)ewb使用特点: 与其它电路仿真软件相比,EWB具有界面友好、操作方便等优点。在EWB中,可以直接使用工具按钮完成创建电路、选用元件和测试仪器的工作,而且测试仪器的外观与实物基本相似。稍具电路知识的人员,可以在很短的时间内掌握EWB的基本操作方法。 对学习电类课程而言,EWB是一种理想的计算机辅助教学软件。因为要弄清电路的功能,不仅需要理论分析,还需要通过实践来验证并加深理解。 作为电类课程的一种辅助教学手段,它可以弥补实验仪器、元器件缺乏带来的不足,可以使学习者更快、更好地掌握课堂讲述的内容,加深对概念、原理的理解;而且通过电路仿真,可以让学习者熟悉常用仪器的使用方法,培养他们的综合分析能力、排除故障能力,激发他们的创新能力。 EWB最明显的特点是,构造仿真环境的方法与搭建实际电路的方法基本相同,仪器的面板同实际仪器极为类似,因此特别容易学习和使用。EWB的元器件库不仅提供了数千种电路元器件供选用,而且还提供了各种元器件的理想值。通过用理想元件进行仿真,可以获得电路性能的理想值。此外,EWB允许用户自定义元器件,自定义元器件时需要的参数可以直接从生产厂商的产品使用手册中查到,这样就为用户带来了极大的方便。EWB提供了比较强大的电路分析手段,不仅可以完成电路的瞬态分析和稳态分析、时域和频域分析、噪声分析和失真分析,还提供了傅里叶分析、零极点分析、灵敏度分析和容差分析等分析方法,以帮助用户分析电路的性能。此外它还允许用户为仿真电路中的元件设置各种故障(如开路、短路和不同程度的漏电等),从而观察电路在不同故障下的工作情况。在进行仿真的同时,它可以存储被测点的所有数据,列出仿真电路中所有元件的清单、显示波形和具体数据等。用EWB创建电路所需的元器件库与目前常用的电路分析软件(如“SPICE”)元器件库是完全兼容的,换言之,两者可以相互转换。同时,在EWB下创建的电路,可以按照常见的印刷电路板排版软件(如“PROTEL”、“ORCAD”和“TANGO”等)

实验5 EWB设计应用

实验五EWB5.0设计应用 班级:学号:姓名: 实验时间:2014年月日;实验学时:2学时;实验成绩: 一、实验目的 1.熟悉EWB5.0的使用环境和EWB5.0使用一般步骤。 2.掌握模拟、数字电子电路的设计与仿真方法。 二、实验内容 1、虚拟仪器的使用 (1)示波器 示波器为双踪模拟式,其图标和面板如下图1所示。 图 1 虚拟示波器 其中:Expand ---- 面板扩展按钮; Time base ---- 时基控制; Trigger ---- 触发控制,包括:①Edge ---- 上(下)跳沿触发; ②Level ---- 触发电平; ③触发信号选择按钮:Auto(自动触发按钮); A、B(A、B通道触发按钮);Ext(外触发按钮) X(Y)position ---- X(Y)轴偏置; Y/T、B/A、A/B ---- 显示方式选择按钮(幅度/时间、B通道/A通道、A通道/B通道); AC、0、DC ---- Y轴输入方式按钮(AC、0、DC)。 (2)电压表 电压表的图标:,电压表的属性设置对话框如右图2所示。

图 2 电压表的属性设置对话框 (3)电流表 电流表的图标: ,电流表的属性设置对话框如图3所示。 图 3 电流表的属性设置对话框 (4)数字信号发生器 数字信号发生器的图标: ,数字信号发生器的属性设置对话框如图4所示: 图4 虚拟数字信号发生器 面板

(5)逻辑分析仪 逻辑分析仪的图标:,逻辑分析仪输出结果图5所示: 图5 虚拟逻辑分析仪的输出结果 2、实验电路图 (1)半波整流电容滤波电路仿真实验原理如图6。 图6 半波整流电容滤波电路(2)数字全加器电路如图7 图7 数字全加器逻辑图

Ewb仿真实验与实例教程

Ewb仿真实验与实例教程 1 Electronics Workbench简介 电子设计自动化(Electronic Design Automation,简称EDA)技术是近代电子信息领域发展起来的杰出成果。EDA包括电子工程设计的全过程,如系统结构模拟、电路特性分析、绘制电路图和制作PCB(印刷电路板),其中结构模拟、电路特性分析称之为EDA仿真。目前著名的仿真软件SPICE(Simulation Program With Integrated Circuit Emphasis)是由美国加州大学伯克利分校于1972年首先推出的,经过多年的完善,已发展成为国际公认的最成熟的电路仿真软件,当今流行的各种EDA软件,如PSPICE、or/CAD、Electronics Workbench等都是基于SPICE开发的。 Electronics Workbench(简称EWB)是加拿大Interactive Image Technologies Led 公司于1988年推出的,它以SPICE3F5为模拟软件的核心,并增强了数字及混合信号模拟方面的功能,是一个用于电子电路仿真的“虚拟电子工作台”,是目前高校在电子技术教学中应用最广泛的一种电路仿真软件。 EWB软件界面形象直观,操作方便,采用图形方式创建电路和提供交互式仿真过程。创建电路需要的元器件、电路仿真需要的测试仪器均可直接从屏幕中选取,且元器件和仪器的图形与实物外型非常相似,因此极易学习和操作。 EWB软件提供电路设计和性能仿真所需的数千种元器件和各种元器件的理想参数,同时用户还可以根据需要新建或扩充元器件库。它提供直流、交流、暂态的13种分析功能。另外,它可以对被仿真电路中的元器件设置各种故障,如开路、短路和不同程度的漏电,以观察不同故障情况下电路的状态。EWB软件输出方式灵活,在仿真的同时它可以储存测试点的所有数据,列出被仿真电路的所有元器件清单,显示波形和具体数据等。由于它所具有的这些特点,非常适合做电子技术的仿真实验。 2 EWB的基本界面 [要点提示]

