当前位置:文档之家› EWB仿真软件介绍

EWB仿真软件介绍

EWB仿真软件介绍
EWB仿真软件介绍

第一节EWB电子电路仿真软件简介

电子工作平台Electronics Workbench (EWB)(现称为MultiSim) 软件就是加拿大Interactive Image Technologies公司于八十年代末、九十年代初推出得电子电路仿真得虚拟电子工作台软件,它具有这样一些特点: (1)采用直观得图形界面创建电路:在计算机屏幕上模仿真实实验室得工作台,绘制电路图需要得元器件、电路仿真需要得测试仪器均可直接从屏幕上选取;

(2)软件仪器得控制面板外形与操作方式都与实物相似,可以实时显示测量结果。

(3)EWB软件带有丰富得电路元件库,提供多种电路分析方法。

(4)作为设计工具,它可以同其它流行得电路分析、设计与制板软件交换数据。

(5)EWB还就是一个优秀得电子技术训练工具,利用它提供得虚拟仪器可以用比实验室中更灵活得方式进行电路实验,仿真电路得实际运行情况,熟悉常用电子仪器测量方法。

因此非常适合电子类课程得教学与实验。这里,我们向大家介绍EWB软件得初步知识,基本操作与分析方法,。更深入得内容请阅读相关书籍。

第二节EWB电子电路仿真软件界面

1.EWB得主窗口

2.元件库栏

信号源库

基本器件库

二极管库

模拟集成电路库

指示器件库

仪器库

第三节EWB得基本操作方法介绍

1.创建电路

(1)元器件操作

元件选用:打开元件库栏,移动鼠标到需要得元件图形上,按下左键,将元件符号拖拽到工作区。

元件得移动:用鼠标拖拽。

元件得旋转、反转、复制与删除:用鼠标单击元件符号选定,用相应得菜单、工具栏,或单击右键激活弹出菜单,选定需要得动作。

元器件参数设置:选定该元件,从右键弹出菜单中选ponent Properties可以设定元器件得标签(Label)、编号(Reference ID)、数值(Value)与模型参数(Model)、故障(Fault)等特性。

说明:①元器件各种特性参数得设置可通过双击元器件弹出得对话框进行; ②编号(Reference ID)通常由系统自动分配,必要时可以修改,但必须保证编号得唯一性; ③故障(Fault)选项可供人为设置元器件得隐含故障,包括开路(Open)、短路(Short)、漏电(Leakage)、无故障(None)等设置。

(2)导线得操作

主要包括:导线得连接、弯曲导线得调整、导线颜色得改变及连接点得使用。

连接:鼠标指向一元件得端点,出现小园点后,按下左键并拖拽导线到另一个元件得端点,出现小园点后松开鼠

标左键。

删除与改动:选定该导线,单击鼠标右键,在弹出菜单中选delete 。或者用鼠标将导线得端点拖拽离开它与元件得连接点。

说明:①连接点就是一个小圆点,存放在无源元件库中,一个连接点最多可以连接来自四个方向得导线,而且连接点可以赋予标识; ②向电路插入元器件,可直接将元器件拖曳放置在导线上,然后释放即可插入电路中。

(3)电路图选项得设置

Circuit/Schematic Option对话框可设置标识、编号、数值、模型参数、节点号等得显示方式及有关栅格(Grid)、显示字体(Fonts)得设置,该设置对整个电路图得显示方式有效。其中节点号就是在连接电路时,EWB自动为每个连接点分配得。

2.使用仪器

(1) 电压表与电流表

从指示器件库中,选定电压表或电流表,用鼠标拖拽到电路工作区中,通过旋转操作可以改变其引出线得方向。双击电压表或电流表可以在弹出对话框中设置工作参数。电压表与电流表可以多次选用。

(2) 数字多用表数字多用表得量程可以自动调整。下图就是其图标与面板。

其电压、电流档得内阻,电阻档得电流与分贝档得标准电压值都可以任意设置。从打开得面板上选Setting 按钮可以设置其参数。

(3)示波器

示波器为双踪模拟式,其图标与面板如下图所示。

其中:

Expand ---- 面板扩展按钮;

Time base ---- 时基控制;

Trigger ---- 触发控制;包括:

①Edge---- 上(下)跳沿触发

②Level---- 触发电平

③触发信号选择按钮:Auto(自动触发按钮);A、B(A、B通道触发按钮);

Ext(外触发按钮)

X(Y)position ---- X(Y)轴偏置;

Y/T、B/A、A/B ---- 显示方式选择按钮(幅度/时间、B通道/A通道、A通道/B通道);

AC、0、DC ---- Y轴输入方式按钮(AC、0、DC)。

(4)信号发生器

信号发生器可以产生正弦、三角波与方波信号,其图标与面板如下图所示。可调节方波与三角波得占空比。

(5)波特图仪

波特图仪类似于实验室得扫频仪,可以用来测量与显示电路得幅度频率特性与相位频率特性。波特图仪得图标与面板如下图所示。

波特图仪有IN与OUT两对端口,分别接电路得输入端与输出端。每对端口从左到右分别为+V端与-V端,其中IN端口得+V端与-V端分别接电路输入端得正端与负端,OUT端口得+V端与-V端分别接电路输出端得正端与负端。此外在使用波特图仪时,必须在电路得输入端接入AC(交流)信号源,但对其信号频率得设定并无特殊要求,频率测

量得范围由波图仪得参数设置决定。

其中:

Magnitude(Phase)---- 幅频(相频)特性选择按钮;

Vertical(Horizontal)Log/Lin ---- 垂直(水平)坐标类型选择按钮(对数/线性);

F(I)---- 坐标终点(起点)。

(6)字信号发生器

字信号发生器实际上就是一个多路逻辑信号源,它能产生16位同步逻辑信号,用于对数字逻辑电路进行测试。上图就是其图标与面板。

在字信号编辑区,字信号以4位16进制数编辑与存放。EWB5、0可以存放1024条字信号,编辑区得内容可通过滚动条前后移动。用鼠标单击可以定位与插入需编辑得位置,然后输入16进制数码。还可在面板下部得二进制字信号输入区输入二进制码。在地址编辑区可以编辑或显示与字信号地址有关得信号。

把鼠标指针移到左边地址编辑区中要改变值得位置,在这可以输入0~9或A、B、C、D、E、F,在二进制信号编辑区中即可显示出输入得十六进制数对应得二进制数。如图1中地方

得十六进制数,二进制字信号编辑区中即显示“00011”,同时在字信号地址编辑区得“Edet”中显示出该十六进制数得地址“000B”。

字信号得输出方式有三种:

Step(单步):每单击一次“Step”,则字信号输出一条, 字信号编辑区中得地址下移一行,此方式可用于对电路进行单步调试。

Burst(单帧):每按一次“Burst”,则从首地址开始至末地址连续逐条输出字信号。

Crcle(循环):按“Crcle”,则从首地址至尾地址循环不断得输出。

选中某地址信号后,按“Breakpoint”则该地址被设置成中断点。“Burst”输出时,运行至该地址输出暂停。再单击“Pause”或按“F9”恢复输出。

字信号得触发方式:

