当前位置:文档之家› (完整word版)圆周运动的多解问题

(完整word版)圆周运动的多解问题

(完整word版)圆周运动的多解问题
(完整word版)圆周运动的多解问题

匀速圆周运动的多解问题

匀速圆周运动的多解问题常涉及两个物体的两种不同的运动,其一做匀速圆周运动,另一个物体做其他形式的运动。因此,依据等时性建立等式求解待求量是解答此类问题的基本思路。特别需要提醒同学们注意的是,因匀速圆周运动具有周期性,使得前一个周期中发生的事件在后一个周期中同样可能发生,这就要求我们在表达做匀速圆周运动物体的运动时间时,必须把各种可能都考虑进去,以下几例运算结果中的自然数“n ”正是这一考虑的数学外化。

例1:如图1所示,直径为d 的圆筒绕中心轴做匀速圆周运动,枪口发射的子弹速度为v ,并沿直径匀速穿过圆筒。若子弹穿出后在圆筒上只留下一个弹孔,则圆筒运动的角速度为多少?

解析:子弹穿过圆筒后作匀速直线运动,当它再次到达圆筒壁时,若原来的弹孔也恰好运动到此处,则圆筒上只留下一个弹孔。在子弹运动位移为d 的时间内,圆筒转过的角度为2n ππ+,其中n =0123,,,…,即 d v n =+2ππω

解得角速度为:ωππ=

+=20123n d v n (),,,… 例2:质点P 以O 为圆心做半径为R 的匀速圆周运动,如图2所示,周期为T 。当P 经过图中D 点时,有一质量为m 的另一质点Q 受到力F 的作用从静止开始作匀加速直线运动。为使P 、Q 两质点在某时刻的速度相同,则F 的大小应满足什么条件?

解析:速度相同包括大小相等和方向相同。由质点P 的旋转情况可知,只有当P 运动到圆周上的C 点时P 、Q 速度方向才相同。即质点P 应转过()n +

34周(n =0123,,,…),经历的时间 t n T n =+=()()()3

401231,,,…

质点P 的速度v R

T =

22π() 在同样的时间内,质点Q 做匀加速直线运动,速度应达到v ,由牛顿第二定律及速度公式得

v =F m t ()3

联立以上三式,解得:F mR

n T n =

+=84301232π()(),,,…

例3:如图3所示,在同一竖直面内A 物体从a 点做半径为R 的匀速圆周运动,同时B 物体从圆心O 处自由落下,要使两物体在b 点相遇,求A 物体的角速度。

解析:A 、B 两物体在b 点相遇,则要求A 从a 匀速转到b 和B 从O 自由下落到b 用的时间相等。

A 从a 匀速转到b 的时间t n T n 134342=+=+()()

πω

()n =0123,,,…

例4:如图4所示,半径为R 的水平圆盘正以中心O 为转轴匀速转动,从圆板中心O 的正上方h 高处水平抛出一球,此时半径OB 恰与球的初速度方向一致。要使球正好落在B 点,则小球的初速度及圆盘的角速度分别为多少?

解析:要使球正好落在B 点,则要求小球在做平抛运动的时间内,圆盘恰好转了n 圈(n =123,,…)。 对小球:h gt =

1212()

R v t =02() 对圆盘:21233n t n πω==()(),,…

联立以上三式:解得:ωπ=?=n g h

n 2123(),,… v R g h 02=

圆周运动的问题难点突破

高中物理必修2复习--圆周运动的问题难点突破 一、难点形成的原因 1、对向心力和向心加速度的定义把握不牢固,解题时不能灵活的应用。 2、圆周运动线速度与角速度的关系及速度的合成与分解的综合知识应用不熟练,只是了解大概,在解题过程中不能灵活应用; 3、圆周运动有一些要求思维长度较长的题目,受力分析不按照一定的步骤,漏掉重力或其它力,因为一点小失误,导致全盘皆错。 4、圆周运动的周期性把握不准。 5、缺少生活经验,缺少仔细观察事物的经历,很多实例知道大概却不能理解本质,更不能把物理知识与生活实例很好的联系起来。 二、难点突破 (1)匀速圆周运动与非匀速圆周运动 a.圆周运动是变速运动,因为物体的运动方向(即速度方向)在不断变化。圆周运动也不可能是匀变速运动,因为即使是匀速圆周运动,其加速度方向也是时刻变化的。 b.最常见的圆周运动有:①天体(包括人造天体)在万有引力作用下的运动;②核外电子在库仑力作用下绕原子核的运动;③带电粒子在垂直匀强磁场的平面里在磁场力作用下的运动;④物体在各种外力(重力、弹力、摩擦力、电场力、磁场力等)作用下的圆周运动。 c.匀速圆周运动只是速度方向改变,而速度大小不变。做匀速圆周运动的物体,它所受的所有力的合力提供向心力,其方向一定指向圆心。非匀速圆周运动的物体所受的合外力沿着半径指向圆心的分力,提供向心力,产生向心加速度;合外力沿切线方向的分力,产生切向加速度,其效果是改变速度的大小。 例1:如图1所示,两根轻绳同系一个质量m=0.1kg的小球,两绳的另一端分别固定在轴上的A、B两处,上面绳AC长L=2m,当两绳都拉直时,与轴的夹角分别为30°和45°,求当小球随轴一起在水平面内做匀速圆周运动角速度为ω=4rad/s时,上下两轻绳拉力各为多少? 【审题】两绳张紧时,小球受的力由0逐渐增大时,ω可能出现两个临界值。 【解析】如图1所示,当BC刚好被拉直,但其拉力T2 恰为零, 图1

