当前位置:文档之家› 相控阵天线基本概念及原理概要

相控阵天线基本概念及原理概要

相控阵天线基本概念及原理概要
相控阵天线基本概念及原理概要

相控阵天线基本概念及原理

相控阵天线是目前卫星移动通信系统中最重要的一种天线形式,由三个部分组成:天线阵、馈电网络和波束

工作原理

微处理器接收到包含通信方向的控制信息后,根据控制软件提供的算法计算出各个移相器的相移量,然后通过天线控制器来控制馈电网络完成移相过程。由于移相能够补偿同一信号到达各个不同阵元而产生的时间差,所以此时天线阵的输出同相叠加达到最大。一旦信号方向发生变化,只要通过调整移相器的相移量就可使天线阵波束的最大指向做相应的变化,从而实现波束扫描和跟踪。

移动地球站相控阵天线的研究现状

相控阵天线最早用于军用雷达,由于具有跟踪速度快、电气性能好、可靠性高且便于和载体共形安装等许多独特的优势,使它同样成为卫星移动通信各类站型天线的首选方案,并且得到了高度的重视和广泛的应用。美国的TeLEDyne Ryan

相控阵天线由于技术含量高,制作工艺复杂,所需设备要求高,所以在中国只有极少的军工研究所在研制。

移动地球站相控阵天线的研究意义

如果在民用市场上研制出低成本、高性能的相控阵天线他将在我国相控阵天线领域有着非常深远的影响,不但在民用移动地球站得到广泛应用,在军事、公安、边防、民航预警等领域也是有着广泛的应用,也弥补了我国民用相控阵天线应用市场的空白。

欢迎转载,信息

抛物面天线的工作原理

抛物面天线的工作原理 普通抛物面天线的结构如图3-1所示。馈源是一种弱方向性天线,安装在抛物面前方的焦点位置上,故普通抛物面天线又称为前馈天线。由馈源辐射出来的球面波被抛物面往一个方向(天线轴向)反射,形成尖锐的波束,这种情况与探照灯极为相似。 图 3-1 普通抛物面天线的结构图图 3-2 普通抛物面天线的几何关系图 抛物面是由抛物线绕它的轴线(z轴)旋转而成的,如图3-2所示。在yoz平面上,以F为焦点,O 为顶点的抛物线方程为: 相应的立体坐标方程为: 为了便于分析,也可引入极坐标。令极坐标系(ρ,ψ) 的原点与焦点F重合,则相应的旋转抛物面的方程可表示为: 设D为抛物面口径的直径,为口径对焦点所张的角(简称口径张角),由上述关系式可导出决定抛物面口径张角的抛物面焦径比: 焦径比的大小表征了抛物面的结构特征,f/D越大,口径张角越小,抛物面越浅,加工就容易,但馈源离主反射面越远,天线的抗干扰能力就越差,反之亦然。 抛物面具有如下重要的几何光学特性:由焦点发出的各光线经抛物面反射,其反射线都平行于z轴;反之,当平行光线沿z轴入射时,则被抛物面反射而聚焦于F点。其原因是,由焦点发出的各光线经抛物面反射后到达口径面的行程相等(这一结论可利用抛物线的以下性质来证明:从抛物线任一点到焦点的距离等于该点到准线的距离)。

微波的传播特性与光相似,因此,位于焦点F的馈源所辐射的电磁波经抛物面反射后,在抛物面口径上得到同相波阵面,使电磁波沿天线轴向传播。如果抛物面口径尺寸为无限大,那么抛物面就把球面波变为理想平面波,能量只沿z轴正方向传播,其它方向辐射为零。但实际上抛物面的口径是有限的,这时天线的辐射是波源发出的电磁波通过口径面的绕射,它类似于透过屏上小孔的绕射,因而得到的是与口径大小及口径场分布有关的窄波波束。 3.2.2 偏馈天线 前馈抛物面天线的馈源位于天线的主波束内,因而对所接收的电磁波形成了遮挡,其结果降低了天线的增益,增大了旁瓣。将馈源移出天线反射面的口径,可消除馈源及其支撑物对电磁波的遮挡。图3-3示出了偏馈反射面天线的结构示意图。 实际上,偏馈反射面是在旋转抛物反射面上截取一部分而构成的。它同样可将焦点发出的球面波转换成沿轴向传播的平面波。馈源的相位中心仍放在原抛物面的焦点上,但馈源的最大辐射须指向偏馈反射面的中心。尽管反射面的轮廓呈椭圆型,但它的口径仍是一个圆。此外,对于偏馈天线而言,电磁波的最大辐射方向并不在偏馈反射面的法向,而是与法向成一定的夹角。这一特点也是偏馈天线的另一特 色,如图3-4所示。对于偏馈天线有式中,ψo是抛物面轴线与焦点到反面中心联线的夹角。反射面在这条中心两旁张成2ψe的角度。 图 3-3 偏馈天线的结构图 图 3-4 偏馈反射面天线的几何关系图

抛物面天线的工作原理

面天线的结构和工作原理 一、抛物面天线 (一)抛物面天线的结构 常用的抛物面天线从结构上看,主要由两部分组成: 照射器,由一些弱方向性天线来担当,想短电对称振子天线,喇叭天线。 作用:是把高频电流转换为电磁波并投射到抛物面上。 抛物面,它一般有导电性能较好的铝合金板构成,其厚度为1.5-3(mm),或者用玻璃钢构成主抛物面,然后在其内表面粘贴一层金属网或金属栅栏。网孔的最大值要求小于λ/8-λ/10,过大将造成对电磁波的漏射现象,影响天线的正常工作性能。 作用:构成天线辐射场方向性的主要部分。 图 1-1 普通抛物面天线的结构图图 1-2 普通抛物面天线的几何关系图(二)工作原理 抛物面具有如下重要的几何光学特性:由焦点发出的各光线经抛物面反射,其反射线都平行于z轴;反之,当平行光线沿z轴入射时,则被抛物面反射而聚焦于F点。其原因是,由焦点发出的各光线经抛物面反射后到达口径面的行程相等(这一结论可利用抛物线的以下性质来证明:从抛物线任一点到焦点的距离等于该点到准线的距离)。 微波的传播特性与光相似,因此,位于焦点F的馈源所辐射的电磁波经抛物面反射后,在抛物面口径上得到同相波阵面,使电磁波沿天线轴向传播。如果抛物面口径尺寸为无限大,那么抛物面就把球面波变为理想平面波,能量只沿z轴正方向传播,其它方向辐射为零。但实际上抛物面的口径是有限的,这时天线的辐射是波源发出的电磁波通过口径面的绕射,它类似于透过屏上小孔的绕射,因而得到的是与口径大小及口径场分布有关的窄波波束。 二、卡塞格伦天线