当选择“Internal(内)”触发方式时,字信号得输出直接由输出方式按钮(“Step”、“Burst”与“Crcle”)启动。

当选择“External(外)”触发方式时,则需接入外触发脉冲信号,再定义“上升沿触发”或“下降沿触发”,单击输出方式按钮,待触发脉冲到来时才启动输出。

此外,在“数据准备好输出端”还可得到与输出信号同步得时钟脉冲输出。

按下“Pattern方式”按钮弹出下图对话框。

其中前三个选项为清除、打开、存盘,用于对编辑区得字信号进行相应得操作。字信号存盘后文件扩展名为“、DP”。而后四个项目用于在编辑区生成按一定规律排列得字信号。

(7)逻辑分析仪

逻辑分析仪可以同步记录与显示16路逻辑信号,因此,当把电路得输入信号与输出信号都接入逻辑分析仪得输入端时,可以同步显示出输入信号与输出信号得波形,从而可以帮助我们分析出电路得逻辑功能。

单击仪器库图标,打开仪器库,将逻辑分析仪图标拖到工作区,再双击该图标,显示其面板如下图所示。面板上部为波形记录区,左边就是16路信号输入端,自上而下下依次排列,上面第一路就是输入信号得最低位,下面最后一路就是输入信号得最高位。在波形记录区得两边各有一根读数指针,拖曳读数指针到适当得位置,可读取波形数据。面板下方为读数显示与控制区。读数显示可读出指针1与指针2对应得时间值,以及两个指针所在位置得16路信号值(即逻辑值,以16进制数读出)。控制操作有停止(Stop)、复位(Reset)、采样频率设置(Clock set)、水平时间刻度设置与触发模式设置(triggle set)。停止操作与触发模式设置有关,不详细介绍了。复位钮对逻辑分析仪产生复位控制。在运行中,每按一下复位钮,记录区波形被清除,并重新开始显示波形;在停止运行后按下复位钮,则消除波形记录区得波形。采样频率一般默认系统设定值即可。调节水平时间刻度设置,可调整波形得疏密。

(8)逻辑转换器

逻辑转换器就是EWB软件虚拟得仪器,它没有实际仪器与之对应。但它能实现逻辑图、逻辑式(与-或逻辑式或或-与逻辑式)与真值表三者之间得相互转换功能,这对于逻辑电路设计与分析都就是十分有用得。

单击仪器库图标,打开仪器库,把逻辑转换器图标拖到工作区,再双击该图标,展开它得面板如下图所示。它有三个功能区:一个就是真值表区,最多可以有8个输入变量A-H;一个就是逻辑功能转换操作区,提供有6种转换功能;还有一个逻辑式表达区,用于编辑与显示逻辑式。

3、元器件库与元器件得创建与删除

对于一些没有包括在元器件库内得元器件,可以采用自己设定得方法,自建元器件库与相应元器件。

EWB自建元器件有两种方法:一种就是将多个基本元器件组合在一起,作为一个"模块"使用,可采用下文提到得子电路生成得方法来实现;另一种方法就是以库中得基本元器件为模板,对它内部参数作适当改动来得到,因而有

其局限性。

若想删除所创建得库名,可到EWB得元器件库子目录名"Model"下,找出所需删除得库名,然后将它删除。

4、子电路得生成与使用

为了使电路连接简洁,可以将一部分常用电路定义为子电路。方法如下:首先选中要定义为子电路得所有器件,然后单击工具栏上得生成子电路得按钮或选择Circuit/Create Subcircuit命令,在所弹出得对话框中填入子电路名称并根据需要单击其中得某个命令按钮,子电路得定义即告完成。所定义得子电路将存入自定义器件库中。

一般情况下,生成得子电路仅在本电路中有效。要应用到其它电路中,可使用剪贴板进行拷贝与粘贴操作,也可将其粘贴到(或直接编辑在)Default、ewb文件得自定义器件库中。以后每次启动EWB,自定义器件库中均自动包含该子电路供随时调用。

5、帮助功能得使用

EWB提供了丰富得帮助功能,选择Help/Help Index命令可调用与查阅有关得帮助内容。对于某一元器件或仪器,"选中"该对象,然后按F1键或单击工具栏得帮助按钮,即可弹出与该对象相关得内容。建议充分利用帮助内容。6、基本分析方法

(1)直流工作点得分析

直流工作点得分析就是对电路进行进一步分析得基础。在分析直流工作点之前,要选定

Circuit/Schematic Option中Show nodes(显示节点)项,以把电路得节点号显示在电路图上。

(2)交流频率分析

交流频率分析即分析电路得频率特性。需先选定被分析得电路节点,在分析时,电路得直流源将自动置零,交流信号源、电容、电感等均处于交流模式,输入信号也设定为正弦波形式。

(3)瞬态分析

瞬态分析即观察所选定得节点在整个显示周期中每一时刻得电压波形。在进行瞬态分析时,直流电源保持常数,交流信号源随着时间而改变,电容与电感都就是能量储存模式元件。在对选定得节点作瞬态分析时,一般可先对该节点作直流工作点得分析,这样直流工作点得结果就可作为瞬态分析得初始条件。

(4)傅里叶分析

傅里叶分析用于分析一个时域信号得直流分量、基频分量与谐波分量。一般将电路中交流激励源得频率设定为基频,若在电路中有几个交流源时,可以将基频设定在这些频率得最小公因数上。

第四节EWB电子电路仿真

1.用虚拟工作台仿真电路得步骤

由于EWB增加了虚拟测量仪器、实时交互控制元件与多种受控信号源模型,除了可以给出以数值与曲线表示得SPICE分析结果外,EWB还提供了独特得虚拟电子工作台仿真方式,可以用虚拟仪器实时监测显示电路得变量值,频响曲线与波形。仿真得步骤为:

(1) 输入原理图,在工作区放置元件得原理图符号,连接导线,设置元件参数;

(2) 放置与连接测量仪器,设置测量仪器参数;

(3) 启动仿真开关,在仪器上观察仿真结果。

2.仿真实例

1、RC低通滤波器电路得仿真

在电路工作区输入如下图电路。其中包含两个正弦交流电压源,一个为1V 2kHz, 一个为5v 60Hz,另有一个周期脉冲电压源(时钟源),幅度5V, 频率50Hz, 占空比50%,两组电源用开关来切换。电路得输入为节点8,输出为节点3。如图连接波特图仪、示波器与电压表。

(1).测试电路得频率特性曲线

双击波特图仪图标打开其面板,然后单击仿真启动开关,在波特图仪得显示屏幕上可以观瞧电路得幅度频

率特性与相位频率特性曲线。曲线如下两图所示。

幅度频率特性

相位频率特性

(2).观测电路得滤波效果

按空格键将开关连接到两个正弦交流信号源上。双击连接示波器输入得导线,将两个通道得输入导线设置成不同得眼色以便于波形得观察。打开示波器面板,启动电路仿真开关,这时在示波器上可以瞧到两个波形(下图)。

输入波形为60H正弦波与2kHz小幅度正弦波得叠加波形。输出波形中,2kHz正弦波成分已经基本上被滤除。

(3).观察电路对周期脉冲序列得瞬态响应

按空格键将开关连接到周期脉冲信号源上。启动电路仿真开关,这时在示波器上可以瞧到两个波形(下图)。输入波形为周期方波,输出波形为按指数规律上升、下降得脉冲序列。改变输入脉冲波得频率,可以瞧到输出波形得形状发生变化。

2、共发射极单级放大电路得仿真

(1)电路得创建

电路图如下图示。采取前文提到得方法连接电路、设置元器件参数并连接仪器,同时设置连接到示波器输入端得导线为不同颜色,这样可区分两路不同得波形。

(2) 电路文件得保存

电路创建好以后可将其保存,以备调用。

(3)电路得仿真实验

①双击有关仪器得图标打开其面板,准备观察被测试点得波形。

②按下电路启动/停止开关,仿真实验开始。如果要使实验过程暂停,可单击右上角得Pause(暂停)按钮,再次单击Pause按钮,实验恢复运行。

③调整示波器得时基与通道控制,使波形显示正常。

一般情况下,示波器连续显示并自动刷新所测量得波形。如果希望仔细观察与读取波形数据,可以设置Analysis/Analysis Options/Instruments对话框中Pause after each screen(示波器屏幕满暂停)选项。