匀速圆周运动专题

A 从动轮做顺时针转动 B.从动轮做逆时针转动 匀速圆周运动专题 从现行高中知识体系来看,匀速圆周运动上承牛顿运动定律,下接万有引力,因此在高一物理中占 据极其重要的地位,同时学好这一章还将为高二的带电粒子在磁场中的运动及高三复习中解决圆周运动 的综合问题打下良好的基础。 (一)基础知识 1. 匀速圆周运动的基本概念和公式 (1) 线速度大小,方向沿圆周的切线方向,时刻变化; (2) 角速度,恒定不变量; (3)周期与频率; (4) 向心力,总指向圆心,时刻变化,向心加速度 ,方向与向心力相同; (5) 线速度与角速度的关系为 ,、、、的关系为。所以在、、中若一个量确定,其余两个量 也就确定了, 而还和有关。 2. 质点做匀速圆周运动的条件 (1) 具有一定的速度; (2) 受到的合力(向心力)大小不变且方向始终与速度方向垂直。合力(向心力)与速度始终在一个确 定不变的平面内且一定指向圆心。 3. 匀速圆周运动的动力学特征 (1) 始终受合外力作用, 且合外力提供向心力, 其大小不变,始终指向圆心,因合力始终与速度垂直, 所以合力不做功. (2) 匀速圆周运动的动力学方程 根据题意,可以选择相关的运动学量如 v ,3, T , f 列出动力学方程;,,, 熟练掌握这些方程,会给解题带来方便. 4. 变速圆周运动的动力学特征 (1)受合外力作用,但合力并不总是指向圆心, 且合力的大小也是可以变化的, 故合力可对物体做功, 物体的速率也在变化. (2)合外力的分力(在某些位置上也可以是合外力 )提供向心力. 例题1?在图1中所示为一皮带传动装置,右轮的半径为 r , a 是它边缘上的一点,左侧是一轮轴,大轮 的半径为4r ,小轮的半径为2r 。b 点在小轮上,到小轮中心的距离为 的边缘上。若在传动过程中,皮带不打滑。则( ) A . a 点与b 点的线速度大小相等 B . a 点与b 点的角速度大小相等 C . a 点与c 点的线速度大小相等 D. a 点与d 点的向心加速度大小相等 说明:在分析传动装置的各物理量时,要抓住等量和不等量之间 如同轴各点的角速度相等,而线速度与半径成正比;通过皮带传 虑皮带打滑的前提下)或是齿轮传动,皮带上或与皮带连接的两轮边缘的各点及 齿轮上的各点线速度大小相等、角速度与半径成反比。 练习 1.如图所示的皮带转动装置,左边是主动轮,右边是一个轮轴, ,。假设在传动过 程中皮带不打滑,则皮带轮边缘上的 A 、B C 三点的角速度之比是 ___________ ;线 r 。 c 点和d 点分别于小轮和大轮 的关系。 动(不考 a r 4r d - 'Jr 图1

圆周运动的多解问题及竖直面的圆周运动

圆周运动的多解问题及竖直面的圆周运动 一.解答题(共6小题) 1.(2015?宿迁模拟)如图所示,绳长为I的轻绳一端连一小球,另一端固定在点,开始时轻绳拉直,0A在同一水平线上,小球在同一点由静止释放后在竖直面内做圆周运动.求(1)小球运动到最低点B时的速度大小; (2)小球运动到最低点B时,绳子对小球的拉力大小; (3)假设在O点正下方C处有一铁钉,小球运动到最低点B时,绳子被铁钉挡住,欲使小球绕铁钉C能在竖直面内做完整的圆周运动,求0C距离的最小值. 2.(2015?眉山模拟)根据公式F向=m和F向=mrω2,某同学设计了一个实验来感受向心力.如 图甲所示,用一根细绳(可视为轻绳)一端拴一个小物体,绳上离小物体40cm处标为点A,80cm处标为点B.将此装置放在光滑水平桌面上(如图乙所示)抡动细绳,使小物体做匀速圆周运动,请另一位同学帮助用秒表计时. 操作一:手握A点,使小物体在光滑水平桌面上每秒运动一周,体会此时绳子拉力的大小F1. 操作二:手握B点,使小物体在光滑水平桌面上每秒运动一周,体会此时绳子拉力的大小F2. 操作三:手握B点,使小物体在光滑水平桌面上每秒运动两周,体会此时绳子拉力的大小F3. (1)小物体做匀速圆周运动的向心力由提供; (2)操作二与操作一相比,是为了控制小物体运动的相同; (3)如果在上述操作中突然松手,小物体将做运动. 3.(2015?天水一模)如图所示,用一根长为l=1m的细线,一端系一质量为m=1kg的小球(可视为质点),另一端固定在一光滑锥体顶端,锥面与竖直方向的夹角θ=37°,当小球在水平面内绕锥体的轴做匀速圆周运动的角速度为ω时,细线的张力为T.(g取10m/s2,结果可用根式表示)求: (1)若要小球离开锥面,则小球的角速度ω0至少为多大? (2)若细线与竖直方向的夹角为60°,则小球的角速度ω′为多大?

圆周运动问题分析

圆周运动问题分析 【专题分析】 圆周运动问题是高考中频繁考查的一种题型,这种运动形式涉及到了受力分析、牛顿运动定律、天体运动、能量关系、电场、磁场等知识,甚至连原子核的衰变也可以与圆周运动结合<衰变后在磁场中做圆周运动)。可见,圆周运动一直受到命题人员的厚爱是有一定原因的。b5E2RGbCAP 不论圆周运动题目到底和什么知识相联系,我们都可以把它们分为匀速圆周运动和变速圆周运动两种。同时,也可以把常用的解题方法归结为两条。p1EanqFDPw 1、匀速圆周运动 匀速圆周运动的规律非常简单,就是物体受到的合外力提供向心力。只要受力分析找到合外力,再写出向心力的表达式就可解决问题。DXDiTa9E3d 2、竖直面内的非匀速圆周运动 物理情景:在重力作用下做变速运动,最高点速度最小,最低点速度最大,所以最高点不容易通过。 特点:在最高点和最低点都满足“合外力等于向心力”, 其他位置满足“半径方向的合外力等于向心力”, 整个过程中机械能守恒。

注意:上面所述“半径方向的合外力等于向心力”实际上适用于一切情况。 另外,涉及的题目可能不仅仅是重力改变速率,可能还有电场力作用,此时,应能找出转动过程中的速率最大的位置和速率最小的位置。RTCrpUDGiT 基本解题方法: 1、涉及受力,使用向心力方程; 2、涉及速度,使用机械能守恒定律或动能定理。 【题型讲解】 题型一 匀速圆周运动问题 例题1:如图所示,两小球A 、B 在一漏斗形的光滑 容器的内壁做匀速圆周运动,容器的中轴竖直,小球的运动平面为水平面,若两小球的质量相同,圆周半径关系为rA>rB ,则两小球运动过程中的线速度、角速度、周期以及向心力、支持力的关系如何?<只比较大小)5PCzVD7HxA 解读:题目中两个小球都在做匀速圆周运动,其向 心力由合外力提供,由受力分析可知,重力与支持力的 合力提供向心力,如图3-2-2所示,由几何关系,两小 球运动的向心力相等,所受支持力相等。jLBHrnAILg 两小球圆周运动的向心力相等,半径关系为rA>rB , 由公式 ,可得vA>vB ; 由公式,可得ωA<ωB ; 图3-2-1 图3-2-2

