当前位置:文档之家› 狭义相对论几个公式公式推导

狭义相对论几个公式公式推导

狭义相对论几个公式公式推导
狭义相对论几个公式公式推导

狭义相对论几个公式公式推导

福建省永春县东关中心小学 陈金江

运动物体的长度缩率公式和不同点上的时刻公式推导 爱因斯坦曾假设:“在真空中,光的传播速度相对任何参照系都一样:不论发光体的运动速度如何,也不论光接受体的运动速度如何,光波相对它们的传播速度都是一样的。”否则,我们观察到遥远的恒星(特别是双星)将会发生十分混乱的现象。

根据这个假设,可以推导出:运动方向上长度的缩率和另参照系看我参照系同时事件的情况的规律。

设在S 系中看到两条等长线段AB 和A ’B ’,它们分别在S 参照系和S ’参照系。S 和S ’相对运动速度为v 光秒/秒。并且在S 参照系看来:AB=A ’B ’=a 光秒。如图所示:

图1

设A 和A ’相遇时,A 和A ’会发出闪光,或B 和B ’相遇时,

V 光秒/秒

A

B

Q

V 光秒/秒

A (0秒)

B (0秒)

Q

S ’系 S 系

秒)

S’系 S 系

B ’

A (0秒)

B (t

2

21c

v 秒)

B 和B ’也会发出闪光。

我们在S 系看来,由于AB=A ’B ’,所以A 和A ’与B 和B ’是同时相遇的,所以它们同时发出闪光。光波将在AB 中点Q 相遇,在S ’系中光波也必在相应点Q ’相遇(因为光波对S ’系的传播速度和S ’运动无关)。

由于Q ’点不在A ’B ’的中间,所以在S ’系看来,两次闪光不是同时的。因为B ’发出的光波走的距离B ’Q ’比A ’发出的光波走的距离A ’Q ’ 多。因而是B ’先闪光,A ’后闪光。也就是B 和B ’先相遇,A 和A ’后相遇。A ’和B ’的时刻在S ’系看来是不同时的,而是B ’早,A ’迟。

在S ’系中,由于A 、A ’和B 、B ’不同时相遇,所以S ’系看到的两条段AB 和A ’B ’也不相等。因为B 、B ’先相遇,所以必是A ’B ’>AB 。情况如图2所示:

t 秒后

A ( 秒)

B (0秒)

V 光秒/秒

S’系 S 系

A ’(0秒)

B ’(0秒)

V 光秒/秒

A ’

B ’(t 秒)

P ’

发出闪光时,A 、A ’的时刻数,B 、B ’的时刻数与在S 系中看到的是一样的。光波相遇点Q 在AB 中的位置比例,Q ’在A ’B ’中的位置比例和在S 系中看到的一样,所以并不矛盾。

综上所述,在S 系看来是同时的事件,相等的线段,而在S ’系中看来却是不同时,不相等的。那它们有什么规律呢?

在S 系看来AB 的长度为a 光秒,而在S ’系看来则缩短了,小于a 光秒。同样,在S 系看来A ’B ’也是a 光秒,其实也是缩小了的,在S ’系中看到的A ’B ’实际长度要大于a 光秒。它们的缩率是相等的,设为n 。

由图1得,在S 系中,从AB 发光到光波相遇,两系已相对运

动了

c av 2光秒。也就是AB 与A ’B ’的中点错开的距离P ’Q ’=c

av 2。(见图1)由于S 系系已把这距离缩短了,在S ’系看来应是P ’Q ’=cn av

2。所以

在S ’系看来B ’发出的光波比A ’发出的光波多走了cn

av

光秒。

假设S ’系中看到B 、B ’相遇发出闪光后,再经过t 秒,A 、A ’才相遇发出闪光。则在S 系看到的A ’的时刻数应比B ’的时刻数

V

光秒/秒 S’系 S 系

Q

图2

多t 秒。因此S ’系认为B ’发出的光波比A ’发出的 光波多ct 光秒。联系上面可列出方程:

cn

av

=ct (1) 由于运动方向上长度缩短,所以在S 系中看到的AB=A ’B ’=a 光秒,而在S ’系中则看到AB=na 光秒,A ’B ’=n

a 光秒。

由图2可得:n

a -an=vt (2) 联立(1)(2)可得方程组:

cn

av

=ct

(1) n

a

-an=vt

(2) 化成: av=c 2nt (3) a-an 2=vnt (4)

)3()

4(得:v n 21-=2c

v

得到长度缩率公式:

代入(1)得到不同点上的时刻公式(和运动方向相反,越往后时刻数越多):

运动物体上时间缩率公式公式推导

由运动上长度缩率公式可推导出时间缩率公式:设S ’系中有一点P ,S 系中有线段AB ,S 、S ’系的相对速度是v 光秒/秒。当P 遇A 时,P 和A 时间的时刻数都是0秒,如图1所示:

在S 系中,看到经过t 秒后,P 从A 运动到B ,AB=vt(光秒),A 和B 的时刻数都是t 秒,P 的时刻数是t ’秒,如图2所示:

在S ’系看到这一过程又是如何?S ’系中看到P 是不动的,A 、B 在向右运动,由于运动方向上的线段长度缩短,所以在S ’系中看

到AB=vt 22

1c

v 光秒。P 在0秒时刻时和A 相遇,A 的时刻数也是0

秒(如图3所示)。经过t ’秒后,P 和B 相遇。P 的时刻数是t ’秒,B 的时刻数是t 秒。(如图4所示)

S’系 P (0秒)

光秒/秒

A (0秒)

S 系

B (0秒)

1

P (t ’秒)

V 光秒/秒

S’系 S 系 A (t 秒)

B (t 秒) 图2

t ’=v AB =v c v -1vt 2

2

=t 221c

v - 在S 系中,从P

与A 相遇到P 与B 相遇,经过了t 秒钟,而看到S ’系中的P 在0秒时刻与A 相遇,与B 相遇时,P 上的时刻是t ’

秒,即t 221c v -秒,比t 秒钟缩小。所以时间的缩率也是:22

1c

v -

即运动物体上的时间缩率公式是:

P (0秒)

A (0秒)

B ( 秒)

图3

S’系

P (t ’秒)

V 光秒/秒

A ( 秒)

B (t 秒)

