当前位置:文档之家› 相控阵天线的基本原理介绍

相控阵天线的基本原理介绍

相控阵天线的基本原理介绍
相控阵天线的基本原理介绍

相控阵天线的基本原理介绍

相控阵天线是目前卫星移动通信系统中最重要的一种天线形式,由三个部分组成:天线阵、馈电网络和波束控制器。基本原理是微处理器接收到包含通信方向的控制信息后,根据控制软件提供的算法计算出各个移相器的相移量,然后通过天线控制器来控制馈电网络完成移相过程。由于移相能够补偿同一信号到达各个不同阵元而产生的时间差,所以此时天线阵的输出同相叠加达到最大。一旦信号方向发生变化,只要通过调整移相器的相移量就可使天线阵波束的最大指向做相应的变化,从而实现波束扫描和跟踪。相控阵天线有相控扫描线天线阵和平面相控阵天线。图一

图一 N单元相阵

远区观察点P处的总场强可以是认为线阵中N个单元在P点产生的辐

射场强叠加:

图二线性相控阵天线

这一天线阵的方向图函数为:

图三平面相控阵天线

相控阵在快速跟踪雷达、测相等领域得到广泛的应用,它可以使主瓣指向随着通信的需要而不断地调整。相控阵为主瓣最大值方向或方向图形主要由单位激励电流的相对来控制天线阵。通过控制阵列天线中辐射单元的馈电相位改变方向图形状的天线。控制相位可以改变

天线方向图最大值的指向,以达到波速扫描的目的。在特殊情况下,也可以控制副瓣电平、最小值位置和整个方向图的形状。用机械方法旋转天线时,惯性大、速度慢,相控阵天线克服了这已缺点,波速的扫描高。它的馈电相一般用电子计算机控制,相位变化速度快,即天线方向图最大值指向或其他参数的变化迅速。这是相控阵天线的最大特点。

一般相控阵天线应对每一辐射单元的相位进行控制。为了节省移相器和简化控制线路,有时几个辐射单元共用一个移相器。相控阵天线的关键器件是移相器和天线辐射单元。移相器分连续式移相器和数字式移相器两种。连续式移相器的移相值可在0°~360°范围内连续变化,数字式移相器的移相值是离散的,只能是360×(1/2)^n的整数倍,移相器应保证在一定的频率范围内获得所需要的移相值。天线辐射单元的设计应使一定移相范围内和一定频率范围内的输入阻抗的变化尽可能小,以保证发射机正常工作,防止由于射频信号的多次反射而出现寄生副瓣和方向图中出现凹点的现象。相控阵天线的馈电方式分传输线馈电和空间馈电两种。在传输线馈电方式下,射频能量通过波导、同轴线和微带线等微波传输线馈给辐射单元。在空间馈电方式下,发射机产生的射频能量通过辐射装置辐射至自由空间,传输一段距离后由一个接收阵接收,接收阵的每个单元或一组单元所接收到的信号,经过移相器移相后再馈给发射阵的发射单元并辐射出去。

相控阵天线阵列本身的设计主要是幅度、相位分布设计和单元阻

抗设计。阵列尺寸由波束宽度最窄时的宽度值和副瓣电平决定。相位分布主要根据波束要求而定。由于单元方向图和阻抗的限制,通常平面相控阵最大扫描范围为±60°的圆锥,加上一个球罩透镜后也可得到半球扫描。若仅要求方向图最大值在空间移动,只需要形成线性变化的相位分布。这时方向图的最大值方向垂直于等相位面。在方向图的某些方向上会出现寄生副瓣,其大小与具体的相位分布规律有关。为了满足特殊要求,则需要采用方向图综合法,事先算出所需的阵面相位分布。为了简化馈电结构,有些相控阵天线是等幅度的。为了克服等幅分布时副瓣电平高的缺点,可采用密度加权。雷达中使用相控阵天线后,波束控制灵活性显著提高,故可制成多功能雷达,使一部雷达起几部常规雷达的作用。

相控阵天线的基础理论

第二章相控阵天线的基础理论 相控阵天线是从阵列天线发展起来的,主要依靠相位变化实现天线波束指向在空间的移动或扫描,亦称电子扫描阵列(ESA)天线。虽然用于相控阵雷达的相控阵天线有多种,但相控阵天线均是由多个天线单元,亦称辐射器构成的。天线单元可以是单个的波导喇叭天线、偶极子天线、贴片天线等。在每个天线单元后端都设置有移相器,用来改变单元之间信号的相位关系,信号的幅度变化则通过功率分配/相加网络或者衰减器来实现。在扫描过程中,整个雷达不需要像采用普通阵列天线或者剖物面天线的雷达那样进行机械运动,因此波束指向迅速灵活,且可以实现多波束并行工作,使得雷达具有很强的自适应能力。 在相控阵天线的实际使用过程中,线性相控阵天线平面相控阵天线是较为常见的两种形式。下面分别以这两种形式为例,阐述相控阵天线扫描的基本原理。 2.1相控阵天线扫描的基本原理 2.1.1线性相控阵天线扫描的基本原理 线性相控阵天线广泛应用于一维相控扫描的相控阵雷达中。根据基本的阵列类型,线 性相控阵天线可以划分为垂射阵列和端射阵列。垂射阵列最大辐射方向垂直于阵列轴向,天线波束在线阵法线方向左右两侧进行扫描。相反,端射阵列主瓣方向沿着阵列轴向。由于垂射阵应用最为广泛,因此主要讨论垂射阵。 图2.1是一个由N个天线单元组成的线性阵列原理图,天线单元呈均匀排成一线,途中沿y轴方向按等间距方式分布,天线单元间距为d。每一个天线单元的激励电流为 I i(i =0,1,2,...N -1)。每一单元辐射的电场强度与其激励电流I i成正比。天线单元的方向 图函数用fiG,:)表示。 图2.1 N单元线性相控天线阵原理图 阵中第i个天线单元在远区产生的电场强度为: e丸E i =K i I i fip, ) (2.1) 式中,K i为第i个天线单元辐射场强的比例常数,r i为第i个天线单元至观察点的距离, f i P,)为第i个天线单元的方向图函数,h为第i个天线单元的激励电流,可以表示成为: (2.2) 式中,3i为幅度加权系数,厶B为等间距线阵中,相邻单元之间的馈电相位差,亦称阵内相移值。 在线性传播媒质中,电磁场方程是线性方程,满足叠加定理的条件。因此,在远区观察点P处的总场强E可以认为是线阵中N个辐射单元在P处辐射场强之和,因此有:

螺旋天线原理与设计基础知识

一般成品螺旋天线都用导电性能良好的金属线绕成并密封好,其工作原理下: 图1 所示一般天线结构示意图。D是螺旋天线直径,L是螺旋天线长度,ρ是螺距,Ⅰ、Ⅱ是螺旋线上相对应两点。 一般可以认为,电磁波沿金属螺旋线以光速C作匀速运动。 从Ⅰ点到Ⅱ点即进行一个螺旋,所需时间为 t = πD/C 而对螺旋天线而言,其轴向电磁波只运动行进了一个螺距ρ,其轴向等效速率 υ=ρ/t =ρ/C (πD) 这种关系也可用图2形式解释。由图2可知: υ=Csinθ=Cρ/(πD)≤C 由上式可以看出,υ总是小于等于C的。故螺旋天线能使电磁波运动速度减慢,是一个慢波系统,其等效波长λ等效小于工作波长λ。对于螺旋天线而言,应谐振于其1/4等效波长,因而能缩短螺旋天线的几何长度。 对于工作于一定中心频率的通讯机来说,其所需绕的线圈数N可以由下式近似算出:

螺距:υ=L/N 所需金属线长度:ι=NπD 对于一般通讯机可取 L=20~40cm D=10~20mm 下表是对一些常用频率螺旋天线的设计实例,其他频率也可类似设计。 f是工作中心频率; D是螺旋天线直径; L是螺旋天线长度; N是螺旋圈数; ι是所需金属线长度。 以上N、ρ为了实际制作需要均取近似值。 制作时可用直径0.5~1.5mm漆包线或镀银铜线或铝线在直径为D的有机玻璃或其他绝缘材料上绕制,并在棒的两头打上小孔,以利于固定金属线;在棒的底端焊上较粗的金属杆或插头固定在棒上,以利于与机器连接;整个螺旋天线的外面可用橡胶管或其他材料套封,并在顶端盖上橡皮帽或用其他材料密封,这样既美观大方,又防雨防蚀,经久耐用。如果没有上述金属丝,也可采用多股细绝缘导线代替,效果相同,只是绕制时固定较为困难。 以上螺旋天线也可用于各种小型遥控设备及其他类似机器上。 为了比较慢波天线与常规拉杆天线的不同,说明慢波天线尺寸较小的优点,我们可对拉杆天线作一计算。 设定参数如下:

超声相控阵检测教材超声相控阵技术

第三章超声相控阵技术 3.1 相控阵的概念 3.1.1相控阵超声成像 超声检测时,如需要对物体内某一区域进行成像,必须进行声束扫描。相控阵成像是通过控制阵列换能器中各个阵元激励(或接收)脉冲的时间延迟,改变由各阵元发射(或接收)声波到达(或来自)物体内某点时的相位关系,实现聚焦点和声束方位的变化,从而完成相控阵波束合成,形成成像扫描线的技术,如图3-1所示。 图3-1 相控阵超声聚焦和偏转

3.2 相控阵工作原理 相控阵超声成像系统中的数字控制技术主要是指波束的时空控制,采用先进的计算机技术,对发射/接收状态的相控波束进行精确的相位控制,以获得最佳的波束特性。这些关键数字技术有相控延时、动态聚焦、动态孔径、动态变迹、编码发射、声束形成等。 3.2.1相位延时 相控阵超声成像系统使用阵列换能器,并通过调整各阵元发射/接收信号的相位延迟(phase delay),可以控制合成波阵面的曲率、指向、孔径等,达到波束聚焦、偏转、波束形成等多种相控效果,形成清晰的成像。可以说,相位延时(又称相控延时)是相控阵技术的核心,是多种相控效果的基础。 相位延时的精度和分辨率对波束特性的影响很大。就波束的旁瓣声压而言,文献研究表明,延时量化误差产生离散的误差旁瓣,从而降低图像的动态范围。其均方根(RMS)延时量化误差与旁瓣幅值之比为 (式3-1) 式中,; N-----阵元数目; μ----中心频率所对应一个周期与最小量化延时之比。 图3-2示出了延时量化误差引起的旁瓣随N、μ变化的关系曲线。早期的超声成像设备如医用B超中,由LC网络组成多抽头延迟线直接对模拟信号进行延迟,用电子开关来分段切换以获得不同的延迟量。这种延迟方式有两大缺点:①延迟量不能精细可调,只能实现分段聚焦,当聚焦点很多时需要庞大的LC网络和电子开关矩阵;②由于是模拟延迟方式,电气参数难以未定,延时量会发生温漂、时漂、波形容易被噪声干扰。