④从波特图仪得面板上观测电路得幅频特性与相频特性。如果对波特图仪面板参数进行修改,修改后建议重新启动电路,以保证曲线得精确显示。

(4)电路得描述

选择Window/Description命令可打开电路描述窗口,可以在改窗口中输入有关实验电路得描述内容。(5)实验结果得输出

实验结果得输出主要指:

①最终测试电路得保存。

②输出电路图或仪器面板(包括显示波形)到其它文字或图形编辑软件,这主要用于实验报告得编写。该操作可通过选择Edit/Copy as Bitmap命令来完成,具体操作方法请参阅EWB得帮助文件。

③打印输出。

EWB仿真实验及结论

E W B仿真实验及结论 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

E W B仿真实验及结论 1)ewb使用特点: 与其它电路仿真软件相比,EWB具有界面友好、操作方便等优点。在EWB中,可以直接使用工具按钮完成创建电路、选用元件和测试仪器的工作,而且测试仪器的外观与实物基本相似。稍具电路知识的人员,可以在很短的时间内掌握EWB的基本操作方法。 对学习电类课程而言,EWB是一种理想的计算机辅助教学软件。因为要弄清电路的功能,不仅需要理论分析,还需要通过实践来验证并加深理解。 作为电类课程的一种辅助教学手段,它可以弥补实验仪器、元器件缺乏带来的不足,可以使学习者更快、更好地掌握课堂讲述的内容,加深对概念、原理的理解;而且通过电路仿真,可以让学习者熟悉常用仪器的使用方法,培养他们的综合分析能力、排除故障能力,激发他们的创新能力。 EWB最明显的特点是,构造仿真环境的方法与搭建实际电路的方法基本相同,仪器的面板同实际仪器极为类似,因此特别容易学习和使用。EWB的元器件库不仅提供了数千种电路元器件供选用,而且还提供了各种元器件的理想值。通过用理想元件进行仿真,可以获得电路性能的理想值。此外,EWB允许用户自定义元器件,自定义元器件时需要的参数可以直接从生产厂商的产品使用手册中查到,这样就为用户带来了极大的方便。EWB提供了比较强大的电路分析手段,不仅可以完成电路的瞬态分析和稳态分析、时域和频域分析、噪声分析和失真分析,还提供了傅里叶分析、零极点分析、灵敏度分析和容差分析等分析方法,以帮助用户分析电路的性能。此外它还允许用户为仿真电路中的元件设置各种故障(如开路、短路和不同程度的漏电等),从而观察电路在不同故障下的工作情况。在进行仿真的同时,它可以存储被测点的所有数据,列出仿真电路中所有元件的清单、显示波形和具体数据等。用EWB创建电路所需的元器件库与目前常用的电路分析软件(如“SPICE”)元器件库是完全兼容的,换言之,两者可以相互转换。同时,在EWB下创建的电路,可以按照常见的印刷电路板排版软件(如“PROTEL”、“ORCAD”和“TANGO”等)

实验5 EWB设计应用

实验五EWB5.0设计应用 班级:学号:姓名: 实验时间:2014年月日;实验学时:2学时;实验成绩: 一、实验目的 1.熟悉EWB5.0的使用环境和EWB5.0使用一般步骤。 2.掌握模拟、数字电子电路的设计与仿真方法。 二、实验内容 1、虚拟仪器的使用 (1)示波器 示波器为双踪模拟式,其图标和面板如下图1所示。 图 1 虚拟示波器 其中:Expand ---- 面板扩展按钮; Time base ---- 时基控制; Trigger ---- 触发控制,包括:①Edge ---- 上(下)跳沿触发; ②Level ---- 触发电平; ③触发信号选择按钮:Auto(自动触发按钮); A、B(A、B通道触发按钮);Ext(外触发按钮) X(Y)position ---- X(Y)轴偏置; Y/T、B/A、A/B ---- 显示方式选择按钮(幅度/时间、B通道/A通道、A通道/B通道); AC、0、DC ---- Y轴输入方式按钮(AC、0、DC)。 (2)电压表 电压表的图标:,电压表的属性设置对话框如右图2所示。

图 2 电压表的属性设置对话框 (3)电流表 电流表的图标: ,电流表的属性设置对话框如图3所示。 图 3 电流表的属性设置对话框 (4)数字信号发生器 数字信号发生器的图标: ,数字信号发生器的属性设置对话框如图4所示: 图4 虚拟数字信号发生器 面板

(5)逻辑分析仪 逻辑分析仪的图标:,逻辑分析仪输出结果图5所示: 图5 虚拟逻辑分析仪的输出结果 2、实验电路图 (1)半波整流电容滤波电路仿真实验原理如图6。 图6 半波整流电容滤波电路(2)数字全加器电路如图7 图7 数字全加器逻辑图

EWB操作简介

电路设计与仿真软件—EWB5.OC操作技术 EWB(Electronics Workbench,电子工作台)是加拿大Interactive Image Technologies Ltd.公司开发的专用电路设计与仿真软件,它以SPICE3F5为软件核心,增强了其在数字及模拟混合信号方面的仿真功能,是一个非常优秀的专门用于电子电路设计与仿真分析的EDA软件。自1988年发布以来,EWB已被30多个国家使用,目前应用较多的是1996年推出的Electronics Workbench 5.0版,该软件对系统要求不高,总容量不到17MB,可以从网上下载,使用时无元件数量限制。由于EWB本身提供了丰富的元器件模型和完善的分析工具,加之采用原理图方式直接输入电路,电路设计极为方便、仿真功能非常强大,现已成为电路课程仿真教学和电子产品开发设计的常用软件。 一、EWB操作流程 的电子实验室主要由工作架和工作台组成,工作架上摆放有搭接 电路的元器件和测试电路的仪器设备,实验人员将仪器设备和元 器件从工作架移到工作台上,搭接好实验电路,打开电源开关即 可进行电路测试。EWB正是按照这种实验室的工作过程来设计软 件的操作流程。用EWB软件来设计电路并进行仿真分析的操作流 程主要包括:放置元件、调整方位、设置参数、元件连线、接入 仪器、仿真分析和结果处理等七个操作步骤。电路设计与仿真分 析的操作流程如图1所示,下面以EWB5.0C为例分别加以介绍。 1.放置元件 EWB与其它WINDOWS应用程序一样,有一个基本的工作界 面,该界面主要由标题栏、菜单栏、工具栏、元器件栏、电路工 作区、仿真电源开关和电路描述区等部分组成。元器件栏相当于 实验室的工作架,在元器件栏中按类别存放有不同的元器件和测 试仪器。元器件栏共有自定义器件库、信号源库、基本器件库、 二极管库、三极管库、模拟集成电路库、混合集成电路库、数字 集成电路库、逻辑门电路库、数字模块库、指示器件库、控制器 件库、其它器件库和仪器库等14个元器件库。点击元器件库,从库中将元器件拖曳至电路工作区,即可完成放置元件的操作步骤。 2.调整方位 设计制作电路原理图时,往往需要适当调整元器件的方向和位置,使电路整洁有序。调整元器件的方向,可先选中元器件,利用Ctrl+R快捷方式实现旋转操作,也可使用工具栏的旋转、垂直反转、水平反转,或选择菜单命令Circuit\Rotate、Circuit\Flip Vertical、Circuit\Flip Horizontal实现元器件的旋转或反转操作。调整元器件的位置可用鼠标拖曳选中元件到指定位置后松开,也可先选中元件,用键盘上的箭头键使之作微小移动。取消选中只需单击电路工作区的空白部分即可。 3.设置参数 双击电路工作区中的元器件可弹出属性对话框,选中元器件后点击工具栏中的元器件属性按钮,或右击鼠标,选中元件属性命令,或执行菜单命令Circuit\Component Properties,也可弹出属性对话框。在元件属性对话框中一般可设置标识、模型、数值、故障、显示和分析设置等元件参数。图2以电阻元件为例,列举了一个属性参数设置窗口实例,其它参数窗口可参照设置。 4.元件连线 1

