当前位置:文档之家› 相控阵天线的基础理论

相控阵天线的基础理论

相控阵天线的基础理论
相控阵天线的基础理论

第二章相控阵天线的基础理论

相控阵天线是从阵列天线发展起来的,主要依靠相位变化实现天线波束指向在空间的移动或扫描,亦称电子扫描阵列(ESA)天线。虽然用于相控阵雷达的相控阵天线有多种,但相控阵天线均是由多个天线单元,亦称辐射器构成的。天线单元可以是单个的波导喇叭天线、偶极子天线、贴片天线等。在每个天线单元后端都设置有移相器,用来改变单元之间信号的相位关系,信号的幅度变化则通过功率分配/相加网络或者衰减器来实现。在扫描过程中,整个雷达不需要像采用普通阵列天线或者剖物面天线的雷达那样进行机械运动,因此波束指向迅速灵活,且可以实现多波束并行工作,使得雷达具有很强的自适应能力。

在相控阵天线的实际使用过程中,线性相控阵天线平面相控阵天线是较为常见的两种形式。下面分别以这两种形式为例,阐述相控阵天线扫描的基本原理。

2.1相控阵天线扫描的基本原理

2.1.1线性相控阵天线扫描的基本原理

线性相控阵天线广泛应用于一维相控扫描的相控阵雷达中。根据基本的阵列类型,线

性相控阵天线可以划分为垂射阵列和端射阵列。垂射阵列最大辐射方向垂直于阵列轴向,天线波束在线阵法线方向左右两侧进行扫描。相反,端射阵列主瓣方向沿着阵列轴向。由于垂射阵应用最为广泛,因此主要讨论垂射阵。

图2.1是一个由N个天线单元组成的线性阵列原理图,天线单元呈均匀排成一线,途中沿y轴方向按等间距方式分布,天线单元间距为d。每一个天线单元的激励电流为

I i(i =0,1,2,...N -1)。每一单元辐射的电场强度与其激励电流I i成正比。天线单元的方向

图函数用fiG,:)表示。

图2.1 N单元线性相控天线阵原理图

阵中第i个天线单元在远区产生的电场强度为:

e丸E i =K i I i fip, ) (2.1)

式中,K i为第i个天线单元辐射场强的比例常数,r i为第i个天线单元至观察点的距离,

f i P,)为第i个天线单元的方向图函数,h为第i个天线单元的激励电流,可以表示成为:

(2.2)

式中,3i为幅度加权系数,厶B为等间距线阵中,相邻单元之间的馈电相位差,亦称阵内相移值。

在线性传播媒质中,电磁场方程是线性方程,满足叠加定理的条件。因此,在远区观察点P处的总场强E可以认为是线阵中N个辐射单元在P处辐射场强之和,因此有:

若各单元比例常数K i =1,各天线单元方向图f i (y 「)相同,则总场强表示为:

假设观察点P 距离天线阵足够远,则可认为各天线单元到该点的射线互相平行。 近似:

(2.6)式带入(2.4)式,总场强可进一步简化为:

i =0

N° j i(』dcos 住in 申_皿)

定义式(2.7)中F(Y J 八

天线方向图的 i =0

一个重要定理一一乘法定理。即阵列天线方向图函数

E(j :

)等于天线单元方向图函数 i =0 为了便于讨论和易于理解线性相控阵天线扫描原理,

通常将图2.1简化为图2.2所示 情况。假定天线单元方向图f (二「)足够宽,满足全向性,在线阵天线波束扫描范围内, 可忽略其影响时,线阵天线方向图函数可表示为:

N4 ji (罕 dsin g 筑)

F L —y e '

(2.8)

i =Q 式中,a i 为幅度加权系数,

「B 为相邻单元之间的馈电相位差,亦称阵内相移值 ,且 丄B = d sin 弘,二B 为天线波束最大指向。

图2.2 N 单元线性相控天线阵简化图 令厶=—dsin ,,它表示相邻单元接收到来自 二方向信号的相位差,可称为相邻单

h

元之间的空 间相位差。若令「B 二X ,对均匀分布 照射函数,ai =1,可得: NJ NJ e

E 八 £「K j l i fiG,)-

(2.3)

N J

E =f(W a i -

i =0 」刍 (2.4) 「i 根据远场 对幅度: 对相位: 「i =「0 * 二 r 0 - id cos (2.5) 因为 cos : y = COSTS in

(2.6) 将(2.5) N A E 二 f(H J 、qe j i(2 dcos Tin

=,B ) (2.7)

N J f (二;:)与阵列因子F(d 订八a i e

ji (乙dcos$in 丄;B ) 的乘积

可见,线性相控阵天线方向图函数|F(R|是以辛格函数表示的。由此,可以得到线阵

天线的基本性能。当号X ,时,|F ?有最大值,代)冃。此时波束指向,B 的表达式 为:

2二 d

由式(2.11)可知,通过改变阵内相邻单元之间的阵内相移值

「「B ,即可改变天线波束 最大值指向。而厶B 是通过每个天线单元后端设置的移相器实现的。

2.1.2平面相控阵天线扫描的基本原理

平面相控阵天线是指天线单元分布在平面上,天线波束在方位与仰角两个方向上均可 以进行相控扫描的阵列天线。目前,大多数远程、超远程相控阵雷达以及新的三坐标相控 阵雷达均采用平面相控阵天线。一个平面相控阵天线可以分解为多个子平面相控阵天线或 者分解成多个线阵。相应的,由发射机至各天线单元的信号功率分配网络与由天线单元到 接收机之间的功率相加网络也会随之变化。平面相控阵天线单元的排列方式主要有两种: 矩形格阵排列和三角形格阵排列,后者可以看成是由两个单元间距较大的按照矩形格阵排 列的平面相控阵天线所构成。

图2.3所示为平面相控阵天线示意图,天线阵列位于 yoz 平面上,共有M N 个天线 单元,沿y 方向的N 个阵元以间距d y 均匀排列,沿z 方向的M 个阵元以间距d z 均匀排列, 从而形成矩形栅格阵的平面阵。

图2.3等间距排列的平面相控阵天线示意图

设目标所在方向以方向余弦表示为(cos 「x ,cos 〉y ,cos :―),则由各天线单元到目标方向 之间

存在的路程差决定了信号传输过程中的相位差。因此,沿 y 轴和z 轴相邻天线单元之 间的空间相位F(“ 二 1 -e ,由欧拉公式化简得到:

.N 丫 sin X j N J X F (小 T^P X sin — X 2 取绝对值,考虑到实际线阵中单元数目 N 较大,在天线波束指向最大值附

sin^ : X ,故得到线阵的幅度方向图函数为: 2 2 N 二 sin d(sin J - sin v B )

N (2.9) 对式(2.9) 近X 较小。根据等价无穷小替换, .N 丫 sin X

一 N X 2 (2.10) (2.11)

二 arcsin( B )

差可分别表示为:

(2.12)

第(i,k)个单元与第(0,0)个参考单元之间的空间相位

差为.=H 二y kA k 。若天线阵

内由移相器提供的相邻天线单元之间的阵内相位差,沿 y 轴与z 轴刻分别表示为:

(2.13)

式中,COS\0与COS 〉z 0分别表示波束最大值指向的方向余弦。当以球坐标 (H 「)表示时,

根据图2.3可知:

cos -" cos^0sin 0

.