EWB仿真实验及结论

EWB仿真实验及结论 1)ewb使用特点: 与其它电路仿真软件相比,EWB具有界面友好、操作方便等优点。在EWB中,可以直接使用工具按钮完成创建电路、选用元件和测试仪器的工作,而且测试仪器的外观与实物基本相似。稍具电路知识的人员,可以在很短的时间内掌握EWB 的基本操作方法。 对学习电类课程而言,EWB是一种理想的计算机辅助教学软件。因为要弄清电路的功能,不仅需要理论分析,还需要通过实践来验证并加深理解。 作为电类课程的一种辅助教学手段,它可以弥补实验仪器、元器件缺乏带来的不足,可以使学习者更快、更好地掌握课堂讲述的内容,加深对概念、原理的理解;而且通过电路仿真,可以让学习者熟悉常用仪器的使用方法,培养他们的综合分析能力、排除故障能力,激发他们的创新能力。 EWB最明显的特点是,构造仿真环境的方法与搭建实际电路的方法基本相同,仪器的面板同实际仪器极为类似,因此特别容易学习和使用。EWB的元器件库不仅提供了数千种电路元器件供选用,而且还提供了各种元器件的理想值。通过用理想元件进行仿真,可以获得电路性能的理想值。此外,EWB允许用户自定义元器件,自定义元器件时需要的参数可以直接从生产厂商的产品使用手册中查到,这样就为用户带来了极大的方便。 EWB提供了比较强大的电路分析手段,不仅可以完成电路的瞬态分析和稳态分析、时域和频域分析、噪声分析和失真分析,还提供了傅里叶分析、零极点分析、灵敏度分析和容差分析等分析方法,以帮助用户分析电路的性能。此外它还允许用户为仿真电路中的元件设置各种故障(如开路、短路和不同程度的漏电等),从而观察电路在不同故障下的工作情况。在进行仿真的同时,它可以存储被测点的所有数据,列出仿真电路中所有元件的清单、显示波形和具体数据等。用EWB创建电路所需的元器件库与目前常用的电路分析软件(如“SPICE”)元器件库是完全兼容的,换言之,两者可以相互转换。同时,在EWB下创建的电路,可以按照常见的印刷电路板排版软件(如“PROTEL”、“ORCAD”和“TANGO”等)所支持的格式进行保存,然后将其输入至相应的软件进行处理,自动排出印制电路板。 2)仿真电路图:

EWB仿真设计

基于EWB的数字电路仿真和设计 ――编码器和译码器部分 前言 在当今电子设计领域,EWB设计和仿真是一个十分重要的设计环节。在众多的设计和仿真软件中,EWB以其强大的仿真设计应用功能,在各高校电信类专业电子电路的仿真和设计中得到了较广泛的应用。EWB及其相关库包的应用对提高学生的仿真设计能力,更新设计理念有较大的好处。 EWB最突出的特点是用户界面友好,各类器件和集成芯片丰富,尤其是其直观的虚拟仪表是EWB的一大特色。EWB包含的虚拟仪表有:示波器,万用表,函数发生器,波特图图示仪,失真度分析仪,频谱分析仪,逻辑分析仪,网络分析仪等。而通常一个普通实验室是无法完全提供这些设备的。这些仪器的使用使仿真分析的操作更符合平时实验的习惯。 本次毕业设计主要是应用EWB软件来进行设计和仿真编码器以及译码器的工作原理、基本应用电路等,并硬件实验调试通过,通过仿真和硬件实验进行结果分析对比。

1 EWB的简介 EWB是一种电子电路计算机仿真软件,它被称为电子设计工作平 台或虚拟电子实验室,英文全称为Electronics Workbench。EWB是 加拿大Interactive Image Technologies公司与1988年开发的,自 发布以来,已经有35个国家、10种语言的人在使用。EWB以SPICE3F5 为软件核心,增强了其在数字及模拟混合信号方面的仿真功能。 1.1 EWB的软件界面简介 1. EWB的主窗口 图1

2.元件库栏 图2 2.信号源库 图3 3.基本器件库 图4 5.二极管库 指示 图5

6.仪器库 图6 1.2 EWB的基本操作方法 1.Electronics Workbench 基本操作方法介绍 其他操作方法相对简单,下面就常用的仪器举例说明: 1)数字多用表 数字多用表的量程可以自动调整。下图是其图标和面板。 其电压、 图7 电流档的内阻,电阻档的电流和分贝档的标准电压值都可以任意设置。从打开的面板上选Setting 按钮可以设置其参数。 2)示波器 示波器为双踪模拟式,其图标和面板如下图所示。

EWB仿真软件介绍

第一节EWB电子电路仿真软件简介 电子工作平台Electronics Workbench (EWB)(现称为MultiSim) 软件是加拿大Interactive Image Technologies公司于八十年代末、九十年代初推出的电子电路仿真的虚拟电子工作台软件,它具有这样一些特点: (1)采用直观的图形界面创建电路:在计算机屏幕上模仿真实实验室的工作台,绘制电路图需要的元器件、电路仿真需要的测试仪器均可直接从屏幕上选取; (2)软件仪器的控制面板外形和操作方式都与实物相似,可以实时显示测量结果。 (3)EWB软件带有丰富的电路元件库,提供多种电路分析方法。 (4)作为设计工具,它可以同其它流行的电路分析、设计和制板软件交换数据。 (5)EWB还是一个优秀的电子技术训练工具,利用它提供的虚拟仪器可以用比实验室中更灵活的方式进行电路实验,仿真电路的实际运行情况,熟悉常用电子仪器测量方法。 因此非常适合电子类课程的教学和实验。这里,我们向大家介绍EWB软件的初步知识,基本操作和分析方法,。更深入的内容请阅读相关书籍。