Ewb仿真实验与实例教程

Ewb仿真实验与实例教程 1 Electronics Workbench简介 电子设计自动化(Electronic Design Automation,简称EDA)技术是近代电子信息领域发展起来的杰出成果。EDA包括电子工程设计的全过程,如系统结构模拟、电路特性分析、绘制电路图和制作PCB(印刷电路板),其中结构模拟、电路特性分析称之为EDA仿真。目前著名的仿真软件SPICE(Simulation Program With Integrated Circuit Emphasis)是由美国加州大学伯克利分校于1972年首先推出的,经过多年的完善,已发展成为国际公认的最成熟的电路仿真软件,当今流行的各种EDA软件,如PSPICE、or/CAD、Electronics Workbench等都是基于SPICE开发的。 Electronics Workbench(简称EWB)是加拿大Interactive Image Technologies Led 公司于1988年推出的,它以SPICE3F5为模拟软件的核心,并增强了数字及混合信号模拟方面的功能,是一个用于电子电路仿真的“虚拟电子工作台”,是目前高校在电子技术教学中应用最广泛的一种电路仿真软件。 EWB软件界面形象直观,操作方便,采用图形方式创建电路和提供交互式仿真过程。创建电路需要的元器件、电路仿真需要的测试仪器均可直接从屏幕中选取,且元器件和仪器的图形与实物外型非常相似,因此极易学习和操作。 EWB软件提供电路设计和性能仿真所需的数千种元器件和各种元器件的理想参数,同时用户还可以根据需要新建或扩充元器件库。它提供直流、交流、暂态的13种分析功能。另外,它可以对被仿真电路中的元器件设置各种故障,如开路、短路和不同程度的漏电,以观察不同故障情况下电路的状态。EWB软件输出方式灵活,在仿真的同时它可以储存测试点的所有数据,列出被仿真电路的所有元器件清单,显示波形和具体数据等。由于它所具有的这些特点,非常适合做电子技术的仿真实验。 2 EWB的基本界面 [要点提示]

EWB仿真实验及结论

EWB仿真实验及结论 1)ewb使用特点: 与其它电路仿真软件相比,EWB具有界面友好、操作方便等优点。在EWB中,可以直接使用工具按钮完成创建电路、选用元件和测试仪器的工作,而且测试仪器的外观与实物基本相似。稍具电路知识的人员,可以在很短的时间内掌握EWB 的基本操作方法。 对学习电类课程而言,EWB是一种理想的计算机辅助教学软件。因为要弄清电路的功能,不仅需要理论分析,还需要通过实践来验证并加深理解。 作为电类课程的一种辅助教学手段,它可以弥补实验仪器、元器件缺乏带来的不足,可以使学习者更快、更好地掌握课堂讲述的内容,加深对概念、原理的理解;而且通过电路仿真,可以让学习者熟悉常用仪器的使用方法,培养他们的综合分析能力、排除故障能力,激发他们的创新能力。 EWB最明显的特点是,构造仿真环境的方法与搭建实际电路的方法基本相同,仪器的面板同实际仪器极为类似,因此特别容易学习和使用。EWB的元器件库不仅提供了数千种电路元器件供选用,而且还提供了各种元器件的理想值。通过用理想元件进行仿真,可以获得电路性能的理想值。此外,EWB允许用户自定义元器件,自定义元器件时需要的参数可以直接从生产厂商的产品使用手册中查到,这样就为用户带来了极大的方便。 EWB提供了比较强大的电路分析手段,不仅可以完成电路的瞬态分析和稳态分析、时域和频域分析、噪声分析和失真分析,还提供了傅里叶分析、零极点分析、灵敏度分析和容差分析等分析方法,以帮助用户分析电路的性能。此外它还允许用户为仿真电路中的元件设置各种故障(如开路、短路和不同程度的漏电等),从而观察电路在不同故障下的工作情况。在进行仿真的同时,它可以存储被测点的所有数据,列出仿真电路中所有元件的清单、显示波形和具体数据等。用EWB创建电路所需的元器件库与目前常用的电路分析软件(如“SPICE”)元器件库是完全兼容的,换言之,两者可以相互转换。同时,在EWB下创建的电路,可以按照常见的印刷电路板排版软件(如“PROTEL”、“ORCAD”和“TANGO”等)所支持的格式进行保存,然后将其输入至相应的软件进行处理,自动排出印制电路板。 2)仿真电路图:

EWB仿真设计

基于EWB的数字电路仿真和设计 ――编码器和译码器部分 前言 在当今电子设计领域,EWB设计和仿真是一个十分重要的设计环节。在众多的设计和仿真软件中,EWB以其强大的仿真设计应用功能,在各高校电信类专业电子电路的仿真和设计中得到了较广泛的应用。EWB及其相关库包的应用对提高学生的仿真设计能力,更新设计理念有较大的好处。 EWB最突出的特点是用户界面友好,各类器件和集成芯片丰富,尤其是其直观的虚拟仪表是EWB的一大特色。EWB包含的虚拟仪表有:示波器,万用表,函数发生器,波特图图示仪,失真度分析仪,频谱分析仪,逻辑分析仪,网络分析仪等。而通常一个普通实验室是无法完全提供这些设备的。这些仪器的使用使仿真分析的操作更符合平时实验的习惯。 本次毕业设计主要是应用EWB软件来进行设计和仿真编码器以及译码器的工作原理、基本应用电路等,并硬件实验调试通过,通过仿真和硬件实验进行结果分析对比。

1 EWB的简介 EWB是一种电子电路计算机仿真软件,它被称为电子设计工作平 台或虚拟电子实验室,英文全称为Electronics Workbench。EWB是 加拿大Interactive Image Technologies公司与1988年开发的,自 发布以来,已经有35个国家、10种语言的人在使用。EWB以SPICE3F5 为软件核心,增强了其在数字及模拟混合信号方面的仿真功能。 1.1 EWB的软件界面简介 1. EWB的主窗口 图1

2.元件库栏 图2 2.信号源库 图3 3.基本器件库 图4 5.二极管库 指示 图5

6.仪器库 图6 1.2 EWB的基本操作方法 1.Electronics Workbench 基本操作方法介绍 其他操作方法相对简单,下面就常用的仪器举例说明: 1)数字多用表 数字多用表的量程可以自动调整。下图是其图标和面板。 其电压、 图7 电流档的内阻,电阻档的电流和分贝档的标准电压值都可以任意设置。从打开的面板上选Setting 按钮可以设置其参数。 2)示波器 示波器为双踪模拟式,其图标和面板如下图所示。

