当前位置:文档之家› 狭义相对论尺缩效应的数学推导

狭义相对论尺缩效应的数学推导

狭义相对论尺缩效应的数学推导
狭义相对论尺缩效应的数学推导

狭义相对论之尺缩效应高中数学推导

1首先依据光速不变原理,假设垂直光子钟,在相对于地面以V 速度匀速运行的火车上相对于火车垂直上下运动,推导出钟慢效应公式

22

1C V t

T -=

此处T 表示相对运动坐标系观察的时间(数值大) t 表示在相对运动物体静止的时钟观察到的时间(数值小)。

2 假设在该火车上有人自车尾部使用激光测距朝列车运行方向照射测量火车长度,则火车上

人测量的距离 2ct l =

,而地面上的人观察到的测量过程为光子在某一时刻自火车后面追击火车头,飞向前方,列车运行t1时刻后,追上列车头反射,间隔t2时间长度与相向而行的火车尾部的观测仪器相遇。

T

t t ct vt L ct vt L =++==+212

21

1 L

cT t t 221≠> 由此必须使用时间这唯一能沟通两个参照系的量来测算距离

22

212112,2//c v t T c

l t ct l V

C L V C L t t T V

C L t V

C L t -===++-=

+=+=-=

22

212112,2//c v t T c

l t ct l V

C L V C L t t T V

C L t V C L t -===++-=+=+=-= 最后三个公式可形成等式 2222221212c v c l c v t V C LC V C L V C L T -=-=-=++-= 22

2222222222222222

22221,

1,11,1,

1,1c v l L l c v

L

c v l C V L c v l C V C L c v

l V C LC V v c C c v c l V

C LC -==--=--=--=-==-=-

由此可知 运动物体在空间中所占有的的长度 在运动方向上会减少,数值为静止坐标系下

测量长度的

221c v 倍,该数值永远小于1。发生了尺缩。

相对论视觉效应

相对论视觉效应演示实验 实验类型:微观与宇观 2009年11月

【实验目的】 ――――――――――――――――――――――――――――――――――了解狭义相对论的基本原理与时空的相对性。 【实验仪器】―――――――――――――――――――――――――――――――――― 图1 相对论视觉效应演示仪 【实验现象】――――――――――――――――――――――――――――――――――1.将自行车、传感器、采集卡通过USB口,连接至计算机。 2.运行文件“Bicycle of Einstein”文件。在选择模式窗口中选择“外部信号”,按“确定”按钮。此时,窗口提示“请在主程序启动后,点击菜单栏的TCP/IP/显示面板”。 3.在随后出现的“Bicycle of Einstein”主程序界面中,点击主菜单“TCP/IP端口”中的“显示面板”命令,出现提示窗口“若没有运行采集程序Speed Capture,先运行该程序,点击“连续单点采集”,然后点击“连接”按钮”。 4.运行“VeloCap”文件。按照上述提示,点击“连续单点采集”按钮。 5.在提示窗口“若没有运行采集程序Speed Capture,先运行该程序,点击“连续单点采集”,然后点击“连接”按钮”中,先点击“确定”,然后点击“连接”按钮。6.在“Bicycle of Einstein”主程序界面中,点击“?”按钮。然后踩动自行车踏板,观察主程序界面上的街景变化。 【实验原理分析】