第二节EWB电子电路仿真软件界面1.EWB的主窗口 2.元件库栏

信号源库 基本器件库 二极管库

模拟集成电路库 指示器件库 仪器库 第三节EWB的基本操作方法介绍

1.创建电路 (1)元器件操作 元件选用:打开元件库栏,移动鼠标到需要的元件图形上,按下左键,将元件符号拖拽到工作区。 元件的移动:用鼠标拖拽。 元件的旋转、反转、复制和删除:用鼠标单击元件符号选定,用相应的菜单、工具栏,或单击右键激活弹出菜单,选定需要的动作。 元器件参数设置:选定该元件,从右键弹出菜单中选Component Properties可以设定元器件的标签(Label)、编号(Reference ID)、数值(Value)和模型参数(Model)、故障(Fault)等特性。 说明:①元器件各种特性参数的设置可通过双击元器件弹出的对话框进行;②编号(Reference ID)通常由系统自动分配,必要时可以修改,但必须保证编号的唯一性;③故障(Fault)选项可供人为设置元器件的隐含故障,包括开路(Open)、短路(Short)、漏电(Leakage)、无故障(None)等设置。 (2)导线的操作 主要包括:导线的连接、弯曲导线的调整、导线颜色的改变及连接点的使用。 连接:鼠标指向一元件的端点,出现小园点后,按下左键并拖拽导线到另一个元件的端点,出现小园点后松开鼠标左键。 删除和改动:选定该导线,单击鼠标右键,在弹出菜单中选delete 。或者用鼠标将导线的端点拖拽离开它与元件的连接点。 说明:①连接点是一个小圆点,存放在无源元件库中,一个连接点最多可以连接来自四个方向的导线,而且连接点可以赋予标识;②向电路插入元器件,可直接将元器件拖曳放置在导线上,然后释放即可插入电路中。 (3)电路图选项的设置 Circuit/Schematic Option对话框可设置标识、编号、数值、模型参数、节点号等的显示方式及有关栅格(Grid)、显示字体(Fonts)的设置,该设置对整个电路图的显示方式有效。其中节点号是在连接电路时,EWB自动为每个

EWB仿真软件介绍

第一节EWB 电子电路仿真软件简介 电子工作平台Electronics Workbench (EWB)(现称为MultiSim)软件是加拿大Interactive Image Technologies 公司于八十年代末、九十年代初推出的电子电路仿真的虚拟电子工作台软件,它具有这样一些特点: (1)采用直观的图形界面创建电路:在计算机屏幕上模仿真实实验室的工作台,绘制电路图需要的元器件、电路仿真需要的测试仪器均可直接从屏幕上选取; (2)软件仪器的控制面板外形和操作方式都与实物相似,可以实时显示测量结果。 (3)EWBK件带有丰富的电路元件库,提供多种电路分析方法。 (4)作为设计工具,它可以同其它流行的电路分析、设计和制板软件交换数据。 (5)EW呢是一个优秀的电子技术训练工具,利用它提供的虚拟仪器可以用比实验室中更灵活的方式进行电路实验,仿真电路的实际运行情况,熟悉常用电子仪器测量方法。 因此非常适合电子类课程的教学和实验。这里,我们向大家介绍EWB软件的初步知识,基本操作和分析方法,更深入的内容请阅读相关书籍。

第二节EWB电子电路仿真软件界面 1 . EWB勺主窗口 苑单栏元件库栏工具栏暂停f恢复开关启动需止开关 狀帝雜电路描述框冷曲谕很爲电路工作区2?元件库栏 自定义库基本元件库晶悴管库混和集成电路逻辑门葩路指示器件库其它器(+库 ―极管库酸字集成电路庫揑制器件库信号源库

動? ◎ 令I 剧令I 兮#詞團 基本器件库 连接点电容 变压器 开关 延迟开关 二极管库 二极管稳压二枫管发光二极管全波桥武整流器 模拟集成电路库 2d £>降|毘珠妙]回 _______ ] ____ I ___ I I ■ 「I 五端总啟 指示器件库 凶 电压源 电压漏电驀 盏电压源 龙 SH 电池 i fi 电压香电压源