(2.14)

cos : z = sin 4 第(i,k)个单元与第(0,0)个参考单元之间的阵内相位差为

.「Bik = i 「「By ,k.「B 。记 :二By ,亠丄Bz ,则「Bik =i : k ,:、 ■-在此处表示简化的阵内相移值。

设第(i,k)个天线单元的幅度加权系数为a ik ,类似于线阵天线方向图函数的求解过程, 在忽略天线单元方向图的影响条件下,平面相控阵天线的方向图函数

F(cos :『,cos : z )可表示为:

满足均匀分布。此时平面相控阵天线的方向图函数可表示为:

N 4M 4 F(cosa y

,cos a z )=送瓦 a ik e "曲皿k )

i=0 k=0 N 4M 4

二 <:<:a ik e j 心 y —] (2.15)

i =0 k=0 考虑到

cos : y =cos r sin

cos : z =sin^

(2.16)

N -4M -4 F (叮:)二二 a ik e

i =0 k=0 j[i(卑^d y cos Q sin 业O *(印二 sin&— (2.17)

通常情况下,天线照射口径函数为等幅分布, 即不进行幅度加权, 幅度加权系数a ik = 1,

d y cosot y o d z cos : z o

N 」ji(^0d y cos 涉n M 」j k(^d z si ^_f3)

F(K J 八 e , ■ ■ ■"■ e ' ■ =|F(H J| |F2(讪

(2.18)

i 卫 k) 式(2.18)表明,在等幅分布条件下,平面相控阵天线方向图可以看成是两个线阵天线

方向图函数的乘积。其中|F i (二「)|表示水平方向线阵的天线方向图,

厅2(旳|是垂直方向线

阵的天线方向图。与线阵方向图的推导类似,这里有: 由(2.19)可以看出,分别改变相邻天线单元之间的相位差 〉、一:值,即可实现平面相 控阵

天线波束的扫描,而〉、[值的改变仍然是通过每个天线单元后端设置的移相器实现 的。

2.2 相控阵天线的基本构成

相控阵天线理论和技术的蓬勃发展, 使得相控阵天线在电路设计、结构形式和微波元

件及控制方法等方面千差万别[29]。通常情况下,相控阵天线是由天线阵面、移相器、馈线 网络以及相应的控制电路等几部分组成。如果相控阵天线的馈电网络中不含有源电路,则 称此天线为无源相控阵天线。如果天线的各个单元通道中含有有源器件,例如信号功率放 大器、低噪声放大器、混频器等,则称此天线为有源相控阵天线。

2.2.1天线阵面

相控阵天线阵面通常是由几百个到几万个不等的通过相位进行控制的通道激励辐射 单元构成。这些辐射单元可以是单个的波导喇叭天线、偶极子天线、贴片天线等。当这些 辐射单元分布于平面上,称为平面相控阵天线;分布于曲面上,称为曲面相控阵天线;如 果该曲面与雷达安装平台外形相一致,则成为共形相控阵天线 (con formal phased array

antenna 。相控阵天线单元的排列方式主要有矩形格阵排列、三角形格阵排列以及六角形 格阵排列等。

2.2.2馈线网络

相控阵天线是一个多通道系统,一般均包含大量天线单元,在发射机、接收机与天线 阵各单元之间必须有一个多路馈线网络。通过发射机输出端将信号送至天线阵面中各个辐 射单元或将天线阵面中各个辐射单元接收到的信号送至接收机输入端的过程,称为馈电, 而将为阵列中各个天线单元通道提供实现波束扫描或改变波束形状所要求的相位分布称 为馈相。其中的馈电方式主要包括强制馈电与空间馈电两种,

改变波束形状所要求的各通 道激励相位是通过微波器件一移相器实现的。

强制馈电(constrained feeding 亦成为约束馈电。该系统采用波导、同轴线、板线、微

带线等微波传输线实现功率分配与相加网络。 由于发射激励信号发射机输出信号以及接收 N 2-: sin — (——d y COsTsin -a )

|FC 「)| = N N 22」 一(丄d y cos^sin ? -a ) /

(2.19)

.M /2 J . a sin ——d z

sin 日一戸) |F 2(R|=M ^―

M ,2二

机输入信号均只在传输线中传播,辐射泄漏很小,馈电网络的电磁兼容性容易得到保证。

空间馈电亦称光学馈电,主要分为透镜式与反射式两种。与强制馈电相比较,信号场强在传输过程中不是约束在波导、同轴线或者微带传输线中,而是在自由空间传播,因此空间馈电网络实际上是采用空馈的功率分配/相加网络。采用空间馈电具有许多优点。例如,可以省掉许多加工要求严格的高频微波器件,在雷达信号波长较短时,可利用空间馈电形成单脉冲测角所需的和、差多波束,与强制馈电相比具有更为明显的优点。

223移相器

各种不同类型的移相器是相控阵天线馈线网络实现馈相的关键器件,对它的要求是:移相的数值精确、性能稳定;宽频带、大功率容量;便于快速控制等[30]。

移相器主要分为以采用压控变容二极管的场效应晶体管(FET )模拟型移相器和以采用PIN二极管作开关器件的通过式数字型移相器两大类。但是,为了便于计算机对天线波束扫描进行可编程控制,控制电压或者电流信号均是按照二进制方式产生的,移相器的每一

位受二进制数字信号中的一位控制。因此,无论模拟型移相器还是数字型移相器,它们提供的相移量均是按照二进制方式变化的,即仍然是离散的,因而在实际使用中,多采用数字式移相器。

设数字式移相器位数为k,k为正整数,则移相器的最小相移值「「Bmin为:

2兀

:Bmin (2.20)

故k位数字移相器共有2k种不同移相值,以四位数字移相器为例,如图2.4所示。最小相移值为,

Bmi^^T = 22.5,且高一位移相器的相移量是低一位移相器相移量的2倍。因

2

此,四位数字移相器可以看成是四个相移数值分别为22.5、45:、90°、、80:的子移相器串联而成。每一位子移相器均受到一位二进制数字信号的控制。其中0对应不移相,1对应移相。

图2.4四位数字式移相器示意图

例如,当控制信号编码为0101时,四位数字式移相器产生的相移量为:

即控制信号编码为0101时,代表移相器提供112.5的相移量。从理论上讲,当移相器正常工作,不存在故障情况下,四位数字式移相器可提供从0到337.5。范围内,每间隔最小相移值

22.5。取一个值,总共可提供24 = 16种相移值。

为了节省无线电元件和电路、为了简化结构和提高可靠性,大多数现代相控阵天线的移相器控制都是以行一列原理为基础。移相器的控制电路可分为两种主要类别。第一类允许独立控制移相器的所有电路,即此种电路内的每一个移相器可以处于任何一种状态而与其余移相器的状态无关。第二类不允许在个别移相器组内(有时甚至是全部)实现独立控制的电路。在此种情况下,移相器控制码由行和列二进制码的和组成(带进位),移相器位于行和列的交点上。有L种状态的移相器,在通常情况下,它的状态按沿行和列传送的数之和(按模L )计算,也就是L=(L r L c)mod L。这样的电路确保同时控制所有的移相器和形成使相控阵天线波束指向任意方向所必需的相位波前。第二类电路比第一类电路速

度快,但控制的灵活性较小。

2.3相控阵天线可能的故障类型及影响分析

231故障类型

相控阵天线经常产生的故障是指移相器控制电路的故障[30],由于该故障使得移相器

或者移相器组的一位或者几位未接通。此外,在有源相控阵天线中,由于通道放大器工作异常,导

致辐射器没有激励也是典型故障形式之一。

以常见的二进制原理构成的移相器情况为例,来讨论相控阵天线可能的故障类型及其对天线性能的影响。

k位二进制数字式移相器通常是由k个移相数值不同的离散位(亦称子移相器)串联构成。每一个离散位都包含两种状态,选通和未选通,对应的传输系数-有两个值:j辽

e 2k以及丨0m =o,其中m =1,2...k。设相控阵天线含有N个移相器,移相器状态总数为L =2k。Mm二

常见的故障类型有两类:一是无激励故障,此时通道激励复振幅{w n i = 0, n = 1,2...N , I = 0,1... L -1}。二是离散位失效故障,此时{】0m= 】1m =1,m = 1,2..?k}。以三位二进制数字移相器

(k=3丄=8)为例,此时移相器可能的故障类型见图2.5所示。

图2.5三位二进制数字移相器的可能故障类型

2.3.2影响分析

故障模式的差异性对相控阵天线的特性参数影响不同。研究故障模式对雷达辐射特性

的影响是进行测试诊断的前提和基础,因此必须对相控阵天线的故障模式及影响进行分析。

为了验证在所采用的阵列形式中,阵元失效对天线性能的影响程度,采用MATLAB软件,建立了8 8元半波阵子矩形平面相控阵天线模型,仿真了当其内部分别含有一个、两个、以及四个故障单元情况下,对天线辐射特性造成的影响。

此处采用天线方向图来刻画故障模式的差异性对相控阵天线特性参数的影响程度。所谓天线方向图,是指在离天线一定距离处,辐射特性(场强振幅、相位、极化)与空间角度关系的图形。完整的方向图是一个三维的空间图形,它是以天线相位中心为球心(坐标原点),在半径r

足够大的球面上,逐点测定其辐射特性绘制而成。测量场强振幅,就得到场强方向图;测量功率,

就得到功率方向图;测量极化,就得到极化方向图;测量相位,就得到相位方向图,若不另加说

明,本论文提及的方向图均指场强振幅方向图。由于三维空间方向图的测绘十分麻烦,实际工作

中,一般只需测得水平面和垂直面(即XY平面和

XZ平面)的方向图即可。天线方向图是衡量天线性能的重要图形,可以从天线方向图中观察到天线的各项参数,主要包括:主瓣宽度,旁瓣电平,前后比,方向系数等。

建立的8 8元半波阵子矩形平面相控阵天线模型参数如下:天线工作在S波段,工作频率f

=3G H z, x方向间距为dx = 5.865cm,y方向间距为dy二6.517cm,臂长2l =05 =50mm,半径a = 0.5mm。8 8元半波阵子矩形平面相控阵天线模型如图2.6 所示。