DCDC设计实例(很多例子) 免费下载

DCDC设计实例 一.题目 设计一个PWM开关稳压电源。 要求 : 输入电压 1-2 V 升压 5-20V 二.设计方案 方案1: 实验原理 开关稳压电源原理如图 和串联反馈式稳压电路相比,电路增加了LC滤波电路以及产生固定频率的三角波电压发生器和比较其组成的控制电路。Vi为整流滤波电路输出电压,Vb为比较器输出电压。Vb>0时,三极管饱和导通,二极管D截止,电感储能,电容充电,。而Vb<0时,三极管截止,滤波电感产生自感电势,二极管导通,于是电感中储存的能量向负载释放。输出电压Vo位Vo=qV1,q为脉冲波形的占空比,故称脉宽调制开关稳压电源。

当Vf>Vref时,比较放大器输出电压Va为负值,Va与固定频率三角波电压Vt 相比较,得到Vb的的方波波型,其占孔比q<50%,使输出电压下降到预定的稳压值。同理,V1下降,Vo也下降,Vf

方案2: DC/DC变换器的基本类型 开关电源是进行交流/直流、直流/直流,直流/交流的功率变换的电源,其核心部分就是DC/DC变换器。其工作原理:控制通/断电时间比可以改变的电子开关元件,将直流电能变换为脉冲状交流电能,然后通过储能元件或变压器对脉冲交流电能的幅度按人们的要求做必要的变换,再经平滑滤波器变为直流。升压型变换器 如图表1,当开关管VT导通时,电流经电感L和开关管入地,电感上的电压降左端为正,右端为负,随着电流的增大,储存于电感中的磁能增大;当开关管截止时,电感上的电压调转极性,左端为负,右端为正,二极管导通,电流对电容C充电。可见,输出电压UO高于输入电压UI。在VT导通,VD截止期,负载上的电流是有电容放电维持的。 在开关管和二极管导通时的电压降远比输入的电压小时,则在VT导通期间 ILMAX=ILMIN+UI/L*ton 在VT截止期间 ILMIN=ILMAX-(UO-UI)/L*toff 由以上二式可得 UO=UI(ton-toff)/toff=1/(1-D)*UI

EWB仿真软件介绍

第一节EWB电子电路仿真软件简介 电子工作平台Electronics Workbench (EWB)(现称为MultiSim) 软件是加拿大Interactive Image Technologies公司于八十年代末、九十年代初推出的电子电路仿真的虚拟电子工作台软件,它具有这样一些特点: (1)采用直观的图形界面创建电路:在计算机屏幕上模仿真实实验室的工作台,绘制电路图需要的元器件、电路仿真需要的测试仪器均可直接从屏幕上选取; (2)软件仪器的控制面板外形和操作方式都与实物相似,可以实时显示测量结果。 (3)EWB软件带有丰富的电路元件库,提供多种电路分析方法。 (4)作为设计工具,它可以同其它流行的电路分析、设计和制板软件交换数据。 (5)EWB还是一个优秀的电子技术训练工具,利用它提供的虚拟仪器可以用比实验室中更灵活的方式进行电路实验,仿真电路的实际运行情况,熟悉常用电子仪器测量方法。 因此非常适合电子类课程的教学和实验。这里,我们向大家介绍EWB软件的初步知识,基本操作和分析方法,。更深入的内容请阅读相关书籍。

第二节EWB电子电路仿真软件界面1.EWB的主窗口 2.元件库栏

信号源库 基本器件库 二极管库

模拟集成电路库 指示器件库 仪器库 第三节EWB的基本操作方法介绍

1.创建电路 (1)元器件操作 元件选用:打开元件库栏,移动鼠标到需要的元件图形上,按下左键,将元件符号拖拽到工作区。 元件的移动:用鼠标拖拽。 元件的旋转、反转、复制和删除:用鼠标单击元件符号选定,用相应的菜单、工具栏,或单击右键激活弹出菜单,选定需要的动作。 元器件参数设置:选定该元件,从右键弹出菜单中选Component Properties可以设定元器件的标签(Label)、编号(Reference ID)、数值(Value)和模型参数(Model)、故障(Fault)等特性。 说明:①元器件各种特性参数的设置可通过双击元器件弹出的对话框进行;②编号(Reference ID)通常由系统自动分配,必要时可以修改,但必须保证编号的唯一性;③故障(Fault)选项可供人为设置元器件的隐含故障,包括开路(Open)、短路(Short)、漏电(Leakage)、无故障(None)等设置。 (2)导线的操作 主要包括:导线的连接、弯曲导线的调整、导线颜色的改变及连接点的使用。 连接:鼠标指向一元件的端点,出现小园点后,按下左键并拖拽导线到另一个元件的端点,出现小园点后松开鼠标左键。 删除和改动:选定该导线,单击鼠标右键,在弹出菜单中选delete 。或者用鼠标将导线的端点拖拽离开它与元件的连接点。 说明:①连接点是一个小圆点,存放在无源元件库中,一个连接点最多可以连接来自四个方向的导线,而且连接点可以赋予标识;②向电路插入元器件,可直接将元器件拖曳放置在导线上,然后释放即可插入电路中。 (3)电路图选项的设置 Circuit/Schematic Option对话框可设置标识、编号、数值、模型参数、节点号等的显示方式及有关栅格(Grid)、显示字体(Fonts)的设置,该设置对整个电路图的显示方式有效。其中节点号是在连接电路时,EWB自动为每个

EWB仿真软件介绍

第一节EWB 电子电路仿真软件简介 电子工作平台Electronics Workbench (EWB)(现称为MultiSim)软件是加拿大Interactive Image Technologies 公司于八十年代末、九十年代初推出的电子电路仿真的虚拟电子工作台软件,它具有这样一些特点: (1)采用直观的图形界面创建电路:在计算机屏幕上模仿真实实验室的工作台,绘制电路图需要的元器件、电路仿真需要的测试仪器均可直接从屏幕上选取; (2)软件仪器的控制面板外形和操作方式都与实物相似,可以实时显示测量结果。 (3)EWBK件带有丰富的电路元件库,提供多种电路分析方法。 (4)作为设计工具,它可以同其它流行的电路分析、设计和制板软件交换数据。 (5)EW呢是一个优秀的电子技术训练工具,利用它提供的虚拟仪器可以用比实验室中更灵活的方式进行电路实验,仿真电路的实际运行情况,熟悉常用电子仪器测量方法。 因此非常适合电子类课程的教学和实验。这里,我们向大家介绍EWB软件的初步知识,基本操作和分析方法,更深入的内容请阅读相关书籍。

第二节EWB电子电路仿真软件界面 1 . EWB勺主窗口 苑单栏元件库栏工具栏暂停f恢复开关启动需止开关 狀帝雜电路描述框冷曲谕很爲电路工作区2?元件库栏 自定义库基本元件库晶悴管库混和集成电路逻辑门葩路指示器件库其它器(+库 ―极管库酸字集成电路庫揑制器件库信号源库

動? ◎ 令I 剧令I 兮#詞團 基本器件库 连接点电容 变压器 开关 延迟开关 二极管库 二极管稳压二枫管发光二极管全波桥武整流器 模拟集成电路库 2d £>降|毘珠妙]回 _______ ] ____ I ___ I I ■ 「I 五端总啟 指示器件库 凶 电压源 电压漏电驀 盏电压源 龙 SH 电池 i fi 电压香电压源