超声相控阵检测教材-第三章-超声相控阵技术

第三章超声相控阵技术 3.1相控阵的概念 3.1.1相控阵超声成像 超声检测时,如需要对物体内某一区域进行成像, 必须进行声束扫描。相控阵成像是通 过控制阵列换能器中各个阵元激励(或接收)脉冲的时间延迟,改变由各阵元发射(或接收) 声波到达(或来自)物体内某点时的相位关系,实现聚焦点和声束方位的变化,从而完成相 控阵波束合成,形成成像扫描线的技术,如图 3-1所示。 图3-1 相控阵超声聚焦和偏转

3.2相控阵工作原理 相控阵超声成像系统中的数字控制技术主要是指波束的时空控制, 采用先进的计算机技 术,对发射/接收状态的相控波束进行精确的相位控制,以获得最佳的波束特性。这些关键 数字技术有相控延时、动态聚焦、动态孔径、动态变迹、编码发射、声束形成等。 3.2.1相位延时 相控阵超声成像系统使用阵列换能器,并通过调整各阵元发射 /接收信号的相位延迟 (phase delay ),可以控制合成波阵面的曲率、指向、孔径等,达到波束聚焦、偏转、波束 形成等多种相控效果,形成清晰的成像。可以说,相位延时(又称相控延时)是相控阵技术 的核心,是多种相控效果的基础。 相位延时的精度和分辨率对波束特性的影响很大。 就波束的旁瓣声压而言, 文献研究表 明,延时量化误差产生离散的误差旁瓣,从而降低图像的动态范围。其均方根( ,r . / \ 诙爲 式中, 一-—— N-----阵元数目; 尸--中心频率所对应一个周期与最小量化延时之比。 图3-2示出了延时量化误差引起的旁瓣随 N 、□变化的关系曲线。早期的超声成像设备 如医用B 超中,由LC 网络组成多抽头延迟线直接对模拟信号进行延迟, 用电子开关来分段 切换以获得不同的延迟量。这种延迟方式有两大缺点:①延迟量不能精细可调,只能实现分 段聚焦,当聚焦点很多时需要庞大的 LC 网络和电子开关矩阵;②由于是模拟延迟方式,电 气参数难以未定,延时量会发生温漂、时漂、波形容易被噪声干扰。 RMS )延 (式 3-1)

相控阵天线的基本原理介绍

相控阵天线的基本原理介绍 相控阵天线是目前卫星移动通信系统中最重要的一种天线形式,由三个部分组成:天线阵、馈电网络和波束控制器。基本原理是微处理器接收到包含通信方向的控制信息后,根据控制软件提供的算法计算出各个移相器的相移量,然后通过天线控制器来控制馈电网络完成移相过程。由于移相能够补偿同一信号到达各个不同阵元而产生的时间差,所以此时天线阵的输出同相叠加达到最大。一旦信号方向发生变化,只要通过调整移相器的相移量就可使天线阵波束的最大指向做相应的变化,从而实现波束扫描和跟踪。相控阵天线有相控扫描线天线阵和平面相控阵天线。图一 图一 N单元相阵 远区观察点P处的总场强可以是认为线阵中N个单元在P点产生的辐 射场强叠加:

图二线性相控阵天线 这一天线阵的方向图函数为: 图三平面相控阵天线 相控阵在快速跟踪雷达、测相等领域得到广泛的应用,它可以使主瓣指向随着通信的需要而不断地调整。相控阵为主瓣最大值方向或方向图形主要由单位激励电流的相对来控制天线阵。通过控制阵列天线中辐射单元的馈电相位改变方向图形状的天线。控制相位可以改变

天线方向图最大值的指向,以达到波速扫描的目的。在特殊情况下,也可以控制副瓣电平、最小值位置和整个方向图的形状。用机械方法旋转天线时,惯性大、速度慢,相控阵天线克服了这已缺点,波速的扫描高。它的馈电相一般用电子计算机控制,相位变化速度快,即天线方向图最大值指向或其他参数的变化迅速。这是相控阵天线的最大特点。 一般相控阵天线应对每一辐射单元的相位进行控制。为了节省移相器和简化控制线路,有时几个辐射单元共用一个移相器。相控阵天线的关键器件是移相器和天线辐射单元。移相器分连续式移相器和数字式移相器两种。连续式移相器的移相值可在0°~360°范围内连续变化,数字式移相器的移相值是离散的,只能是360×(1/2)^n的整数倍,移相器应保证在一定的频率范围内获得所需要的移相值。天线辐射单元的设计应使一定移相范围内和一定频率范围内的输入阻抗的变化尽可能小,以保证发射机正常工作,防止由于射频信号的多次反射而出现寄生副瓣和方向图中出现凹点的现象。相控阵天线的馈电方式分传输线馈电和空间馈电两种。在传输线馈电方式下,射频能量通过波导、同轴线和微带线等微波传输线馈给辐射单元。在空间馈电方式下,发射机产生的射频能量通过辐射装置辐射至自由空间,传输一段距离后由一个接收阵接收,接收阵的每个单元或一组单元所接收到的信号,经过移相器移相后再馈给发射阵的发射单元并辐射出去。 相控阵天线阵列本身的设计主要是幅度、相位分布设计和单元阻