EWB概述

第一章EWB概述 EWB是Electronics Workbench的缩写,称为电子工作平台,是一种在电子技术界广为应用的优秀计算机仿真设计软件,被誉为"计算机里的电子实验室". 其特点是图形界面操作,易学、易用,快捷、方便,真实、准确,使用EWB可实现大部分硬件电路实验的功能. 电子工作平台的设计试验工作区好像一块"面包板",在上面可建立各种电路进行仿真实验.电子工作平台的器件库可为用户提供350多种常用模拟和数字器件,设计和试验时可任意调用. 虚拟器件在仿真时可设定为理想模式和实模式,有的虚拟器件还可直观显示,如发光二极管可以发出红绿蓝光,逻辑探头像逻辑笔那样可直接显示电路节点的高低电平,继电器和开关的触点可以分合动作,熔断器可以烧断,灯泡可以烧毁,蜂鸣器可以发出不同音调的声音,电位器的触点可以按比例移动改变阻值. 电子工作平台的虚拟仪器库存放着数字电流表、数字电压表、数字万用表、双通道1000MHz 数字存储示波器、999MIHz数字函数发生器、可直接显示电路频率响应的波特图仪、16路数字信号逻辑分析仪、16位数字信号发生器等,这些虚拟仪器随时可以拖放到工作区对电路进行测试,并直接显示有关数据或波形. 电子工作平台还具有强大的分析功能, 可进行直流工作点分析, 暂态和稳态分析,高版本的EWB还可以进行傅立叶变换分析、噪声及失真度分析、零极点和蒙特卡罗等多项分析. 使用EWB对电路进行设计和实验仿真的基本步骤是: 1、用虚拟器件在工作区建立电路; 2、选定元件的模式、参数值和标号; 3、连接信号源等虚拟仪器; 4、选择分析功能和参数; 5、激活电路进行仿真; 6、保存电路图和仿真结果. 第二章初识EWB 2.1 EWB5.0的安装和启动 EWB5.0版的安装文件是EWB50C.EXE.新建一个目录EWB5.0作为EWB的工作目录,将安装文件复制到工作目录,双击运行即可完成安装. 安装成功后,在工作目录下会产生可执行文件EWB32.EXE 和其它一些文件,EWB32.EXE的图标如图2-1,双击该图标即可运行EWB.也可以在Windows的桌面上创建EWB32.EXE的快捷方式,通过此快捷方式启动EWB. 2.2 认识EWB的界面 EWB与其它Windows应用程序一样,有一个标准的工作界面,它的窗口由标题条、菜单条、常用工具栏、虚拟仪器、器件库图标条、仿真电源开关、工作区及滚动条等部分组成. 标题条中,显示出当前的应用程序名Electronics Workbench,即电子工作平台. 标题条左端有一个控制菜单框,右边是最小化、最大化(还原)和关闭三个按钮. 菜单条位于标题条的下方,共有六组菜单:File(文件)、Edie(编辑)、Circuit(电路)、Analysis(分析)、Window(窗口)和Help(帮助), 在每组菜单里,包含有一些命令和选项,建立电路、实验分析和结果输出均可在这个集成菜单系统中完成. 在常用工具栏中,是一些常用工具按钮.

ewb数字电路仿真实验

第二部分、数字电路部分 四、组合逻辑电路的设计与测试 一、实验目的 1、掌握组合逻辑电路的设计的设计与测试方法。 2、熟悉EWB中逻辑转换仪的使用方法。 二、实验内容 设计要求:有A、B、C三台电动机,要求A工作B也必须工作,B工作C也必须工作,否者就报警。用组合逻辑电路实现。 三、操作 1、列出真值表,并编写在逻辑转换仪中“真值表”区域内,将其复制到下 ABC 输入,输出接彩色指示灯,验证电路的逻辑功能。将连接的电路图复制到下表中。

五、触发器及其应用 一、实验目的 1、掌握基本JK、D等触发器的逻辑功能的测试方法。 2、熟悉EWB中逻辑分析仪的使用方法。 二、实验内容 1、测试D触发器的逻辑功能。 2、触发器之间的相互转换。 3、用JK触发器组成双向时钟脉冲电路,并测试其波形。 三、操作 1、D触发器 在输入信号为单端的情况下,D触发器用起来最为方便,其状态方程为 n n D +1 Q= 其输出状态的更新发生在CP脉冲的上升沿,故又称为上升沿触发的边沿触发器。 图2.5.1为双D 74LS74的引脚排列及逻辑符号。 图2.5.1 74LS74的引脚排列及逻辑符号在EWB中连接电路如图2.5.2所示,记录表2.5.1的功能表。 图2.5.2

在集成触发器的产品中,每一种触发器都有自己固定的逻辑功能。但可以利用转换的方法获得具有其它功能的触发器。 在T ′触发器的CP 端每来一个CP 脉冲信号,触发器的状态就翻转一次,故称之为反转触发器,广泛用于计数电路中,其状态方程为:1n n Q Q +=。 同样,若将D 触发器Q 端与D 端相连,便转成T ′触发器。如图2.5.3所示。 CP Q Q 图2.5.3 D 转成T ′ 在EWB 中连接电路如图2.5.4所示,测试其功能。 图2.5.4 D 转成T ′触发器 3、双向时钟脉冲电路的测试。 ①、按图2.5.5用JK 触发器和与非门组成双向时钟脉冲电路。

EWB电路仿真软件使用说明

EWB电路仿真软件 一、软件简介 随着电子技术和计算机技术的发展,电子产品已与计算机紧密相连,电子产品的智能化日益完善,电路的集成度越来越高,而产品的更新周期却越来越短。电子设计自动化(EDA)技术,使得电子线路的设计人员能在计算机上完成电路的功能 设计、逻辑设计、性能分析、时序测试直至印刷电路板的自动设计。EDA是在计算 机辅助设计(CAD)技术的基础上发展起来的计算机设计软件系统。与早期的CAD 软件相比,EDA软件的自动化程度更高、功能更完善、运行速度更快,而且操作界 面友善,有良好的数据开放性和互换性。 电子工作平台Electronics Workbench (EWB)(现称为MultiSim) 软件是加拿大Interactive Image Technologies公司于八十年代末、九十年代初推出的电子电路仿真的虚拟电子工作台软件,它具有这样一些特点: (1)采用直观的图形界面创建电路:在计算机屏幕上模仿真实实验室的工作台, 绘制电路图需要的元器件、电路仿真需要的测试仪器均可直接从屏幕上选取; (2)软件仪器的控制面板外形和操作方式都与实物相似,可以实时显示测量结果。 (3)EWB软件带有丰富的电路元件库,提供多种电路分析方法。 (4)作为设计工具,它可以同其它流行的电路分析、设计和制板软件交换数据。 (5)EWB还是一个优秀的电子技术训练工具,利用它提供的虚拟仪器可以用比实 验室中更灵活的方式进行电路实验,仿真电路的实际运行情况,熟悉常用电子仪器测量方法。 因此非常适合电子类课程的教学和实验。这里,我们向大家介绍EWB软件的初步知识,基本操作方法,内容仅限于对含有线性RLC元件及通用运算放大器电 路的直流、交流稳态和暂态分析。更深入的内容将在后续课程中介绍。 二、Electronics Workbench 软件界面 1.EWB的主窗口