图2.6 8 8元半波阵子矩形平面相控阵天线模型

当给天线各个单元施加-30dB泰勒分布激励时,得到8 8元半波阵子矩形平面相控阵天线无故障、单故障、双故障、四故障情况下的三维立体方向图和二维平面方向图,分别如图2.7~2.10所示。

图2.7无故障情况下半波阵子矩形面阵三维与二维方向图

图2.8单故障情况下半波阵子矩形面阵三维与二维方向图

图2.9双障情况下半波阵子矩形面阵三维与二维方向图

图2.10四障情况下半波阵子矩形面阵三维与二维方向图

采用电磁仿真软件HFSS建立8 8元半波阵子矩形平面相控阵天线模型,参数如前所述。仿真完毕之后利用软件后处理分析功能,得到无故障与三种典型故障的方向图最大增益、最大副瓣电平以及辐射功率等辐射特性参数的变化情况如表1所示。

表1故障前后8汉8元面阵辐射特性变化统计

由表1可知,随着故障单元个数的增多,无论阵面出现的是单故障,还是多故障,都会使天线的增益下降,最大副瓣电平抬高,辐射功率降低,即使得天线的辐射特性变差。在排除测量误差的前提下,通过比对正常与故障情况下天线方向图的差异性,为后续进行测试诊断工作提供了一条简便直观的有效途径。

螺旋天线原理与设计基础知识

一般成品螺旋天线都用导电性能良好的金属线绕成并密封好,其工作原理下: 图1 所示一般天线结构示意图。D是螺旋天线直径,L是螺旋天线长度,ρ是螺距,Ⅰ、Ⅱ是螺旋线上相对应两点。 一般可以认为,电磁波沿金属螺旋线以光速C作匀速运动。 从Ⅰ点到Ⅱ点即进行一个螺旋,所需时间为 t = πD/C 而对螺旋天线而言,其轴向电磁波只运动行进了一个螺距ρ,其轴向等效速率 υ=ρ/t =ρ/C (πD) 这种关系也可用图2形式解释。由图2可知: υ=Csinθ=Cρ/(πD)≤C 由上式可以看出,υ总是小于等于C的。故螺旋天线能使电磁波运动速度减慢,是一个慢波系统,其等效波长λ等效小于工作波长λ。对于螺旋天线而言,应谐振于其1/4等效波长,因而能缩短螺旋天线的几何长度。 对于工作于一定中心频率的通讯机来说,其所需绕的线圈数N可以由下式近似算出:

螺距:υ=L/N 所需金属线长度:ι=NπD 对于一般通讯机可取 L=20~40cm D=10~20mm 下表是对一些常用频率螺旋天线的设计实例,其他频率也可类似设计。 f是工作中心频率; D是螺旋天线直径; L是螺旋天线长度; N是螺旋圈数; ι是所需金属线长度。 以上N、ρ为了实际制作需要均取近似值。 制作时可用直径0.5~1.5mm漆包线或镀银铜线或铝线在直径为D的有机玻璃或其他绝缘材料上绕制,并在棒的两头打上小孔,以利于固定金属线;在棒的底端焊上较粗的金属杆或插头固定在棒上,以利于与机器连接;整个螺旋天线的外面可用橡胶管或其他材料套封,并在顶端盖上橡皮帽或用其他材料密封,这样既美观大方,又防雨防蚀,经久耐用。如果没有上述金属丝,也可采用多股细绝缘导线代替,效果相同,只是绕制时固定较为困难。 以上螺旋天线也可用于各种小型遥控设备及其他类似机器上。 为了比较慢波天线与常规拉杆天线的不同,说明慢波天线尺寸较小的优点,我们可对拉杆天线作一计算。 设定参数如下:

相控阵天线的基础理论

第二章相控阵天线的基础理论 相控阵天线是从阵列天线发展起来的,主要依靠相位变化实现天线波束指向在空间的移动或扫描,亦称电子扫描阵列(ESA)天线。虽然用于相控阵雷达的相控阵天线有多种,但相控阵天线均是由多个天线单元,亦称辐射器构成的。天线单元可以是单个的波导喇叭天线、偶极子天线、贴片天线等。在每个天线单元后端都设置有移相器,用来改变单元之间信号的相位关系,信号的幅度变化则通过功率分配/相加网络或者衰减器来实现。在扫描过程中,整个雷达不需要像采用普通阵列天线或者剖物面天线的雷达那样进行机械运动,因此波束指向迅速灵活,且可以实现多波束并行工作,使得雷达具有很强的自适应能力。 在相控阵天线的实际使用过程中,线性相控阵天线平面相控阵天线是较为常见的两种形式。下面分别以这两种形式为例,阐述相控阵天线扫描的基本原理。 2.1相控阵天线扫描的基本原理 2.1.1线性相控阵天线扫描的基本原理 线性相控阵天线广泛应用于一维相控扫描的相控阵雷达中。根据基本的阵列类型,线 性相控阵天线可以划分为垂射阵列和端射阵列。垂射阵列最大辐射方向垂直于阵列轴向,天线波束在线阵法线方向左右两侧进行扫描。相反,端射阵列主瓣方向沿着阵列轴向。由于垂射阵应用最为广泛,因此主要讨论垂射阵。 图2.1是一个由N个天线单元组成的线性阵列原理图,天线单元呈均匀排成一线,途中沿y轴方向按等间距方式分布,天线单元间距为d。每一个天线单元的激励电流为 I i(i =0,1,2,...N -1)。每一单元辐射的电场强度与其激励电流I i成正比。天线单元的方向 图函数用fiG,:)表示。 图2.1 N单元线性相控天线阵原理图 阵中第i个天线单元在远区产生的电场强度为: e丸E i =K i I i fip, ) (2.1) 式中,K i为第i个天线单元辐射场强的比例常数,r i为第i个天线单元至观察点的距离, f i P,)为第i个天线单元的方向图函数,h为第i个天线单元的激励电流,可以表示成为: (2.2) 式中,3i为幅度加权系数,厶B为等间距线阵中,相邻单元之间的馈电相位差,亦称阵内相移值。 在线性传播媒质中,电磁场方程是线性方程,满足叠加定理的条件。因此,在远区观察点P处的总场强E可以认为是线阵中N个辐射单元在P处辐射场强之和,因此有:

WIFI天线基础知识

无线无线路由器单天线、双天线、三天线等多天线对无线信号强度、范围的影响是否有增强 用事实拆穿双天线成倍增益的神话 双天线只能减少覆盖范围内的盲点 先看总结: 性能的区别主要来自芯片而不是品牌 这次参加横评的产品一共14款,但他们的芯片只有4种,而使用相同芯片的产品在性能上的差距根本不大,所以购买前了解产品的芯片组是一个重要环节。当然也不是说要放弃品牌的概念,各个品牌对产品质量的控制还是不一样,这也会让产品造成很大的差异(主要体现在产品质量)。 现阶段802.11N无线路由器已大幅度超越54M 从54M到11N,经历了好几年的时间,不过这次横评我们看到了11N的优势,看到了希望。实际测试表明,11N产品在产品整体性能上高出54M很多,速度、覆盖都有了质的飞跃。

天线根数与速度没关系 虽然这次评测分了两个组,双天线和多天线,但测试结果说明单从速度上来讲,双天线与三天线区别不大。(天线原理介绍过了,和我们的实际情况是一致的。当然是同一类芯片的基础上进行比较,不同种类芯片没有可比性)但是覆盖上确实有区别,所以要购买的用户不用总是迷恋多天线,从自己的实际情况出发,一般环境双天线已经足够了。 新的功能将改善人们使用无线网络的习惯 譬如WPS快速加密这样的新功能,将会改善人们使用无线网络的习惯,按下终端和路由器上的两个键就会自动连接并加密,拒绝输入繁琐的密码,进一步降低了无线网络的门槛,让用户更轻松使用。 802.11N是构建数字家庭的主干 除了改变人们的使用习惯,802.11N的传输速率已经可以完全应付高清影片的流畅传输,而传说中的数字家庭也可以由802.11N网络担当主角,撑起整个平台:无线播放高清媒体文件、无线控制家电产品、各种终端都无线,让你的家远离布线烦恼。 目前产品单调需要更多个性化产品问世 不过话又说回来,任何东西都是需要发展的,现在11N可以算是刚刚出道,所以还有许多可以改进的地方,譬如这次评测的产品除了提供无线上网之外,附加功能都比较少,让IT产品更个性,这是一个发展方向,让看不到的无线也能多姿多彩。 802. 11N横评第一波结束更多低价产品会接踵而来 这次评测历时1个月,在测试过程中又出现了多个新品,它们没有赶上这次横评很遗憾,但是我们还有的是机会,因为低价11N时代马上就要来临了,各个品牌都会有更多更优秀的产品放出,请继续关注泡泡网无线频道,更多的精彩会接踵而来.....