圆周运动的案例分析教案.doc

[学习目标定位]i. 知道向心力由一个力或几个力的合力提供,会分析具体问题中的向 心 力来源.2.能用匀速圆周运动规律分析、处理生产和生活中的实例.3.知道向心力、向心加速度公式也适用于变速圆周运动,会求变速圆周运动中物体在特殊点的向心力和向心加速度. 知识储备区 一、过山车问题 1.向心力:过山车到轨道顶部4时,如图1所示,人与车作为一个整体,所受到的向心力是重力〃泌艮轨道对车的弹力A的合力,即R、\=抨+睥.如图所示,过山车在最低点8向心力尸向=.\j mg. 2.临界速度: 当A—0时,过山车通过圆形轨道顶部时的速度最小,雁界=寸苏 (1),=施界时,重力恰好等于过山车做圆周运动的向心力,车不会脱离轨道. (2)代而界时,所需向心力小于车所受的重力,过山车有向下脱离轨道的趋势. (3)心咖界时,弹力和重力的合力提供向心力,车子不会掉下来. 二、转弯问题 1.自行车在水平路面转弯,地面对车的作用力与重力的合力提供转弯所需的向心力. 2.汽车在水平路面转弯,所受静摩擦力提供转弯所需的向心力. 3.火车转弯时外轨高于内轨,如图2所示,向心力由支持力和重力的合力提供. 学案周运动的案例分析 N 图 2

学习探究区 一、分析游乐场中的圆周运动 [问题设计] 游乐场中的过山车能从高高的圆形轨道顶部轰然而过,车与人却掉不下来,这主要是因为过山车的车轮镶嵌在轨道的槽内,人被安全带固定的原因吗? 答案不是. [要点提炼] 竖直平面内的“绳杆模型"的临界问题 1.轻绳模型(如图3所示) 图3 (1)绳(内轨道)施力特点:只能施加向下的拉力(或压力). 2 V (2)在最高点的动力学方程7+ 〃护板. 2 (3)在最高点的临界条件7=0,此时昵=帽,则v= 拆. %1福,拉力或压力为零. %1分履时,小球受向王的拉力或压力. %1心/冰时,小球不能(填“能”或“不能”)到达最高点. 即轻绳的临界速度为雁=寸盘 2.轻杆模型(如图4所示) 图4 (1)杆(双轨道)施力特点:既能施加向下的拉力,也能施加向上的支持力. (2)在最高点的动力学方程 2 V 当〉>疆耐,A+/ng=i邙,杆对球有向下的拉力,且随亿增大而增大. 2 当>=寸赢寸,〃/户板,杆对球无作用力. 2 _ V_ 当v<y[g^i. mg—N=iR,杆对球有向上的支持力.

人教版高一物理下册 圆周运动专题练习(word版

一、第六章 圆周运动易错题培优(难) 1.如图所示,用一根长为l =1m 的细线,一端系一质量为m =1kg 的小球(可视为质点),另一端固定在一光滑锥体顶端,锥面与竖直方向的夹角θ=30°,当小球在水平面内绕锥体的轴做匀速圆周运动的角速度为ω时,细线的张力为T ,取g=10m/s 2。则下列说法正确的是( ) A .当ω=2rad/s 时,T 3+1)N B .当ω=2rad/s 时,T =4N C .当ω=4rad/s 时,T =16N D .当ω=4rad/s 时,细绳与竖直方向间夹角 大于45° 【答案】ACD 【解析】 【分析】 【详解】 当小球对圆锥面恰好没有压力时,设角速度为0ω,则有 cos T mg θ= 2 0sin sin T m l θωθ= 解得 053 2 rad/s 3 ω= AB .当02rad/s<ωω=,小球紧贴圆锥面,则 cos sin T N mg θθ+= 2sin cos sin T N m l θθωθ-= 代入数据整理得 (531)N T = A 正确, B 错误; CD .当04rad/s>ωω=,小球离开锥面,设绳子与竖直方向夹角为α,则 cos T mg α= 2sin sin T m l αωα= 解得

16N T =,o 5 arccos 458 α=> CD 正确。 故选ACD 。 2.如图所示,在匀速转动的水平盘上,沿半径方向放着用细线相连的物体A 和B ,A 和B 质量都为m .它们分居在圆心两侧,与圆心距离分别为R A =r ,R B =2r ,A 、B 与盘间的动摩擦因数μ相同.若最大静摩擦力等于滑动摩擦力,当圆盘转速加快到两物体刚好还未发生滑动时,下列说法正确的是( ) A .此时绳子张力为T =3mg μ B .此时圆盘的角速度为ω2g r μC .此时A 所受摩擦力方向沿半径指向圆外 D .此时烧断绳子物体A 、B 仍将随盘一块转动 【答案】ABC 【解析】 【分析】 【详解】 C .A 、B 两物体相比,B 物体所需要的向心力较大,当转速增大时,B 先有滑动的趋势,此时B 所受的静摩擦力沿半径指向圆心,A 所受的静摩擦力沿半径背离圆心,故C 正确; AB .当刚要发生相对滑动时,以B 为研究对象,有 22T mg mr μω+= 以A 为研究对象,有 2T mg mr μω-= 联立可得 3T mg μ= 2g r μω= 故AB 正确; D .若烧断绳子,则A 、B 的向心力都不足,都将做离心运动,故D 错误. 故选ABC. 3.如图所示,一个边长满足3:4:5的斜面体沿半径方向固定在一水平转盘上,一木块静止在斜面上,斜面和木块之间的动摩擦系数μ=0.5。若木块能保持在离转盘中心的水平距离为