EWB仿真分析方法

63 第5章 EWB仿真分析方法 EWB提供了14种分析工具,本章将逐一加以介绍.利用EWB提供的分析工具,可 以了解电路的基本工作状态,通过虚拟仪表测量和分析电路的各种响应,比用实际仪器测 量精度高,范围宽.用EWB仿真分析电子电路的过程可分为4个步骤. (1)创建电路:用户创建的待仿真电路图,输入元器件数据,选择分析方法. (2)参数设置:程序会检查电路的结构,输入数据的性质,以及电路中的阐述内容, 对分析参数进行设置. (3)电路分析:对输入信号作用下的电路进行分析,这是电路进行仿真和分析的关键 一步.它将形成电路的数值解,并把所得数据送至输出级. (4)数据输出:从虚拟仪器(如示波器等)上获得仿真运行的波形,数据.也可以从"分析"栏中的"分析显示图"(Analysis Graph)中得到测量,分析的波形图和数据表. 用户可以在电路仿真进行之前,根据电路分析要求,设置不同仿真参数.在菜单分析 栏(Analysis)中选择"Analysis Options"后,在屏幕上出现一个分析选项对话框,如图 5-1. 图5-1 分析选项对话框 在分析选项对话框中包括5个选择标签,每个标签含意如下. 1)总体分析选择(Global) ABSTOL——电流的绝对精度.(默认设置:1.012e ,适合一般双极型晶体管和VLSI 电路) 64 GMIN——最小电导.该值不能设置为零,增大该值可以改善收敛性,但会影响仿真精度.(默认设置:1.012e ,一般情况不需调整) PIVREL——最大矩阵项与主元值的相对比率.该值设定在0~1之间.(默认设置: 0.001,一般情况不需调整) PIVTOL——主元矩阵项绝对最小值.(默认设置:1.013e ) RELTOL——相对误差精度.改变该值会影响仿真速度和收敛性.取值在1.06e 至0.01 之间.(默认设置:0.001) TEMP——仿真温度.(默认设置:27℃) VNTOL——电压绝对精度.通常小于电路中最大电压信号的6~8个数量级.(默认设 置:1.06e ) CHGTOL——电荷绝对精度.(默认设置:1.014e ,一般情况不需调整) RAMPTIME——斜升时间.该值是独立源,电容和电感从零至终值的变化条件.(默认设置:0) CONVSTEP——相对收敛步长限制.在求解直流工作点时,建立相对步长限制自动控 制收敛.(默认设置:0.25)

数字逻辑电路实验指导书(2016)

Xuzhou Institute of Technology 数字逻辑电路实验指导书 使用班级:15级计算机专业 2016年9月

目录 学生实验守则 (3) 电工电子实验室安全制度 (4) 实验报告要求 (5) 实验一THD-1数字电路箱的使用 (6) 实验二TTL集成门电路 (8) 实验三组合逻辑电路设计 (11) 实验四综合实验(组合电路) .................................................................. 错误!未定义书签。实验五译码器、显示器 ............................................................................... 错误!未定义书签。实验六触发器. (13) 实验七计数器及其应用 (18) 实验八555定时器 (21) 实验九移位寄存器........................................................................................ 错误!未定义书签。实验十综合实验(时序电路) .................................................................. 错误!未定义书签。附录1 V-252型双踪示波器......................................................................... 错误!未定义书签。附录2 EE1641B型函数信号发生器.......................................................... 错误!未定义书签。附录3 SX2172型交流毫伏表 ..................................................................... 错误!未定义书签。附录4 VC9801+型数字万用表 .. (22) 附录5 EWB电子仿真软件 (24)

8、数字电路的EWB仿真举例

8、数字电路的EWB仿真举例 8.1 组合逻辑电路分析 图8.1—1 被测试的组合逻辑电路 按图8.1—1所示,创建一组合逻辑电路,输入变量A、B、C分别由三只开关[D]、[E]、[F]控制接入电平的高、低。输出端L由指示灯的亮、灭表示高、低电平。将测试结果输入到逻辑转换仪真值表区(见图8.1—2),选择真值表→简化表达式转换方式,得到简化逻辑 =++)如图8.1—2逻辑转换仪逻辑表达式栏所示,选择表达式→逻辑表达式(L A B C 电路转换方式可得到如图8.1—3(a)所示的逻辑电路,若选择表达式→与非逻辑电路转换方式则可得到如图8.1—3(b)所示全部由与非门组成的逻辑电路。 图8.1—2 被测试电路的真值表与简化逻辑表达表达式 图8.1—3被测组合逻辑电路两种形式的简化电路