天线基础知识大全

天线基础知识大全 1天线1.1天线的作用与地位无线电发射机输出的射频信号功率,通过馈线(电缆)输送到天线,由天线以电磁波形式辐射出去。电磁波到达接收地点后,由天线接下来(仅仅接收很小很小一部分功率),并通过馈线送到无线电接收机。可见,天线是发射和接收电磁波的一个重要的无线电设备,没有天线也就没有无线电通信。天线品种繁多,以供不同频率、不同用途、不同场合、不同要求等不同情况下使用。对于众多品种的天线,进行适当的分类是必要 1天线 1.1 天线的作用与地位 无线电发射机输出的射频信号功率,通过馈线(电缆)输送到天线,由天线以电磁波形式辐射出去。电磁波到达接收地点后,由天线接下来(仅仅接收很小很小一部分功率),并通过馈线送到无线电接收机。可见,天线是发射和接收电磁波的一个重要的无线电设备,没有天线也就没有无线电通信。天线品种繁多,以供不同频率、不同用途、不同场合、不同要求等不同情况下使用。对于众多品种的天线,进行适当的分类是必要的:按用途分类,可分为通信天线、电视天线、雷达天线等;按工作频段分类,可分为短波天线、超短波天线、微波天线等;按方向性分类,可分为全向天线、定向天线等;按外形分类,可分为线状天线、面状天线等;等等分类。 *电磁波的辐射 导线上有交变电流流动时,就可以发生电磁波的辐射,辐射的能力与导线的长度和形状有关。如图1.1 a 所示,若两导线的距离很近,电场被束缚在两导线之间,因而辐射很微弱;将两导线张开,如图1.1 b 所示,电场就散播在周围空间,因而辐射增强。必须指出,当导线的长度L 远小于波长λ时,辐射很微弱;导线的长度L 增大到可与波长相比拟时,导线上的电流将大大增加,因而就能形成较强的辐射。 1.2 对称振子 对称振子是一种经典的、迄今为止使用最广泛的天线,单个半波对称振子可简单地单独立地使用或用作为抛物面天线的馈源,也可采用多个半波对称振子组成天线阵。两臂长度相等的振子叫做对称振子。每臂长度为四分之一波长、全长为二分之一波长的振子,称半波对称振子,见图1.2a 。另外,还有一种异型半波对称振子,可看成是将全波对称振子折合成一个窄长的矩形框,并把全波对称振子的两个端点相叠,这个窄长的矩形框称为折合振子,注意,折合振子的长度也是为二分之一波长,故称为半波折合振子,见图1.2 b。 1.3 天线方向性的讨论

超声相控阵检测教材超声相控阵技术

第三章超声相控阵技术 3.1 相控阵的概念 3.1.1相控阵超声成像 超声检测时,如需要对物体内某一区域进行成像,必须进行声束扫描。相控阵成像是通过控制阵列换能器中各个阵元激励(或接收)脉冲的时间延迟,改变由各阵元发射(或接收)声波到达(或来自)物体内某点时的相位关系,实现聚焦点和声束方位的变化,从而完成相控阵波束合成,形成成像扫描线的技术,如图3-1所示。 图3-1 相控阵超声聚焦和偏转

3.2 相控阵工作原理 相控阵超声成像系统中的数字控制技术主要是指波束的时空控制,采用先进的计算机技术,对发射/接收状态的相控波束进行精确的相位控制,以获得最佳的波束特性。这些关键数字技术有相控延时、动态聚焦、动态孔径、动态变迹、编码发射、声束形成等。 3.2.1相位延时 相控阵超声成像系统使用阵列换能器,并通过调整各阵元发射/接收信号的相位延迟(phase delay),可以控制合成波阵面的曲率、指向、孔径等,达到波束聚焦、偏转、波束形成等多种相控效果,形成清晰的成像。可以说,相位延时(又称相控延时)是相控阵技术的核心,是多种相控效果的基础。 相位延时的精度和分辨率对波束特性的影响很大。就波束的旁瓣声压而言,文献研究表明,延时量化误差产生离散的误差旁瓣,从而降低图像的动态范围。其均方根(RMS)延时量化误差与旁瓣幅值之比为 (式3-1) 式中,; N-----阵元数目; μ----中心频率所对应一个周期与最小量化延时之比。 图3-2示出了延时量化误差引起的旁瓣随N、μ变化的关系曲线。早期的超声成像设备如医用B超中,由LC网络组成多抽头延迟线直接对模拟信号进行延迟,用电子开关来分段切换以获得不同的延迟量。这种延迟方式有两大缺点:①延迟量不能精细可调,只能实现分段聚焦,当聚焦点很多时需要庞大的LC网络和电子开关矩阵;②由于是模拟延迟方式,电气参数难以未定,延时量会发生温漂、时漂、波形容易被噪声干扰。

天线基础知识培训资料

天线基础知识 1 天线 1.1 天线的作用与地位 无线电发射机输出的射频信号功率,通过馈线(电缆)输送到天线,由天线以电磁波形式辐射出去。电磁波到达接收地点后,由天线接下来(仅仅接收很小很小一部分功率),并通过馈线送到无线电接收机。可见,天线是发射和接收电磁波的一个重要的无线电设备,没有天线也就没有无线电通信。天线品种繁多,以供不同频率、不同用途、不同场合、不同要求等不同情况下使用。对于众多品种的天线,进行适当的分类是必要的:按用途分类,可分为通信天线、电视天线、雷达天线等;按工作频段分类,可分为短波天线、超短波天线、微波天线等;按方向性分类,可分为全向天线、定向天线等;按外形分类,可分为线状天线、面状天线等;等等分类。 *电磁波的辐射 导线上有交变电流流动时,就可以发生电磁波的辐射,辐射的能力与导线的长度和形状有关。如图1.1 a 所示,若两导线的距离很近,电场被束缚在两导线之间,因而辐射很微弱;将两导线张开,如图 1.1 b 所示,电场就散播在周围空间,因而辐射增强。必须指出,当导线的长度 L 远小于波长λ 时,辐射很微弱;导线的长度 L 增大到可与波长相比拟时,导线上的电流将大大增加,因而就能形成较强的辐射。 图1.1 a 图1.1 b 1.2 对称振子 对称振子是一种经典的、迄今为止使用最广泛的天线,单个半波对称振子可简单地单独立地使用或用作为抛物面天线的馈源,也可采用多个半波对称振子组成天线阵。两臂长度相等的振子叫做对称振子。每臂长度为四分之一波长、全长为二分之一波长的振子,称半波对称振子, 见图1.2 a。另外,还有一种异型半波对称振子,可看成是将全波对称振子折合成一个窄长的矩形框,并把全波对称振子的两个端点相叠,这个窄长的矩形框称为折合振子,注意,折合振子的长度也是为二分之一波长,故称为半波折合振子, 见图1.2 b。

超声相控阵检测教材-第三章-超声相控阵技术

第三章超声相控阵技术 3.1相控阵的概念 3.1.1相控阵超声成像 超声检测时,如需要对物体内某一区域进行成像, 必须进行声束扫描。相控阵成像是通 过控制阵列换能器中各个阵元激励(或接收)脉冲的时间延迟,改变由各阵元发射(或接收) 声波到达(或来自)物体内某点时的相位关系,实现聚焦点和声束方位的变化,从而完成相 控阵波束合成,形成成像扫描线的技术,如图 3-1所示。 图3-1 相控阵超声聚焦和偏转