―――――――――――――――――――――――――――――――――― 狭义相对论认为,存在一个最大的速度值——光速。任何物体的运动速度都无法超越光速。基于这一原理,当物体的运动速度接近于光速时,会产生一些不同于我们日常生活的不寻常的后果,如,量尺会缩短,时钟会变慢。所幸的是,由于光速为300,000公里/秒,所以在日常生活的各种事件中,将很难观察到这些相对论效应。 那么,狭义相对论的本质究竟是什么?为什么当物体的运动速度接近于光速时,量尺会缩短,时钟会变慢呢?下面简要探讨一下: 首先探讨时钟为什么会变慢的问题。 如图2(a )所示,设想有一列车厢以速度v 作匀速直线运动。以车厢为惯性系S ’系,以地面为惯性系S 。事件1是位于车厢地板上B 处的一个光源垂直往上发出一个光脉冲;事件2是B 处接收到一个反射光脉冲,反射光来自车厢顶部,且距光源为d 的一个镜面。对于车厢内的观察者来说,两个事件发生在同一地点,测得两事件的时间间隔为c d t /20=?。 (a ) 在车厢S ’系中,观察者发现,光的发射和接 收发生在同一个地点。 (b ) 在地面S 系中,光的发射和接收不是在同一 个地点,整个过程中光走过的距离是l 2。 图2 不同参考系中的时间思想实验 在地面参考系S 中的观察者,看到这两个事件并不发生在空间同一地点。在时间t ?内,光源相对于S 系运动了一段距离t v ?,如图2(b )所示。在S ’系中,光的全程为2d ,而在S 系中为斜线)(2d l l >,利用几何关系可得 时间的延缓:

狭义相对论的基本原理

基础知识 1.下列说法中正确的是( ) A电和磁在以太这种介质中传播 B相对不同的参考系,光的传播速度不同 C.牛顿定律仅在惯性系中才能成立 D.时间会因相对速度的不同而改变 2.爱因斯坦相对论的提出,是物理学思想的一场重大革命,他( ) A.否定了xx的力学原理 B.提示了时间、空间并非绝对不变的属性 C.认为时间和空间是绝对不变的 D.承认了“以太”是参与电磁波传播的重要介质 3.爱因斯坦狭义相对论的两个基本假设: (1)爱因斯坦的相对性原理: _______________. (2)光速不变原理: ___________________. 4.下列哪些说法符合狭义相对论的假设( ) A在不同的惯性系中,一切力学规律都是相同的 B.在不同的惯性系中,一切物理规律都是相同的 C.在不同的惯性系中,真空中的光速都是相同的

D.在不同的惯性系中,真空中的光速都是不同的 5.在一惯性系中观测,两个事件同时不同地,则在其他惯性系中观测,它们( ) A.一定同时 B.可能同时 C.不可能同时,但可能同地 D.不可能同时,也不可能同地 6.假设有一列很长的火车沿平直轨道飞快匀速前进,车厢中央有一个光源发出了一个闪光,闪光照到了车厢的前后壁,根据狭义相对论原理,下列说法中正确的是( ) A地面上的人认为闪光是同时到达两壁的 B车厢里的人认为闪光是同时到达两壁的 C.地面上的人认为闪光先到达前壁 D.车厢里的人认为闪光先到达前壁 能力测试 7.关于牛顿力学的适用范围,下列说法正确的是( )

A.适用于宏观物体 B.适用于微观物体 C.适用于高速运动的物体 D.适用于低速运动的物体 8.下列说法中正确的是( ) A.相对性原理能简单而自然的解释电磁学的问题 B.在真空中,若物体以速度v背离光源运动,则光相对物体的速度为c-v C在真空中,若光源向着观察者以速度v运动,则光相对于观察者的速度为c+v D.迈xx一xx实验得出的结果是: 不论光源与观察者做怎样的相对运动,光速都是一样的 9.地面上的 A、B两个事件同时发生,对于坐在火箭中沿两个事件发生地点连线,从A 到B方向飞行的人来说哪个事件先发生( ) A.两个事件同时发生 B.A事件先发生 C.B事件先发生 D.无法判断 10.关于电磁波,下列说法正确的是( )