要获取给定组合逻辑电路的真值表,除了可以用上述直接测试的方法以外,还可以将创建好的逻辑电路输入端连接至逻辑转换仪的输入端,将电路的输出端连接至逻辑转换仪的输出端,如图8.1—4所示。然后选择电路→真值表转换方式直接获取真值表,再选择真值表→简化逻辑表达式转换方式,获得简化的逻辑表达式,最后根据需要选择表达式→逻辑电路,或者表达式→与非逻辑电路获得简化的逻辑电路。 图8.1—4 利用逻辑转换仪获取给定电路的真值表 8.2 组合逻辑电路设计 一般组合逻辑电路设计过程可归纳为:分析给定问题列出真值表,由真值表求得简化的逻辑表达式,再根据表达式画出逻辑电路。这一过程可借助逻辑转换仪完成。 例.试设计一个路灯控制逻辑电路,要求在四个不同的地方都能独立的控制路灯的亮灭。 解:设该逻辑电路四个输入变量为A、B、C、D,分别由[E]、[F]、[G]、[H]四个开关控制,接入高电平(+5V)作为逻辑“1”,接入低电平(“地”)作为逻辑“0”。逻辑电路输出端L接一指示灯模拟所控制的路灯,输出高电平(逻辑“1”)时指示灯亮,输出低电平(逻辑“0”)时指示灯灭。 1. 打开逻辑转换仪面板,在真值表区点击A、B、C、D四个逻辑变量建立一个四变量真值表,根据逻辑控制要求在真值表区输出变量列中填入相应逻辑值(见图8.2—1)。 2.点击逻辑转换仪面板上“真值表→简化逻辑表达式”按钮,求得简化的逻辑表达式如图8.2—1逻辑转换仪面板底部逻辑表达式栏所示。 图8.2—1 真值表与简化逻辑表达式

EWB电子仿真软件应用基础

EWB电子仿真基础(简易教材) 广东省云浮市郁南县职业动技术学校张敏才编辑 第一章EWB入门 Electronics Workbench 5.0的中文名称为电子工作平台,简称“EW B”。它是加拿大InteractiveImage Technologies公司于八十年代末、九十年代初推出的电路分析和设计软件,它具有这样一些特点: (1)采用直观的图形界面创建电路:在计算机屏幕上模仿真实实验室的工作台,绘制电路图需要的元器件、电路仿真需要的测试仪器均可直接从屏幕上选取。(2)软件仪器的控制面板外形和操作方式都与实物相似,可以实时显示测量结果。(3)EWB软件带有丰富的电路元件库,提供多种电路分析方法。(4)作为设计工具,它可以同其它流行的电路分析、设计和制板软件交换数据。(5)EWB还是一个优秀的电子技术训练工具,利用它提供的虚拟仪器可以用比实验室中更灵活的方式进行电路实验,仿真电路的实际运行情况,熟悉常用电子仪器测量方法。因此,EWB软件仿真非常适合电子类课程的教学和实验。这里,我们向大家介绍EWB软件的初步知识和基本操作方法。 第一节EWB软件界面 1.1打开EWB主窗口 (1).双击Windows卓面上的“EWB32”快捷方式图标(如图1—1所示),即可启动EWB软件的主窗口。 图1—1 快捷图标 (2).如果Windows卓面上没有“EWB32”快捷方式图标,可以进入我的电脑,在装有EWB软件的硬盘中找到“EWB50C”文件夹,打开该文件夹,会看到“EWB32.EXE”文件,再双击或右击打开“EWB32.EXE”文件,可启动EWB软件的主窗口。 EWB软件界面如图1—2所示。

基于EWB的数字电路设计方案

基于EWB的数字电路设计方案 第一章绪论 随着电子技术和计算机技术的发展,电子产品已与计算机紧密相连,电子产品的智能化日益完善,电路的集成度越来越高,而产品的更新周期却越来越短。电子设计自动化(EDA)技术,使得电子线路的设计人员能在计算机上完成电路的功能设计、逻辑设计、性能分析、时序测试直至印刷电路板的自动设计。为了能在电路付诸实现之前,完全掌握操作环境因素(如电源电压、温度等) 对电路的影响,利用计算机辅助设计进行电路模拟与仿真,并进行输入与输出信号响应的验证,可有效地节省产品开发的时间与成本。Elect ronics Workbench ( EWB) 软件是专门用于电子电路仿真的“虚拟电子工作台”软件,他是目前全球最直观、最高效的EDA 软件。该软件的自动化程度高、功能强大、运行速度快,而且操作界面友善,有良好的数据开放性和互换性。能够提供电阻、电容、三极管、集成电路等14 大类几千种元器件;能够提供示波器、万用表等十几种常用的电子仪器;具有强大的电路图绘制功能,可绘制出符合标准的电子图纸; 他还具有强大的波形显示功能,并且结果可轻松放入各类文档。用该软件进行设计、分析非常方便。本文在EWB 基础上设计的数字钟,是由数字集成电路构成、用数码管显示的一种现代计时器,与传统机械式时钟相比具有更高的准确性和 直观性,且无机械装置,具有更长的使用寿命,因此可望得到广泛使用。 第二章EWB软件介绍与应用 2.1 EWB软件概述 在当今电子设计领域,EDA设计和仿真是一个十分重要的设计环节。在众多的EDA设计和仿真软件中,EWB以其强大的仿真设计应用功能,在各高校电信类专业电子电路的仿真和设计中得到了较广泛的应用。EWB及其相关库包的应用对提高学生的仿真设计能力,更新设计理念有较大的好处。

基于EWB的数字电路设计

毕业了,心里久久不能平静 此时是2016年6月26日深夜 我坐在实习公司员工宿舍椅子上 删去了用了三年的淘宝默认收货地址 一下子想起了很多事 总之再见了1331 无论丰富或是颓废 离开的那一刻终究平静 再见了1331 自上次出校门过后,我就知道,这个班再也无法聚齐了 所以词穷致谢,因为来日方长 共勉之 于毕业季