EWB使用

第2章 EWB 5.0C 元器件库的使用 2.1 信号源库 该库内有:接地、电池、直流电流源、交流电压源、交流电流源、电压控制电压源、电压控制电流源、电流控制电压源、电流控制电流源、V CC电压源、V DD电压源、时钟脉冲源、调幅源、调频源、压控正弦波振荡器、压控三角波振荡器、压控方波振荡器、受控单脉冲、分段线性源、压控分段线性源、频移键控源FSK、多项式源和非线性相关源共23个图标按钮。下面仅就常用的、有代表性的电源(信号源)图标按钮介绍如下。 2.1.1 电池 单击信号源库,在其下拉的子图标按钮组中点选电池图标按钮不放,拖动鼠标将电池图形拽到电路工作区内。根据需要对电池的参数及标识进行设置,有三种方法可调出参数设置对话框: 1. 双击设置对象(指组成电路的元素); 2. 在设置对象上单击鼠标右键,在其下拉的子菜单中单击Component Properties选项; 3. 单击菜单栏中的电路菜单,在其下拉的子菜单中单击Component Properties选项。 请注意,不论用那一种方法须首先选中设置对象(它以红色显示)。调出的电池参数设置对话框如图2.1.1所示。 图2.1.1 电池参数设置对话框(Label项) 该对话框共有五个选项,其余各元器件的设置对话框与此基本相同。五个选项的名称及设置方法如下: ●Label标号 如图2.1.1所示。图中的参考ID编号是系统自动分配的,可以修改,但不能有重号。标号项可以随意设置,也可以输入汉字。但须注意,Label项的框内最多输入20个数字或符号(十个汉字),且不接受上下脚标。在电路图上可显示参考ID值(图中为隐藏),如自动分配的编号是V1,用户设置的标识是DC,在电路中将显示DC/V1 。 ●Value数值 如图2.1.2 所示。当选择了数值选项后,可先输人数值(9位)再输入单位,这时用鼠标单击单位框右边上、下三角,改变为所需要的单位。在EWB 5.0C中电压的单位有kV、V、mV、μV。 ●Fault错误 如图2.1.3所示。错误选项可以人为地设置元器件的故障(隐含)用于仿真实际电路,共有三种选择: ●泄漏(Leakage):即在选定元件的两个端子之间接上一个电容使电流被旁路。

EWB概述

第一章EWB概述 EWB是Electronics Workbench的缩写,称为电子工作平台,是一种在电子技术界广为应用的优秀计算机仿真设计软件,被誉为"计算机里的电子实验室". 其特点是图形界面操作,易学、易用,快捷、方便,真实、准确,使用EWB可实现大部分硬件电路实验的功能. 电子工作平台的设计试验工作区好像一块"面包板",在上面可建立各种电路进行仿真实验.电子工作平台的器件库可为用户提供350多种常用模拟和数字器件,设计和试验时可任意调用. 虚拟器件在仿真时可设定为理想模式和实模式,有的虚拟器件还可直观显示,如发光二极管可以发出红绿蓝光,逻辑探头像逻辑笔那样可直接显示电路节点的高低电平,继电器和开关的触点可以分合动作,熔断器可以烧断,灯泡可以烧毁,蜂鸣器可以发出不同音调的声音,电位器的触点可以按比例移动改变阻值. 电子工作平台的虚拟仪器库存放着数字电流表、数字电压表、数字万用表、双通道1000MHz 数字存储示波器、999MIHz数字函数发生器、可直接显示电路频率响应的波特图仪、16路数字信号逻辑分析仪、16位数字信号发生器等,这些虚拟仪器随时可以拖放到工作区对电路进行测试,并直接显示有关数据或波形. 电子工作平台还具有强大的分析功能, 可进行直流工作点分析, 暂态和稳态分析,高版本的EWB还可以进行傅立叶变换分析、噪声及失真度分析、零极点和蒙特卡罗等多项分析. 使用EWB对电路进行设计和实验仿真的基本步骤是: 1、用虚拟器件在工作区建立电路; 2、选定元件的模式、参数值和标号; 3、连接信号源等虚拟仪器; 4、选择分析功能和参数; 5、激活电路进行仿真; 6、保存电路图和仿真结果. 第二章初识EWB 2.1 EWB5.0的安装和启动 EWB5.0版的安装文件是EWB50C.EXE.新建一个目录EWB5.0作为EWB的工作目录,将安装文件复制到工作目录,双击运行即可完成安装. 安装成功后,在工作目录下会产生可执行文件EWB32.EXE 和其它一些文件,EWB32.EXE的图标如图2-1,双击该图标即可运行EWB.也可以在Windows的桌面上创建EWB32.EXE的快捷方式,通过此快捷方式启动EWB. 2.2 认识EWB的界面 EWB与其它Windows应用程序一样,有一个标准的工作界面,它的窗口由标题条、菜单条、常用工具栏、虚拟仪器、器件库图标条、仿真电源开关、工作区及滚动条等部分组成. 标题条中,显示出当前的应用程序名Electronics Workbench,即电子工作平台. 标题条左端有一个控制菜单框,右边是最小化、最大化(还原)和关闭三个按钮. 菜单条位于标题条的下方,共有六组菜单:File(文件)、Edie(编辑)、Circuit(电路)、Analysis(分析)、Window(窗口)和Help(帮助), 在每组菜单里,包含有一些命令和选项,建立电路、实验分析和结果输出均可在这个集成菜单系统中完成. 在常用工具栏中,是一些常用工具按钮.

EWB 数字仪表的使用

数字仪表的使用 数字仪表包括字信号发生器、逻辑分析仪、逻辑转换仪。 一、字信号发生器的使用 字信号发生器实际上是一个多路逻辑信号源,它能产生16位同步逻辑信号,用于对数字逻辑电路进行测试。图1是其图标和面板。 在字信号编辑区,字信号以4位16进制数编辑和存放。EWB5.0可以存放1024条字信号,编辑区的内容可通过滚动条前后移动。用鼠标单击可以定位和插入需编辑的位置,然后输入16进制数码。还可在面板下部的二进制字信号输入区输入二进制码。在地址编辑区可以编辑或显示与字信号地址有关的信号。 图1 字信号发生器图标和面板 把鼠标指针移到左边地址编辑区中要改变值的位置,在这可以输入0~9或A、B、C、D、E、F,在二进制信号编辑区中即可显示出输入的十六进制数对应的二进制数。如图1中地方输入 的十六进制数,二进制字信号编辑区中即显示“0000001000100011”,同时在字信号地址编辑区的“Edet”中显示出该十六进制数的地址“000B”。 字信号的输出方式有三种: Step(单步):每单击一次“Step”,则字信号输出一条,字信号编辑区中的地址下移一行,此方式可用于对电路进行单步调试。 Burst(单帧):每按一次“Burst”,则从首地址开始至末地址连续逐条输出字信号。 Crcle(循环):按“Crcle”,则从首地址至尾地址循环不断的输出。

选中某地址信号后,按“Breakpoint”则该地址被设置成中断点。“Burst”输出时,运行至该地址输出暂停。再单击“Pause”或按“F9”恢复输出。 字信号的触发方式: 当选择“Internal(内)”触发方式时,字信号的输出直接由输出方式按钮(“Step”、“Burst”和“Crcle”)启动。 当选择“External(外)”触发方式时,则需接入外触发脉冲信号,再定义“上升沿触发”或“下降沿触发”,单击输出方式按钮,待触发脉冲到来时才启动输出。 此外,在“数据准备好输出端”还可得到与输出信号同步的时钟脉冲输出。 按下“Pattern方式”按钮弹出图2对话框。其中前三个选项为清除、打开、存盘,用于对编辑区的字信号进行相应的操作。字信号存盘后文件扩展名为“.DP”。而后四个项目用于在编辑区生成按一定规律排列的字信号。 图2 “Pattern(方式)”对话框 三、Electronics Workbench 基本操作方法介绍 1.创建电路 (1)元器件操作 元件选用:打开元件库栏,移动鼠标到需要的元件图形上,按下左键,将元件符号拖拽到工作区。 元件的移动:用鼠标拖拽。 元件的旋转、反转、复制和删除:用鼠标单击元件符号选定,用相应的菜单、工具栏,或单击右键激活弹出菜单,选定需要的动作。 元器件参数设置:选定该元件,从右键弹出菜单中选Component Properties可以设定元器件的标签(Label)、编号(Reference ID)、数值(Value)和模型参数(Model)、故障(Fault)等特性。 说明:①元器件各种特性参数的设置可通过双击元器件弹出的对话框进行;②编号(Reference ID)通常由系统自动分配,必要时可以修改,但必须保证编号的唯一性;③故障(Fault)选项可供人为设置元器件的隐含故障,包括开路(Open)、短路(Short)、漏电(Leakage)、无故障(None)等设置。 (2)导线的操作 主要包括:导线的连接、弯曲导线的调整、导线颜色的改变及连接点的使用。 连接:鼠标指向一元件的端点,出现小园点后,按下左键并拖拽导线到另一个元件的端点,出