狭义相对论推导详细计算过程

狭义相对论 狭义相对论基本原理: 1. 基本物理定律在所有惯性系中都保持相同形式的数学表达式,因此一切惯性系都是等价 的。 2. 在一切惯性系中,光在真空中的传播速率都等于c ,与光源的运动状态无关。 假设S 系和S ’系是两个相对作匀速运动的惯性坐标系,规定S ’系沿S 系的x 轴正方向以速度v 相对于S 系作匀速直线运动,x ’、y ’、z ’轴分别与x 、y 、z 轴平行,两惯性系原点重合时,原点处时钟都指示零点。 Ⅰ洛伦兹变换 现假设,x ’=k(x-vt)①,k 是比例系数,可保证变化是线性的,相应地,S ’系的坐标变换为S 系,有x=k(x ’+vt) ②,另有y ’=y ,z ’=z 。将①代入②: x=k[k(x-vt)+vt ’] x=k^2*(x-vt)+kvt ’ t ’=kt+(1-k^2)x/kv 两原点重合时,有t=t ’=0,此时在共同原点发射一光脉冲,在S 系,x=ct ,在S ’系,x ’=ct ’,将两式代入①和②: ct ’=k(c-v)t 得 ct ’=kct-kvt 即t ’=(kct-kvt)/c ct=k(c+v)t ’ 得 ct=kct ’+kvt ’ 两式联立消去t 和t ’ ct=k(kct-kvt)+kv(kct-kvt)/c ct=k^2ct-k^2vt+k^2vt-k^2v^2t/c c^2=k^2c^2-k^2v^2 k= 2 2 /11c v - 将k 代入各式即为洛伦兹变换: x ’=2 2 /1c v vt x -- y ’=y z ’=z t ’= 2 2 2/1/c v c vx t -- 或有 x=k(x ’+vt ’) x ’=k(x-vt) =k(1+v/c)x ’ =k(1-v/c)x 两式联立, x ’=k(1-v/c)k(1+v/c)x ’ k= 2 2 /11c v - Ⅱ同时的相对性

1、狭义相对论效应与加速度之间的关系

1、狭义相对论效应与加速度之间的关 系 物理学是一门自然科学,它的理论和应用基础是建立在实验和观测上的.而实验和观测总是离不开某一个具体的参考系(或坐标系),加上历史上把惯性系之间的伽利略相对性原理和伽利略变换推广到狭义相对性原理和洛伦兹变换,从而建立狭义相对论这样的背景,许多物理学工作者以参考系的属性(惯性系或非惯性系)来界定狭义相对论的范畴是自然的,不足为怪.至于这种界定的优劣,那就是属于“仁者见仁,智者见智”的事情了. 1966年,人们做过实验让粒子做接近光速的高速圆周运动,粒子既有很高的速度,也有很高的加速度。实验表明,粒子寿命的变化只与速度有关,而与加速度无关。在验证时间膨胀效应的实验中,有许多实验涉及到加速过程,覆盖的加速度范围非常广。例如在原子钟 环球航行实验中,时钟经受的向心加速度为 3 10 g(g代表地球表面的重力加速度);在转 动圆盘的实验中,光源的向心加速度达 5 10g;在穆斯堡尔效应的温度依赖性实验中,晶格 中原子核振动的加速度以及作圆周运行的μ介子的向心加速度都高达 16 10g 以上。尽管加 速度范围这么广,但最终,几乎所有的实验都得到了与狭义相对论预言的由速度引起的时间膨胀效应基本相符的结果。这一事实表明,加速度对实验中的时间膨胀没有任何贡献。即使我们承认时间膨胀效应的存在,也只能说这些效应都是由速度引起的时间膨胀效应,而“非加速度效应”。 相对论中引起广泛兴趣的一个问题是“孪生子佯谬”问题,它曾困扰了物理学界几十年,特别是50年代掀起了空前激烈的争论,发表了许许多多的文章.然而时至今日,“孪生子佯谬”的问题,可以说不但在实验上而且在理论上都已经很好地解决了,因而不妨将之改称为“孪生子效应”.可是,近年国内有人认为“孪生子效应”并没有从理论上得到解决,而且沿用当今的理论(相对论)可能导致某观测者看到“返老还童”的荒谬结果.这种见解其实是把两个坐标系中观测到的钟慢效应,误认为是某个观测者所“看到”的结果. 根据Einstein的观点,狭义相对论效应不具有累积效应。如果不具有累积效应,那么在实验中怎么测量狭义相对论效应?时间与长度的变换符合洛沦兹变换,您如何理解双生子佯谬和潜水艇悖论?假设一个物体在运动方向上的长度为l,开始由静止做加速运动,当速度达到0.99c时开始减速直到静止,那么开始与最后的长度是否相等?如果速度相等说明不具有累积效应,时间变换也符合洛沦兹变换,为什么现代物理学的实验证明时间膨胀(譬如μ子绕地运行)具有累积效应,而长度收缩是瞬时效应?