圆周运动的周期性造成多解

第9点 圆周运动的周期性造成多解 匀速圆周运动的多解问题常涉及两个物体的两种不同的运动,其中一个做匀速圆周运动,另一个做其他形式的运动.因匀速圆周运动具有周期性,使得在一个周期中发生的事件在其它周期同样可能发生,这就要求我们在解决此类问题时,必须考虑多解的可能性. 一般处理这类问题时,要把一个物体的运动时间t ,与圆周运动的周期T 建立起联系,才会较快地解决问题. 图1 对点例题 如图1所示,小球Q 在竖直平面内做匀速圆周运动,当Q 球转到图示位置时,有另一小球P 在距圆周最高点h 处开始自由下落,要使两球在圆周最高点相碰,则Q 球的角速度ω应满足什么条件? 解题指导 设P 球自由下落到圆周最高点的时间为t ,由自由落体运动规律可得 12gt 2=h ,解得t =2h g . Q 球由图示位置转至最高点的时间也是t ,才能与P 球在圆周最高点相碰,其做匀速圆周运动,设周期为T ,有 t =(4n +1)T 4 (n =0,1,2,3…) 两式联立再由T =2πω得(4n +1)π2ω=2h g . 所以ω=π2(4n +1)g 2h (n =0,1,2,3…). 答案 π2(4n +1)g 2h (n =0,1,2,3…)

图2 如图2所示,B 物体放在光滑的水平地面上,在水平恒力F 的作用下由静止开始运动,B 物体质量为m ,同时A 物体在竖直面内由M 点开始逆时针做半径为r 、角速度为ω的匀速圆周运动.求力F 为多大时可使A 、B 两物体在某些时刻的速度相同. 答案 2mrω2 (4n +3)π (n =0,1,2…) 解析 因为物体B 在力F 的作用下沿水平地面向右做匀加速直线运动,速度方向水平向右,要使A 与B 速度相同,则只有当A 运动到圆轨道的最低点时,才有可能. 设A 、B 运动时间t 后两者速度相同(大小相等,方向相同). 对A 物体有:t =34 T +nT =????n +342πω(n =0,1,2…),v A =rω. 对B 物体有:F =ma ,a =F m ,v B =at =F m t . 令v B =v A ,得F m ????n +342πω =ωr . 解得F =2mrω2 (4n +3)π (n =0,1,2…).

教案竖直平面内的圆周运动及实例分析

竖直平面内的圆周运动及实例分析 说明:竖直平面内的圆周运动一般是变速圆周运动(带电粒子在匀强磁场中运动除外),运动的速度大小和方向在不断发生变化,运动过程复杂,合外力不仅要改变运动方向,还要改变速度大小,所以对此要根据牛顿第二定律的瞬时性解决问题:在变速圆周运动中,虽然物体在各位置受到的向心力分别产生了物体通过各位置的向心加速度,但向心力公式仍是适用的.但要注意,对于物体做匀速圆周运动的情况,只有在物体通过最高点和最低点时,向心力才是合外力.一般不研究任意位置的情况,只研究特殊的临界位置──最高点和最低点。同时,还可以向学生指出:此问题中出现的对支持面的压力大于或小于物重的现象,是发生在圆周运动中的超重或失重现象. 一、教学目标: 1.知识与技能: (1)理解匀速圆周运动是变速运动; (2)进一步理解向心力的概念;(3)掌握竖直平面内最高点和最低点的圆周运动。 2.过程与方法: 通过对竖直平面内特殊点的研究,培养学生观察能力、抽象概括和归纳推理能力。 3.情感态度价值观:渗透科学方法的教育。 二、重点难点: 教学重点:分析向心力来源. 教学难点:实际问题的处理方法. 向心力概念的建立及计算公式的得出是教学重点,也是难点。通过生活实例及实验加强感知,突破难点。 三、授课类型:习题课 四、上课过程: (一)、情景引入: (二)、两类模型——轻绳类和轻杆类 (1)轻绳模型:一轻绳系一小球在竖直平面内做圆周运动.小球能到达最高点(刚好做圆2v mgm,这时的速度是做圆周运=周运动)的条件是小球的重力恰好提供向心力,即r v=动的最小 速度. (绳只能提供拉力不能提供支持力).min 内侧的圆周运动,水流星的类此模型:竖直平面内的内轨道,竖直(光滑)圆弧 运动(水流星在竖直平面内作圆周运动过最高点的临界条件),过山车运动等, word 编辑版.

(完整版)《圆周运动》教学设计

《圆周运动》教学设计 六盘水市第二实验中学卢毅 一、教材分析 本节课的教学内容为新人教版第五章第四节《圆周运动》,它是在学生学习了曲线运动的规律和曲线运动的处理方法以及平抛运动后接触到的又一类曲线运动实例。本节作为该章的重要内容之一,主要向学生介绍了描述圆周运动快慢的几个物理量,匀速圆周运动的特点,在此基础上讨论这几个物理量之间的变化关系,为后续学习圆周运动打下良好的基础。 二、学情分析 通过前面的学习,学生已对曲线运动的条件、运动的合成和分解、曲线运动的处理方法、平抛运动的规律有了一定的了解和认识。在此基础上了,教师通过生活中的实例和实物,利用多媒体,引导学生分析讨论,使学生对圆周运动从感性认识到理性认识,得出相关概念和规律。在生活中学生已经接触到很多圆周运动实例,对其并不陌生,但学生对如何描述圆周运动快慢却是第一次接触,因此学生在对概念的表述不够准确,对问题的猜想不够合理,对规律的认识存在疑惑等。教师在教学中要善于利用教学资源,启发引导学生大胆猜想、合理推导、细心总结、敢于表达,这就能对圆周运动的认识有深度和广度。 三、设计思想 本节课结合我校学生的实际学习情况,对教材进行挖掘和思考,始终把学生放在学习主体的地位,让学生在思考、讨论交流中对描述圆周运动快慢形成初步的系统认识,让学生的思考和教师的引导形成共鸣。 本节课结合了曲线运动的规律及解决方法,利用生活中曲线运动实例(如钟表、转动的飞轮等)使学生建立起圆周运动的概念,在此基础上认识描述圆周运动快慢的相关物理量。总体设计思路如下:

四、教学目标 (一)、知识与技能 1、知道什么是圆周运动、匀速圆周运动。理解线速度、角速度、周期的概念,会用线速度角速度公式进行计算。 2、理解线速度、角速度、周期之间的关系,即r r T v ωπ ==2。 3、理解匀速圆周运动是变速运动。 4、能利用圆周运动的线速度、角速度、周期的概念分析解决生活生产中的实际问题。 (二)、过程与方法 1、知道并理解运用比值定义法得出线速度概念,运用极限思想理解线速度的矢量性和瞬时性。 2、体会在利用线速度描述圆周运动快慢后,为什么还要学习角速度。能利用类比定义线速度概念的方法得出角速度概念。 (三)、情感、态度与价值观 1、通过极限思想的运用,体会物理与其他学科之间的联系,建立普遍联系的世界观。 2、体会物理知识来源于生活服务于生活的价值观,激发学生的学习兴趣。 3、通过教师与学生、学生与学生之间轻松融洽的讨论和交流,让学生感受快乐学习。 五、教学重点、教学难点

匀速圆周运动的多解问题专题辅导不分版本

匀速圆周运动的多解问题 匀速圆周运动的多解问题常涉及两个物体的两种不同的运动,其一做匀速圆周运动,另一个物体做其他形式的运动。因此,依据等时性建立等式求解待求量是解答此类问题的基本思路。特别需要提醒同学们注意的是,因匀速圆周运动具有周期性,使得前一个周期中发生的事件在后一个周期中同样可能发生,这就要求我们在表达做匀速圆周运动物体的运动时间时,必须把各种可能都考虑进去,以下几例运算结果中的自然数“n ”正是这一考虑的数学外化。 例1:如图1所示,直径为d 的圆筒绕中心轴做匀速圆周运动,枪口发射的子弹速度为v ,并沿直径匀速穿过圆筒。若子弹穿出后在圆筒上只留下一个弹孔,则圆筒运动的角速度为多少 解析:子弹穿过圆筒后作匀速直线运动,当它再次到达圆筒壁时,若原来的弹孔也恰好运动到此处,则圆筒上只留下一个弹孔。在子弹运动位移为d 的时间内,圆筒转过的角度为2n ππ+,其中n =0123,,,…,即 d v n =+2ππω 解得角速度为:ωππ= +=20123n d v n (),,,… 例2:质点P 以O 为圆心做半径为R 的匀速圆周运动,如图2所示,周期为T 。当P 经过图中D 点时,有一质量为m 的另一质点Q 受到力F 的作用从静止开始作匀加速直线运动。为使P 、Q 两质点在某时刻的速度相同,则F 的大小应满足什么条件 解析:速度相同包括大小相等和方向相同。由质点P 的旋转情况可知,只有当P 运动到圆周上的C 点时P 、Q 速度方向才相同。即质点P 应转过()n + 34周(n =0123,,,…),经历的时间 t n T n =+=()()()3 401231,,,… 质点P 的速度v R T = 22π() 在同样的时间内,质点Q 做匀加速直线运动,速度应达到v ,由牛顿第二定律及速度公式得 v =F m t ()3 联立以上三式,解得:F mR n T n = +=84301232π()(),,,… 例3:如图3所示,在同一竖直面内A 物体从a 点做半径为R 的匀速圆周运动,同时B 物体从圆心O 处自由落下,

高一物理下,圆周运动复习知识点全面总结

匀速圆周运动专题 从现行高中知识体系来看,匀速圆周运动上承牛顿运动定律,下接万有引力,因此在高一物理中占据极其重要的地位,同时学好这一章还将为高二的带电粒子在磁场中的运动及高三复习中解决圆周运动的综合问题打下良好的基础。 (一)基础知识 1. 匀速圆周运动的基本概念和公式 (1)线速度大小,方向沿圆周的切线方向,时刻变化; (2)角速度,恒定不变量;(3)周期与频率; (4)向心力,总指向圆心,时刻变化,向心加速度,方向与向心力相同; (5)线速度与角速度的关系为,、、、的关系为。所以在、、中若一个量确定,其余两个量也就确定了,而还和有关。 2. 质点做匀速圆周运动的条件 (1)具有一定的速度; (2)受到的合力(向心力)大小不变且方向始终与速度方向垂直。合力(向心力)与速度始终在一个确定不变的平面内且一定指向圆心。 3. 向心力有关说明 向心力是一种效果力。任何一个力或者几个力的合力,或者某一个力的某个分力,只要其效果是使物体做圆周运动的,都可以认为是向心力。做匀速圆周运动的物体,向心力就是物体所受的合力,总是指向圆心;做变速圆周运动的物体,向心力只是物体所受合外力在沿着半径方向上的一个分力,合外力的另一个分力沿着圆周的切线,使速度大小改变,所以向心力不一定是物体所受的合外力。 (二)解决圆周运动问题的步骤 1. 确定研究对象; 2. 确定圆心、半径、向心加速度方向; 3. 进行受力分析,将各力分解到沿半径方向和垂直于半径方向; 4. 根据向心力公式,列牛顿第二定律方程求解。基本规律:径向合外力提供向心力 (三)常见问题及处理要点 1. 皮带传动问题 例1:如图1所示,为一皮带传动装置,右轮的半径为r,a是它边缘上的一点,左侧是一轮轴,大轮的半径为4r,小轮的半径为2r,b点在小轮上,到小轮中心的距离为r,c点和d点分别位于小轮和大轮的边缘上,若在传动过程中,皮带不打滑,则() A. a点与b点的线速度大小相等 B. a点与b点的角速度大小相等 C. a点与c点的线速度大小相等 D. a点与d点的向心加速度大小相等