(一)卡塞格伦天线的结构 卡塞格伦天线是一种双反射面天线,其主反射面是旋转抛物面,副反射面是旋转双曲面。卡塞格伦天线的结构与普通抛物面天线的差别,不仅在于多了一个副反射面,而且把馈源安装到了主反射面后面上,如图1-3所示。故有时也把卡塞格伦天线称为后馈天线。 图 1-3 卡塞格伦天线的结构图 (二)卡塞格伦天线的工作原理 卡塞格伦天线的工作原理是,根据双曲面的性质,由F2发出的电磁波被副面反射,其反射的电磁波方向可以看成是共轭焦点F1发出的射线方向。又因为F1是抛物面的焦点,所以,由F2发出的电磁波经副反射面和主反射面反射后,在口径面形成同相场,从而得到平行于轴向的电磁辐射波。 双反射面的优点之一在于可以采用赋形技术。如果修正旋转双曲面的形状,使口径场分布符合要求,同时适当地修改主面以校正由于副面改变而引起的口径场相位差,那么,卡塞格伦天线将有较高的电性能。但卡塞格伦天线的副面直径一般要取较大,这在小口径天线中会造成较大的遮挡,所以在小天线中很少采用卡塞格伦结构方案。

相控阵天线的基础理论

第二章相控阵天线的基础理论 相控阵天线是从阵列天线发展起来的,主要依靠相位变化实现天线波束指向在空间的移动或扫描,亦称电子扫描阵列(ESA)天线。虽然用于相控阵雷达的相控阵天线有多种,但相控阵天线均是由多个天线单元,亦称辐射器构成的。天线单元可以是单个的波导喇叭天线、偶极子天线、贴片天线等。在每个天线单元后端都设置有移相器,用来改变单元之间信号的相位关系,信号的幅度变化则通过功率分配/相加网络或者衰减器来实现。在扫描过程中,整个雷达不需要像采用普通阵列天线或者剖物面天线的雷达那样进行机械运动,因此波束指向迅速灵活,且可以实现多波束并行工作,使得雷达具有很强的自适应能力。 在相控阵天线的实际使用过程中,线性相控阵天线平面相控阵天线是较为常见的两种形式。下面分别以这两种形式为例,阐述相控阵天线扫描的基本原理。 2.1相控阵天线扫描的基本原理 2.1.1线性相控阵天线扫描的基本原理 线性相控阵天线广泛应用于一维相控扫描的相控阵雷达中。根据基本的阵列类型,线 性相控阵天线可以划分为垂射阵列和端射阵列。垂射阵列最大辐射方向垂直于阵列轴向,天线波束在线阵法线方向左右两侧进行扫描。相反,端射阵列主瓣方向沿着阵列轴向。由于垂射阵应用最为广泛,因此主要讨论垂射阵。 图2.1是一个由N个天线单元组成的线性阵列原理图,天线单元呈均匀排成一线,途中沿y轴方向按等间距方式分布,天线单元间距为d。每一个天线单元的激励电流为 I i(i =0,1,2,...N -1)。每一单元辐射的电场强度与其激励电流I i成正比。天线单元的方向 图函数用fiG,:)表示。 图2.1 N单元线性相控天线阵原理图 阵中第i个天线单元在远区产生的电场强度为: e丸E i =K i I i fip, ) (2.1) 式中,K i为第i个天线单元辐射场强的比例常数,r i为第i个天线单元至观察点的距离, f i P,)为第i个天线单元的方向图函数,h为第i个天线单元的激励电流,可以表示成为: (2.2) 式中,3i为幅度加权系数,厶B为等间距线阵中,相邻单元之间的馈电相位差,亦称阵内相移值。 在线性传播媒质中,电磁场方程是线性方程,满足叠加定理的条件。因此,在远区观察点P处的总场强E可以认为是线阵中N个辐射单元在P处辐射场强之和,因此有:

螺旋天线原理与设计基础知识

一般成品螺旋天线都用导电性能良好的金属线绕成并密封好,其工作原理下: 图1 所示一般天线结构示意图。D是螺旋天线直径,L是螺旋天线长度,ρ是螺距,Ⅰ、Ⅱ是螺旋线上相对应两点。 一般可以认为,电磁波沿金属螺旋线以光速C作匀速运动。 从Ⅰ点到Ⅱ点即进行一个螺旋,所需时间为 t = πD/C 而对螺旋天线而言,其轴向电磁波只运动行进了一个螺距ρ,其轴向等效速率 υ=ρ/t =ρ/C (πD) 这种关系也可用图2形式解释。由图2可知: υ=Csinθ=Cρ/(πD)≤C 由上式可以看出,υ总是小于等于C的。故螺旋天线能使电磁波运动速度减慢,是一个慢波系统,其等效波长λ等效小于工作波长λ。对于螺旋天线而言,应谐振于其1/4等效波长,因而能缩短螺旋天线的几何长度。 对于工作于一定中心频率的通讯机来说,其所需绕的线圈数N可以由下式近似算出:

螺距:υ=L/N 所需金属线长度:ι=NπD 对于一般通讯机可取 L=20~40cm D=10~20mm 下表是对一些常用频率螺旋天线的设计实例,其他频率也可类似设计。 f是工作中心频率; D是螺旋天线直径; L是螺旋天线长度; N是螺旋圈数; ι是所需金属线长度。 以上N、ρ为了实际制作需要均取近似值。 制作时可用直径0.5~1.5mm漆包线或镀银铜线或铝线在直径为D的有机玻璃或其他绝缘材料上绕制,并在棒的两头打上小孔,以利于固定金属线;在棒的底端焊上较粗的金属杆或插头固定在棒上,以利于与机器连接;整个螺旋天线的外面可用橡胶管或其他材料套封,并在顶端盖上橡皮帽或用其他材料密封,这样既美观大方,又防雨防蚀,经久耐用。如果没有上述金属丝,也可采用多股细绝缘导线代替,效果相同,只是绕制时固定较为困难。 以上螺旋天线也可用于各种小型遥控设备及其他类似机器上。 为了比较慢波天线与常规拉杆天线的不同,说明慢波天线尺寸较小的优点,我们可对拉杆天线作一计算。 设定参数如下:

超声相控阵检测教材超声相控阵技术

第三章超声相控阵技术 3.1 相控阵的概念 3.1.1相控阵超声成像 超声检测时,如需要对物体内某一区域进行成像,必须进行声束扫描。相控阵成像是通过控制阵列换能器中各个阵元激励(或接收)脉冲的时间延迟,改变由各阵元发射(或接收)声波到达(或来自)物体内某点时的相位关系,实现聚焦点和声束方位的变化,从而完成相控阵波束合成,形成成像扫描线的技术,如图3-1所示。 图3-1 相控阵超声聚焦和偏转

3.2 相控阵工作原理 相控阵超声成像系统中的数字控制技术主要是指波束的时空控制,采用先进的计算机技术,对发射/接收状态的相控波束进行精确的相位控制,以获得最佳的波束特性。这些关键数字技术有相控延时、动态聚焦、动态孔径、动态变迹、编码发射、声束形成等。 3.2.1相位延时 相控阵超声成像系统使用阵列换能器,并通过调整各阵元发射/接收信号的相位延迟(phase delay),可以控制合成波阵面的曲率、指向、孔径等,达到波束聚焦、偏转、波束形成等多种相控效果,形成清晰的成像。可以说,相位延时(又称相控延时)是相控阵技术的核心,是多种相控效果的基础。 相位延时的精度和分辨率对波束特性的影响很大。就波束的旁瓣声压而言,文献研究表明,延时量化误差产生离散的误差旁瓣,从而降低图像的动态范围。其均方根(RMS)延时量化误差与旁瓣幅值之比为 (式3-1) 式中,; N-----阵元数目; μ----中心频率所对应一个周期与最小量化延时之比。 图3-2示出了延时量化误差引起的旁瓣随N、μ变化的关系曲线。早期的超声成像设备如医用B超中,由LC网络组成多抽头延迟线直接对模拟信号进行延迟,用电子开关来分段切换以获得不同的延迟量。这种延迟方式有两大缺点:①延迟量不能精细可调,只能实现分段聚焦,当聚焦点很多时需要庞大的LC网络和电子开关矩阵;②由于是模拟延迟方式,电气参数难以未定,延时量会发生温漂、时漂、波形容易被噪声干扰。

板状天线原理及分析

工学院课程考核论文 课程名称:微波技术与天线 题目:板状天线基本原理及分析专业:电子信息工程 班级:08级1班 姓名:李亮亮 学号:1665080115 任课教师:张平娟

摘要 本文主要介绍了板状天线的原理以及做出相应的分析。 由于微带天线具有重量轻、低剖面、成本低、易于制造、封装和安装等许多固有的优点,本文选用微带贴片天线作为天线单元。首先采用传输线法和腔模理论对矩形微带天线进行分析,计算出矩形贴片的长,宽,并选择基板材料和高度。然后针对设计指标详细讨论了各种因素对微带贴片天线性能的影响,用背馈的方式完成了微带贴片天线单元的设计方案,从而简化馈电网络。 板状天线基本原理及分析 一.板状天线基本原理 板状天线的基本知识: 无论是GSM 还是CDMA,板状天线是用得最为普遍的一类极为重要的基站天线。这种天线的优点是:增益高、扇形区方向图好、后瓣小、垂直面方向图俯角控制方便、密封性能可靠以及使用寿命长。板状天线也常常被用作为直放站的用户天线,根据作用扇形区的范围大小,应选择相应的天线型号。 图1-1板状天线的基本形式 如图所示,板状天线是在阵列天线或者天线单元的下方加上一块反射板,使波束往前方发射,利用反射板可把辐射能控制到单侧方向,平面反射板放在阵列的一边构成扇形区覆盖天线。下面的图1-2说明了反射面的作用,反射面把功率反射到单侧方向,提高了增益。天线的基本知识全向阵(垂直阵列不带平

面反射板)。抛物反射面的使用,更能使天线的辐射,像光学中的探照灯那样,把能量集中到一个小立体角内,从而获得很高的增益。不言而喻,抛物面天线的构成包括两个基本要素:抛物反射面和放置在抛物面焦点上的辐射源,基站天线可供设计的参数是天线的垂直波瓣和水平波瓣,垂直波瓣是通过阵列天线来实现的,而水平波瓣是由所采用的天线单元样式和相应的反射板所决定。 图1-2水平面方向图 板状天线高增益的形成: 1.采用多个半波振子排成一个垂直放置的直线阵,如图1-3 图1-3直线阵的方向和模型 2.在直线阵的一侧加一块反射板(以带反射板的二半波振子垂直阵为例),如图2-4

卡塞格伦天线的工作原理

卡塞格伦天线的工作原理 时间:2015-08-10 来源:天线设计网TAGS:卡赛格伦 我们已经知道,反射面天线的方向图形状(波束指向、主瓣宽度、副瓣电平)决定于天线口径上的场(或电流)分布。而口径场分布又由馈源的方向图和反射面的形状确定。改变反射面的形状,即采用长焦距的反射面来得到较均匀的口径场分布。但是,焦距变长之后,天线纵向尺寸变大,这不仅使结构上不便,而且馈线变长会增加损耗,对远距离通讯来说增加噪声,降低效率。 另外,要获得低副瓣(如-40dB),口径场振幅分布还不能是均匀的,应满足一定分布规律。这由单反射面和一个馈源来调整是困难的。采用双反射面天线,可方便地控制口径场分布。既可以使反射面的焦距较短,又可保证得到所需的天线方向图,而且使设计增加了灵活性。双反射面天线系统的设计起源于卡塞格伦光学望远镜。这种光学望远镜以其发明人卡塞格伦Cassegrain命名。下图为中国科学院国家天文台、中电集团39所联合研制的 40米射电望远镜,位于中科院云南天文台(昆明东郊凤凰山),于2005年8月动工兴建,2006年5月投入运行。40米射电望远镜的主要任务,是接收嫦娥卫星下行的科学数据并参与完成对绕月卫星的精密测轨。 40米射电望远镜是一台转台式卡塞格伦型天线,总重约360吨。天线主反射面直径40米,由464块铝合金实体单块面板和不锈钢网状单块面板构成,中央(直径26米以内部分)由208块实体单块面板构成,周边直径26米至40米部分则由256块网状单块面板构成。正十六边形的天线中心体空间行架结构及辐射梁、环梁构成天线的主反射体背架结构。40米天线馈电采用后馈卡焦方式,焦长为13.2米。直径4.2米的双曲线副反射体由4根与俯仰轴成450 方向对称布局的支撑柱支撑。是不是很高大上呢?