相控阵技术

导读 任何无损检验方法(NDT)的可信度很大程度上取决于人员因素。进行相控阵超声检验的人员应经过培训并取得相应的资格。通过检验人员的技能、教育经历、培训经历,NDT检验人员来证明自己能够根据工艺和设备(相控阵超声设备,扫描仪,探头,软件,分析分布图和报告)的特殊要求进行操作。检验人员应熟悉应用于特殊零件的相控阵技术的基本特性。应客户要求,关于R/D技术原理的第一本书出版了:相控阵技术应用简介:R/D技术指南。该指南用大幅篇章介绍了基本的超声测试,数据评定和扫查方式,相控阵探头以及应用,适合广大读者使用,该指南包含大量实用信息堪称为实用手册。该指南可通过登陆我们的网站使用e-mail订购。 相控阵技术指南手册可视为NDT从业人员使用基本相控阵超声技术的备忘录。它面向日常的操作,针对技术秘诀,介绍操作方法(工艺规范,标定,特征描述,重新启动,解决检验的问题)。关于其大小,该手册设计为口袋书籍。为使该手册能适应现场条件,我们采用防水抗扯的合成纸印刷该书,且封面和装订都十分牢固。 相控阵技术指南手册包括: ·第一章“相控阵超声技术——基本特性“ 详述了PAUT(相控阵超神探伤的缩写)原理,介绍了主要硬件设备和相控阵声束组成类型和运动形式(线性,方位角型,深度型,平面型和3-D型)。 ·第二章“相控阵探头——基本特性“ 详述了用于日常检验的PA(相控阵的缩写)探头及其主要特性。范例介绍时使用的是大多数场合最常用的探头类型,即1-D平面线性阵探头。 ·第三章“聚焦法则“——常用范例 介绍了线性阵探头如Tomoscan ⅢTM PA探头(TomoView TM 2.2R9)和OmniScan○R PA探头定义聚焦法则的基本步骤。 ·第四章“扫查方式,观察,和分布图” 介绍了Tomoscan ⅢTM PA探头(TomoView TM 2.2R9)和OmniScan○R PA探头评定(A-扫查法,S-扫查法,B-扫查法,C-扫查法和D-扫查法)的主要数据,基本分布以及扫查方式。特殊场合下推荐的分布图也进行了说明。 ·第五章“超声束设置,标定和定期检查” 介绍了关于超声束设定调节,设备标定和现场定期检查的基本范例。 ·第六章“使用表格,图表和公式” 该章是实用公式的总结,如:斯涅尔定律,近场长度,波长,声束宽度,半角声束传播速度。书中特别强调了实用不同方法测量缺陷尺寸。表格,公式,图表都可以作为一些参数的速查工具:折射角,等效延迟和反射体尺寸。 ·附录A:“单位转化” 提供了本手册所使用到的单位与公-英制单位的转化。 ·附录B:“支持和培训” 通过R/D技术网站,你可以寻找或提供关于本手册的相关附加信息。 ·“参考文献” 列出了支持和扩充本手册构想的基本资料。本手册编制成一本开放式的对话式手册。对于特殊操作,我们增加了提示,重要标注,注意事项和警告标志等。 正如R/D技术的CEO(首席执行官)和主席在扉页中提到的,我们欢迎您参与进来,提出意见,进行评论,提出设想,从而促进本书第二版的进一步完善。

浅述相控阵天线波束控制的基本原理及波控系统的任务

浅述相控阵天线波束控制的基本原理及波控系统的任务 摘要现阶段我国科学技术发展速度的不断加快,为天线波束研究水平的逐渐提升提供了重要的技术支持。实践过程中为了实现天线波束的定向控制,需要充分地发挥出相控阵天线波束控制优势,并了解其基本原理及波控系统的任务,优化该系统实践应用中的服务功能。基于此,本文就相控阵天线波束控制的基本原理及波控系统的任务展开论述。 关键词相控阵天线波束;控制;基本原理;波控系统;任务 结合当前的形势变化,注重相控阵天线波束控制的基本原理及波控系统的任务分析,有利于提升天线波束实践应用中的控制水平,最大限度地满足雷达扫描的实际需求,从而为雷达扫描技术所需的波控系统性能优化提供科学保障。因此,需要加强天线波束控制的基本原理分析,提高对其相关的波控系统任务的正确认识,使得天线波束应用成本得以降低。 1 相控阵天线波束控制的基本原理分析 实践过程中结合相控阵雷达的要求,注重天线波束控制方式的合理使用,有利于保持良好的雷达扫描效果,丰富其所需的扫描技术内涵。因此,需要根据实际情况,从不同的方面入手,加强相控阵天线波束控制的基本原理分析,从而为其使用中实际作用的充分发挥提供保障。具体表现在以下方面: 借助计算机网络与信息技术的优势,结合相控阵天线波束的功能特性,在其控制作用发挥中需要确定相应的空间位置,并了解其跟踪情况,最终通过计算机三维空间的动态模拟分析作用,得到所需的相控阵天线波束在雷达扫描控制中的方位角与仰角初始值,并对相控阵雷达阵面中的天线元对应的相位值进行分析。此时,为了达到移相的目的,需要注重性能可靠的移相器使用,并处理好波控系统运行中产生的波控码。当这些举措实施到位后,有利于实现相控阵天线定向,确定相应的波束方向。 (2)在确定天线元所对应的相位值过程中,需要在单元集中配相法與初始向量计算方式的共同作用下予以应对,且在行列分离方法的作用下,确定相控阵天线波束控制中所需的平面阵列。当天线元所对应的相位值确定后,则可通过计算机系统的作用,得到相应的点阵相位值。 基于相控阵天线波束控制下的雷达扫描,在保持其良好的移相器计算位数作用效果过程中,可借助虚算方式的优势,确定移相位数,确保移相器应用有效性[1]。 2 实践中的相控阵天线波控系统的设计分析 为了实现对雷达扫描过程的科学控制,保持其扫描技术良好的应用效果,则