3.2相控阵工作原理 相控阵超声成像系统中的数字控制技术主要是指波束的时空控制, 采用先进的计算机技 术,对发射/接收状态的相控波束进行精确的相位控制,以获得最佳的波束特性。这些关键 数字技术有相控延时、动态聚焦、动态孔径、动态变迹、编码发射、声束形成等。 3.2.1相位延时 相控阵超声成像系统使用阵列换能器,并通过调整各阵元发射 /接收信号的相位延迟 (phase delay ),可以控制合成波阵面的曲率、指向、孔径等,达到波束聚焦、偏转、波束 形成等多种相控效果,形成清晰的成像。可以说,相位延时(又称相控延时)是相控阵技术 的核心,是多种相控效果的基础。 相位延时的精度和分辨率对波束特性的影响很大。 就波束的旁瓣声压而言, 文献研究表 明,延时量化误差产生离散的误差旁瓣,从而降低图像的动态范围。其均方根( ,r . / \ 诙爲 式中, 一-—— N-----阵元数目; 尸--中心频率所对应一个周期与最小量化延时之比。 图3-2示出了延时量化误差引起的旁瓣随 N 、□变化的关系曲线。早期的超声成像设备 如医用B 超中,由LC 网络组成多抽头延迟线直接对模拟信号进行延迟, 用电子开关来分段 切换以获得不同的延迟量。这种延迟方式有两大缺点:①延迟量不能精细可调,只能实现分 段聚焦,当聚焦点很多时需要庞大的 LC 网络和电子开关矩阵;②由于是模拟延迟方式,电 气参数难以未定,延时量会发生温漂、时漂、波形容易被噪声干扰。 RMS )延 (式 3-1)

相控阵天线的基本原理介绍

相控阵天线的基本原理介绍 相控阵天线是目前卫星移动通信系统中最重要的一种天线形式,由三个部分组成:天线阵、馈电网络和波束控制器。基本原理是微处理器接收到包含通信方向的控制信息后,根据控制软件提供的算法计算出各个移相器的相移量,然后通过天线控制器来控制馈电网络完成移相过程。由于移相能够补偿同一信号到达各个不同阵元而产生的时间差,所以此时天线阵的输出同相叠加达到最大。一旦信号方向发生变化,只要通过调整移相器的相移量就可使天线阵波束的最大指向做相应的变化,从而实现波束扫描和跟踪。相控阵天线有相控扫描线天线阵和平面相控阵天线。图一 图一 N单元相阵 远区观察点P处的总场强可以是认为线阵中N个单元在P点产生的辐 射场强叠加:

图二线性相控阵天线 这一天线阵的方向图函数为: 图三平面相控阵天线 相控阵在快速跟踪雷达、测相等领域得到广泛的应用,它可以使主瓣指向随着通信的需要而不断地调整。相控阵为主瓣最大值方向或方向图形主要由单位激励电流的相对来控制天线阵。通过控制阵列天线中辐射单元的馈电相位改变方向图形状的天线。控制相位可以改变

天线方向图最大值的指向,以达到波速扫描的目的。在特殊情况下,也可以控制副瓣电平、最小值位置和整个方向图的形状。用机械方法旋转天线时,惯性大、速度慢,相控阵天线克服了这已缺点,波速的扫描高。它的馈电相一般用电子计算机控制,相位变化速度快,即天线方向图最大值指向或其他参数的变化迅速。这是相控阵天线的最大特点。 一般相控阵天线应对每一辐射单元的相位进行控制。为了节省移相器和简化控制线路,有时几个辐射单元共用一个移相器。相控阵天线的关键器件是移相器和天线辐射单元。移相器分连续式移相器和数字式移相器两种。连续式移相器的移相值可在0°~360°范围内连续变化,数字式移相器的移相值是离散的,只能是360×(1/2)^n的整数倍,移相器应保证在一定的频率范围内获得所需要的移相值。天线辐射单元的设计应使一定移相范围内和一定频率范围内的输入阻抗的变化尽可能小,以保证发射机正常工作,防止由于射频信号的多次反射而出现寄生副瓣和方向图中出现凹点的现象。相控阵天线的馈电方式分传输线馈电和空间馈电两种。在传输线馈电方式下,射频能量通过波导、同轴线和微带线等微波传输线馈给辐射单元。在空间馈电方式下,发射机产生的射频能量通过辐射装置辐射至自由空间,传输一段距离后由一个接收阵接收,接收阵的每个单元或一组单元所接收到的信号,经过移相器移相后再馈给发射阵的发射单元并辐射出去。 相控阵天线阵列本身的设计主要是幅度、相位分布设计和单元阻

(整理)天线的基础知识.

天线的作用与地位 无线电发射机输出的射频信号功率,通过馈线(电缆)输送到天线,由天线以电磁波形式辐射出去。电磁波到达接收地点后,由天线接下来(仅仅接收很小很小一部分功率),并通过馈线送到无线电接收机。可见,天线是发射和接收电磁波的一个重要的无线电设备,没有天线也就没有无线电通信。 天线品种繁多,以供不同频率、不同用途、不同场合、不同要求等不同情况下使用。 对于众多品种的天线,进行适当的分类是必要的: 按用途分类:可分为通信天线、电视天线、雷达天线等; 按工作频段分类:可分为短波天线、超短波天线、微波天线等; 按方向性分类:可分为全向天线、定向天线等; 按外形分类:可分为线状天线、面状天线等。 电磁波的辐射 导线上有交变电流流动时,就可以发生电磁波的辐射,辐射的能力与导线的长度和形状有关。如图1.1 a 所示,若两导线的距离很近,电场被束缚在两导线之间,因而辐射很微弱;将两导线张开,如图1.1 b 所示,电场就散播在周围空间,因而辐射增强。 必须指出,当导线的长度 L 远小于波长λ时,辐射很微

弱;导线的长度 L 增大到可与波长相比拟时,导线上的电流将大大增加,因而就能形成较强的辐射。 对称振子 对称振子是一种经典的、迄今为止使用最广泛的天线,单个半波对称振子可简单地单独立地使用或用作为抛物面天线的馈源,也可采用多个半波对称振子组成天线阵。 两臂长度相等的振子叫做对称振子。每臂长度为四分之一波长、全长为二分之一波长的振子,称半波对称振子,见图1.2a。 另外,还有一种异型半波对称振子,可看成是将全波对称振子折合成一个窄长的矩形框,并把全波对称振子的两个端点相叠,这个窄长的矩形框称为折合振子,注意,折合振子的长度也是为二分之一波长,故称为半波折合振子,见图1.2 b 。

相控阵技术

导读 任何无损检验方法(NDT)的可信度很大程度上取决于人员因素。进行相控阵超声检验的人员应经过培训并取得相应的资格。通过检验人员的技能、教育经历、培训经历,NDT检验人员来证明自己能够根据工艺和设备(相控阵超声设备,扫描仪,探头,软件,分析分布图和报告)的特殊要求进行操作。检验人员应熟悉应用于特殊零件的相控阵技术的基本特性。应客户要求,关于R/D技术原理的第一本书出版了:相控阵技术应用简介:R/D技术指南。该指南用大幅篇章介绍了基本的超声测试,数据评定和扫查方式,相控阵探头以及应用,适合广大读者使用,该指南包含大量实用信息堪称为实用手册。该指南可通过登陆我们的网站使用e-mail订购。 相控阵技术指南手册可视为NDT从业人员使用基本相控阵超声技术的备忘录。它面向日常的操作,针对技术秘诀,介绍操作方法(工艺规范,标定,特征描述,重新启动,解决检验的问题)。关于其大小,该手册设计为口袋书籍。为使该手册能适应现场条件,我们采用防水抗扯的合成纸印刷该书,且封面和装订都十分牢固。 相控阵技术指南手册包括: ·第一章“相控阵超声技术——基本特性“ 详述了PAUT(相控阵超神探伤的缩写)原理,介绍了主要硬件设备和相控阵声束组成类型和运动形式(线性,方位角型,深度型,平面型和3-D型)。 ·第二章“相控阵探头——基本特性“ 详述了用于日常检验的PA(相控阵的缩写)探头及其主要特性。范例介绍时使用的是大多数场合最常用的探头类型,即1-D平面线性阵探头。 ·第三章“聚焦法则“——常用范例 介绍了线性阵探头如Tomoscan ⅢTM PA探头(TomoView TM 2.2R9)和OmniScan○R PA探头定义聚焦法则的基本步骤。 ·第四章“扫查方式,观察,和分布图” 介绍了Tomoscan ⅢTM PA探头(TomoView TM 2.2R9)和OmniScan○R PA探头评定(A-扫查法,S-扫查法,B-扫查法,C-扫查法和D-扫查法)的主要数据,基本分布以及扫查方式。特殊场合下推荐的分布图也进行了说明。 ·第五章“超声束设置,标定和定期检查” 介绍了关于超声束设定调节,设备标定和现场定期检查的基本范例。 ·第六章“使用表格,图表和公式” 该章是实用公式的总结,如:斯涅尔定律,近场长度,波长,声束宽度,半角声束传播速度。书中特别强调了实用不同方法测量缺陷尺寸。表格,公式,图表都可以作为一些参数的速查工具:折射角,等效延迟和反射体尺寸。 ·附录A:“单位转化” 提供了本手册所使用到的单位与公-英制单位的转化。 ·附录B:“支持和培训” 通过R/D技术网站,你可以寻找或提供关于本手册的相关附加信息。 ·“参考文献” 列出了支持和扩充本手册构想的基本资料。本手册编制成一本开放式的对话式手册。对于特殊操作,我们增加了提示,重要标注,注意事项和警告标志等。 正如R/D技术的CEO(首席执行官)和主席在扉页中提到的,我们欢迎您参与进来,提出意见,进行评论,提出设想,从而促进本书第二版的进一步完善。