图4

狭义相对论_完整版_

《大学物理》作业 No.6 狭义相对论 班级 ________ 学号 _________ 姓名 _________ 成绩 _______ 一、选择题 1.按照狭义相对论的时空观,判断下列叙述中正确的是: [ ] (A ) 在一个惯性系中,两个同时的事件,在另一个惯性系中一定是同时事件 (B ) 在一个惯性系中,两个同时的事件,在另一个惯性系中一定是不同时事件 (C ) 在一个惯性系中,两个同时同地的事件,在另一个惯性系中一定是同时同地事件 (D )在一个惯性系中,两个同时不同地的事件,在另一个惯性系中只可能同时不同地 (E )在一个惯性系中,两个同时不同地的事件,在另一个惯性系中只可能同地不同时 2.在狭义相对论中,下列说法正确的是 [ ] ① 一切运动物体相对于观测者的速度都不能大于真空中的光速 ② 长度、质量、时间的测量结果都是随物体与观测者的相对运动状态而改变的 ③ 在一个相对静止的参考系中测得两事件的时间间隔是固有时 ④ 惯性系中的观测者观测一只与他做相对匀速直线运动的时钟时,会发现这只钟比与他静止的相同的钟走得慢些。 (A )① ③ ④(B )① ② ④(C )① ② ③(D )② ③ ④ 3. 在某地发生两件事,静止位于该地的甲测得时间间隔为4 s ,若相对于甲作匀速直线 运动的乙测得时间间隔为5 s ,则乙相对于甲的运动速度是(c 表示真空中光速) [ ] (A) (4/5) c . (B) (3/5) c . (C) (2/5) c . (D) (1/5) c . 4. 有一直尺固定在K ′系中,它与Ox ′轴的夹角θ′=45°,如果K ′系以匀速度沿Ox 正方向相对于K 系运动,K 系中观察者测得该尺与Ox 轴的夹角 (A) 大于45° (B) 小于45° (C) 等于45° (D) 无法确定 [ ] *5. 一火箭的固有长度为L ,相对于地面作匀速直线运动的速度为v 1,火箭上有一个人从火箭的后端向火箭前端上的一个靶子发射一颗相对于火箭的速度为v 2的子弹. 在火箭参考系中测得子弹从射出到击中靶的时间间隔是: [ B ] 在地面参考系中测得子弹从射出到击中靶的时间间隔是:(c 表示真空中光速) [ C ] (A) 21v v +L . (B) 2v L (C) 21212)/v (1c v c L v L -+ . (D) 222) /v (1v c L - .

狭义相对论推导详细计算过程

狭义相对论 狭义相对论基本原理: 1. 基本物理定律在所有惯性系中都保持相同形式的数学表达式,因此一切惯性系都是等价 的。 2. 在一切惯性系中,光在真空中的传播速率都等于c ,与光源的运动状态无关。 假设S 系和S ’系是两个相对作匀速运动的惯性坐标系,规定S ’系沿S 系的x 轴正方向以速度v 相对于S 系作匀速直线运动,x ’、y ’、z ’轴分别与x 、y 、z 轴平行,两惯性系原点重合时,原点处时钟都指示零点。 Ⅰ洛伦兹变换 现假设,x ’=k(x-vt)①,k 是比例系数,可保证变化是线性的,相应地,S ’系的坐标变换为S 系,有x=k(x ’+vt) ②,另有y ’=y ,z ’=z 。将①代入②: x=k[k(x-vt)+vt ’] x=k^2*(x-vt)+kvt ’ t ’=kt+(1-k^2)x/kv 两原点重合时,有t=t ’=0,此时在共同原点发射一光脉冲,在S 系,x=ct ,在S ’系,x ’=ct ’,将两式代入①和②: ct ’=k(c-v)t 得 ct ’=kct-kvt 即t ’=(kct-kvt)/c ct=k(c+v)t ’ 得 ct=kct ’+kvt ’ 两式联立消去t 和t ’ ct=k(kct-kvt)+kv(kct-kvt)/c ct=k^2ct-k^2vt+k^2vt-k^2v^2t/c c^2=k^2c^2-k^2v^2 k= 2 2 /11c v - 将k 代入各式即为洛伦兹变换: x ’=2 2 /1c v vt x -- y ’=y z ’=z t ’= 2 2 2/1/c v c vx t -- 或有 x=k(x ’+vt ’) x ’=k(x-vt) =k(1+v/c)x ’ =k(1-v/c)x 两式联立, x ’=k(1-v/c)k(1+v/c)x ’ k= 2 2 /11c v - Ⅱ同时的相对性

狭义相对论尺缩效应的数学推导

狭义相对论之尺缩效应高中数学推导 1首先依据光速不变原理,假设垂直光子钟,在相对于地面以V 速度匀速运行的火车上相对于火车垂直上下运动,推导出钟慢效应公式 22 1C V t T -= 此处T 表示相对运动坐标系观察的时间(数值大) t 表示在相对运动物体静止的时钟观察到的时间(数值小)。 2 假设在该火车上有人自车尾部使用激光测距朝列车运行方向照射测量火车长度,则火车上 人测量的距离 2ct l = ,而地面上的人观察到的测量过程为光子在某一时刻自火车后面追击火车头,飞向前方,列车运行t1时刻后,追上列车头反射,间隔t2时间长度与相向而行的火车尾部的观测仪器相遇。 T t t ct vt L ct vt L =++==+212 21 1 L cT t t 221≠> 由此必须使用时间这唯一能沟通两个参照系的量来测算距离 22 212112,2//c v t T c l t ct l V C L V C L t t T V C L t V C L t -===++-= +=+=-=

22 212112,2//c v t T c l t ct l V C L V C L t t T V C L t V C L t -===++-=+=+=-= 最后三个公式可形成等式 2222221212c v c l c v t V C LC V C L V C L T -=-=-=++-= 22 2222222222222222 22221, 1,11,1, 1,1c v l L l c v L c v l C V L c v l C V C L c v l V C LC V v c C c v c l V C LC -==--=--=--=-==-=- 由此可知 运动物体在空间中所占有的的长度 在运动方向上会减少,数值为静止坐标系下