相控阵天线方向图推导及仿真

相控阵天线方向推导及仿真 1、推导线阵天线方向图公式 一个接收线阵,由等间距为d 的N 个各向同性单元组成,那么在θ方向,相 邻单元接收信号的相位差为Ф=2πd λsinθ,线阵排列情况如图1所示。 图1 线阵排列示意图 因为天线辐射方向图可以由天线上各种各样电流源辐射的单独贡献进行矢 量叠加而得出,故各单元电压和为: E a =sin (ωt )+sin (ωt +?)+sin (ωt +2?)+?+sin?[ωt +(N ?1)?] 将等式两边同时乘以2sin?(? 2),根据积化和差、和差化积等相关数学公式,可得到如下公式: 2sin (?2)E a =cos (ωt ??2)?cos (ωt +?2)+cos (ωt +?2)?cos (ωt ?32 ?) +?+cos (ωt +2N ?32?)?cos?(ωt +2N ?1 2?) 整理得,2sin (? 2)E a =cos (ωt ?? 2)?cos (ωt + 2N?12 ?) ??=2sin?(ωt + N ?12?)sin?(N 2 ?) 最终得到场强方向图,E a =sin?[ωt +(N ?1)?2?]sin?(N?2?) sin?(?2?) 平方归一化后,得到辐射方向图(阵列因子): |G a (θ)|=sin 2[Nπ(d λ)sinθ] N 2sin 2[π(d λ )sinθ]

上式中,当(d λ)sinθ=0,±1,±2,···±n 时|G a (θ)|取得相等的最大值,但是我们 只期望看到(d λ)sinθ=0的情况,取其他值产生的栅瓣是我们所不想见到的,为避免这种情况,特令d <λ。 前面的公式中认定主瓣指向为0°,当主瓣指向θ0方向时,则各向同性单元 线阵的归一化辐射方向图为: G (θ)=sin 2[Nπ(d λ)(sinθ?sinθ0)] N 2sin 2[π(d λ )(sinθ?sinθ0)] 此时,由于?2≤sin (θ)?sin (θ0)≤2,故防止产生栅瓣的条件为d <λ2?。 当来波方向与主瓣指向相近时sinθ?sinθ0很小,有: sin 2[π(d λ)(sinθ?sinθ0)]≈[π(d λ )(sinθ?sinθ0)]2 这时的辐射方向图是sin 2μμ2?的形式,式中μ=(d λ)(sinθ?sinθ0),当μ=±0.443π时,天线方向图被衰减到最大值的一半,又因为sinθ?sinθ0项可以写成 sinθ?sinθ0=sin (θ?θ0)cos (θ0)?[1?cos (θ?θ0)]sin (θ?θ0) 当θ0很小时,方程右边第二项可以忽略,所以sinθ?sinθ0≈sin (θ? θ0)cos (θ0)。最终我们可以得到天线的半功率波束宽度为θB ≈0.886λ Ndcosθ0 (rad )。 2、电子扫描阵列天线方向图仿真 ·1、不同参数情况下的栅瓣现象及分析 由前面的分析可知,归一化后的天线方向图可以表示为: G a (θ)= sin 2(Nπd λ (sin θ?sin θ0)) N 2sin 2(πd λ (sin θ?sin θ0)) 其中d 表示天线长度, N 表示天线阵元个数,λ表示信号波长。 当πd λ(sin θ?sin θ0)=0,±1,±2,?,±n,???n ≥1,n ∈Z 时,G a (θ)的分子、分母均为0,由洛毕达法则可知,当sin θ?sin θ0=±n λ d 时,G a (θ)取最大值1,其中sin θ?sin θ0=0,即θ=θ0时,是主瓣,sin θ?sin θ0=±n λ d 的解对应的是

超声相控阵技术第一部分基本概念_李衍

技术讲座 超声相控阵技术 第一部分 基本概念 李 衍 (江苏太湖锅炉股份有限公司,江苏无锡 214187) 摘 要:超声相控阵技术是当今工业无损检测极富挑战力的一项新技术。本篇概述有关超声相控阵的基本原理和相控阵时间延迟的基本概念。 关键词:超声波;相控阵;时间延迟 中图分类号:TG115.28 文献标识码:A 文章编号:1671-4423(2007)04-24-05 1 引言 相控阵超声波检测作为一种独特的技术得到开发和应用,在21世纪初已进入成熟阶段。上世纪80年代初,相控阵超声波技术从医疗领域跃入工业领域。80年代中期,压电复合材料的研制成功,为复合型相控阵探头的制作开创新途径。90年代初,欧美将相控阵技术作为一种新的无损评价(NDE )方法,编入超声检测手册和无损检测工程师培训教程。自1895年至1992年,该技术主要用于核反应压力容器(管接头)、大锻件轴类,及汽轮机部件的检测。 压电复合技术、微型机制、微电子技术、及计算机功率(包括探头设计和超声波与试件相互作用的模拟程序包)的最新发展,对相控阵技术的完善和精细化都有卓著贡献。功能软件也使计算机能力大大增强。 相控阵超声波技术用于无损检测,最先是为动力工业解决下列检测问题:①要用单探头在固定位置检出不同位置和任意方向的裂纹;②要对检测异种金属焊缝和离心铸造不锈钢焊缝提高信噪比和定量能力;③要提高声束扫查可靠性;④要对难以接近的受压给水反应器或沸水反应堆部件进行检测;⑤要缩短在用设备维修检测时间,提高生产效率;⑥要检测和定量形状复杂的汽轮机部件中的应力腐蚀小裂纹;⑦要减少在用检测人员射线吸收剂量;⑧要对一些临界缺陷(不论缺陷方向)提高检 测、定位、定量和定向精度;⑨要对“合乎使用”(或称“工程临界评定”或“寿命评价”)检测提供易于判读的定量分析报告。 在其他工业领域,如航空航天、国防、石油化工、机械制造等,对超声无损检测也都有类似的改进和强化需求。一般都集中在相控阵超声技术的一些主要优点上,即:①速度快:相控阵技术可进行电子扫描,比通常的光栅扫描快一个数量等级;②灵活性好:用一个相控阵探头,就能涵盖多种应用,不象普通超声探头应用单一有限;③电子配置:通过文件装载和校准就能进行配置,通过预置文件就能完成不同参数调整;④探头小巧:对某些检测,可接近性是“拦路虎”,而对相控阵,只需用一小巧的阵列探头,就能完成多个单探头分次往复扫查才能完成的检测任务。 十年前,相控阵超声技术在工业上已锋芒毕露。便携式相控阵探伤仪的推出,更是倍受青睐:仪器可单人现场操作,数据实时传送、远程分析。最近,国内大专院校和研究所及电子仪器设备制造公司,也在投注力量,加速研制,使国产相控阵仪器早日问世。 2 超声相控阵原理 2.1 概述 超声波是由电压激励压电晶片探头在弹性介质(试件)中产生的机械振动。工业应用大多要求使用0.5M Hz ~15M Hz 的超声频率。常规超声检测多 第31卷第4期2007年8月 无损探伤N D T V ol.31N o.4 Aug us t.2007