浅述相控阵天线波束控制的基本原理及波控系统的任务

浅述相控阵天线波束控制的基本原理及波控系统的任务 摘要现阶段我国科学技术发展速度的不断加快,为天线波束研究水平的逐渐提升提供了重要的技术支持。实践过程中为了实现天线波束的定向控制,需要充分地发挥出相控阵天线波束控制优势,并了解其基本原理及波控系统的任务,优化该系统实践应用中的服务功能。基于此,本文就相控阵天线波束控制的基本原理及波控系统的任务展开论述。 关键词相控阵天线波束;控制;基本原理;波控系统;任务 结合当前的形势变化,注重相控阵天线波束控制的基本原理及波控系统的任务分析,有利于提升天线波束实践应用中的控制水平,最大限度地满足雷达扫描的实际需求,从而为雷达扫描技术所需的波控系统性能优化提供科学保障。因此,需要加强天线波束控制的基本原理分析,提高对其相关的波控系统任务的正确认识,使得天线波束应用成本得以降低。 1 相控阵天线波束控制的基本原理分析 实践过程中结合相控阵雷达的要求,注重天线波束控制方式的合理使用,有利于保持良好的雷达扫描效果,丰富其所需的扫描技术内涵。因此,需要根据实际情况,从不同的方面入手,加强相控阵天线波束控制的基本原理分析,从而为其使用中实际作用的充分发挥提供保障。具体表现在以下方面: 借助计算机网络与信息技术的优势,结合相控阵天线波束的功能特性,在其控制作用发挥中需要确定相应的空间位置,并了解其跟踪情况,最终通过计算机三维空间的动态模拟分析作用,得到所需的相控阵天线波束在雷达扫描控制中的方位角与仰角初始值,并对相控阵雷达阵面中的天线元对应的相位值进行分析。此时,为了达到移相的目的,需要注重性能可靠的移相器使用,并处理好波控系统运行中产生的波控码。当这些举措实施到位后,有利于实现相控阵天线定向,确定相应的波束方向。 (2)在确定天线元所对应的相位值过程中,需要在单元集中配相法與初始向量计算方式的共同作用下予以应对,且在行列分离方法的作用下,确定相控阵天线波束控制中所需的平面阵列。当天线元所对应的相位值确定后,则可通过计算机系统的作用,得到相应的点阵相位值。 基于相控阵天线波束控制下的雷达扫描,在保持其良好的移相器计算位数作用效果过程中,可借助虚算方式的优势,确定移相位数,确保移相器应用有效性[1]。 2 实践中的相控阵天线波控系统的设计分析 为了实现对雷达扫描过程的科学控制,保持其扫描技术良好的应用效果,则

超声相控阵技术第一部分基本概念_李衍

技术讲座 超声相控阵技术 第一部分 基本概念 李 衍 (江苏太湖锅炉股份有限公司,江苏无锡 214187) 摘 要:超声相控阵技术是当今工业无损检测极富挑战力的一项新技术。本篇概述有关超声相控阵的基本原理和相控阵时间延迟的基本概念。 关键词:超声波;相控阵;时间延迟 中图分类号:TG115.28 文献标识码:A 文章编号:1671-4423(2007)04-24-05 1 引言 相控阵超声波检测作为一种独特的技术得到开发和应用,在21世纪初已进入成熟阶段。上世纪80年代初,相控阵超声波技术从医疗领域跃入工业领域。80年代中期,压电复合材料的研制成功,为复合型相控阵探头的制作开创新途径。90年代初,欧美将相控阵技术作为一种新的无损评价(NDE )方法,编入超声检测手册和无损检测工程师培训教程。自1895年至1992年,该技术主要用于核反应压力容器(管接头)、大锻件轴类,及汽轮机部件的检测。 压电复合技术、微型机制、微电子技术、及计算机功率(包括探头设计和超声波与试件相互作用的模拟程序包)的最新发展,对相控阵技术的完善和精细化都有卓著贡献。功能软件也使计算机能力大大增强。 相控阵超声波技术用于无损检测,最先是为动力工业解决下列检测问题:①要用单探头在固定位置检出不同位置和任意方向的裂纹;②要对检测异种金属焊缝和离心铸造不锈钢焊缝提高信噪比和定量能力;③要提高声束扫查可靠性;④要对难以接近的受压给水反应器或沸水反应堆部件进行检测;⑤要缩短在用设备维修检测时间,提高生产效率;⑥要检测和定量形状复杂的汽轮机部件中的应力腐蚀小裂纹;⑦要减少在用检测人员射线吸收剂量;⑧要对一些临界缺陷(不论缺陷方向)提高检 测、定位、定量和定向精度;⑨要对“合乎使用”(或称“工程临界评定”或“寿命评价”)检测提供易于判读的定量分析报告。 在其他工业领域,如航空航天、国防、石油化工、机械制造等,对超声无损检测也都有类似的改进和强化需求。一般都集中在相控阵超声技术的一些主要优点上,即:①速度快:相控阵技术可进行电子扫描,比通常的光栅扫描快一个数量等级;②灵活性好:用一个相控阵探头,就能涵盖多种应用,不象普通超声探头应用单一有限;③电子配置:通过文件装载和校准就能进行配置,通过预置文件就能完成不同参数调整;④探头小巧:对某些检测,可接近性是“拦路虎”,而对相控阵,只需用一小巧的阵列探头,就能完成多个单探头分次往复扫查才能完成的检测任务。 十年前,相控阵超声技术在工业上已锋芒毕露。便携式相控阵探伤仪的推出,更是倍受青睐:仪器可单人现场操作,数据实时传送、远程分析。最近,国内大专院校和研究所及电子仪器设备制造公司,也在投注力量,加速研制,使国产相控阵仪器早日问世。 2 超声相控阵原理 2.1 概述 超声波是由电压激励压电晶片探头在弹性介质(试件)中产生的机械振动。工业应用大多要求使用0.5M Hz ~15M Hz 的超声频率。常规超声检测多 第31卷第4期2007年8月 无损探伤N D T V ol.31N o.4 Aug us t.2007

1-第一章 超声相控阵技术基本概念

第一章超声相控阵技术的基本概念 本章描述超声波原理、相控阵延时(或聚焦定律)概念,并介绍R/D公司研制的相控阵仪器设备。 1.1 原理 超声波是由电压激励压电晶片探头在弹性介质(试件)中产生的机械振动。典型的超声频率范围为0.1MHz~50MHz。大多数工业应用要求使用0.5MHz~15MHz的超声频率。 常规超声检测多用声束扩散的单晶探头,超声场以单一折射角沿声束轴线传播。其声束扩散是唯一的“附加”角度,这对检测有方向性的小裂纹可能有利。 假设将整个压电晶片分割成许多相同的小晶片,令小晶片宽度e远小于其长度W。每个小晶片均可视为辐射柱面波的线状波源,这些线状波源的波阵面会产生波的干涉,形成整体波阵面。 这些小波阵面可被延时并与相位和振幅同步,由此产生可调向的超声聚焦波束。 超声相控阵技术的主要特点是多晶片探头中各晶片的激励(振幅和延时)均由计算机控制。压电复合晶片受激励后能产生超声聚焦波束,声束参数如角度、焦距和焦点尺寸等均可通过软件调整。扫描声束是聚焦的,能以镜面反射方式检出不同方位的裂纹。这些裂纹可能随机分布在远离声束轴线的位置上。用普通单晶探头,因移动范围和声束角度有限,对方向不利的裂纹或远离声束轴线位置的裂纹,漏检率很高(见图1)。 图﹡ ﹡常规