狭义相对论公式及证明

狭义相对论公式及证明 单位符号单位符号 坐标: m (x, y, z) 力: N F(f) 时间: s t(T) 质量:kg m(M) 位移: m r 动量:kg*m/s p(P) 速度: m/s v(u) 能量: J E 加速度: m/s^2 a 冲量:N*s I 长度: m l(L) 动能:J E k 路程: m s(S) 势能:J E p 角速度: rad/s ω力矩:N*m M 角加速度:rad/s^2α功率:W P 一: 牛顿力学(预备知识) (一):质点运动学基本公式:(1)v=dr/dt, r=r0+∫rdt (2)a=dv/dt, v=v0+∫adt (注:两式中左式为微分形式,右式为积分形式) 当v不变时,(1)表示匀速直线运动。 当a不变时,(2)表示匀变速直线运动。 只要知道质点的运动方程r=r(t),它的一切运动规律就可知了。 (二):质点动力学: (1)牛一:不受力的物体做匀速直线运动。 (2)牛二:物体加速度与合外力成正比与质量成反比。 F=ma=mdv/dt=dp/dt (3)牛三:作用力与反作与力等大反向作用在同一直线上。 (4)万有引力:两质点间作用力与质量乘积成正比,与距离平方成反比。 F=GMm/r2,G=6.67259*10-11m3/(kg*s2) 动量定理:I=∫Fdt=p2-p1(合外力的冲量等于动量的变化) 动量守恒:合外力为零时,系统动量保持不变。 动能定理:W=∫Fds=E k2-E k1(合外力的功等于动能的变化) 机械能守恒:只有重力做功时,E k1+E p1=E k2+E p2 (注:牛顿力学的核心是牛二:F=ma,它是运动学与动力学的桥梁,我们的目的是知道物体的运动规律,即求解运动方程r=r(t),若知受力情况,根据牛二可得a,再根据运动学基本公式求之。同样,若知运动方程r=r(t),可根据运动学基本公式求a,再由牛二可知物体的受力情况。) 二: 狭义相对论力学:(注:γ=1/sqr(1-u2/c2),β=u/c, u为惯性系速度。) (一)基本原理:(1)相对性原理:所有惯性系都是等价的。 (2)光速不变原理:真空中的光速是与惯性系无关的常数。 (此处先给出公式再给出证明) (二)洛仑兹坐标变换: X=γ(x-ut) Y=y Z=z

狭义相对论几个公式公式推导

狭义相对论几个公式公式推导 省永春县东关中心小学 金江 运动物体的长度缩率公式和不同点上的时刻公式推导 爱因斯坦曾假设:“在真空中,光的传播速度相对任何参照系都一样:不论发光体的运动速度如何,也不论光接受体的运动速度如何,光波相对它们的传播速度都是一样的。”否则,我们观察到遥远的恒星(特别是双星)将会发生十分混乱的现象。 根据这个假设,可以推导出:运动方向上长度的缩率和另参照系看我参照系同时事件的情况的规律。 设在S 系中看到两条等长线段AB 和A ’B ’,它们分别在S 参照系和S ’参照系。S 和S ’相对运动速度为v 光秒/秒。并且在S 参照系看来:AB=A ’B ’=a 光秒。如图所示: 图1 设A 和A ’相遇时,A 和A ’会发出闪光,或B 和B ’相遇时,B 和B ’也会发出闪光。 V 光秒/秒 A (0秒) B (0秒) Q V 光秒/秒 A B Q S 系 秒) S’系 S 系

A (0秒) B (t 2 21c v 秒) 我们在S 系看来,由于AB=A ’B ’,所以A 和A ’与B 和B ’是同时相遇的,所以它们同时发出闪光。光波将在AB 中点Q 相遇,在S ’系中光波也必在相应点Q ’相遇(因为光波对S ’系的传播速度和S ’运动无关)。 由于Q ’点不在A ’B ’的中间,所以在S ’系看来,两次闪光不是同时的。因为B ’发出的光波走的距离B ’Q ’比A ’发出的光波走的距离A ’Q ’ 多。因而是B ’先闪光,A ’后闪光。也就是B 和B ’先相遇,A 和A ’后相遇。A ’和B ’的时刻在S ’系看来是不同时的,而是B ’早,A ’迟。 在S ’系中,由于A 、A ’和B 、B ’不同时相遇,所以S ’系看到的两条段AB 和A ’B ’也不相等。因为B 、B ’先相遇,所以必是A ’B ’>AB 。情况如图2所示: t 秒后 A ( 秒) B (0秒) V 光秒/秒 S’系 S 系 A ’(0 V 光秒/秒 A ’ B ’(t 秒) P ’

《狭义相对论》

3狭义相对论 3.1狭义相对论基本假设 1. 有下列几种说法: (1) 所有惯性系对物理基本规律都是等价的. (2) 在真空中,光的速度与光的频率、光源的运动状态无关. (3)在任何惯性系中,光在真空中沿任何方向的传播速率都相同. 若问其中哪些说法是正确的, 答案是 (A) 只有(1)、(2)是正确的. (B) 只有(1)、(3)是正确的. (C) 只有(2)、(3)是正确的. (D) 三种说法都是正确的. 答案:(D) 参考解答: 光速不变原理和相对性原理是爱因斯坦在创立狭义相对论时提出的两大基本假设。光速不变原理:在真空中的任何惯性参考系上,光沿任意方向的传播速度都是C;相对性原理:所有物理规律在所有不同惯性参考系中的形式都相同。 所有选择,均给出参考解答,进入下一题。 3.2狭义相对论时空观 1. 在狭义相对论中,下列说法中哪些是正确的? (1) 一切运动物体相对于观察者的速度都不能大于真空中的光速. (2) 质量、长度、时间的测量结果都是随物体与观察者的相对运动状态而改变的. (3) 在一惯性系中发生于同一时刻,不同地点的两个事件在其他一切惯性系中也是同时发生的. (4)惯性系中的观察者观察一个与他作匀速相对运动的时钟时,会看到这时钟比与他相对静止的相同的时钟走得慢些. (A) (1),(3),(4).(B) (1),(2),(4). (C) (1),(2),(3).(D) (2),(3),(4). 答案:(B) 参考解答: 在狭义相对论中,根据洛仑兹变换物体运动速度有上限,即不能大于真空中的光速;质量、长度、时间都是相对的,其测量结果取决于物体与观察者的相对运动状态,有动尺收缩和运钟膨胀的相对论效应。 对于所有选择,均给出以下思考题。 1.1相对论的时间和空间概念与牛顿力学的有何不同?有何联系? 参考解答: 牛顿力学时空观的基本观点是,长度和时间的测量与运动(或说与参考系)无关;而相对论时空观的基本观点是,长度和时间的测量不仅与运动有关,还与物质分布有关。 牛顿力学时空概念是相对论时空观在低速(即运动速度远远小于光速)时的