圆周运动的规律和应用

第3讲:圆周运动的规律及其应用 一、 描述圆周运动的几个物理量 1、 线速度 ⑴定义:质点沿圆周运动通过的弧长l ? 与所用时间 t ?的比值叫线速度。也即是单位时间通过的弧长 ⑵公式:t l v ??= ⑶单位:s m ⑷物理意义:描述圆周运动的物体运动快慢的物理量。 注意:①线速度是矢量 ②线速度有平均线速度和瞬时线速度之分。和速度一样,不作特殊说明,线速度指的都是瞬时线速度,也简称速度 2、 角速度 ⑴定义:做圆周运动的物体与圆心的连线转过的角度θ?与所用时间t ?的比值叫角速度。也即是单位时间转过的角度 ⑵公式: t ??= θ ⑶单位:s rad ⑷物理意义:描述物体绕圆心转动的快慢。 注意:①角速度是矢量,角速度的方向高中阶段不研究。 ②公式: t ??= θ 中的θ?必须用弧度制 ③一定要注意角速度的单位。 3、 周期 ⑴定义:做圆周运动的物体转动一周所用的时间叫周期。 ⑵符号:T ⑶单位:s 4、 频率 ⑴定义:做圆周运动的物体1s 转动的圈数。 ⑵符号:f ⑶单位:Hz 注意: 周期和频率的关系f T 1= 5、 转速 ⑴定义:做圆周运动的物体在单位时间转过的圈数 ⑵符号: n ⑶单位:s r m in r 且1s r =60m in r 注意:当转速以s r 为单位时,转速的大小和频率在数值上相等

6、向心加速度 ⑴定义:做匀速圆周运动的物体的加速度始终指向圆心,这个加速度叫向心加速度。 ⑵公式: r v a 2 == r ⑶单位:2 s m ⑷方向:总是指向圆心且与线速度垂直 ⑸物理意义:描述做圆周的物体速度方向变化快慢的物理量。 二、 匀速圆周运动 1、 定义:线速度大小不变的圆周运动。 2、 性质:匀速圆周运动的性质可以有以下三种说法 变速曲线运动 匀速率曲线运动 变加速曲线运动(加速度的大小不变,方向在时刻变化) 注意:匀速圆周运动的性质不是匀速运动,也不是匀变速曲线运动 三、 描述匀速圆周运动的几个物理量的关系 V= r T π 2= f T 1= =2 n r v a 2 == r 四、 几种常见的传动装置及其特点 1、 同轴传动 2、皮带传动 特点:物体上任意各点的 特点:轮子边缘上各点线速度的大小相等,都和皮带 角速度都相同,即: C B A ωωω== 的速度大小相等,即: D C B A v v v v === 3、 齿轮传动 特点:两齿轮边缘上各点线速度 大小相等即: C B A v v v == ?O ???C A R ? ? ? ? ? ? r D B C B A C ???

匀速圆周运动的多解问题 专题辅导 不分版本

匀速圆周运动的多解问题 郭建 白头然 匀速圆周运动的多解问题常涉及两个物体的两种不同的运动,其一做匀速圆周运动,另一个物体做其他形式的运动。因此,依据等时性建立等式求解待求量是解答此类问题的基本思路。特别需要提醒同学们注意的是,因匀速圆周运动具有周期性,使得前一个周期中发生的事件在后一个周期中同样可能发生,这就要求我们在表达做匀速圆周运动物体的运动时间时,必须把各种可能都考虑进去,以下几例运算结果中的自然数“n ”正是这一考虑的数学外化。 例1:如图1所示,直径为d 的圆筒绕中心轴做匀速圆周运动,枪口发射的子弹速度为v ,并沿直径匀速穿过圆筒。若子弹穿出后在圆筒上只留下一个弹孔,则圆筒运动的角速度为多少? 解析:子弹穿过圆筒后作匀速直线运动,当它再次到达圆筒壁时,若原来的弹孔也恰好运动到此处,则圆筒上只留下一个弹孔。在子弹运动位移为d 的时间内,圆筒转过的角度为2n ππ+,其中n =0123,,,…,即 d v n =+2ππω 解得角速度为:ωππ= +=20123n d v n (),,,… 例2:质点P 以O 为圆心做半径为R 的匀速圆周运动,如图2所示,周期为T 。当P 经过图中D 点时,有一质量为m 的另一质点Q 受到力F 的作用从静止开始作匀加速直线运动。为使P 、Q 两质点在某时刻的速度相同,则F 的大小应满足什么条件? 解析:速度相同包括大小相等和方向相同。由质点P 的旋转情况可知,只有当P 运动到圆周上的C 点时P 、Q 速度方向才相同。即质点P 应转过()n +34周(n =0123,,,…),经历的时间 t n T n =+=()()()3401231,,,… 质点P 的速度v R T = 22π() 在同样的时间内,质点Q 做匀加速直线运动,速度应达到v ,由牛顿第二定律及速度公式得 v =F m t ()3 联立以上三式,解得:F mR n T n = +=84301232π()(),,,…

2 研究匀速圆周运动的规律

2 研究匀速圆周运动的规律 ★教学目标 (一) 知识与技能 1.知道什么是向心力,理解它是一种效果力 2.知道向心力大小与哪些因素有关。理解公式的确切含义,并能用来进行计算 3.结合向心力理解向心加速度 4.理解变速圆周运动中合外力与向心力的关系 (二) 过程与方法 1.从受力分析来理解向心加速度,加深对牛顿定律的理解。 2.通过用圆锥摆粗略验证向心力的表达式的实验来了解向心力的大小与哪些因素有关,并理解公式的含义。 3.经历从匀速圆周运动到变速圆周运动再到一般曲线运动的研究过程,让学生领会解决问题从特殊到一般的思维方法。并学会用运动和力的观点分析、解决问题。 (三) 情感态度与价值观 1.通过亲身的探究活动,使学生获得成功的乐趣,培养学生参与物理活动的兴趣。 2.经历从特殊到一般的研究过程,培养学生分析问题、解决问题的能力。 3.实例、实验紧密联系生活,拉近科学与学生的距离,使学生感到科学就在身边,调动学生学习的积极性,培养学生的学习兴趣。 ★教学重点 1.理解向心力的概念和公式的建立。 2.理解向心力只改变速度的方向,不改变速度的大小。 3.运用向心力、向心加速度的知识解释有关现象。 ★教学难点 1.理解向心力的概念和公式的建立。 2.运用向心力、向心加速度的知识解释有关现象。 ★教学过程 一、引入 师:同学们,在上节课的学习中,我们单纯从运动学角度用公式t v v a t 0 -= 对匀速圆周运动