1-第一章 超声相控阵技术基本概念

第一章超声相控阵技术的基本概念 本章描述超声波原理、相控阵延时(或聚焦定律)概念,并介绍R/D公司研制的相控阵仪器设备。 1.1 原理 超声波是由电压激励压电晶片探头在弹性介质(试件)中产生的机械振动。典型的超声频率范围为0.1MHz~50MHz。大多数工业应用要求使用0.5MHz~15MHz的超声频率。 常规超声检测多用声束扩散的单晶探头,超声场以单一折射角沿声束轴线传播。其声束扩散是唯一的“附加”角度,这对检测有方向性的小裂纹可能有利。 假设将整个压电晶片分割成许多相同的小晶片,令小晶片宽度e远小于其长度W。每个小晶片均可视为辐射柱面波的线状波源,这些线状波源的波阵面会产生波的干涉,形成整体波阵面。 这些小波阵面可被延时并与相位和振幅同步,由此产生可调向的超声聚焦波束。 超声相控阵技术的主要特点是多晶片探头中各晶片的激励(振幅和延时)均由计算机控制。压电复合晶片受激励后能产生超声聚焦波束,声束参数如角度、焦距和焦点尺寸等均可通过软件调整。扫描声束是聚焦的,能以镜面反射方式检出不同方位的裂纹。这些裂纹可能随机分布在远离声束轴线的位置上。用普通单晶探头,因移动范围和声束角度有限,对方向不利的裂纹或远离声束轴线位置的裂纹,漏检率很高(见图1)。 图﹡ ﹡常规

图1-2 脉冲发生和回波接收时的声束形成和时间延迟(同相位、同振幅) 图1-3 超声波垂直(a )和倾斜(b )入射时声束聚焦原理 发射 接收 超声波探伤仪 超声波探伤仪 触发 相控阵控制器 相控阵控制器 脉冲激励 阵列探头 缺陷 缺陷 入射波阵面 反射波阵面 回波信号 Σ 接收延时 延时 [ns] 延时 [ns] 转角 产生的波阵面 产生的波阵面 阵列探头 阵列探头

相控阵天线的基础理论

第二章 相控阵天线的基础理论 相控阵天线是从阵列天线发展起来的,主要依靠相位变化实现天线波束指向在空间的移动或扫描,亦称电子扫描阵列(ESA )天线。虽然用于相控阵雷达的相控阵天线有多种,但相控阵天线均是由多个天线单元,亦称辐射器构成的。天线单元可以是单个的波导喇叭天线、偶极子天线、贴片天线等。在每个天线单元后端都设置有移相器,用来改变单元之间信号的相位关系,信号的幅度变化则通过功率分配/相加网络或者衰减器来实现。在扫描过程中,整个雷达不需要像采用普通阵列天线或者剖物面天线的雷达那样进行机械运动,因此波束指向迅速灵活,且可以实现多波束并行工作,使得雷达具有很强的自适应能力。 在相控阵天线的实际使用过程中,线性相控阵天线平面相控阵天线是较为常见的两种形式。下面分别以这两种形式为例,阐述相控阵天线扫描的基本原理。 2.1 相控阵天线扫描的基本原理 2.1.1 线性相控阵天线扫描的基本原理 线性相控阵天线广泛应用于一维相控扫描的相控阵雷达中。根据基本的阵列类型,线性相控阵天线可以划分为垂射阵列和端射阵列。垂射阵列最大辐射方向垂直于阵列轴向,天线波束在线阵法线方向左右两侧进行扫描。相反,端射阵列主瓣方向沿着阵列轴向。由于垂射阵应用最为广泛,因此主要讨论垂射阵。 图是一个由N 个天线单元组成的线性阵列原理图,天线单元呈均匀排成一线,途中沿y 轴方向按等间距方式分布,天线单元间距为d 。每一个天线单元的激励电流为(i 0,1,2,...N 1)i I =-。每一单元辐射的电场强度与其激励电流i I 成正比。天线单元的方向图函数用(,)i f θ?表示。 图 N 单元线性相控天线阵原理图 阵中第i 个天线单元在远区产生的电场强度为: 2(,)i j r i i i i i e E K I f r π λθ?-= 式中,i K 为第i 个天线单元辐射场强的比例常数,i r 为第i 个天线单元至观察点的距离,(,)i f θ?为第i 个天线单元的方向图函数,i I 为第i 个天线单元的激励电流,可以表示成为: B ji i i I a e φ-?= 式中,i a 为幅度加权系数,B φ?为等间距线阵中,相邻单元之间的馈电相位差,亦称阵内相移值。 在线性传播媒质中,电磁场方程是线性方程,满足叠加定理的条件。因此,在远区观察点P 处的总场强E 可以认为是线阵中N 个辐射单元在P 处辐射场强之和,因此有:

超声相控阵检测教材-第三章-超声相控阵技术

-第三章- 超声相控阵检测教材 超声相控阵技术

第三章超声相控阵技术 3.1相控阵的概念 3.1.1相控阵超声成像 超声检测时,如需要对物体内某一区域进行成像,必须进行声束扫描。相控阵成像是通过控制阵列换能器中各个阵元激励(或接收)脉冲的时间延迟,改变由各阵元发射(或接收)声波到达(或来自)物体内某点时的相位关系,实现聚焦点和声束方位的变化,从而完成相控阵波束合成,形成成像扫描线的技术,如图3-1所示。

3.2相控阵工作原理 相控阵超声成像系统中的数字控制技术主 要是指波束的时空控制,采用先进的计算机技术,对发射/接收状态的相控波束进行精确的相位控制,以获得最佳的波束特性。这些关键数字 技术有相控延时、动态聚焦、动态孔径、动态变321相位延时 迹、编码发射、声束形成等。 相控阵超声成像系统使用阵列换能器,并通过调 整各阵元发射/接收信号的相位延迟(phase delay), 可以控制合成波阵面的曲率、指向、孔径等,达到波 束聚焦、偏转、波束形成等多种相控效果,形成清晰 的成像。可以说,相位延时(又称相控延时)是相控 阵技术的核心,是多种相控效果的基础。 相位延时的精度和分辨率对波束特性的影响很 大。就波束的旁瓣声压而言,文献研究表明, 延时量 化误差产生离散的误差旁瓣,从而降低图像的动态范 围。其均方根(RMS)延时量化误差与旁瓣幅值之比 为 1 _ sin c(;)yr 、、叩 , Nsin c($u“(6/V)】/屮(式3?1)

N ——阵元数目; a -一中心频率所对应一个周期与最小量化延时 之比。 图3-2示出了延时量化误差引起的旁瓣随 N 、 卩变化的关系曲线。早期的超声成像设备如 医用B 超中,由LC 网络组成多抽头延迟线直接 对模拟信号进行延迟,用电子开关来分段切换以 获得不同的延迟量。这种延迟方式有两大缺点: ①延迟量不能精细可调,只能实现分段聚焦,当 聚焦点很多时需要庞大的LC 网络和电子开关矩 阵;②由于是模拟延迟方式,电气参数难以未定, 延时量会发生温漂、时漂、波形容易被噪声干扰。 (a ) p=8时,旁瓣随N 变化曲线(b )尸16时,旁瓣随 卩变化曲线 图3-2旁瓣与N 、卩关系图 近来采用数字延时来代替原来的模拟延时。 数字式中,汕N sin nx

相控阵天线的基础理论

相控阵天线的基础理论 The pony was revised in January 2021

第二章 相控阵天线的基础理论 相控阵天线是从阵列天线发展起来的,主要依靠相位变化实现天线波束指向在空间的移动或扫描,亦称电子扫描阵列(ESA )天线。虽然用于相控阵雷达的相控阵天线有多种,但相控阵天线均是由多个天线单元,亦称辐射器构成的。天线单元可以是单个的波导喇叭天线、偶极子天线、贴片天线等。在每个天线单元后端都设置有移相器,用来改变单元之间信号的相位关系,信号的幅度变化则通过功率分配/相加网络或者衰减器来实现。在扫描过程中,整个雷达不需要像采用普通阵列天线或者剖物面天线的雷达那样进行机械运动,因此波束指向迅速灵活,且可以实现多波束并行工作,使得雷达具有很强的自适应能力。 在相控阵天线的实际使用过程中,线性相控阵天线平面相控阵天线是较为常见的两种形式。下面分别以这两种形式为例,阐述相控阵天线扫描的基本原理。 2.1 相控阵天线扫描的基本原理 2.1.1 线性相控阵天线扫描的基本原理 线性相控阵天线广泛应用于一维相控扫描的相控阵雷达中。根据基本的阵列类型,线性相控阵天线可以划分为垂射阵列和端射阵列。垂射阵列最大辐射方向垂直于阵列轴向,天线波束在线阵法线方向左右两侧进行扫描。相反,端射阵列主瓣方向沿着阵列轴向。由于垂射阵应用最为广泛,因此主要讨论垂射阵。 图是一个由N 个天线单元组成的线性阵列原理图,天线单元呈均匀排成一线,途中沿 y 轴方向按等间距方式分布,天线单元间距为d 。每一个天线单元的激励电流为 (i 0,1,2,...N 1)i I =-。每一单元辐射的电场强度与其激励电流i I 成正比。天线单元的方向图函数用(,)i f θ?表示。