狭义相对论的整个推导过程

狭义相对论的整个推导过程 一、两大假设 1.惯性系的平权 2.光速不变原理 二、洛仑兹变换 令x’=k1(x-ut) x=k2(x’+ut’) 根据假设1,有k1=k2 令k1=k2=γ 所以x’x=γ^2(x-ut)(x’+ut’) 根据假设2,有 x=ct,x’=ct’ 所以c^2tt’=γ^2(c-u)(c+u)tt’ 所以γ=1/sqr(1-u^2/c^2) 所以x’=γ(x-ut) x=γ(x’+ut’) 由x’=γ(x-ut),得 ct’=γ(x-ut) 所以t’=γ(x/c-ut/c) 所以t’=γ(t-ux/c^2) 同理,有t=γ(t’+ux’/c^2) 因为很自然的有 y’=y,z’=z y=y’,z=z’ 所以 x’=γ(x-ut) x=γ(x’+ut’) y’=y y=y’ z’=z z=z’ t’=γ(t-ux/c^2) t=γ(t’+ux’/c^2)

其中:γ=1/sqr(1-u^2/c^2) 三、洛仑兹速度变换 v x’=dx’/dt’=(dx’/dt)*[1/(dt’/dt)]=(v x-u)/(1-uv x/c^2) v y’=dy’/dt’=(dy’/dt)*[1/(dt’/dt)]=v y sqr(1-u^2/c^2)/(1-uv x/c^2) v z’=dz’/dt’=(dz’/dt)*[1/(dt’/dt)]=v z sqr(1-u^2/c^2)/(1-uv x/c^2) 同理,有 v x=(v x’+u)/(1+uv x’/c^2) v y=v y’sqr(1+u^2/c^2)/(1+uv x’/c^2) v z=v z’sqr(1+u^2/c^2)/(1+uv x’/c^2) 所以 v x’=(v x-u)/(1-uv x/c^2) v x=(v x’+u)/(1+uv x’/c^2) v y’= v y sqr(1-u^2/c^2)/(1-uv x/c^2) v y=v y’sqr(1+u^2/c^2)/(1+uv x’/c^2) v z’=v z sqr(1-u^2/c^2)/(1-uv x/c^2) v z=v z’sqr(1+u^2/c^2)/(1+uv x’/c^2)四、 因为t’=γ(t-ux/c^2) 所以t1’=γ(t1-ux1/c^2) t2’=γ(t2-ux2/c^2) 所以t’=t2’-t1’=γ[(t2-t1)-u(x2-x1)/c^2] (x1=x2) 所以t’=γt 又因为x=γ(x’+ut’) 所以 x1=γ(x1’+ut1’) X2=γ(x2’+ut2’) 所以l0=x2-x1=γ[(x2’-x1’)+u(t2’-t1’)] 所以l0=γl 所以l=l0/γ 所以 t’=γt’, l=l0/γ其中:γ=1/sqr(1-u^2/c^2) 五、

狭义相对论新的延伸推导、纵质量、横质量

关于爱因斯坦狭义相对论中02 1m m v c = ??- ??? 的证明,探讨洛伦兹的纵质量与横质 量与爱因斯坦狭义相对论的联系 作者:王逸源 单位:华北电力大学 摘要:本文通过运用,动量守恒定律,和其相关的一个实验,联系相似性原理,通过数学推导,证明了,狭义相对论的质量关系式。再深入探讨,结合爱因斯坦相对论中,其它关系式,进一步推导出,与相对论相有关的另一个新的质量关系式。 关键词:相似性原理、新的质量关系式、纵质量、横质量 著名的爱因斯坦狭义相对论中,已经通过数学的方法证明了两个公式,一个公式为: 2 1v t t c ?? ?=?- ??? ,另一个公式为:2 1v l l c ?? =- ??? ,而著名的2 1v m m c ??=- ??? 公式,爱因斯坦并没有给出数学证明,下面通过爱因斯坦的狭义相对论,动量守恒定律等来证明。 全日制普通高中教材的第二册物理书中,学生实验部分有验证动量守恒定律的实验。这个实验的实验原理是:1、质量分别为1m 和2m 的两个小球,发生正碰,若碰前1m 运动,2m 静止,根据动量守恒有:**111122m v m v m v =+;2、若能测出1m 、2m 及1v 、*1v 、* 2v 代入上式,则可验证碰撞中动量守恒;3、1m 、2m 用天平测出,1v 、* 1v 、* 2v ,用小球碰撞后运动的水平距离代替,(让各小球在同一高度做平抛运动,其水平速度等于水平位移和运动的比值,而各小球运动时间相同,则它们的水平位移之比等于他们的水平速度之比),则动量守恒时112m op m om m on =+(如下图)。 从这个实验,联系相似性原理,在不受其它任何场的影响下,即真空状态下,一个单独小球,小球静止不动时,测出它的质量为0m (静止质量);当这个小球在真空状态下,以恒定速度v 运动时,有加速过程,取无限远处(不会受到加速过程中,外部条件干扰的地方),不考虑相对论的情况下,则这个单独小球的动量守恒,即:000=-v m v m ,若这个

狭义相对论

狭义相对论 关于狭义相对论发现和形成的历史,请见“狭义相对论发现史”。 沿着快速加速的观察者的世界线来看的时空。 竖直方向表示时间。水平方向表示距离,虚划线是观察者的时空轨迹(“世界线”)。图的下四分之一表示观察者可以看到的事件。 上四分之一表示光锥- 将可以看到观察者的事件点。小点是时空中的任意的事件。 世界线的斜率(从竖直方向的偏离)给出了相对于观察者的速度。注意看时空的图像随着观察者加速时的变化。 狭义相对论(Special Theory of Relativity)是由爱因斯坦、洛仑兹和庞加莱等人创立的,应用在惯性参考系下的时空理论,是对牛顿时空观的拓展和修正。爱因斯坦在1905年完成的《论动体的电动力学》论文中提出了狭义相对论[1]。 牛顿力学是狭义相对论在低速情况下的近似。 背景 伽利略变换与电磁学理论的不自洽 到19世纪末,以麦克斯韦方程组为核心的经典电磁理论的正确性已被大量实验所证实,但麦克斯韦方程组在经典 力学的伽利略变换下不具有协变性。而经典力学中的相对性原理则要求一切物理规律在伽利略变换下都具有协变性。麦克尔逊寻找以太的实验 为解决这一矛盾,物理学家提出了“以太假说”,即放弃相对性原理,认为麦克斯韦方程组只对一个绝对参考系(以太)成立。根据这一假说,由麦克斯韦方程组计算得到的真空光速是相对于绝对参考系(以太)的速度;在相对于“以太”运动的参考系中,光速具有不同的数值[2]。 实验的结果——零结果 但斐索实验和迈克耳孙-莫雷实验表明光速与参考系的运动无关。该实验结果否定了以太假说,表明相对性原理的正确性。洛伦兹把伽利略变换修改为洛伦兹变换,在洛伦兹变换下,麦克斯韦方程组具有相对性原理所要求的协变性。洛伦兹的假说解决了上述矛盾,但他不能对洛伦兹变换的物理本质做出合理的解释。随后数学家庞加莱猜测洛伦兹变换和时空性质有关。 爱因斯坦的狭义相对论