ewb数字电路仿真实验

第二部分、数字电路部分 四、组合逻辑电路的设计与测试 一、实验目的 1、掌握组合逻辑电路的设计的设计与测试方法。 2、熟悉EWB中逻辑转换仪的使用方法。 二、实验内容 设计要求:有A、B、C三台电动机,要求A工作B也必须工作,B工作C也必须工作,否者就报警。用组合逻辑电路实现。 三、操作 1、列出真值表,并编写在逻辑转换仪中“真值表”区域内,将其复制到下 ABC 输入,输出接彩色指示灯,验证电路的逻辑功能。将连接的电路图复制到下表中。

五、触发器及其应用 一、实验目的 1、掌握基本JK、D等触发器的逻辑功能的测试方法。 2、熟悉EWB中逻辑分析仪的使用方法。 二、实验内容 1、测试D触发器的逻辑功能。 2、触发器之间的相互转换。 3、用JK触发器组成双向时钟脉冲电路,并测试其波形。 三、操作 1、D触发器 在输入信号为单端的情况下,D触发器用起来最为方便,其状态方程为 n n D +1 Q= 其输出状态的更新发生在CP脉冲的上升沿,故又称为上升沿触发的边沿触发器。 图2.5.1为双D 74LS74的引脚排列及逻辑符号。 图2.5.1 74LS74的引脚排列及逻辑符号在EWB中连接电路如图2.5.2所示,记录表2.5.1的功能表。 图2.5.2

在集成触发器的产品中,每一种触发器都有自己固定的逻辑功能。但可以利用转换的方法获得具有其它功能的触发器。 在T ′触发器的CP 端每来一个CP 脉冲信号,触发器的状态就翻转一次,故称之为反转触发器,广泛用于计数电路中,其状态方程为:1n n Q Q +=。 同样,若将D 触发器Q 端与D 端相连,便转成T ′触发器。如图2.5.3所示。 CP Q Q 图2.5.3 D 转成T ′ 在EWB 中连接电路如图2.5.4所示,测试其功能。 图2.5.4 D 转成T ′触发器 3、双向时钟脉冲电路的测试。 ①、按图2.5.5用JK 触发器和与非门组成双向时钟脉冲电路。

EWB电路仿真软件使用说明

EWB电路仿真软件 一、软件简介 随着电子技术和计算机技术的发展,电子产品已与计算机紧密相连,电子产品的智能化日益完善,电路的集成度越来越高,而产品的更新周期却越来越短。电子设计自动化(EDA)技术,使得电子线路的设计人员能在计算机上完成电路的功能 设计、逻辑设计、性能分析、时序测试直至印刷电路板的自动设计。EDA是在计算 机辅助设计(CAD)技术的基础上发展起来的计算机设计软件系统。与早期的CAD 软件相比,EDA软件的自动化程度更高、功能更完善、运行速度更快,而且操作界 面友善,有良好的数据开放性和互换性。 电子工作平台Electronics Workbench (EWB)(现称为MultiSim) 软件是加拿大Interactive Image Technologies公司于八十年代末、九十年代初推出的电子电路仿真的虚拟电子工作台软件,它具有这样一些特点: (1)采用直观的图形界面创建电路:在计算机屏幕上模仿真实实验室的工作台, 绘制电路图需要的元器件、电路仿真需要的测试仪器均可直接从屏幕上选取; (2)软件仪器的控制面板外形和操作方式都与实物相似,可以实时显示测量结果。 (3)EWB软件带有丰富的电路元件库,提供多种电路分析方法。 (4)作为设计工具,它可以同其它流行的电路分析、设计和制板软件交换数据。 (5)EWB还是一个优秀的电子技术训练工具,利用它提供的虚拟仪器可以用比实 验室中更灵活的方式进行电路实验,仿真电路的实际运行情况,熟悉常用电子仪器测量方法。 因此非常适合电子类课程的教学和实验。这里,我们向大家介绍EWB软件的初步知识,基本操作方法,内容仅限于对含有线性RLC元件及通用运算放大器电 路的直流、交流稳态和暂态分析。更深入的内容将在后续课程中介绍。 二、Electronics Workbench 软件界面 1.EWB的主窗口

EWB仿真分析方法

63 第5章 EWB仿真分析方法 EWB提供了14种分析工具,本章将逐一加以介绍.利用EWB提供的分析工具,可 以了解电路的基本工作状态,通过虚拟仪表测量和分析电路的各种响应,比用实际仪器测 量精度高,范围宽.用EWB仿真分析电子电路的过程可分为4个步骤. (1)创建电路:用户创建的待仿真电路图,输入元器件数据,选择分析方法. (2)参数设置:程序会检查电路的结构,输入数据的性质,以及电路中的阐述内容, 对分析参数进行设置. (3)电路分析:对输入信号作用下的电路进行分析,这是电路进行仿真和分析的关键 一步.它将形成电路的数值解,并把所得数据送至输出级. (4)数据输出:从虚拟仪器(如示波器等)上获得仿真运行的波形,数据.也可以从"分析"栏中的"分析显示图"(Analysis Graph)中得到测量,分析的波形图和数据表. 用户可以在电路仿真进行之前,根据电路分析要求,设置不同仿真参数.在菜单分析 栏(Analysis)中选择"Analysis Options"后,在屏幕上出现一个分析选项对话框,如图 5-1. 图5-1 分析选项对话框 在分析选项对话框中包括5个选择标签,每个标签含意如下. 1)总体分析选择(Global) ABSTOL——电流的绝对精度.(默认设置:1.012e ,适合一般双极型晶体管和VLSI 电路) 64 GMIN——最小电导.该值不能设置为零,增大该值可以改善收敛性,但会影响仿真精度.(默认设置:1.012e ,一般情况不需调整) PIVREL——最大矩阵项与主元值的相对比率.该值设定在0~1之间.(默认设置: 0.001,一般情况不需调整) PIVTOL——主元矩阵项绝对最小值.(默认设置:1.013e ) RELTOL——相对误差精度.改变该值会影响仿真速度和收敛性.取值在1.06e 至0.01 之间.(默认设置:0.001) TEMP——仿真温度.(默认设置:27℃) VNTOL——电压绝对精度.通常小于电路中最大电压信号的6~8个数量级.(默认设 置:1.06e ) CHGTOL——电荷绝对精度.(默认设置:1.014e ,一般情况不需调整) RAMPTIME——斜升时间.该值是独立源,电容和电感从零至终值的变化条件.(默认设置:0) CONVSTEP——相对收敛步长限制.在求解直流工作点时,建立相对步长限制自动控 制收敛.(默认设置:0.25)

数字逻辑电路实验指导书(2016)