第4章 狭义相对论

第4章 狭义相对论 一、基本要求 1.掌握运动时间延缓和运动长度收缩原理; 2.理解质速关系和质能关系。 二、基本内容 (一)本章重点和难点: 重点:狭义相对论时空观中运动时间延缓和运动长度收缩。 难点:相对论动力学中质能关系。 (二)知识网络结构图: ???? ? ? ? ???????=?? ????)(2mc (E )质能关系运动质量变大质速关系相对论动力学运动长度收缩运动时间延缓相对论运动学光速不变原理爱因斯坦相对性原理基本原理 (三)容易混淆的概念: 1.静止长度和运动长度 静止长度0l ,也称固有长度,即观察者和被测物体在同一参照系所测长度;运动长度l ,即观察者和被测物体不在同一参照系所测长度。 2. 静止时间和运动时间 静止时间0τ,也称固有时,即观察者和被测事件在同一参照系所测时间;运动时间τ,即观察者和被测事件不在同一参照系所测时间。 3.总能量、静能量和动能 总能量E 由爱因斯坦质能关系式,等于动质量和光速的平方的乘积;静能量0E 等于静质量和光速的平方的乘积;动能k E 即总能量与静能量之差。 (四)主要内容: 1.经典力学的相对性原理:

一切彼此相对作匀速直线运动的诸惯性系中的力学规律是一样的。即力学规律的数学形式都是相同的。 2.狭义相对论基本原理: (1)爱因斯坦相对性原理:物理定律在所有惯性参考系内都是等价的。 (2)光速不变原理:在所有惯性系中,光在真空中的速度恒等于c 。 3.洛伦兹变换: 若S S 、'分别为两惯性系,S 系相对S '系以v 沿x 轴运动,在0='=t t 时两系重合,则一质点(或一事件)在S 系中的时空坐标(x 、y 、z 、t )与在S '系中的时空坐标(x '、y ' 、z '、t ')之间的关系为洛伦兹时空变换。 (1)洛伦兹时空变换 同一事件在S 系中时空坐标(x 、y 、z 、t )与在S '系中的时空坐标(x '、y ' 、z '、 t ')之间的关系为: ? ?? ??? ? ?? ???? ='='--='--= 'z z y y c v vt x x c v x c v t t 2 22 )(1)(1 逆变换为: ?????? ???????' ='=-+'=-+ =z z y y c v vt x x c v x c v t t 2 2 2)(1)(1 (2)洛伦兹速度变换 某质点相对于S 系速度u ,与相对S '系速度u '之间的关系为:

大学物理练习题 狭义相对论的基本原理及其时空观

练习十九狭义相对论的基本原理及其时空观 一、选择题 1. 静止参照系S中有一尺子沿x方向放置不动,运动参照系S′沿x轴运动,S、S′的坐标轴平行。在不同参照系测量尺子的长度时必须注意 (A) S′与S中的观察者可以不同时地去测量尺子两端的坐标。 (B)S′中的观察者可以不同时,但S中的观察者必须同时去测量尺子两端的坐标。 (C)S′中的观察者必须同时,但S中的观察者可以不同时去测量尺子两端的坐标。 (D) S′与S中的观察者都必须同时去测量尺子两端的坐标。 2. 下列几种说法: (1)所有惯性系对一切物理规律都是等价的。 (2)真空中,光的速度与光的频率、光源的运动状态无关。 (3)在任何惯性系中,光在真空中沿任何方向的传播速度都相同。 其中哪些正确的? (A)只有(1)、(2)是正确的。 (B)只有(1)、(3)是正确的。 (B)只有(2)、(3)是正确的。 (D)三种说法都是正确的。 3. 边长为a的正方形薄板静止于惯性系S的xOy平面内,且两边分别与x轴、y轴平行,今有惯性系S′以0.8c(c为真空中光速)的速度相对于K系沿x轴作匀速直线运动,则从S′系测得薄板的面积为 (A)a2。 (B) 0.6a2。 (C) 0.8 a2。 (D)a2/0.6。 4. 在某地发生两件事,静止位于该地的甲测得时间间隔为6s,若相对甲以4c/5(c表示真空中光速)的速率作匀速直线运动的乙测得时间间隔为 (A) 10s。 (B) 8s。 (C) 6s。 (D) 3.6s。 (E) 4.8s。 5. (1)对某观察者来说,发生在某惯性系中同一地点,同一时刻的两个事件,对于相对该惯性系作匀速直线运动的其它惯性系的观察者来说,它们是否同时发生? (2)在某惯性系中发生于同一时刻,不同地点的两个事件,它们在其它惯性系中是否同时发生? 关于上述两问题的正确答案是: (A)(1)一定同时,(2)一定不同时。 (B)(1)一定不同时,(2)一定同时。 (C)(1)一定同时,(2)一定同时。 (D)(1)一定不同时,(2)一定不同时。 6. 一尺子沿长度方向运动,S′系随尺子一起运动,S系静止,在不同参照系中测量尺子的长度时必须注意 (A) S′与S中的观察者可以不同时地去测量尺子两端的坐标。 (B)S′中的观察者可以不同时,但S中的观察者必须同时去测量尺子两端的坐标。 (C)S′中的观察者必须同时,但S中的观察者可以不同时去测量尺子两端的坐标。 (D)S′与S中的观察者都必须同时去测量尺子两端的坐标。 7. 按照相对论的时空观,以下说法错误的是 (A)在一个惯性系中不同时也不同地发生的两件事,在另一个惯性系中一定不同时。 (B)在一个惯性系中不同时但同地发生的两件事,在另一个惯性系中一定不同时。 (C)在一个惯性系中同时不同地发生的两件事,在另一个惯性系中一定不同时。 (D)在一个惯性系中同时同地发生的两件事,在另一个惯性系中一定也同时同地。 8. 在高速运动的列车里(S′系)一物体从A运动到B,经历的时间为Δt′> 0;而在地上(S系)的观察者看列车上的A、B两点的坐标发生变化,物体运动的时间变为Δt,则在S中得到的结果是 (A)一定是物从A到B,Δt > 0。(B)可能是物从B到A,Δt > 0。

狭义相对论尺缩效应的数学推导

狭义相对论之尺缩效应高中数学推导 1首先依据光速不变原理,假设垂直光子钟,在相对于地面以V 速度匀速运行的火车上相对于火车垂直上下运动,推导出钟慢效应公式 22 1C V t T -= 此处T 表示相对运动坐标系观察的时间(数值大) t 表示在相对运动物体静止的时钟观察到的时间(数值小)。 2 假设在该火车上有人自车尾部使用激光测距朝列车运行方向照射测量火车长度,则火车上 人测量的距离 2ct l = ,而地面上的人观察到的测量过程为光子在某一时刻自火车后面追击火车头,飞向前方,列车运行t1时刻后,追上列车头反射,间隔t2时间长度与相向而行的火车尾部的观测仪器相遇。 T t t ct vt L ct vt L =++==+212 21 1 L cT t t 221≠> 由此必须使用时间这唯一能沟通两个参照系的量来测算距离 22 212112,2//c v t T c l t ct l V C L V C L t t T V C L t V C L t -===++-= +=+=-=