超声相控阵检测教材-第三章-超声相控阵技术

第三章超声相控阵技术 3.1相控阵的概念 3.1.1相控阵超声成像 超声检测时,如需要对物体内某一区域进行成像, 必须进行声束扫描。相控阵成像是通 过控制阵列换能器中各个阵元激励(或接收)脉冲的时间延迟,改变由各阵元发射(或接收) 声波到达(或来自)物体内某点时的相位关系,实现聚焦点和声束方位的变化,从而完成相 控阵波束合成,形成成像扫描线的技术,如图 3-1所示。 图3-1 相控阵超声聚焦和偏转

3.2相控阵工作原理 相控阵超声成像系统中的数字控制技术主要是指波束的时空控制, 采用先进的计算机技 术,对发射/接收状态的相控波束进行精确的相位控制,以获得最佳的波束特性。这些关键 数字技术有相控延时、动态聚焦、动态孔径、动态变迹、编码发射、声束形成等。 3.2.1相位延时 相控阵超声成像系统使用阵列换能器,并通过调整各阵元发射 /接收信号的相位延迟 (phase delay ),可以控制合成波阵面的曲率、指向、孔径等,达到波束聚焦、偏转、波束 形成等多种相控效果,形成清晰的成像。可以说,相位延时(又称相控延时)是相控阵技术 的核心,是多种相控效果的基础。 相位延时的精度和分辨率对波束特性的影响很大。 就波束的旁瓣声压而言, 文献研究表 明,延时量化误差产生离散的误差旁瓣,从而降低图像的动态范围。其均方根( ,r . / \ 诙爲 式中, 一-—— N-----阵元数目; 尸--中心频率所对应一个周期与最小量化延时之比。 图3-2示出了延时量化误差引起的旁瓣随 N 、□变化的关系曲线。早期的超声成像设备 如医用B 超中,由LC 网络组成多抽头延迟线直接对模拟信号进行延迟, 用电子开关来分段 切换以获得不同的延迟量。这种延迟方式有两大缺点:①延迟量不能精细可调,只能实现分 段聚焦,当聚焦点很多时需要庞大的 LC 网络和电子开关矩阵;②由于是模拟延迟方式,电 气参数难以未定,延时量会发生温漂、时漂、波形容易被噪声干扰。 RMS )延 (式 3-1)

无线网络WiFi天线原理

无线网络WiFi天线原理 1.7.2 高增益栅状抛物面天线 从性能价格比出发,人们常常选用栅状抛物面天线作为直放站施主天线。由于抛物面具有良好的聚焦作用,所以抛物面天线集射能力强,直径为 1.5 m 的栅状抛物面天线,在900兆频段,其增益即可达 G = 20dBi。它特别适用于点对点的通信,例如它常常被选用为直放站的施主天线。 抛物面采用栅状结构,一是为了减轻天线的重量,二是为了减少风的阻力。 抛物面天线一般都能给出不低于 30 dB 的前后比,这也正是直放站系统防自激而对接收天线所提出的必须满足的技术指标。 1.7.3 八木定向天线 八木定向天线,具有增益较高、结构轻巧、架设方便、价格便宜等优点。因此,它特别适用于点对点的通信,例如它是室内分布系统的室外接收天线的首选天线类型。 八木定向天线的单元数越多,其增益越高,通常采用 6 - 12 单元的八木定向天线,其增益可达 10-15dBi。 1.7.4 室内吸顶天线 室内吸顶天线必须具有结构轻巧、外型美观、安装方便等优点。 现今市场上见到的室内吸顶天线,外形花色很多,但其内芯的购造几乎都是一样的。这种吸顶天线的内部结构,虽然尺寸很小,但由于是在天线宽带理论的基础上,借助计算机的辅助设计,以及使用网络分析仪进行调试,所以能很好地满足在非常宽的工作频带内的驻波比要求,按照国家标准,在很宽的频带内工作的天线其驻波比指标为VSWR ≤ 2 。当然,能达到VSWR ≤ 1.5 更好。顺便指出,室内吸顶天线属于低增益天线, 一般为G = 2 dBi。 1.7.5 室内壁挂天线 室内壁挂天线同样必须具有结构轻巧、外型美观、安装方便等优点。 现今市场上见到的室内壁挂天线,外形花色很多,但其内芯的购造几乎也都是一样的。这种壁挂天线的内部结构,属于空气介质型微带天线。由于采用了展宽天线频宽的辅助结构,借助计算机的辅助设计,以及使用网络分析仪进行调试,所以能较好地满足了工作宽频带的要求。顺便指出,室内壁挂天线具有一定的增益,约为G = 7 dBi。 2 电波传播的几个基本概念 目前GSM和CDMA移动通信使用的频段为: GSM:890 - 960 MHz, 1710 - 1880 MHz CDMA: 806 - 896 MHz 806 - 960 MHz 频率范围属超短波范围;1710 ~1880 MHz 频率范围属微波范围。 电波的频率不同,或者说波长不同,其传播特点也不完全相同,甚至很不相同。 2.1 自由空间通信距离方程 设发射功率为PT,发射天线增益为GT,工作频率为f . 接收功率为PR,接收天线增益为GR,收、发天线间距离为R,那么电波在无环境干扰时,传播途中的电波损耗 L0 有以下表达式: L0 (dB) = 10 Lg( PT / PR ) = 32.45 + 20 Lg f ( MHz ) + 20 Lg R ( km ) - GT (dB) - GR (dB) [ 举例] 设:PT = 10 W = 40dBmw ;GR = GT = 7 (dBi) ; f = 1910MHz 问:R = 500 m 时, PR = ? 解答: (1) L0 (dB) 的计算 L0 (dB) = 32.45 + 20 Lg 1910( MHz ) + 20 Lg 0.5 ( km ) - GR (dB) - GT (dB)