喇叭天线基础理论

2 喇叭天线基础理论 2.1 喇叭天线的结构特点与分类 喇叭天线就其结构来讲可以看成由两大部分构成:一是波导管部分,横截面有矩形,也有圆形;二是真正的喇叭天线部分。 波导部分相当于线天线中的馈线,是供给喇叭天线信号和能量的部分。对工作于厘米波或毫米波段内的面天线,如采用线状馈线,将因馈线自身的辐射损耗太大不能把能量传送到面天线上,所以,必须采用自身屏蔽效果很好的波导管作馈线。 图2. 1 普通喇叭天线结构原理图 矩形波导中能够传输的波形(或叫模式)一般表示成TE mn ,其中第一个下标表示电场在宽边x 方向上分布的半波长个数,第二个下标n 表示电场在窄边y 方向分布的半波长个数。也表示电场在矩形波导中沿x ,y 方向上为驻波分布,z 方向为行波分布,而且,m ,n 可以 有一个为零,但不能同时为零,否则各横向电磁场量就全部变为零,导致H 为一常数,相 当于矩形波导中没有电磁波存在。如下图所示:

对于矩形波导管,其内部传输的主波型,也叫主模是TE10模,

2.2 喇叭天线的口径场和辐射场分布与方向性 2.2.1矩形喇叭天线口面场分布规律 2.2.1.1 矩形喇叭天线的口面场结构 为了说明喇叭天线的口面场结构,可用一个矩形喇叭来说明。图6-5-2画出了一个矩形扇形喇叭天线的场分布图。

(1)当矩形波导前端面开口时,也同样能产生电磁辐射,只是因为口面直径太小,按面天线理论,口面积越大,辐射场越强,方向性越好。这样由矩形波导前端面产生的辐射场强将较弱,方向性也相对较差。如果采用开口形状喇叭,口面积相对增大,辐射场也将增强; (2)当矩形波导前端开口时,将造成电磁波在波导内、外的存在空间不同。两个大小不同的空间环境对电磁波呈现的阻抗也不相同,其结果就是电磁波在波导中形成驻波形式,影响能量传输。如把波导开口做成喇叭形状,可以使电磁波由波导传到大空间时有一个渐变过程或过渡过程,这样能减缓阻抗的骤变,使电磁波在波导内传输时的驻波成份减少,有利于提高能量在波导中的传输效率。 (2)当矩形波导前端做成喇叭形状,电磁波载波道中的传输效率得到了提高,但由于喇叭和矩形波导形状上的差异,必将导致传到喇叭中电磁波的波阵面成为柱面(与矩形波导对应的喇叭)或球面形状(与圆形波导对应的喇叭)。这样在喇叭口面上形成的口面场Es 成为非均匀口面场结构,即在口面上各点Es 的相位和振幅大小不再相等,这将造成喇叭天线辐射场方向性变坏。 2.2.1.2 矩形喇叭天线口面场相位分布特点 根据天线辐射场一般表示式,其辐射场E H θ?和最终是由口面场Es 决定的。因此对口面场Es 的振幅和相位分析,就成为分析喇叭天线的首要问题。 以H 面扇形喇叭天线为例,并假定激励H 面扇形喇叭的巨型波导TE 10型波。由于H 面扇形喇叭相当于矩形波导宽边x 逐渐扩展而成,因此其口面场E s sy E =的相位将随宽边x 坐标发生变化,与保持不变的窄边y 无关,或者说E sy 相位沿窄边y 保持均匀分布,如图6-5-3所示。

三维超声成像技术的基本原理及操作步骤

三维超声成像技术的基本原理及操作步骤 230031安徽合肥解放军 105医院罗福成 1基本原理 三维超声成像分为静态三维成像 (static three 2 dimensional imaging 和动态三维成像 (dynamic three 2dimensional imaging , 动态三维成像由于参考时间因素 (心动周期 , 用整体显像法重建感兴趣区域准实时活动的三维图像 , 则又称之为四维超声心动图。静态与动态三维超声成像重建的原理基本相同。 111立体几何构成法该法将人体脏器假设为多个不同形态的几何体组合 , 需要大量的几何原型 , 因而对于描述人体复杂结构的三维形态并不完全适合 , 现已很少应用。 112表面轮廓提取法是将三维超声空间中一系列坐标点相互连接 , 形成若干简单直线来描述脏器的轮廓的方法 , 曾用于心脏表面的三维重建。该技术所需计算机内存少 , 运动速度较快。缺点是 :(1 需人工对脏器的组织结构勾边 , 既费时又受操作者主观因素的影响 ; (2 只能重建比较大的心脏结构 (如左、右心腔 , 不能对心瓣膜和腱索等细小结构进行三维重建 ; (3 不具灰阶特征 , 难以显示解剖细 节 , 故未被临床采用。 113体元模型法 (votel mode 是目前最为理想的动态三维超声成像技术 , 可对结构的所有组织信息进行重建。在体元模型法中 , 三维物体被划分成依次排列的小立方体 , 一个小立方体就是一个体元。任一体元 (v 可用中心坐标 (x ,y ,z 确定 , 这里 x ,y , z 分别被假定为区间中的整数。二维图像中最小单元为像素 , 三维图像中则为体素或体元 , 体元素可以认为是像素在三维空间的延伸。与平面概念不同 , 体元素空间模型表示的是容积概念 , 与每个体元相对应的数 V (v 叫做“ 体元值” 或“ 体元容积” , 一定数目的体元按相应的空间位置排列即可构成三维立体图像。描述一个复杂的人体结构所需体元数目很大 , 而体元数目的多少 (即体元素 空间分辨率决定模型的复杂程度。目前 , 国内外大多数使用 Tom Tec Eeno view computer -work station 来进行体元模型三维成像。

相关主题
文本预览
相关文档 最新文档