解读“狭义相对论”——从方法论视角

解读“狭义相对论” ——从方法论视角 张丽 重庆大学贸易行政学院科技哲学室(400044) 中共中央党校哲学部2008级博士研究生(100091) 摘要:爱因斯坦的狭义相对论以相对经济和解释性简化而著称于世界,其影响之大,更是其他理论所不能望其项背。以致许多理论学家们自觉或不自觉地把它作为构建理论的方法论模板。其实在与经典热力学的三次类比中(其中有二次是爱因斯坦本人给出的比较)我们不难发现,在很大程度上这是一种误读,误导,其实质是陷入一场方法论的危机。此文的目的正是要抵制这一思想,并指出爱因斯坦1905年创立的方法论理论仅代表的是一种功利主义,实用主义的胜利,而远远不是解释深度的胜利,它的作用效果也仅限于在混乱、无秩序的状态背景下。 关键词:狭义相对论;经典热力学;方法论;量子力学; CBH法则 比较狭义相对论和量子力学,前者以它的相对经济和解释性简化而著称于世界,其影响之大,更是其他理论所不能望其项背。以至于此后的大量的理论物理学家们自觉或不自觉的受此引导去寻找少量的基本假设,基本原理。期望他们能够在量子力学中发挥作用,就象相对性原理和光假设曾经联合起来在爱因斯坦1905年创立的狭义相对论中发挥基础作用一样,达到简化量子力学的目的。其实在与经典热力学的三次类比中(其中有二次是爱因斯坦本人给出的)我们不难发现,这是一种误读,误导,其实质是陷入一场方法论的危机。此文的目的正是要抵制这一思想,并指出爱因斯坦1905年创立的方法论理论仅代表的是一种功利主义,实用主义的胜利,而远远不是解释深度的胜利,它的作用效果也仅限于在混乱、无秩序的状态背景下。这一点,也正是爱因斯坦本人所非常熟知的。 第一次类比与CBH法则的启示: 爱因斯坦本人曾坦言:相对论原则是使可能性缩小的理论;它不是一个模型(模版),恰似热力学第二定律不是一个模版一样。①(the principle of relativity is a principle that narrows the possibilites ; it is not a model, just as the second law of thermodynamics is not a model.). 另外,在量子力学最近的重要进展中,克利夫顿(CLIFTON)、巴伯(BUB)、哈沃森(HALVORSON)即CBH以三个“information_ _theoretic constraints ”为依据提出的“知识初概念”(notion of information)在理解量子理论中的作用已经变得值得注目了。CBH所关注的正是处于一种危险状态中的“方法论”。在其论文的开头,CBH写到:一个人能够仅以少数几个简单的知识理论原则来刻画量子理论特征的这一事实,是提供信任给这样一种思

狭义相对论几个公式公式推导

狭义相对论几个公式公式推导 福建省永春县东关中心小学 陈金江 运动物体的长度缩率公式和不同点上的时刻公式推导 爱因斯坦曾假设:“在真空中,光的传播速度相对任何参照系都一样:不论发光体的运动速度如何,也不论光接受体的运动速度如何,光波相对它们的传播速度都是一样的。”否则,我们观察到遥远的恒星(特别是双星)将会发生十分混乱的现象。 根据这个假设,可以推导出:运动方向上长度的缩率和另参照系看我参照系同时事件的情况的规律。 设在S 系中看到两条等长线段AB 和A ’B ’,它们分别在S 参照系和S ’参照系。S 和S ’相对运动速度为v 光秒/秒。并且在S 参照系看来:AB=A ’B ’=a 光秒。如图所示: 图1 V 光秒/秒 A B Q V 光秒/秒 A (0秒) B (0秒) Q S ’系 S 系 秒) S’系 S 系 B ’

A (0秒) B (t 2 21c v 秒) 设A 和A ’相遇时,A 和A ’会发出闪光,或B 和B ’相遇时,B 和B ’也会发出闪光。 我们在S 系看来,由于AB=A ’B ’,所以A 和A ’与B 和B ’是同时相遇的,所以它们同时发出闪光。光波将在AB 中点Q 相遇,在S ’系中光波也必在相应点Q ’相遇(因为光波对S ’系的传播速度和S ’运动无关)。 由于Q ’点不在A ’B ’的中间,所以在S ’系看来,两次闪光不是同时的。因为B ’发出的光波走的距离B ’Q ’比A ’发出的光波走的距离A ’Q ’ 多。因而是B ’先闪光,A ’后闪光。也就是B 和B ’先相遇,A 和A ’后相遇。A ’和B ’的时刻在S ’系看来是不同时的,而是B ’早,A ’迟。 在S ’系中,由于A 、A ’和B 、B ’不同时相遇,所以S ’系看到的两条段AB 和A ’B ’也不相等。因为B 、B ’先相遇,所以必是A ’B ’>AB 。情况如图2所示: t 秒后 A ( 秒) B (0秒) V 光秒/秒 S’系 S 系 A ’(0 V 光秒/秒 A ’ B ’(t 秒) P ’

薛定谔方程的相对论形式的推导

狄拉克方程 理论物理中,相对于薛定谔方程之于非相对论量子力学,狄拉克方程是相对论量子力学的一项描述自旋-?粒子的波函数方程,由英国物理学家保罗·狄拉克于1928年建立,不带矛盾地同时遵守了狭义相对论与量子力学两者的原理,实则为薛定谔方程的洛伦兹协变式。这条方程预言了反粒子的存在,随后1932年由卡尔·安德森发现了正电子(positron)而证实。 狄拉克方程的形式如下: , 其中是自旋-?粒子的质量,与分别是空间和时间的坐标。 狄拉克的最初推导 狄拉克所希望建立的是一个同时具有洛伦兹协变性和薛定谔方程形式的波方程,并且这个方程需要确保所导出的概率密度为正值,而不是像克莱因-戈尔登方程那样存在缺乏物理意义的负值。考虑薛定谔方程 薛定谔方程只包含线性的时间一阶导数从而不具有洛伦兹协变性,因此很自然地想到构造一个具有线性的空间一阶导数的哈密顿量。这一理由是很合理的,因为空间一阶导数恰好是动量。 其中的系数和不能是简单的常数,否则即使对于简单的空间旋转变换,这个方程也不是洛伦兹协变的。因此狄拉克假设这些系数都是N×N阶矩阵以满足洛伦兹协变性。如果系数是矩阵,那么波函数也不能是简单的标量场,而只能是N×1阶列矢量