相控阵天线的基本原理介绍

相控阵天线的基本原理介绍 相控阵天线是目前卫星移动通信系统中最重要的一种天线形式,由三个部分组成:天线阵、馈电网络和波束控制器。基本原理是微处理器接收到包含通信方向的控制信息后,根据控制软件提供的算法计算出各个移相器的相移量,然后通过天线控制器来控制馈电网络完成移相过程。由于移相能够补偿同一信号到达各个不同阵元而产生的时间差,所以此时天线阵的输出同相叠加达到最大。一旦信号方向发生变化,只要通过调整移相器的相移量就可使天线阵波束的最大指向做相应的变化,从而实现波束扫描和跟踪。相控阵天线有相控扫描线天线阵和平面相控阵天线。图一 图一 N单元相阵 远区观察点P处的总场强可以是认为线阵中N个单元在P点产生的辐 射场强叠加:

图二线性相控阵天线 这一天线阵的方向图函数为: 图三平面相控阵天线 相控阵在快速跟踪雷达、测相等领域得到广泛的应用,它可以使主瓣指向随着通信的需要而不断地调整。相控阵为主瓣最大值方向或方向图形主要由单位激励电流的相对来控制天线阵。通过控制阵列天线中辐射单元的馈电相位改变方向图形状的天线。控制相位可以改变

天线方向图最大值的指向,以达到波速扫描的目的。在特殊情况下,也可以控制副瓣电平、最小值位置和整个方向图的形状。用机械方法旋转天线时,惯性大、速度慢,相控阵天线克服了这已缺点,波速的扫描高。它的馈电相一般用电子计算机控制,相位变化速度快,即天线方向图最大值指向或其他参数的变化迅速。这是相控阵天线的最大特点。 一般相控阵天线应对每一辐射单元的相位进行控制。为了节省移相器和简化控制线路,有时几个辐射单元共用一个移相器。相控阵天线的关键器件是移相器和天线辐射单元。移相器分连续式移相器和数字式移相器两种。连续式移相器的移相值可在0°~360°范围内连续变化,数字式移相器的移相值是离散的,只能是360×(1/2)^n的整数倍,移相器应保证在一定的频率范围内获得所需要的移相值。天线辐射单元的设计应使一定移相范围内和一定频率范围内的输入阻抗的变化尽可能小,以保证发射机正常工作,防止由于射频信号的多次反射而出现寄生副瓣和方向图中出现凹点的现象。相控阵天线的馈电方式分传输线馈电和空间馈电两种。在传输线馈电方式下,射频能量通过波导、同轴线和微带线等微波传输线馈给辐射单元。在空间馈电方式下,发射机产生的射频能量通过辐射装置辐射至自由空间,传输一段距离后由一个接收阵接收,接收阵的每个单元或一组单元所接收到的信号,经过移相器移相后再馈给发射阵的发射单元并辐射出去。 相控阵天线阵列本身的设计主要是幅度、相位分布设计和单元阻

相控阵技术

导读 任何无损检验方法(NDT)的可信度很大程度上取决于人员因素。进行相控阵超声检验的人员应经过培训并取得相应的资格。通过检验人员的技能、教育经历、培训经历,NDT检验人员来证明自己能够根据工艺和设备(相控阵超声设备,扫描仪,探头,软件,分析分布图和报告)的特殊要求进行操作。检验人员应熟悉应用于特殊零件的相控阵技术的基本特性。应客户要求,关于R/D技术原理的第一本书出版了:相控阵技术应用简介:R/D技术指南。该指南用大幅篇章介绍了基本的超声测试,数据评定和扫查方式,相控阵探头以及应用,适合广大读者使用,该指南包含大量实用信息堪称为实用手册。该指南可通过登陆我们的网站使用e-mail订购。 相控阵技术指南手册可视为NDT从业人员使用基本相控阵超声技术的备忘录。它面向日常的操作,针对技术秘诀,介绍操作方法(工艺规范,标定,特征描述,重新启动,解决检验的问题)。关于其大小,该手册设计为口袋书籍。为使该手册能适应现场条件,我们采用防水抗扯的合成纸印刷该书,且封面和装订都十分牢固。 相控阵技术指南手册包括: ·第一章“相控阵超声技术——基本特性“ 详述了PAUT(相控阵超神探伤的缩写)原理,介绍了主要硬件设备和相控阵声束组成类型和运动形式(线性,方位角型,深度型,平面型和3-D型)。 ·第二章“相控阵探头——基本特性“ 详述了用于日常检验的PA(相控阵的缩写)探头及其主要特性。范例介绍时使用的是大多数场合最常用的探头类型,即1-D平面线性阵探头。 ·第三章“聚焦法则“——常用范例 介绍了线性阵探头如Tomoscan ⅢTM PA探头(TomoView TM 2.2R9)和OmniScan○R PA探头定义聚焦法则的基本步骤。 ·第四章“扫查方式,观察,和分布图” 介绍了Tomoscan ⅢTM PA探头(TomoView TM 2.2R9)和OmniScan○R PA探头评定(A-扫查法,S-扫查法,B-扫查法,C-扫查法和D-扫查法)的主要数据,基本分布以及扫查方式。特殊场合下推荐的分布图也进行了说明。 ·第五章“超声束设置,标定和定期检查” 介绍了关于超声束设定调节,设备标定和现场定期检查的基本范例。 ·第六章“使用表格,图表和公式” 该章是实用公式的总结,如:斯涅尔定律,近场长度,波长,声束宽度,半角声束传播速度。书中特别强调了实用不同方法测量缺陷尺寸。表格,公式,图表都可以作为一些参数的速查工具:折射角,等效延迟和反射体尺寸。 ·附录A:“单位转化” 提供了本手册所使用到的单位与公-英制单位的转化。 ·附录B:“支持和培训” 通过R/D技术网站,你可以寻找或提供关于本手册的相关附加信息。 ·“参考文献” 列出了支持和扩充本手册构想的基本资料。本手册编制成一本开放式的对话式手册。对于特殊操作,我们增加了提示,重要标注,注意事项和警告标志等。 正如R/D技术的CEO(首席执行官)和主席在扉页中提到的,我们欢迎您参与进来,提出意见,进行评论,提出设想,从而促进本书第二版的进一步完善。