图1-2 脉冲发生和回波接收时的声束形成和时间延迟(同相位、同振幅) 图1-3 超声波垂直(a )和倾斜(b )入射时声束聚焦原理 发射 接收 超声波探伤仪 超声波探伤仪 触发 相控阵控制器 相控阵控制器 脉冲激励 阵列探头 缺陷 缺陷 入射波阵面 反射波阵面 回波信号 Σ 接收延时 延时 [ns] 延时 [ns] 转角 产生的波阵面 产生的波阵面 阵列探头 阵列探头

相控阵天线的基础理论

第二章 相控阵天线的基础理论 相控阵天线是从阵列天线发展起来的,主要依靠相位变化实现天线波束指向在空间的移动或扫描,亦称电子扫描阵列(ESA )天线。虽然用于相控阵雷达的相控阵天线有多种,但相控阵天线均是由多个天线单元,亦称辐射器构成的。天线单元可以是单个的波导喇叭天线、偶极子天线、贴片天线等。在每个天线单元后端都设置有移相器,用来改变单元之间信号的相位关系,信号的幅度变化则通过功率分配/相加网络或者衰减器来实现。在扫描过程中,整个雷达不需要像采用普通阵列天线或者剖物面天线的雷达那样进行机械运动,因此波束指向迅速灵活,且可以实现多波束并行工作,使得雷达具有很强的自适应能力。 在相控阵天线的实际使用过程中,线性相控阵天线平面相控阵天线是较为常见的两种形式。下面分别以这两种形式为例,阐述相控阵天线扫描的基本原理。 2.1 相控阵天线扫描的基本原理 2.1.1 线性相控阵天线扫描的基本原理 线性相控阵天线广泛应用于一维相控扫描的相控阵雷达中。根据基本的阵列类型,线性相控阵天线可以划分为垂射阵列和端射阵列。垂射阵列最大辐射方向垂直于阵列轴向,天线波束在线阵法线方向左右两侧进行扫描。相反,端射阵列主瓣方向沿着阵列轴向。由于垂射阵应用最为广泛,因此主要讨论垂射阵。 图是一个由N 个天线单元组成的线性阵列原理图,天线单元呈均匀排成一线,途中沿y 轴方向按等间距方式分布,天线单元间距为d 。每一个天线单元的激励电流为(i 0,1,2,...N 1)i I =-。每一单元辐射的电场强度与其激励电流i I 成正比。天线单元的方向图函数用(,)i f θ?表示。 图 N 单元线性相控天线阵原理图 阵中第i 个天线单元在远区产生的电场强度为: 2(,)i j r i i i i i e E K I f r π λθ?-= 式中,i K 为第i 个天线单元辐射场强的比例常数,i r 为第i 个天线单元至观察点的距离,(,)i f θ?为第i 个天线单元的方向图函数,i I 为第i 个天线单元的激励电流,可以表示成为: B ji i i I a e φ-?= 式中,i a 为幅度加权系数,B φ?为等间距线阵中,相邻单元之间的馈电相位差,亦称阵内相移值。 在线性传播媒质中,电磁场方程是线性方程,满足叠加定理的条件。因此,在远区观察点P 处的总场强E 可以认为是线阵中N 个辐射单元在P 处辐射场强之和,因此有:

一些天线基本知识

一些天线基本知识 一、电磁波产生的基本原理 按照麦克斯韦电磁场理论,变化的电场在其周围空间要产生变化的磁场,而变化的磁场又要产生变化的电场。这样,变化的电场和变化的磁场之间相互依赖,相互激发,交替产生,并以一定速度由近及远地在空间传播出去。 周期性变化的磁场激发周期性变化的电场,周期性变化的电场激发周期性变化的磁场。 电磁波不同于机械波,它的传播不需要依赖任何弹性介质,它只靠“变化电场产生变化磁场,变化磁场产生变化电场”的机理来传播。 当电磁波频率较低时,主要籍由有形的导电体才能传递;当频率逐渐提高时,电磁波就会外溢到导体之外,不需要介质也能向外传递能量,这就是一种辐射。在低频的电振荡中,磁电之间的相互变化比较缓慢,其能量几乎全部反回原电路而没有能量辐射出去。然而,在高频率的电振荡中,磁电互变甚快,能量不可能反回原振荡电路,于是电能、磁能随着电场与磁场的周期变化以电磁波的形式向空间传播出去。 根据以上的理论,每一段流过高频电流的导线都会有电磁辐射。有的导线用作传输,就不希望有太多的电磁辐射损耗能量;有的导线用作天线,就希望能尽可能地将能量转化为电磁波发射出去。于是就有了传输线和天线。无论是天线还是传输线,都是电磁波理论或麦克斯韦方程在不同情况下的应用。 对于传输线,这种导线的结构应该能传递电磁能量,而不会向外辐射;对于天线,这种导线的结构应该能尽可能将电磁能量传递出去。不同形状、尺寸的导线在发射和接收某一频率的无线电信号时,效率相差很多,因此要取得理想的通信效果,必须采用适当的天线才行!研究什么样结构的导线能够实现高效的发射和接收,也就形成了天线这门学问。

高频电磁波在空中传播,如遇着导体,就会发生感应作用,在导体内产生高频电流,使我们可以用导线接收来自远处的无线电信号。 二、天线 在无线通信系统中,需要将来自发射机的导波能量转变为无线电波,或者将无线电波转换为导波能量,用来辐射和接收无线电波的装置称为天线。发射机所产生的已调制的高频电流能量(或导波能量)经馈线传输到发射天线,通过天线将转换为某种极化的电磁波能量,并向所需方向出去。到达接收点后,接收天线将来自空间特定方向的某种极化的电磁波能量又转换为已调制的高频电流能量,经馈线输送到接收机输入端。 综上所述,天线应有以下功能: 1.天线应能将导波能量尽可能多地转变为电磁波能量。这首先要求天线是一个良好的电磁开放系统,其次要求天线与发射机或接收机匹配。 2.天线应使电磁波尽可能集中于确定的方向上,或对确定方向的来波最大限度的接受,即方向具有方向性。 3.天线应能发射或接收规定极化的电磁波,即天线有适当的极化。 4.天线应有足够的工作频带。 这四点是天线最基本的功能,据此可定义若干参数作为设计和评价天线的依据。 把天线和发射机或接收机连接起来的系统称为馈线系统。馈线的形式随频率的不同而分为又导线传输线、同轴线传输线、波导或微带线等。所以,所谓馈线,实际上就是传输线。 天线的电参数 天线的基本功能就是能量转换和定向辐射,所谓天线的电参数,就是能定量表征其能量转换和定向辐射能力的量。 1. 天线的方向性

超声相控阵检测教材-第三章-超声相控阵技术

-第三章- 超声相控阵检测教材 超声相控阵技术

第三章超声相控阵技术 3.1相控阵的概念 3.1.1相控阵超声成像 超声检测时,如需要对物体内某一区域进行成像,必须进行声束扫描。相控阵成像是通过控制阵列换能器中各个阵元激励(或接收)脉冲的时间延迟,改变由各阵元发射(或接收)声波到达(或来自)物体内某点时的相位关系,实现聚焦点和声束方位的变化,从而完成相控阵波束合成,形成成像扫描线的技术,如图3-1所示。

3.2相控阵工作原理 相控阵超声成像系统中的数字控制技术主 要是指波束的时空控制,采用先进的计算机技术,对发射/接收状态的相控波束进行精确的相位控制,以获得最佳的波束特性。这些关键数字 技术有相控延时、动态聚焦、动态孔径、动态变321相位延时 迹、编码发射、声束形成等。 相控阵超声成像系统使用阵列换能器,并通过调 整各阵元发射/接收信号的相位延迟(phase delay), 可以控制合成波阵面的曲率、指向、孔径等,达到波 束聚焦、偏转、波束形成等多种相控效果,形成清晰 的成像。可以说,相位延时(又称相控延时)是相控 阵技术的核心,是多种相控效果的基础。 相位延时的精度和分辨率对波束特性的影响很 大。就波束的旁瓣声压而言,文献研究表明, 延时量 化误差产生离散的误差旁瓣,从而降低图像的动态范 围。其均方根(RMS)延时量化误差与旁瓣幅值之比 为 1 _ sin c(;)yr 、、叩 , Nsin c($u“(6/V)】/屮(式3?1)

N ——阵元数目; a -一中心频率所对应一个周期与最小量化延时 之比。 图3-2示出了延时量化误差引起的旁瓣随 N 、 卩变化的关系曲线。早期的超声成像设备如 医用B 超中,由LC 网络组成多抽头延迟线直接 对模拟信号进行延迟,用电子开关来分段切换以 获得不同的延迟量。这种延迟方式有两大缺点: ①延迟量不能精细可调,只能实现分段聚焦,当 聚焦点很多时需要庞大的LC 网络和电子开关矩 阵;②由于是模拟延迟方式,电气参数难以未定, 延时量会发生温漂、时漂、波形容易被噪声干扰。 (a ) p=8时,旁瓣随N 变化曲线(b )尸16时,旁瓣随 卩变化曲线 图3-2旁瓣与N 、卩关系图 近来采用数字延时来代替原来的模拟延时。 数字式中,汕N sin nx