狄拉克把这些列矢量叫做旋量(Spinor),这些旋量所决定的概率密度总是正值 同时,这些旋量的每一个标量分量需要满足标量场的克莱因-戈尔登方程。比较两者可以得出系数矩阵需要满足如下关系: 满足上面条件的系数矩阵和本征值只可以取±1,并且要求是无迹的,即矩阵的对角线元素和为零。这样,矩阵的阶数N只能为偶数,即包含有相等数量的+1和-1。满足条件的最小偶数是4而不是2,原因是存在3个泡利矩阵。 在不同基中这些系数矩阵有不同形式,最常见的形式为 这里即为泡利矩阵 因此系数矩阵和可进一步写为

相对论公式

1广义相对论:R_uv-1/2×R×g_-uv=κ×T_-uv 2狭义相对论:S(R4,ηαβ) 三。相对速度公式:△v=| v1-v2 |/√(1-v1v2/c^2) 4相对长度公式L=Lo*√(1-v^2/c^2)Lo 5相对质量公式M=Mo/√(1-v^2/c^2)Mo 6相对时间公式t=to*√(1-v^2/c^2)to 7质能方程E=mc^2 相对论是一种关于时空和引力的理论,主要由爱因斯坦创立。根据研究对象的不同,可以分为狭义相对论和广义相对论。相对论和量子力学给物理学带来了革命性的变化,它们共同奠定了现代物理学的基础。相对论极大地改变了人类对宇宙和自然的“常识”概念,提出了“同时相对论”、“四维时空”、“弯曲时空”等新概念。

然而,近年来,人们对物理理论的分类有了新的认识,经典物理和非经典物理是根据其理论是否具有确定性来划分的,即“非经典=量子”。从这个意义上说,相对论仍然是一个经典理论。 扩展信息: 狭义相对论与广义相对论的区别 传统上,在爱因斯坦提出相对论的早期,人们用非惯性参照系作为狭义相对论和广义相对论分类的标志。随着相对论的发展,这种分类方法越来越暴露出它的缺点:参照系与观察者有关,而用这样一个相对的物理对象对物理理论进行分类被认为不能反映问题的本质。 目前人们普遍认为狭义相对论与广义相对论的区别在于所讨论的问题是否涉及引力(弯曲时空),即狭义相对论只涉及那些没有引力效应或可以忽略不计的问题,而广义相对论讨论的是引力效应。物理学。用相对论的语言来说,狭义相对论的背景时空是

平坦的,即四维平凡流型与闵的度量相匹配,其曲率张量为零,也称为闵时空;而广义相对论的背景时空是弯曲的,其曲率张量不为零。

狭义相对论的基本原理及思考

狭义相对论基本原理及其思考 摘要:狭义相对论基本原理是由爱因斯坦相对性原理和光速不变原理组成的,它揭示了在惯性系中高速运动物体运动的规律,是对绝对时空观的修正与发展。而狭义相对论的提出,也打开了近代物理的大门,具有非常重要的意义。 关键词:狭义相对论时间和空间相对运动思考 一、狭义相对论的产生背景 19、20世纪之交,物理学面临挑战。“以太漂移”的零结果与以牛顿绝对空间和绝对时间为背景的“光以太说”尖锐冲突,是最著名的挑战之一。物理学的两朵乌云——“紫外灾难”和“以太危机”一直笼罩在众多物理学家心中。1905年.爱因斯坦放弃“以太”,从相对性原理和光速不变原理出发,提出新的空间和时间观念,建立了相 对论,引起物理学的变革。 二、狭义相对论基本原理 狭义相对论基本原理是由爱因斯坦相对性原理和光速不变原理组成的,它揭示了在惯性系中高速运动物体运动的规律,是对绝对时空观的修正与发展。 爱因斯坦相对性原理是指所有惯性系都是等价的,物理定律在所有惯性系中都具有相同的数学表达形式,不存在任何特殊的绝对惯性系。从文字形式上看,似乎爱因斯坦相对性原理只是对伽利略相对性原理的简单推广,但这种推广包含了深刻的物理内涵,这种拓展,直接导致了对时空观认识的根本变革。

光速不变原理是指在所有惯性系中光在真空中的传播速率都等于c(3*108m/s)。也就是说,无论光源和观察者在真空中如何运动,无论光的频率是多少,测得的光速都相等。由此可知,在地球参考系中,无论光在真空中向什么方向传播,其速率都是c。 根据爱因斯坦相对性原理,一切惯性系都是等价的,没有任何特殊的惯性系,真空光速作为一种物理现象,当然也就没有为特殊值的惯性系,即绝对惯性系。从这个意义上来讲,光速不变原理从属于相对性原理,后者才是狭义相对论的最基本假设。 三、关于狭义相对论的思考 爱因斯坦发现的自然界两条基本原理——光速不变原理和相对性原理,都是关于光学和电磁定律与运动关系的原理。狭义相对性 原理揭示了光学和电动力学定律对相对运动的不变性和对称性,而光速不变原理则揭示了光速对相对运动的不变性和对称性,证明了两条原理在相对运动上存在着明显的共同性和统一性,并不存在任何不相容矛盾。 爱因斯坦直接把两条原理结合起来,没有引入任何特殊假设,只是假定时间和空间是均匀的,通过简单代数运算,就直接推导出了从静止坐标系变换到运动坐标系时的时空坐标变换定律,推导出了时间和空间与运动和光速关系的定量定律,不但揭示了时间和空间对运动的相对性结构,也确立了时间和空间坐标进入自然界定律在形式上不可分割的内在联系,由此建立了新的相对时空结构理论及其新的运动学定律,以代替旧的伽利略运动学定律,从而保证了一切自然界定律