22 212112,2//c v t T c l t ct l V C L V C L t t T V C L t V C L t -===++-=+=+=-= 最后三个公式可形成等式 2222221212c v c l c v t V C LC V C L V C L T -=-=-=++-= 22 2222222222222222 22221, 1,11,1, 1,1c v l L l c v L c v l C V L c v l C V C L c v l V C LC V v c C c v c l V C LC -==--=--=--=-==-=- 由此可知 运动物体在空间中所占有的的长度 在运动方向上会减少,数值为静止坐标系下

5.3奇特的相对论效应 学案(2020年沪科版高中物理选修3-4)

5.3奇特的相对论效应学案(2020年沪科版 高中物理选修3-4) 5.3奇特的相对论效应学习目标 1.了解运动时钟延缓效应和运动长度收缩效应. 2.知道爱因斯坦质量公式和质能关系. 3.了解经典时空观与相对论时空观的重要区别,体会相对论的建立对人类认识世界的影响1运动时钟延缓事件发生在运动惯性系中,地球上测量的时间间隔t,在以速度v 相对于地球飞行的飞船上测量的时间间隔为t,两者的关系为t,这种效应叫做时钟延缓,也叫做“动钟变慢”2运动长度收缩在一以速度v相对于地球飞行的飞船上,有一根沿运动方向放置且静止的棒,在地球上测量它的长度为l,在飞船上测量的长度为l,两者的关系为ll.在静止惯性参考系中测得的长度总是比运动惯性系中的要短一些,这种效应叫做运动长度收缩或尺缩效应,也叫做“动尺缩短”尺缩效应只发生在运动的方向上3爱因斯坦质量公式物体静止时的质量为m0,运动时的质量为m,两者之间的关系为m.4质能关系1任何质量的物体都对应着一定的能量Emc 2.2如果质量发生了变化,其能量也相应发生变化Emc 2.5时空观的深刻变革牛顿物理学的绝对时空观物理学的空间与时间是绝对分离.没有联系的,脱离物质而单独存在,与物质的运动无关而相对论认为有物质才有时间和空间,空间和时间与物

体的运动状态有关人类对于空间.时间更进一步地认识而形成的新的时空观,是建立在新的实验事实和相关结论与传统观念不一致的矛盾基础上,是不断发展.不断完善起来的. 一.运动时钟延缓导学探究一列火车沿平直轨道飞快匀速行驶,某人在这列火车上拍了两下桌子,车上的人观测的两次拍桌子的时间间隔与地上人观测的拍两下桌子的时间间隔相同吗答案不同知识深化时间间隔的相对性时钟延缓1经典的时空观某两个事件,在不同的惯性系中观察,它们的时间间隔总是相同的2相对论的时空观某两个事件,在不同的惯性参考系中观察,它们的时间间隔是不同的,惯性系相对运动速度越大,惯性系中的时间进程越慢3相对时间间隔公式设t表示与运动的惯性系相对静止的观察者观测的时间间隔,t表示地面上的观察者观测同样两事件的时间间隔,则它们的关系是t.例1远方的一颗星以0.8c的速度离开地球,测得它辐射出来的闪光按5昼夜的周期变化,求在此星球上测其闪光周期为多大答案3昼夜解析5昼夜是地球上测得的,即t5d由t得ttt3d 二.运动长度收缩导学探究如图1所示,假设杆MN沿着车厢的运动方向固定在火车上,且与火车一起运动,火车上的人测得杆的长度与地面上的人测得杆的长度相同吗图1答案不同知识深化长度的相对性尺缩效应1经典的时空观一条杆的长度不会因为观察者是否与杆做相对运动而不同2相对论的时空观长度也具有相对性,一条沿自身长度方向运动的杆,其长度总比静止长度