相控阵天线的基础理论

相控阵天线的基础理论 The pony was revised in January 2021

第二章 相控阵天线的基础理论 相控阵天线是从阵列天线发展起来的,主要依靠相位变化实现天线波束指向在空间的移动或扫描,亦称电子扫描阵列(ESA )天线。虽然用于相控阵雷达的相控阵天线有多种,但相控阵天线均是由多个天线单元,亦称辐射器构成的。天线单元可以是单个的波导喇叭天线、偶极子天线、贴片天线等。在每个天线单元后端都设置有移相器,用来改变单元之间信号的相位关系,信号的幅度变化则通过功率分配/相加网络或者衰减器来实现。在扫描过程中,整个雷达不需要像采用普通阵列天线或者剖物面天线的雷达那样进行机械运动,因此波束指向迅速灵活,且可以实现多波束并行工作,使得雷达具有很强的自适应能力。 在相控阵天线的实际使用过程中,线性相控阵天线平面相控阵天线是较为常见的两种形式。下面分别以这两种形式为例,阐述相控阵天线扫描的基本原理。 2.1 相控阵天线扫描的基本原理 2.1.1 线性相控阵天线扫描的基本原理 线性相控阵天线广泛应用于一维相控扫描的相控阵雷达中。根据基本的阵列类型,线性相控阵天线可以划分为垂射阵列和端射阵列。垂射阵列最大辐射方向垂直于阵列轴向,天线波束在线阵法线方向左右两侧进行扫描。相反,端射阵列主瓣方向沿着阵列轴向。由于垂射阵应用最为广泛,因此主要讨论垂射阵。 图是一个由N 个天线单元组成的线性阵列原理图,天线单元呈均匀排成一线,途中沿 y 轴方向按等间距方式分布,天线单元间距为d 。每一个天线单元的激励电流为 (i 0,1,2,...N 1)i I =-。每一单元辐射的电场强度与其激励电流i I 成正比。天线单元的方向图函数用(,)i f θ?表示。

天线的基础知识

第一讲天线的基础知识 表征天线性能的主要参数有方向图,增益,输入阻抗,驻波比,极化方式等。 1.1 天线的输入阻抗 天线的输入阻抗是天线馈电端输入电压与输入电流的比值。天线与馈线的连接,最佳情形是天线输入阻抗是纯电阻且等于馈线的特性阻抗,这时馈线终端没有功率反射,馈线上没有驻波,天线的输入阻抗随频率的变化比较平缓。天线的匹配工作就是消除天线输入阻抗中的电抗分量,使电阻分量尽可能地接近馈线的特性阻抗。匹配的优劣一般用四个参数来衡量即反射系数,行波系数,驻波比和回波损耗,四个参数之间有固定的数值关系,使用那一个纯出于习惯。在我们日常维护中,用的较多的是驻波比和回波损耗。一般移动通信天线的输入阻抗为50Ω。 驻波比:它是行波系数的倒数,其值在1到无穷大之间。驻波比为1,表示完全匹配;驻波比为无穷大表示全反射,完全失配。在移动通信系统中,一般要求驻波比小于1.5,但实际应用中VSWR应小于1.2。过大的驻波比会减小基站的覆盖并造成系统内干扰加大,影响基站的服务性能。 回波损耗:它是反射系数绝对值的倒数,以分贝值表示。回波损耗的值在0dB 的到无穷大之间,回波损耗越大表示匹配越差,回波损耗越大表示匹配越好。0表示全反射,无穷大表示完全匹配。在移动通信系统中,一般要求回波损耗大于14dB。 1.2 天线的极化方式 所谓天线的极化,就是指天线辐射时形成的电场强度方向。当电场强度方向垂直于地面时,此电波就称为垂直极化波;当电场强度方向平行于地面时,此电波就称为水平极化波。由于电波的特性,决定了水平极化传播的信号在贴近地面时会在大地表面产生极化电流,极化电流因受大地阻抗影响产生热能而使电场信号迅速衰减,而垂直极化方式则不易产生极化电流,从而避免了能量的大幅衰减,保 证了信号的有效传播。 因此,在移动通信系统中,一般均采用垂直极化的传播方式。另外,随着新技术的发展,最近又出现了一种双极化天线。就其设计思路而言,一般分为垂直与水平极化和±45°极化两种方式,性能上一般后者优于前者,因此目前大部分采用的是±45°极化方式。双极化天线组合了+45°和-45°两副极化方向相互正交的天线,并同时工作在收发双工模式下,大大节省了每个小区的天线数量;同时由于±45°为正交极化,有效保证了分集接收的良好效果。(其极化分集增益约为 5dB,比单极化天线提高约2dB。) 1.3 天线的增益

喇叭天线基础理论

2 喇叭天线基础理论 2.1 喇叭天线的结构特点与分类 喇叭天线就其结构来讲可以看成由两大部分构成:一是波导管部分,横截面有矩形,也有圆形;二是真正的喇叭天线部分。 波导部分相当于线天线中的馈线,是供给喇叭天线信号和能量的部分。对工作于厘米波或毫米波段内的面天线,如采用线状馈线,将因馈线自身的辐射损耗太大不能把能量传送到面天线上,所以,必须采用自身屏蔽效果很好的波导管作馈线。 图2. 1 普通喇叭天线结构原理图 矩形波导中能够传输的波形(或叫模式)一般表示成TE mn ,其中第一个下标表示电场在宽边x 方向上分布的半波长个数,第二个下标n 表示电场在窄边y 方向分布的半波长个数。也表示电场在矩形波导中沿x ,y 方向上为驻波分布,z 方向为行波分布,而且,m ,n 可以 有一个为零,但不能同时为零,否则各横向电磁场量就全部变为零,导致H 为一常数,相 当于矩形波导中没有电磁波存在。如下图所示:

对于矩形波导管,其内部传输的主波型,也叫主模是TE10模,

2.2 喇叭天线的口径场和辐射场分布与方向性 2.2.1矩形喇叭天线口面场分布规律 2.2.1.1 矩形喇叭天线的口面场结构 为了说明喇叭天线的口面场结构,可用一个矩形喇叭来说明。图6-5-2画出了一个矩形扇形喇叭天线的场分布图。

(1)当矩形波导前端面开口时,也同样能产生电磁辐射,只是因为口面直径太小,按面天线理论,口面积越大,辐射场越强,方向性越好。这样由矩形波导前端面产生的辐射场强将较弱,方向性也相对较差。如果采用开口形状喇叭,口面积相对增大,辐射场也将增强; (2)当矩形波导前端开口时,将造成电磁波在波导内、外的存在空间不同。两个大小不同的空间环境对电磁波呈现的阻抗也不相同,其结果就是电磁波在波导中形成驻波形式,影响能量传输。如把波导开口做成喇叭形状,可以使电磁波由波导传到大空间时有一个渐变过程或过渡过程,这样能减缓阻抗的骤变,使电磁波在波导内传输时的驻波成份减少,有利于提高能量在波导中的传输效率。 (2)当矩形波导前端做成喇叭形状,电磁波载波道中的传输效率得到了提高,但由于喇叭和矩形波导形状上的差异,必将导致传到喇叭中电磁波的波阵面成为柱面(与矩形波导对应的喇叭)或球面形状(与圆形波导对应的喇叭)。这样在喇叭口面上形成的口面场Es 成为非均匀口面场结构,即在口面上各点Es 的相位和振幅大小不再相等,这将造成喇叭天线辐射场方向性变坏。 2.2.1.2 矩形喇叭天线口面场相位分布特点 根据天线辐射场一般表示式,其辐射场E H θ?和最终是由口面场Es 决定的。因此对口面场Es 的振幅和相位分析,就成为分析喇叭天线的首要问题。 以H 面扇形喇叭天线为例,并假定激励H 面扇形喇叭的巨型波导TE 10型波。由于H 面扇形喇叭相当于矩形波导宽边x 逐渐扩展而成,因此其口面场E s sy E =的相位将随宽边x 坐标发生变化,与保持不变的窄边y 无关,或者说E sy 相位沿窄边y 保持均匀分布,如图6-5-3所示。

相关主题
文本预览
相关文档 最新文档