狭义相对论20151017教案

一、经典力学的困难 “横看成岭侧成峰,远近高低各不同”,这是说,我们看到的现象,或对事物的描述,往往随观测角度的不同而不同。在物理学中描述一个物理过程,离不开参考系。例如,在运动的车厢顶部落下一个包裹,在地面上和在车厢内看到它的轨迹是不同的,这就是所谓事物的相对性。 经典力学中,物体的速度与所选参考系有关,而利用经典电磁学的麦克斯韦方程组可以得出真空中电磁波的传播速度为真空介电常数ε0与真空磁导率μ0的几何平均数的倒数,是一个与参考系无关的量。 伽利略相对性原理和他的坐标变换,已经在超越个别参考系的描述方面,迈出重大的一步。它的一个重要结论,是速度的合成律,例如一个人以速度v 相对自己掷出一个球,而他本人又以速度u 相对地面运动,则球出手时相对地面的速度为u+v 。按常识,这种算法是天经地义的;但把这种算法运用到光的传播问题上,就产生了矛盾。 设想两个人传球,甲将一个会发光的球传给乙。乙看到球,是因为球发出的光线到达乙的眼睛。设两人之间的距离为L ,球发出的光相对它的传播速度为c 。甲即将传球前,球处于静止状态,球发出的光相对地面的速度就是c ,乙看到此情景的时刻比甲延迟L/c ;在极短冲击力的作用下,球出手时速度达到v ,按上述经典的合成律,此刻由球发出的光相对地面的速度为v+c ,乙看到球出手的时刻比甲晚L/(v+c),也就是说,甲先看到球出手,后看到甲传球。这种先后颠倒的现象谁也没看到过。 会有人说,由于光速非常大,两个时间差的差别微乎其微,在日常生活中是观察不到的,这个例子没有现实意义。那么来看一个天文上的例子。 1731年英国一位天文爱好者用望远镜在南方夜空的金牛座发现蟹状星云。根据后来的观测推算,蟹状星云是在公元1060年左右(地球上观测到的时间)的一次超新星爆发抛出的气体壳层。这一点在我国的史籍《宋会要》中有以下记载:“嘉佑元年三月,司天监言,客星没,客去之兆也。初,至和元年五月晨出东方,守天关。昼见如太白,芒角四出,色赤白,凡见二十三日。”当一颗超新星爆发时,它的外围物质向四面八方飞散,也就是说有些抛射物射向我们。如果光线服从经典速度合成律的话,从蟹状星云到地球的距离(约5000光年)和爆发中抛射物的速度(约1500千米/秒)来计算,两者发出的光到达地球的时间将相差25年,即地球将在25年内持续看到超新星开始爆发时发出的强光。而史书记载,客星从出现到隐没还不到2年。 大海中轮船激起的波浪的速度只与洋流的速度有关,而与船的速度无关。这给上述问题提供了另外一种可能的解释,即发光物体发出的光的传播速度与发光物体的速度无关,只与传播介质的运动状态有关。于是上述矛盾不复存在;但又出现了一个新的问题:传播光线的介质是什么?按照旧时的看法,是一种叫做“以太”(aether )的物质,那地球以怎样的速度在以太中运动?在地球上,如果能够精确测定各个方向光速的差异,就可以确定地球相对于 以太的运动;实验的精度足够高时(达到22 c v 量级),可在地球上测定各个方向光速的差异。 1881年,迈克耳孙和莫雷首次用迈克耳孙干涉仪做了观测实验;6年后,进行了更精密的测量。从理论上分析,将仪器旋转90o ,应有0.4个条纹的移动;实验的结果却是:根本不存在条纹移动。 二、爱因斯坦狭义相对论的基本假设 当别人忙着在经典物理框架内用形形色色的理论来修补“以太说”时,爱因斯坦另辟蹊径,提出两个重要假设:

狭义相对论简述

简述相对论 化104-1 201055507104 卢凤霞 何为相对论?广义相对论与狭义相对论的区别在哪?简言之,广义相对论亦称时空几何动力学,即把引力归结为时空的几何特性;狭义相对论指出在宇宙中唯一不变的是光线在真空中的速度,其它任何事物——速度、长度、质量和经过的时间,都随观察者的参考系(特定观察)而变化。这个理论形成了一个著名的公式:E=MC2狭义相对论认为时间不是绝对的(即固定不变的)。爱因斯坦指出,随着物体(观察者所见到的)线性运动速度的加快,时间会变慢。其二:任何物体以光速运动时,其长度将会缩短为零。提出时间和空间都是绝对的,空间和时间是完全分开的。然而,在相对论数学中,时间和三维空间——长、宽和高,一起构成一个四维空间框架,叫做时空关联集。 下面我详细总结了一下两者的具体物理意义及发展历史 (一)广义相对论 爱因斯坦特有的知识结构(马赫哲学、狭义相对论、四维时空、光、场及黎曼几何),决定了他走上了一条充满荆棘的理论之路。马赫的功绩是看到了牛顿力学体系中有一个缺陷,就是物体的运动状态依参考系的不同而有所不同,于是,作为判断牛顿惯性运动的前提也就成为不确定的了(相对性)。不得已,马赫把现象世界的远处的恒星当作其绝对参考系了。马赫的错误就是把牛顿惯性定律中的物体的属性(保持性)与其运动状态问题混在一起了。爱因斯坦受马赫哲学的启发,又发现了等效原理,但同时又继承了马赫的错误。被夸大为改变人们时空观念意义的四维时空,只不过是用"运动"(还是光运动)角度来规定空间的一种方法。规定有结构的空间可有各种方法,其各种方法是平权的。用什么方法来规定空间则取决于理论与实践的需要。如果去掉了"光速"的弯曲时空还有力学意义的话,与牛顿引力定律正是互为补充的关系本体性的场的描述:一个是以广义惯性"运动"的角度的描述;一个是以广义惯性"力"的角度的描述。而牛顿引力势所包含的空间意义,正是中心结构的ρ非均匀空间(重力场)的经验性的描述。终究是"描述",都不能代替核心命题性质的"表述"。没有明确的命题表述,其描述也就没有明确的理解前提。惯三律与广义相对论都以等效原理为其经验基础。只不过爱因斯坦又走上了光速的等效原理之路。而光速的等效原理是由"思维"实验得来的,且唯一能验证其理论的星光在太阳附近偏转现象,爱因斯坦在具体计算其偏转角度时,实际上是"非常谨慎地用惠更斯原理"([5]第23页)。而惯三律所依据的"低速"等效原理,连幼儿园里的儿童都可以感觉到坐滑梯时的加速度与坐汽车时的汽车加速度的区别,因其身体内有胁强的有否或大小之区别。战斗机飞行员已经体验了低速等效原理的所有内涵。所以,任何脱离与回避"低速"等效原理的力学理论,肯定是不会成功的理论,因为其现象普遍存在于客观世界,且与力学密切相关。爱因斯坦之所以对"光"情有独钟,也许是无意识的回避其理论中的一个内在矛盾:"产生"引力场的中心质量(中心物体)必须很大,而体现弯曲时空(引力场)作用的物体必须很小且产生与不产生引力场无关紧要,这与引力中的两个平权的物体涵义是矛盾的。而"光子"正好是最小的物体,也就回避了这个矛盾。只有"整体天体才产生重力场"的结论,才可以解决这个矛盾。 引力波、黑洞与四种相互作用力的统一的课题,来源于爱因斯坦。引力已经不存在了,当然