Xuzhou Institute of Technology 数字逻辑电路实验指导书 使用班级:15级计算机专业 2016年9月

目录 学生实验守则 (3) 电工电子实验室安全制度 (4) 实验报告要求 (5) 实验一THD-1数字电路箱的使用 (6) 实验二TTL集成门电路 (8) 实验三组合逻辑电路设计 (11) 实验四综合实验(组合电路) .................................................................. 错误!未定义书签。实验五译码器、显示器 ............................................................................... 错误!未定义书签。实验六触发器. (13) 实验七计数器及其应用 (18) 实验八555定时器 (21) 实验九移位寄存器........................................................................................ 错误!未定义书签。实验十综合实验(时序电路) .................................................................. 错误!未定义书签。附录1 V-252型双踪示波器......................................................................... 错误!未定义书签。附录2 EE1641B型函数信号发生器.......................................................... 错误!未定义书签。附录3 SX2172型交流毫伏表 ..................................................................... 错误!未定义书签。附录4 VC9801+型数字万用表 .. (22) 附录5 EWB电子仿真软件 (24)

8、数字电路的EWB仿真举例

8、数字电路的EWB仿真举例 8.1 组合逻辑电路分析 图8.1—1 被测试的组合逻辑电路 按图8.1—1所示,创建一组合逻辑电路,输入变量A、B、C分别由三只开关[D]、[E]、[F]控制接入电平的高、低。输出端L由指示灯的亮、灭表示高、低电平。将测试结果输入到逻辑转换仪真值表区(见图8.1—2),选择真值表→简化表达式转换方式,得到简化逻辑 =++)如图8.1—2逻辑转换仪逻辑表达式栏所示,选择表达式→逻辑表达式(L A B C 电路转换方式可得到如图8.1—3(a)所示的逻辑电路,若选择表达式→与非逻辑电路转换方式则可得到如图8.1—3(b)所示全部由与非门组成的逻辑电路。 图8.1—2 被测试电路的真值表与简化逻辑表达表达式 图8.1—3被测组合逻辑电路两种形式的简化电路

要获取给定组合逻辑电路的真值表,除了可以用上述直接测试的方法以外,还可以将创建好的逻辑电路输入端连接至逻辑转换仪的输入端,将电路的输出端连接至逻辑转换仪的输出端,如图8.1—4所示。然后选择电路→真值表转换方式直接获取真值表,再选择真值表→简化逻辑表达式转换方式,获得简化的逻辑表达式,最后根据需要选择表达式→逻辑电路,或者表达式→与非逻辑电路获得简化的逻辑电路。 图8.1—4 利用逻辑转换仪获取给定电路的真值表 8.2 组合逻辑电路设计 一般组合逻辑电路设计过程可归纳为:分析给定问题列出真值表,由真值表求得简化的逻辑表达式,再根据表达式画出逻辑电路。这一过程可借助逻辑转换仪完成。 例.试设计一个路灯控制逻辑电路,要求在四个不同的地方都能独立的控制路灯的亮灭。 解:设该逻辑电路四个输入变量为A、B、C、D,分别由[E]、[F]、[G]、[H]四个开关控制,接入高电平(+5V)作为逻辑“1”,接入低电平(“地”)作为逻辑“0”。逻辑电路输出端L接一指示灯模拟所控制的路灯,输出高电平(逻辑“1”)时指示灯亮,输出低电平(逻辑“0”)时指示灯灭。 1. 打开逻辑转换仪面板,在真值表区点击A、B、C、D四个逻辑变量建立一个四变量真值表,根据逻辑控制要求在真值表区输出变量列中填入相应逻辑值(见图8.2—1)。 2.点击逻辑转换仪面板上“真值表→简化逻辑表达式”按钮,求得简化的逻辑表达式如图8.2—1逻辑转换仪面板底部逻辑表达式栏所示。 图8.2—1 真值表与简化逻辑表达式

EWB电子仿真软件应用基础

EWB电子仿真基础(简易教材) 广东省云浮市郁南县职业动技术学校张敏才编辑 第一章EWB入门 Electronics Workbench 5.0的中文名称为电子工作平台,简称“EW B”。它是加拿大InteractiveImage Technologies公司于八十年代末、九十年代初推出的电路分析和设计软件,它具有这样一些特点: (1)采用直观的图形界面创建电路:在计算机屏幕上模仿真实实验室的工作台,绘制电路图需要的元器件、电路仿真需要的测试仪器均可直接从屏幕上选取。(2)软件仪器的控制面板外形和操作方式都与实物相似,可以实时显示测量结果。(3)EWB软件带有丰富的电路元件库,提供多种电路分析方法。(4)作为设计工具,它可以同其它流行的电路分析、设计和制板软件交换数据。(5)EWB还是一个优秀的电子技术训练工具,利用它提供的虚拟仪器可以用比实验室中更灵活的方式进行电路实验,仿真电路的实际运行情况,熟悉常用电子仪器测量方法。因此,EWB软件仿真非常适合电子类课程的教学和实验。这里,我们向大家介绍EWB软件的初步知识和基本操作方法。 第一节EWB软件界面 1.1打开EWB主窗口 (1).双击Windows卓面上的“EWB32”快捷方式图标(如图1—1所示),即可启动EWB软件的主窗口。 图1—1 快捷图标 (2).如果Windows卓面上没有“EWB32”快捷方式图标,可以进入我的电脑,在装有EWB软件的硬盘中找到“EWB50C”文件夹,打开该文件夹,会看到“EWB32.EXE”文件,再双击或右击打开“EWB32.EXE”文件,可启动EWB软件的主窗口。 EWB软件界面如图1—2所示。

基于EWB的数字电路设计方案

基于EWB的数字电路设计方案 第一章绪论 随着电子技术和计算机技术的发展,电子产品已与计算机紧密相连,电子产品的智能化日益完善,电路的集成度越来越高,而产品的更新周期却越来越短。电子设计自动化(EDA)技术,使得电子线路的设计人员能在计算机上完成电路的功能设计、逻辑设计、性能分析、时序测试直至印刷电路板的自动设计。为了能在电路付诸实现之前,完全掌握操作环境因素(如电源电压、温度等) 对电路的影响,利用计算机辅助设计进行电路模拟与仿真,并进行输入与输出信号响应的验证,可有效地节省产品开发的时间与成本。Elect ronics Workbench ( EWB) 软件是专门用于电子电路仿真的“虚拟电子工作台”软件,他是目前全球最直观、最高效的EDA 软件。该软件的自动化程度高、功能强大、运行速度快,而且操作界面友善,有良好的数据开放性和互换性。能够提供电阻、电容、三极管、集成电路等14 大类几千种元器件;能够提供示波器、万用表等十几种常用的电子仪器;具有强大的电路图绘制功能,可绘制出符合标准的电子图纸; 他还具有强大的波形显示功能,并且结果可轻松放入各类文档。用该软件进行设计、分析非常方便。本文在EWB 基础上设计的数字钟,是由数字集成电路构成、用数码管显示的一种现代计时器,与传统机械式时钟相比具有更高的准确性和 直观性,且无机械装置,具有更长的使用寿命,因此可望得到广泛使用。 第二章EWB软件介绍与应用 2.1 EWB软件概述 在当今电子设计领域,EDA设计和仿真是一个十分重要的设计环节。在众多的EDA设计和仿真软件中,EWB以其强大的仿真设计应用功能,在各高校电信类专业电子电路的仿真和设计中得到了较广泛的应用。EWB及其相关库包的应用对提高学生的仿真设计能力,更新设计理念有较大的好处。

相关主题
文本预览
相关文档 最新文档