的加速度进行了研究,得到的结论是:匀速圆周运动的加速度大小为v a R a R v a ωω===或或22 , 方向总是与速度方向垂直,始终指向圆心。于是我们把匀速圆周运动的加速度又称作向心加 速度。 师:今天我们将结合物体受力从动力学角度用公式 m F a = 来研究向心加速度。 师:现在我们已知知道了匀速圆周运动的加速度的特点,有哪位同学能告诉我:物体做匀速 圆周运动时所受的合外力有什么特点? 生:根据公式 m F a = ,我们知道做匀速圆周运动的物体所受的合外力应该 v m R m R v m ma F ωω或或22 ==,方向总是与速度垂直指向圆心。 二、向心力 师:由于做匀速圆周运动的物体受到的合外力始终指向圆心,所以我们把匀速圆周运动物体 所受的合外力又称作向心力。 【定义】做匀速圆周运动的物体所受的合外力由于指向圆心,所以该合外力又叫做向心力。 师:做匀速圆周运动的物体所受的合外力真的指向圆心吗?下面我们结合几个实例体会验证一下这个结论。毕竟理论只有结合实际才能被更透彻地理解。 ①地球绕太阳的运动可以近似看成匀速圆周运动,试分析做匀速圆周运动的物体(地球) 所有受的合外力的特点。 【解析】地球只受到太阳对它的吸引力,合力即为吸引力。该吸引力指向地球做圆周运动的 圆心即日心。 ②光滑桌面上一个小球,由于细绳的牵引,绕桌面上的图钉做匀速圆周运动。 【解析】小球受重力、支持力、绳子的拉力。合力是绳子的拉力,方向沿绳子指向圆心(图 钉) ③使转台匀速转动,转台上的物体也随之做匀速圆周运动,转台与物体间没有相对滑动 【解析】物体受重力、支持力、静摩擦力。合外力为静摩擦力,方向指向圆心。

最新高一物理圆周运动经典例题

4.“水流星”问题 绳系装满水的杯子在竖直平面内做圆周运动,即使到了最高点杯子中的水也不会流出,这是因为水的重力提供水做圆周运动的向心力。 (1)杯子在最高点的最小速度v min =(gL) 1/2 (2)当杯子在最高点速度为v 1>v min 时,杯子内的水对杯底有压力,若计算中求得杯子在最高点速度v 2v min 时,水对杯底的压力为多大? 5.斜面、悬绳弹力的水平分力提供加速度a =gtan α的问题 a .斜面体和光滑小球一起向右加速的共同加速度a =gtan α 因为F 2=F N cos α=mg F 1=F N sin α=ma 所以a =gtan α b .火车、汽车拐弯处把路面筑成外高内低的斜坡,向心加速度和α的关系仍为a =gtan α,再用tan α=h/L,a =v 2 /R 解决问题. c .加速小车中悬挂的小球、圆锥摆的向心加速度、光滑锥内不同位置的小球,都有a =gtan α的关系. 6.典型的非匀速圆周运动是竖直面内的圆周运动 这类问题的特点是:由于机械能守恒,物体做圆周运动的速率时刻在改变,物体在最高点处的速率最小,在最低点处的速率最大。物体在最低点处向心力向上,而重力向下,所以弹力必然向上且大于重力;而在最高点处,向心力向下,重力也向下,所以弹力的方向就不能确定了,要分三种情况进行讨论。 1.如图所示,没有物体支撑的小球,在竖直面内作圆周运动通过最高点,弹力只可能向下, 如绳拉球。这种情况下有mg R mv mg F ≥=+2 即gR v ≥,否则不能通过最高点。 ①临界条件是绳子或轨道对小球没有力的作用,在最高点v =Rg .②小球能通过最高点的条件是在最高点 v >Rg .③小球不能通过最高点的条件是在最高点v

圆周运动的实例分析

圆周运动的实例分析(三) 1.(圆锥摆模型)两个质量相同的小球,在同一水平面内做匀速圆周运动,悬点相同,如图9所示,A运动的半径比B的大,则() A.A所需的向心力比B的大 B.B所需的向心力比A的大 C.A的角速度比B的大 D.B的角速度比A的大 2.如图所示,固定的锥形漏斗内壁是光滑的,内壁上有两个质量相等的小球A和B,在各自不同的水平面做匀速圆周运动,以下物理量大小关系正确的是() A.速度v A>v B B.角速度ωA>ωB C.向心力F A>F B D.向心加速度a A>a B 3.如图所示,一个内壁光滑的圆锥筒的轴线垂直于水平面,圆锥筒固定不动,有两个质量相同的小球A和B紧贴着内壁分别在图中所示的水平面内做匀速圆周运动,则下列说法正确的是() A.球A的线速度必定大于球B的线速度 B.球A的角速度必定小于球B的角速度 C.球A的运动周期必定小于球B的运动周期 D.球A对筒壁的压力必定大于球B对筒壁的压力 4.如图所示,一根细线下端拴一个金属小球P,细线的上端固定在金属块Q上,Q放在带小孔的水平桌面上.小球在某一水平面内做匀速圆周运动(圆锥摆).现使小球在一个更高一些的水平面上做匀速圆周运动(图上未画出),两次金属块Q都保持在桌面上静止.则后一种情况与原来相比较,下面的判断中正确的是() A.小球P运动的周期变大 B.小球P运动的线速度变大 C.小球P运动的角速度变大 D.Q受到桌面的支持力变大 5.质量不计的轻质弹性杆P插在桌面上,杆端套有一个质量为m的小球,今使小球沿水平方向做半径为R的匀速圆周运动,角速度为ω,如图4所示,则杆的上端受到的作用力大小为() A.mω2R B.m2g2-m2ω4R2 C.m2g2+m2ω4R2 D.不能确定

圆周运动知识点

描述圆周运动的物理量及相互关系 圆周运动1、定义:物体运动轨迹为圆称物体做圆周运动。 2、描述匀速圆周运动的物理量 (1)轨道半径(r ) (2)线速度(v ): 定义式:t s v = 矢量:质点做匀速圆周运动某点线速度的方向就在圆周该点切线方向上。 (3)角速度(ω,又称为圆频率): T t π? ω2= = (φ是t 时间内半径转过的圆心角) 单位:弧度每秒(rad/s ) (4)周期(T ):做匀速圆周运动的物体运动一周所用的时间叫做周期。 (5)频率(f ,或转速n ):物体在单位时间内完成的圆周运动的次数。 各物理量之间的关系: r t r v f T t rf T r t s v ωθππθωππ==??? ??? ? ?====== 2222 注意:计算时,均采用国际单位制,角度的单位采用弧度制。 (6)向心加速度 r r v a n 22ω==(还有其它的表示形式,如:()r f r T v a n 2 2 22ππω=?? ? ??==) 方向:其方向时刻改变且时刻指向圆心。 对于一般的非匀速圆周运动,公式仍然适用,为物体的加速度的法向加速度分量,r 为曲率半径;物体的另一加速度分量为切向加速度τa ,表征速度大小改变的快慢(对匀速圆周运动而言,τa =0) (7)向心力 匀速圆周运动的物体受到的合外力常常称为向心力,向心力的来源可以是任何性质的 力,常见的提供向心力的典型力有万有引力、洛仑兹力等。对于一般的非匀速圆周运动,物体受到的合力的法向分力n F 提供向心加速度(下式仍然适用),切向分力τF 提供切向加速度。 向心力的大小为:r m r v m ma F n n 22 ω===(还有其它的表示形式,如:

圆周运动的三种模型

圆周运动的三种模型 一、圆锥摆模型: 如图所示:摆球的质量为m,摆线长度为L ,摆动后摆球做圆周运动,摆线与竖直方向成θ角,对小球受力 分析, 正交分法解得:竖直方向:水平方向:F X=最终得F合=。 用力的合成法得F合=。半径r=,圆周运动F向==,由F合=F向可得V=,ω= 圆锥摆是物理学中一个基本模型,许多现象都含有这个模型。分析方法同样适用自行车, 摩托车,火车转弯,飞机在水平面内做匀速圆周飞行等在水平面内的匀速圆周运动的问题。共同点是由重力和弹力的合力提供向心力,向心力方向水平。 1、小球在半径为R 的光滑半球内做水平面内的匀速圆周运动,试分析图中θ(小球与半球球心连线跟竖直方向的夹角)与线速度V ,周期T 的关系。(小球的半径远小于R) 2、如图所示,用一根长为l=1m的细线,一端系一质量为m=1kg的小球(可视为质点),另一端固定在一光滑锥体顶端,锥面与竖直方向的夹角θ=37°,当小球在水平面内绕锥体的轴做匀速圆周运动的角速度为ω时,细线的张力为T。求(取g=10m/s2,结果可用根式表示): (1)若要小球离开锥面,则小球的角速度ω0至少为多大? (2)若细线与竖直方向的夹角为60°,则小球的角速度ω'为多大?

二.轻绳模型 (一)轻绳模型的特点: 1. 轻绳的质量和重力不计; 2. 只能产生和承受沿绳方向的拉力; (二)轻绳模型在圆周运动中的应用 小球在绳的拉力作用下在竖直平面内做圆周运动的临界问题: 1. 临界条件:小球通过最高点,绳子对小球刚好没有力的作用,由重力提供向心力: = ,v 临界 = 2. 小球能通过最高点的条件: v v 临界(此时,绳子对球产生 力) 3. 不能通过最高点的条件: v v 临界 (实际上小球还没有到最高点时,就脱离了轨道) 练习: 质量为m 的小球在竖直平面内的圆形轨道的内侧运动,经过最高点而不脱离轨道的临界速度为v ,当小球以2v 的速度经过最高点时,对轨道的压力是( ) A . 0 B. mg C .3mg D 5mg 三.轻杆模型: (一)轻杆模型的特点: 1.轻杆的质量和重力不计; 2.能产生和承受各方向的拉力和压力 (二)轻杆模型在圆周运动中的应用 轻杆的一端连着一个小球在竖直平面内做圆周运动,小球通过最高点时,轻杆对小球产生弹力的情况: 1. 小球能通过最高点的最小速度v= ,此时轻杆对小球的作用力N= ( N 为 力) 2. 当 =R v m 2临界 ( 轻杆对小球的作用力N= 0 ),gR v 临界 3 当 (即0v 临界)时,有 =R v m 2 (轻杆对小球的作用力N 为 力) 练习: 半径为R=0.5m 的管状轨道,有一质量为m=3kg 的小球在管状轨道内部做圆周运动,通过最高点时小球的速率是2m/s ,g=10m/s2 ,则( ) A. 外轨道受到24N 的压力 B. 外轨道受到6N 的压力 C. 内轨道受到24N 的压力 D. 内轨道受到 6N 的压力

(完整版)圆周运动知识点总结

曲线运动 圆周运动---章节知识点总结 §1 曲线运动 1、曲线运动:轨迹是曲线的运动 分析学习曲线运动,应对比直线运动记忆,抓住受力这个本质。 2、分类:平抛运动 圆周运动 3、曲线运动的运动学特征: (1)轨迹是曲线 (2)速度特点:①方向:轨迹上该点的切线方向 ②可能变化可能不变(与外力有关) 4、曲线运动的受力特征 ①F 合不等于零 ②条件:F 合与0v 不在同一直线上(曲线);F 合与0v 在同一直线上(直线) 例子----分析运动:水平抛出一个小球 对重力进行分解:x g 与A v 在同一直线上:改变A v 的大小 y g 与A v 为垂直关系:改变A v 的方向 ③F 合在曲线运动中的方向问题:F 合的方向指向轨迹的凹面 (请右图在箭头旁标出力和速度的符号) 5、曲线运动的加速减速判断(类比直线运动) F 合与V 的夹角是锐角-------加速 F 合与V 的夹角是钝角-------减速 F 合与V 的夹角是直线-------速度的大小不变 拓展:若F 合恒定--------匀变速曲线运动(典型例子:平抛运动) 若F 合变化--------非匀变速曲线运动(典型例子:圆周运动) §2 运动的合成与分解 1、合运动与分运动的基本概念:略 2、运动的合成与分解的实质:对s 、v 、a 进行分解与合成--------高中阶段仅就这三个物理量进行正交分解。 3、合运动与分运动的关系:等时性---合运动与分动的时间相等(解题的桥梁) 独立性---类比牛顿定律的独立性进行理解 等效性:效果相同所以可以合成与分解 4、几种合运动与分运动的性质 ①两个匀速直线运动合成---------匀速直线运动 ②一个匀速直线运动与一个匀变速直线运动合成-------匀变速曲线运动 ③两个匀变速直线运动合成-----------可能是匀变速直线运动可能是匀变速曲线运动 分析:判断物体做什么运动,一定要抓住本质-----受力!

相关主题
文本预览
相关文档 最新文档