无线网络WIFI天线原理

无线网络WIFI天线原理 1 天线 1.1 天线的作用与地位 无线电发射机输出的射频信号功率,通过馈线(电缆)输送到天线,由天线以电磁波形式辐射出去。电磁波到达接收地点后,由天线接下来(仅仅接收很小很小一部分功率),并通过馈线送到无线电接收机。可见,天线是发射和接收电磁波的一个重要的无线电设备,没有天线也就没有无线电通信。天线品种繁多,以供不同频率、不同用途、不同场合、不同要求等不同情况下使用。对于众多品种的天线,进行适当的分类是必要的:按用途分类,可分为通信天线、电视天线、雷达天线等;按工作频段分类,可分为短波天线、超短波天线、微波天线等;按方向性分类,可分为全向天线、定向天线等;按外形分类,可分为线状天线、面状天线等;等等分类。 *电磁波的辐射 导线上有交变电流流动时,就可以发生电磁波的辐射,辐射的能力与导线的长度和形状有关。如图1.1 a 所示,若两导线的距离很近,电场被束缚在两导线之间,因而辐射很微弱;将两导线张开,如图1.1 b 所示,电场就散播在周围空间,因而辐射增强。必须指出,当导线的长度L 远小于波长λ 时,辐射很微弱;导线的长度L 增大到可与波长相比拟时,导线上的电流将大大增加,因而就能形成较强的辐射。

1.2 对称振子 对称振子是一种经典的、迄今为止使用最广泛的天线,单个半波对称振子可简单地单独立地使用或用作为抛物面天线的馈源,也可采用多个半波对称振子组成天线阵。两臂长度相等的振子叫做对称振子。每臂长度为四分之一波长、全长为二分之一波长的振子,称半波对称振子, 见图1.2 a 。另外,还有一种异型半波对称振子,可看成是将全波对称振子折合成一个窄长的矩形框,并把全波对称振子的两个端点相叠,这个窄长的矩形框称为折合振子,注意,折合振子的长度也是为二分之一波长,故称为半波折合振子, 见图1.2 b。

浅述相控阵天线波束控制的基本原理及波控系统的任务

浅述相控阵天线波束控制的基本原理及波控系统的任务 摘要现阶段我国科学技术发展速度的不断加快,为天线波束研究水平的逐渐提升提供了重要的技术支持。实践过程中为了实现天线波束的定向控制,需要充分地发挥出相控阵天线波束控制优势,并了解其基本原理及波控系统的任务,优化该系统实践应用中的服务功能。基于此,本文就相控阵天线波束控制的基本原理及波控系统的任务展开论述。 关键词相控阵天线波束;控制;基本原理;波控系统;任务 结合当前的形势变化,注重相控阵天线波束控制的基本原理及波控系统的任务分析,有利于提升天线波束实践应用中的控制水平,最大限度地满足雷达扫描的实际需求,从而为雷达扫描技术所需的波控系统性能优化提供科学保障。因此,需要加强天线波束控制的基本原理分析,提高对其相关的波控系统任务的正确认识,使得天线波束应用成本得以降低。 1 相控阵天线波束控制的基本原理分析 实践过程中结合相控阵雷达的要求,注重天线波束控制方式的合理使用,有利于保持良好的雷达扫描效果,丰富其所需的扫描技术内涵。因此,需要根据实际情况,从不同的方面入手,加强相控阵天线波束控制的基本原理分析,从而为其使用中实际作用的充分发挥提供保障。具体表现在以下方面: 借助计算机网络与信息技术的优势,结合相控阵天线波束的功能特性,在其控制作用发挥中需要确定相应的空间位置,并了解其跟踪情况,最终通过计算机三维空间的动态模拟分析作用,得到所需的相控阵天线波束在雷达扫描控制中的方位角与仰角初始值,并对相控阵雷达阵面中的天线元对应的相位值进行分析。此时,为了达到移相的目的,需要注重性能可靠的移相器使用,并处理好波控系统运行中产生的波控码。当这些举措实施到位后,有利于实现相控阵天线定向,确定相应的波束方向。 (2)在确定天线元所对应的相位值过程中,需要在单元集中配相法與初始向量计算方式的共同作用下予以应对,且在行列分离方法的作用下,确定相控阵天线波束控制中所需的平面阵列。当天线元所对应的相位值确定后,则可通过计算机系统的作用,得到相应的点阵相位值。 基于相控阵天线波束控制下的雷达扫描,在保持其良好的移相器计算位数作用效果过程中,可借助虚算方式的优势,确定移相位数,确保移相器应用有效性[1]。 2 实践中的相控阵天线波控系统的设计分析 为了实现对雷达扫描过程的科学控制,保持其扫描技术良好的应用效果,则

相控阵天线方向图推导及仿真

相控阵天线方向推导及仿真 1、推导线阵天线方向图公式 一个接收线阵,由等间距为d 的N 个各向同性单元组成,那么在θ方向,相 邻单元接收信号的相位差为Ф=2πd λsinθ,线阵排列情况如图1所示。 图1 线阵排列示意图 因为天线辐射方向图可以由天线上各种各样电流源辐射的单独贡献进行矢 量叠加而得出,故各单元电压和为: E a =sin (ωt )+sin (ωt +?)+sin (ωt +2?)+?+sin?[ωt +(N ?1)?] 将等式两边同时乘以2sin?(? 2),根据积化和差、和差化积等相关数学公式,可得到如下公式: 2sin (?2)E a =cos (ωt ??2)?cos (ωt +?2)+cos (ωt +?2)?cos (ωt ?32 ?) +?+cos (ωt +2N ?32?)?cos?(ωt +2N ?1 2?) 整理得,2sin (? 2)E a =cos (ωt ?? 2)?cos (ωt + 2N?12 ?) ??=2sin?(ωt + N ?12?)sin?(N 2 ?) 最终得到场强方向图,E a =sin?[ωt +(N ?1)?2?]sin?(N?2?) sin?(?2?) 平方归一化后,得到辐射方向图(阵列因子): |G a (θ)|=sin 2[Nπ(d λ)sinθ] N 2sin 2[π(d λ )sinθ]