狭义相对论几个公式公式推导

狭义相对论几个公式公 式推导 -CAL-FENGHAI.-(YICAI)-Company One1

2 狭义相对论几个公式公式推导 福建省永春县东关中心小学 陈金江 运动物体的长度缩率公式和不同点上的时刻公式推导 爱因斯坦曾假设:“在真空中,光的传播速度相对任何参照系都一样:不论发光体的运动速度如何,也不论光接受体的运动速度如何,光波相对它们的传播速度都是一样的。”否则,我们观察到遥远的恒星(特别是双星)将会发生十分混乱的现象。 根据这个假设,可以推导出:运动方向上长度的缩率和另参照系看我参照系同时事件的情况的规律。 设在S 系中看到两条等长线段AB 和A ’B ’,它们分别在S 参照系和S ’参照系。S 和S ’相对运动速度为v 光秒/秒。并且在S 参照系看来:AB=A ’B ’ =a 光秒。如图所示: 图1 V 光秒/秒 A (0秒) B (0秒) Q V 光秒/秒 A B Q S ’系 S 系 S’系 S 系 B ’

3 A (0秒) B (t 2 21c v 秒) 设A 和A ’相遇时,A 和A ’会发出闪光,或B 和B ’相遇时,B 和B ’也会发出闪光。 我们在S 系看来,由于AB=A ’B ’,所以A 和A ’与B 和B ’是同时相遇的,所以它们同时发出闪光。光波将在AB 中点Q 相遇,在S ’系中光波也必在相应点Q ’相遇(因为光波对S ’系的传播速度和S ’运动无关)。 由于Q ’点不在A ’B ’的中间,所以在S ’系看来,两次闪光不是同时的。因为B ’发出的光波走的距离B ’Q ’比A ’发出的光波走的距离A ’Q ’ 多。因而是B ’先闪光,A ’后闪光。也就是B 和B ’先相遇,A 和A ’后相遇。A ’和B ’的时刻在S ’系看来是不同时的,而是B ’早,A ’迟。 在S ’系中,由于A 、A ’和B 、B ’不同时相遇,所以S ’系看到的两条段AB 和A ’B ’也不相等。因为B 、B ’先相遇,所以必是A ’B ’>AB 。情况如图2所示: t 秒后 A ( 秒) B (0秒) V 光秒/秒 S’系 S 系 A ’(0秒) B ’(0秒) V 光秒/秒 A ’ B ’(t 秒) P ’

麦克斯韦速率分布律的一种推导方法

麦克斯韦速率分布律的一种推导方法 安海东 (天水师范学院,物理与信息科学学院,物理系,甘肃,天水,741000) 摘要:运用基本的初等方法推导出了麦克斯韦速率分布律,同时,对分布函数的归一化表达式中和求力学量平均值积分运算中对积分限可以取分子速率无限大作了定量的解释和说明。 关键词:麦克斯韦速率分布律;分布函数;推导方法;分子数比率 分类号:O552.3+1 One of the Derivation Methods of Maxwell V elocity Distribution Law An Haidong (School of physics and information science,Tianshui Normal University,Tianshui Gansu, 741000) Abstract:Maxwell velocity distribution law is derived by the basic methods, meanwhile, why molecular speed can take the infinite quantity in the normalized of distribution function and the infinitesimal calculus of the average value of the mechanical quantity. In this thesis, the reasonable explanation is put forward by quantitative analysis. Key wards: Maxwell velocity distribution law,distribution function,derivation methods,number ratio of molecule

狭义相对论基本变换公式

狭义相对论 小菜鸟 狭义相对论的思想来源于很多人,但最后由爱因斯坦用两个假设明确地表达出来,在这里,为了了解一下狭义相对论,看了爱因斯坦做的《狭义与广义相对论浅析》,做笔记如下,供以后回顾此三天的感悟。 狭义相对论简单地将是指有两个人甲和乙在相对运动的各自参考系之中观察对方所观察到的结果,其基础为两个基本假设:1)相对性原理:物理定律在一切惯性坐标系中都一样,比如速度x时间=路程。2)光速不变原理:光速真空中传播速度在任何惯性坐标系中观察都是一样的。 具体推导如下的现象: 0. 引言:假设有两个参考系S和S'在0时刻原点O重合,其中在参考系S来看,参考系S'以速度v沿着x轴运动,根据相对性原理,参考系S'来看,参考系S相对于自己以-v沿x轴在运动;在y和z轴方向,根据速度分解定理,两个参考系中的长度保持不变。 另外也可以这样想,如果一个木棒相对S'系静止,参考系S'速度从小到大.开始的时候,两个参考系中的测得的长度相同,如果S'系运动速度逐渐增加,因为是沿着x轴运动的,木棒端点的轨迹在S系中应该是两条直线,否则,S'系就不是惯性系了。因此,其长度应该是不变的。 1. 钟慢效应:在运动参考系里的时间在静止参考系看来变长了,时间膨胀。 因为乙相对于甲运动,可以得到结论:在甲看来,乙中两个时刻之间的时间(乙中的同一地点)变长了。 因为甲相对于乙运动,可以得到结论:在乙看来,甲中两个时刻之间的时间(甲中的同一地点)变长了。 这被称为钟慢效应,表面上看,甲看到的时间比乙长,乙看到的时间比甲长,这不矛盾吗,答案是否定的,因为这两个时间(也就是两个时刻之间的间隔)不是指的同一个。甲看到的时间是指乙参考系中的两个时刻之间的间隔,乙看到的时间是指甲参考系中的两个时刻之间的间隔。 钟慢效应的推导过程如下,假设有一个参考系S'相对于S沿着x轴以v速度前进,我们将时间定格在某一个时刻,世界因此而静止,然后跑过去将S'系和S系的时钟都调为0,我们考察S’系中的时间单位与S系中的时间单位之间的关系,也就是S'系中的一秒钟在S系看来多长。这样做的目的是因为我们关于时间的定义为:1967年第十三届国际计量大会采用以原子内部辐射频率为基准的时间计量系统,成为原子时。按新规定,秒是"铯-133原子基

相关主题
文本预览
相关文档 最新文档