物理人教版高二选修互动课堂第十五章狭义相对论的其他结论含解析

互动课堂 疏导引导 1.相对质量 在一定惯性参考系中,质点的质量与质点速率有关.用m 0表示静止时的质量(即静止质量),m 表示以速率v 运动时的质量,则得 2 2 01c v m m -= 这叫做相对论的质量—速率公式.若质点速率远小于光速,则m→m 0质量保持为一常量,又回到经典力学的结论.由上可知,在相对论中不仅同时、时间间隔、空间间隔具有相对性,物体质量也有相对性.当前,由于高能加速器的发展,可以把电子加速至其质量为静止质量的几万倍,更加证实了相对论理论的正确性. 2.质能方程 爱因斯坦质能方程E=mc 2另一种表述形式为ΔE=Δmc 2 它表明物体吸收或放出能量时,必伴随以质量的增加或减少.这里,ΔE 不仅可以表示机械能的改变,也可以代表因物体吸热或放热、吸收或辐射光子等等所引起的能量的变化. 相对论指出,当物体静止时,它本身已蕴藏着一份很大的能量,例如取m 0=1 kg ,其静止能量E 0=9×1016 J ,而我们通常所利用的物体的能量仅仅是mc 2和 m 0c 2之差. 但同学们也不能把质量和能量混为一谈,不能认为质量消灭了,只剩下能量在转化,更不能认为质量和能量可以相互转变.在一切过程中,质量和能量是分别守恒的,只有在微观粒子的裂变和聚变过程中有质量亏损的情况下才会有质能方程的应用. 3.相对论速度变换公式的由来 狭义相对论的两条基本假设光速不变原理和狭义相对性原理使我们看到一幅与传统观念截然不同的物理图景.设想从一点光源发出一光脉冲,如从光源在其中保持静止的参考系中观察,波前为以光源为中心的球面;如从相对于光源做匀速直线运动的另一参考系观察,波前将同样是以光源为中心的球面.从日常经验出发,这种现象似乎难于想象,但它确与迈克尔逊—莫雷的实验结果相符合. 在历史上人们提到的以太,是作为绝对静止的参考系而存在的.既然相对性原理认为一切惯性参考系都是等效的,不存在某一个具有特殊地位的绝对参考系,这等于否定了以太假说,换句话说,企图在某一参考系中进行实验以便求出该参考系相对于以太或绝对参考系的速度,这是不可能的,也是没有意义的. 基于以上论述,我们现需要寻找一组新的时间空间坐标变换关系,该变换关系应当满足两个条件:①满足光速不变原理和狭义相对性原理这两条基本假设;②当质点速率远小于真空中光速时,新的变换关系应能使伽利略变换重新成立.设车对地面的速度为v ,车上的人以速度u′沿着火车前进的方向相对火车运动,那么他相对地面的速度u 为2 1c v u v u u '-+'= ,当v <<c,u′<<c 时,u=u′+v′与牛顿力学规律对应. 活学巧用 1.一观察者测出电子质量为2m 0,其中m 0为电子的静止质量,求电子速度为多少? 思路解析:将m=2m 0代入质量公式2 0)(1c v m m -= 得,2 00)(12c v m m -= c v 2 3 = =0.866c 答案:0.866c 2.已知电子的静能为0.511 MeV ,若电子的动能为0.25 MeV ,则它所增加的质量Δm 与静止质量m e 的比值近似为( ) A.0.1 B.0.2 C.0.5 D.0.9 思路解析:由题意知E 0=0.511 MeV ,E k =0.25 MeV ,由E 0=m 0c 2,E=mc 2,E k =Δmc 2可得出0 0m m E E k ??= ,代入数据得 .5.00 =E E k 答案:C