上式中,当(d λ)sinθ=0,±1,±2,···±n 时|G a (θ)|取得相等的最大值,但是我们 只期望看到(d λ)sinθ=0的情况,取其他值产生的栅瓣是我们所不想见到的,为避免这种情况,特令d <λ。 前面的公式中认定主瓣指向为0°,当主瓣指向θ0方向时,则各向同性单元 线阵的归一化辐射方向图为: G (θ)=sin 2[Nπ(d λ)(sinθ?sinθ0)] N 2sin 2[π(d λ )(sinθ?sinθ0)] 此时,由于?2≤sin (θ)?sin (θ0)≤2,故防止产生栅瓣的条件为d <λ2?。 当来波方向与主瓣指向相近时sinθ?sinθ0很小,有: sin 2[π(d λ)(sinθ?sinθ0)]≈[π(d λ )(sinθ?sinθ0)]2 这时的辐射方向图是sin 2μμ2?的形式,式中μ=(d λ)(sinθ?sinθ0),当μ=±0.443π时,天线方向图被衰减到最大值的一半,又因为sinθ?sinθ0项可以写成 sinθ?sinθ0=sin (θ?θ0)cos (θ0)?[1?cos (θ?θ0)]sin (θ?θ0) 当θ0很小时,方程右边第二项可以忽略,所以sinθ?sinθ0≈sin (θ? θ0)cos (θ0)。最终我们可以得到天线的半功率波束宽度为θB ≈0.886λ Ndcosθ0 (rad )。 2、电子扫描阵列天线方向图仿真 ·1、不同参数情况下的栅瓣现象及分析 由前面的分析可知,归一化后的天线方向图可以表示为: G a (θ)= sin 2(Nπd λ (sin θ?sin θ0)) N 2sin 2(πd λ (sin θ?sin θ0)) 其中d 表示天线长度, N 表示天线阵元个数,λ表示信号波长。 当πd λ(sin θ?sin θ0)=0,±1,±2,?,±n,???n ≥1,n ∈Z 时,G a (θ)的分子、分母均为0,由洛毕达法则可知,当sin θ?sin θ0=±n λ d 时,G a (θ)取最大值1,其中sin θ?sin θ0=0,即θ=θ0时,是主瓣,sin θ?sin θ0=±n λ d 的解对应的是

超声相控阵技术第一部分基本概念_李衍

技术讲座 超声相控阵技术 第一部分 基本概念 李 衍 (江苏太湖锅炉股份有限公司,江苏无锡 214187) 摘 要:超声相控阵技术是当今工业无损检测极富挑战力的一项新技术。本篇概述有关超声相控阵的基本原理和相控阵时间延迟的基本概念。 关键词:超声波;相控阵;时间延迟 中图分类号:TG115.28 文献标识码:A 文章编号:1671-4423(2007)04-24-05 1 引言 相控阵超声波检测作为一种独特的技术得到开发和应用,在21世纪初已进入成熟阶段。上世纪80年代初,相控阵超声波技术从医疗领域跃入工业领域。80年代中期,压电复合材料的研制成功,为复合型相控阵探头的制作开创新途径。90年代初,欧美将相控阵技术作为一种新的无损评价(NDE )方法,编入超声检测手册和无损检测工程师培训教程。自1895年至1992年,该技术主要用于核反应压力容器(管接头)、大锻件轴类,及汽轮机部件的检测。 压电复合技术、微型机制、微电子技术、及计算机功率(包括探头设计和超声波与试件相互作用的模拟程序包)的最新发展,对相控阵技术的完善和精细化都有卓著贡献。功能软件也使计算机能力大大增强。 相控阵超声波技术用于无损检测,最先是为动力工业解决下列检测问题:①要用单探头在固定位置检出不同位置和任意方向的裂纹;②要对检测异种金属焊缝和离心铸造不锈钢焊缝提高信噪比和定量能力;③要提高声束扫查可靠性;④要对难以接近的受压给水反应器或沸水反应堆部件进行检测;⑤要缩短在用设备维修检测时间,提高生产效率;⑥要检测和定量形状复杂的汽轮机部件中的应力腐蚀小裂纹;⑦要减少在用检测人员射线吸收剂量;⑧要对一些临界缺陷(不论缺陷方向)提高检 测、定位、定量和定向精度;⑨要对“合乎使用”(或称“工程临界评定”或“寿命评价”)检测提供易于判读的定量分析报告。 在其他工业领域,如航空航天、国防、石油化工、机械制造等,对超声无损检测也都有类似的改进和强化需求。一般都集中在相控阵超声技术的一些主要优点上,即:①速度快:相控阵技术可进行电子扫描,比通常的光栅扫描快一个数量等级;②灵活性好:用一个相控阵探头,就能涵盖多种应用,不象普通超声探头应用单一有限;③电子配置:通过文件装载和校准就能进行配置,通过预置文件就能完成不同参数调整;④探头小巧:对某些检测,可接近性是“拦路虎”,而对相控阵,只需用一小巧的阵列探头,就能完成多个单探头分次往复扫查才能完成的检测任务。 十年前,相控阵超声技术在工业上已锋芒毕露。便携式相控阵探伤仪的推出,更是倍受青睐:仪器可单人现场操作,数据实时传送、远程分析。最近,国内大专院校和研究所及电子仪器设备制造公司,也在投注力量,加速研制,使国产相控阵仪器早日问世。 2 超声相控阵原理 2.1 概述 超声波是由电压激励压电晶片探头在弹性介质(试件)中产生的机械振动。工业应用大多要求使用0.5M Hz ~15M Hz 的超声频率。常规超声检测多 第31卷第4期2007年8月 无损探伤N D T V ol.31N o.4 Aug us t.2007

WLAN天线原理讲义

WLAN天线 1.1 天线的作用与地位 天线主要是在无线传输过程中起到一个媒介的作用.首先无线电发射机输出的射频信号功率,经过电缆反馈输送给天线,然后天线以电磁波形式辐射出去,而当电磁波到达接收点之后,最后又由天线接受下来,但是接收的只能接收到小部分功率,并且通过电缆反应到无线电机手机.在整个环节中,天线是无线通信的重要组成部分.天线的品种繁多,主要分类有:1.按用途分,可以分为通信天线,电视天线,雷达天线等.2.按工作频段分,可以分为短波天线,超短波天线,微波天线等.3.按方向分类,可以分为全向天线,定向天线等.4按外形分类,可以 分为线状天线,面状天线等等.这么多的分类以供不同的频率,不同用途,不同场合,不同要求等不同的情况下可以做出选择. *电磁波的辐射 导线上有交变电流流动时,就可以发生电磁波的辐射,辐射的能力与导线的长度和形状有关.如图1.1 a 所示,若两导线的距离很近,电场被束缚在两导线之间,因而辐射很微弱;将两导线张开,如图1.1 b 所示,电场就散播在周围空间,因而辐射增强. 必须指出,当导线的长度 L 远小于波长λ时,辐射很微弱;导线的长度 L 增大到可与波长相比拟时,导线上的电流将大大增加,因而就能形成较强的辐射. 1.2 对称振子 对称振子是一种经典的、迄今为止使用最广泛的天线,单个半波对称振子可简单地单独立地使用或用作为抛物面天线的馈源,也可采用多个半波对称振子组成天线阵. 两臂长度相等的振子叫做对称振子.每臂长度为四分之一波长、全长为二分之一波长的振子,称半波对称振子, 见图1.2 a .另外,还有一种异型半波对称振子,可看成是将全波对称振子折合成一个窄长的矩形框,并把全波对称振子的两个端点相叠,这个窄长的矩形框称为折合振子,注意,折合振子的长度也是为二分之一波长,故称为半波折合振子, 见图1.2 b.