毕业论文 题目:基于EWB数字电路设计学院:信电 专业:电子信息工程 班级:电信1331班 学生姓名:刘亚瑞 完成日期:2016.5

毕业设计报告摘要 EWB是一种电子电路计算机仿真软件,它被称为电子设计工作平台或虚拟电子实验室,英文全称为Electronics Workbench。EWB是加拿大Interactive Image Technologies公司于1988年开发的,自发布以来,已经有35个国家、10种语言的人在使用。EWB以SPICE3F5为软件核心,增强了其在数字及模拟混合信号方面的仿真功能。该软件是目前各种电路仿真软件中最理想的软件,作为设计工具该软件仪器的控制面板外形和操作方式都与实物相似,具有完整的数字信号模拟功能。本文介绍一种基于EWB的数字钟设计总体系统由脉冲发生器、分频器、计数器、译码电路、LED 显示电路、校时电路、整点报时电路组成。 关键词:数字电路,EWB 软件;数字钟;振荡器;分频器;计数器;门电路。

目录 第一章绪论 (1) 第二章EWB软件介绍与应用 (2) 2.1 EWB软件概述 (2) 2.2 EWB软件使用 (3) 2.2.1 EWB软件主界面 (3) 2.2.1 EWB软件元件库 (4) 2.2.2 EWB软件工具栏 (4) 2.2.3 EWB软件信号库栏 (4) 2.2.4 EWB软件基本器件库栏和指示器件库栏 (5) 第三章主要元件介绍 (6) 3.1设计构思 (6) 3.2设计方案 (6) 3.3 74ls160计数器应用 (7) 3.3.1 十进制接线 (7) 3.3.2 七进制接线 (9) 3.4 7490计数器应用 (9) 第四章数字钟基本原理及单元电路设计 (12) 4.1数字钟的基本原理 (12) 4.2石英晶体振荡器 (12) 4.3 分频电路 (13) 4.4计数与译码显示电路 (13) 4.4.1秒计数电路 (13) 4.4.2分计数电路 (14) 4.4.3时计数电路 (15) 4.4.4周计数电路 (15) 4.4.5 校时电路 (16) 4.4.6 整点报时电路 (17) 4.4.7 数字钟整体逻辑电路 (18) 总结 (19) 致谢 (20) 参考文献 (21)

ewb电路实例子.doc

ewb 电路实例子 【篇一:ewb 电路实例子】 │二阶电路动态变化过程的仿真分析(电压响应).ms8│二阶电路 动态变化过程的仿真分析(电流响应).ms8│交流电路参数的仿真 测定.ms8│从零起调的稳压电源.ms8│共发射极固定偏置电路 1.ms8 │共发射极固定偏置电路 2.ms8 │共发射极简单.ms8│共发射 极简单偏置电路 1.ms8│共发射极简单偏置电路 2.ms8│共基极固 定.ms8│共基极固定电路.ms8│共基极简单电路.ms8│共集电极固 定电路.ms8│共集电极射极跟随器.ms8│减法器.ms8│切比雪夫低 通滤波器.ms8 │加法器.ms8│单电源差放.ms8│压控电压源的仿真 演示.ms8│双电源差放.ms8│反相放大器.ms8│反相过零比较 器.ms8│同相放大器.ms8│回差比较器.ms8│微分器.ms8│戴维南 和诺顿等效电路的仿真分析.ms8│戴维南等效电路.ms8│有源低通 滤波器.ms8│有源带通滤波器.ms8│有源谐振滤波器.ms8│有源陷 波器.ms8│有源高通滤波器.ms8│标准三角波发生器.ms8│测量三 相电路功率.ms8│电压表内接法.ms8│电压表外接法.ms8│电容特 性仿真测试.ms8│电感特性仿真测试.ms8│电流控制电压源.ms8│ 电流控制电流源.ms8│电路节点电压的仿真测试.ms8│电阻的伏安 特性曲线.ms8│积分器.ms8│简易波形发生器.ms8│诺顿等效电 路.ms8│跟随器.ms8│过零比较器.ms8│门限比较器.ms8│非零起 调稳压电源.ms8├—数字电子仿真实验││目录.txt │└数—字电子仿 真实验│├—sd01││-12与逻辑.ms9││2-2或逻辑.ms9││2-3非 逻辑.ms9││2-4与非逻辑.ms9││2-5或非逻辑.ms9││2-6与或 非逻辑.ms9││2-7异或逻辑.ms9││2-8逻辑函数的转换 (1).ms9││2-9逻辑函数的转换(2).ms9│├—sd02││-120 二极管开关电路.ms9││2-11双极性三极管开关电路.ms9││2-12 mos 三极管开关电路.ms9││-213二极管与门电路.ms9││-214二 极管或门电路.ms9││2-15 三极管非门.ms9││2-16ttl 反相器的基本电路及性能测试.ms9││2-17 ttl 与非门电路.ms9││2-18 ttl 或 非门电路.ms9││2-19 ttl 与或非门电路.ms9││2-20ttl 异或门电 路.ms9││2-21 集电极开路门电路.ms9││2-22oc 门线与连 接.ms9││2-23 三态输出门电路.ms9││2-2474h 系列与非门 (74h00 )的电路结构及性能测试.ms9││2-2574s 系列与非门 (74s00 )的电路结构.ms9││2-26 cmos 反相器的电路结构.ms9│

EWB 仿真实验指导书2011

EWB 仿真实验指导书 夏路易 2011,8,5

部分1 简单电路分析 使用分析方法同样可以获得电路参数,只是不太直观,没有做实验的感觉。很多分析方法的设置都需要输出节点名称,通常节点名称是Multisim 软件给出的节点序号,但为使节点名称容易记忆,同时为分析设置方便,可以人为设置节点名称,方法是双击欲改节序号的线,然后输入新的节点名称,例如,可以将集电极节点改为C ,输出节点改为Vo ,输入节点改为VI ,等等。 [例1] 三端稳压器LM7805电路的 直流扫描分析 图1-29所示的是三端稳压器LM7805向20欧姆电阻供电的电路,如 果要想得到该电路中LM7805芯片耗散功率与输入电压之间的关系,就需要使用直流扫描方法。 图1-29 三端稳压器7805组成的供电电路 首先画好电路图,然后设置分析参数和输出变量。分析参数设置与输出变量设置如图1-30所示,注意将流过负载电阻R1的电流加入输出变量。分析结果如图1-31所示 图1-30分析参数设置与输出变量设置窗 口 Vreg U1 LM7805CT IN O UT V110V R1 20ohm vin 00 vout 0