1-第一章 超声相控阵技术基本概念

第一章超声相控阵技术的基本概念 本章描述超声波原理、相控阵延时(或聚焦定律)概念,并介绍R/D公司研制的相控阵仪器设备。 1.1 原理 超声波是由电压激励压电晶片探头在弹性介质(试件)中产生的机械振动。典型的超声频率范围为0.1MHz~50MHz。大多数工业应用要求使用0.5MHz~15MHz的超声频率。 常规超声检测多用声束扩散的单晶探头,超声场以单一折射角沿声束轴线传播。其声束扩散是唯一的“附加”角度,这对检测有方向性的小裂纹可能有利。 假设将整个压电晶片分割成许多相同的小晶片,令小晶片宽度e远小于其长度W。每个小晶片均可视为辐射柱面波的线状波源,这些线状波源的波阵面会产生波的干涉,形成整体波阵面。 这些小波阵面可被延时并与相位和振幅同步,由此产生可调向的超声聚焦波束。 超声相控阵技术的主要特点是多晶片探头中各晶片的激励(振幅和延时)均由计算机控制。压电复合晶片受激励后能产生超声聚焦波束,声束参数如角度、焦距和焦点尺寸等均可通过软件调整。扫描声束是聚焦的,能以镜面反射方式检出不同方位的裂纹。这些裂纹可能随机分布在远离声束轴线的位置上。用普通单晶探头,因移动范围和声束角度有限,对方向不利的裂纹或远离声束轴线位置的裂纹,漏检率很高(见图1)。 图﹡ ﹡常规

图1-2 脉冲发生和回波接收时的声束形成和时间延迟(同相位、同振幅) 图1-3 超声波垂直(a )和倾斜(b )入射时声束聚焦原理 发射 接收 超声波探伤仪 超声波探伤仪 触发 相控阵控制器 相控阵控制器 脉冲激励 阵列探头 缺陷 缺陷 入射波阵面 反射波阵面 回波信号 Σ 接收延时 延时 [ns] 延时 [ns] 转角 产生的波阵面 产生的波阵面 阵列探头 阵列探头

天线原理笔记

1天线原理 1.1.天线的作用 任何无线电设备都是通过无线电波来传递信息,因此就必须有能辐射或接收电磁波的装置。 天线的第一个作用就是辐射和接收电磁波。当然能辐射或接收电磁波的东西不一定都能用来作为天线。例如任何高频电路,只要不是完全屏蔽起来的,都可以向周围空间或多或少地辐射电磁波,或者从周围空间或多或少地接收到电磁波。但是,任意一个高频电路并不一定能作天线,因为它辐射和接收电磁波的效率很低。只有能够有效地辐射和接收电磁波的设备才有可能作为天线使用。 天线的另一个作用是“能量转换”。大家知道,发信机通过馈线送入天线的并不是无线电波,收信天线也不能直接把无线电波送入收信机,这里有一个能量的转换过程。即把发信机所产生的高频振荡电流经馈线送入天线输入端,天线要把高频电流转换为空间高频电磁波,以波的形式向周围空间辐射;反之在接收时,也是通过收信天线把截获的高频电磁波的能量转换成高频电流的能量后,再送给收信机。显然这里有一个转换效率问题:天线增益越高,则转换效率就越高。 1.2.天线的工作原理 天线本身就是一个振荡器,但又与普通的LC振荡回路不同,它是普通振荡回路的变形。 1.2.1.辐射原理 LC是发信机的振荡回路。电场集中在电容器的两个极板之中,而磁场则分布在电感线圈的有限空间里,电磁波显然不能向广阔空间辐射。如果将振荡电路展开,使电磁场分布于空间很大的围,这就创造了有利于辐射的条件。下图示出了它的演变过程。

导线载有交变电流时,就可以形成电磁波的辐射,辐射的能力与导线的长短和形状有关。如由于两导线的距离很近,且两导线所产生的感应电动势几乎可以抵消,因而辐射很微弱。如果将两导线开,这时由于两导线的电流方向相同,由两导线所产生的感应电动势方向相同,因而辐射较强。于是,来自发信机的、已调制的高频信号电流由馈线送到天线上,并经天线把高频电流能量转变为相应的电磁波能量,向空间辐射。 当导线的长度L远小于波长时,导线的电流很小,辐射很微弱;当导线的长度增大到可与波长相比拟时,导线上的电流就大大增加,因而就能形成较强的辐射。通常将上述能产生显著辐射的直导线称为振子。 1.2.2.接收原理 电磁波的能量从发信天线辐射出去以后,将沿地表面所有方向向前传播。若在交变电磁场中放置一导线,由于磁力线切割导线,就在导线两端激励一定的交变电压——电动势,其频率与发信频率相同。若将该导线通过馈线与收信机相连,在收信机中就可以获得已调波信号的电流。因此,这个导线就起了接收电磁波能量并转变为高频信号电流能量的作用,所以称此导线为收信天线。 无论是发信天线还是收信天线,它们都属于能量变换器,“可逆性”是一般能量变换器的特性。同样一副天线,它既可作为发信天线使用,也可作为收信天线使用,通信设备一般都是收、发共同用一根天线。因此,同一根天线既关系到发信系统的有效能量输出,又直接影响着收信系统的性能。天线的可逆性不仅表现在发信天线可以用作收信天线,收信天线可以用作发信天线,并且表现在天线用作发信天线时的参数,与用作收信天线时的参数保持不变,这就是天线的互易原理。为便于讨论,常将天线作为发信天线来分析,所得结论同样适用于该天线用作收信天线的情况。 1.3.天线辐射单元 1.3.1.对称振子天线(dipole)

相关主题
文本预览
相关文档 最新文档