图1-31输入电压、输出电压和负载电流曲线 [例2] 方波振荡器工作波形瞬态分析 瞬态分析方法是常用的分析方法,例如分析图1-32所示方波振荡器的频率、输出电压波形等参数,就可以使用瞬态分析方法。 图1-32 方波振荡器 图1-33 设置分析参数 首先画图1-32所示的电路图,然后选择菜单Simulate/Transient Analysis ,按照图1-33所示的设置分析参数,对于振荡器类电路一般把初始条件设置为Set to zero 。最后再在图1-34所示的Outputs Variables 页面将节点out 、vc 和vt 设置成分析输出变量。该振荡器的瞬态分析结果如图1-35所示。 图1-34 输出变量的设置 R1 R2

仿真软件的使用说明 ewb5 12

EWB基础教程 1.创建电路 (1)元器件操作 元件选用:打开元件库栏,移动鼠标到需要的元件图形上,按下左键,将元件符号拖拽到工作区。 元件的移动:用鼠标拖拽。 元件的旋转、反转、复制和删除:用鼠标单击元件符号选定,用相应的菜单、工具栏,或单击右键激活弹出菜单,选定需要的动作。 元器件参数设置:选定该元件,从右键弹出菜单中选Component Properties 可以设定元器件的标签(Label)、编号(Reference ID)、数值(Value)和模型参数(Model)、故障(Fault)等特性。 说明:①元器件各种特性参数的设置可通过双击元器件弹出的对话框进行; ②编号(Reference ID)通常由系统自动分配,必要时可以修改,但必须保证编号的唯一性;③故障(Fault)选项可供人为设置元器件的隐含故障,包括开路(Open)、短路(Short)、漏电(Leakage)、无故障(None)等设置。(2)导线的操作 主要包括:导线的连接、弯曲导线的调整、导线颜色的改变及连接点的使用。 连接:鼠标指向一元件的端点,出现小园点后,按下左键并拖拽导线到另一个元件的端点,出现小园点后松开鼠标左键。 删除和改动:选定该导线,单击鼠标右键,在弹出菜单中选delete 。或者用鼠标将导线的端点拖拽离开它与元件的连接点。 说明:①连接点是一个小圆点,存放在无源元件库中,一个连接点最多可以连接来自四个方向的导线,而且连接点可以赋予标识;②向电路插入元器件,可直接将元器件拖曳放置在导线上,然后释放即可插入电路中。 (3)电路图选项的设置 Circuit/Schematic Option对话框可设置标识、编号、数值、模型参数、节点号等的显示方式及有关栅格(Grid)、显示字体(Fonts)的设置,该设置对整个电路图的显示方式有效。其中节点号是在连接电路时,EWB自动为每个连接点分配的。 2.使用仪器 (1)电压表和电流表 从指示器件库中,选定电压表或电流表,用鼠标拖拽到电路工作区中,通过旋转操作可以改变其引出线的方向。双击电压表或电流表可以在弹出对话框中设置工作参数。电压表和电流表可以多次选用。 (2)数字多用表 数字多用表的量程可以自动调整。下图是其图标和面板。

模拟电路仿真实例

模拟电子电路仿真 1.1 晶体管基本放大电路 共射极,共集电极和共基极三种组态的基本放大电路是模拟电子技术的基础,通过EWB 对其进行仿真分析,进一步熟悉三种电路在静态工作点,电压放大倍数,频率特性以及输入,输出电阻等方面各自的不同特点。 1.1.1 共射极基本放大电路 按图7.1-1搭建共射极基本放大电路,选择电路菜单电路图选项(Circuit/Schematic Option )中的显示/隐藏(Show/Hide)按钮,设置并显示元件的标号与数值等 。 1.静态工作点分析 选择分析菜单中的直流工作点分析选项(Analysis/DC Operating Point)(当然,也可以使用仪器库中的数字多用表直接测量)分析结果表明晶体管Q1工作在放大状态。 2.动态分析 用仪器库的函数发生器为电路提供正弦输入信号Vi(幅值为5mV,频率为10kH),用示波器观察到输入,输出波形。由波形图可观察到电路的输入,输出电压信号反相位关系。再一种直接测量电压放大倍数的简便方法是用仪器库中的数字多用表直接测得。 3.参数扫描分析 在图7.1-1所示的共射极基本放大电路中,偏置电阻R1的阻值大小直接决定了静态电流IC的大小,保持输入信号不变,改变R1的阻值,可以观察到输出电压波形的失真情况。选择分析菜单中的参数扫描选项(Analysis/Parameter Sweep Analysis),在参数扫描设置对话框中将扫描元件设为R1,参数为电阻,扫描起始值为100K,终值为900K,扫描方式为线性,步长增量为400K,输出节点5,扫描用于暂态分析。 4.频率响应分析 选择分析菜单中的交流频率分析项(Analysis/AC Frequency Analysis)在交流频率分析参数设置对话框中设定:扫描起始频率为1Hz,终止频率为1GHz,扫描形式为十进制,纵向刻度为线性,节点5做输出节点。 由图分析可得:当共射极基本放大电路输入信号电压VI为幅值5mV的变频电压时,

相关主题
文本预览
相关文档 最新文档