狭义相对论公式及证明

狭义相对论公式及证明 单位符号单位符号 坐标: m (x, y, z) 力: N F(f) 时间: s t(T) 质量:kg m(M) 位移: m r 动量:kg*m/s p(P) 速度: m/s v(u) 能量: J E 加速度: m/s^2 a 冲量:N*s I 长度: m l(L) 动能:J E k 路程: m s(S) 势能:J E p 角速度: rad/s ω力矩:N*m M 角加速度:rad/s^2α功率:W P 一: 牛顿力学(预备知识) (一):质点运动学基本公式:(1)v=dr/dt, r=r0+∫rdt (2)a=dv/dt, v=v0+∫adt (注:两式中左式为微分形式,右式为积分形式) 当v不变时,(1)表示匀速直线运动。 当a不变时,(2)表示匀变速直线运动。 只要知道质点的运动方程r=r(t),它的一切运动规律就可知了。 (二):质点动力学: (1)牛一:不受力的物体做匀速直线运动。 (2)牛二:物体加速度与合外力成正比与质量成反比。 F=ma=mdv/dt=dp/dt (3)牛三:作用力与反作与力等大反向作用在同一直线上。 (4)万有引力:两质点间作用力与质量乘积成正比,与距离平方成反比。 F=GMm/r2,G=6.67259*10-11m3/(kg*s2) 动量定理:I=∫Fdt=p2-p1(合外力的冲量等于动量的变化) 动量守恒:合外力为零时,系统动量保持不变。 动能定理:W=∫Fds=E k2-E k1(合外力的功等于动能的变化) 机械能守恒:只有重力做功时,E k1+E p1=E k2+E p2 (注:牛顿力学的核心是牛二:F=ma,它是运动学与动力学的桥梁,我们的目的是知道物体的运动规律,即求解运动方程r=r(t),若知受力情况,根据牛二可得a,再根据运动学基本公式求之。同样,若知运动方程r=r(t),可根据运动学基本公式求a,再由牛二可知物体的受力情况。) 二: 狭义相对论力学:(注:γ=1/sqr(1-u2/c2),β=u/c, u为惯性系速度。) (一)基本原理:(1)相对性原理:所有惯性系都是等价的。 (2)光速不变原理:真空中的光速是与惯性系无关的常数。 (此处先给出公式再给出证明) (二)洛仑兹坐标变换: X=γ(x-ut) Y=y Z=z

相对论多普勒效应

第五章相对论 ★非相对论多普勒效应(回顾) 1842.(奥)多普勒 波源S 与接收器(如人耳等)有相对运动,从而接收器接收到的频率有变化的现象---多普勒效应1. 波源S 静止(u S =0,人动u 人≠0) ①人朝向S 运动 人耳在Δt 内收到(u +u 人) Δt /λ个波长 v u u u u u t t v 人人耳内收波长数 +=+=ΔΔ=λ ②人远离S ) ( 0自证人 耳v u u u v ?= §5.5 相对论多普勒效应 如火车进站声频高;火车出站声频低。λ λu v u =0 声波频率, 声波长,设:声波速人耳 S λ 介质 波对人耳速度 波对人耳速度

第五章相对论 2.观察者静止(u 人=0),波源S 动(u S ≠0)①波源S 朝向人运动: 由图知:波长压缩了即: 00 0 v u u u v u v u u T u u u v S S S ?= ?=?=′=∴λλ耳②波源S 远离人:) ( 0自证耳v u u u v S += 介质 ? ??S u r S ?人耳 T u S T u S ?=′λλu S T λ T u S ?=′λλu S =0的第二波 3.一般情况: cos cos 0v u u u u v S α β m 人±=耳规律:波源动?波长变; 接收器动?接收完整波长数变. 波对人耳速度波对人耳速度 可见:当波源或观察者在二者联线垂直方向(α=β=π/2)上运动时, 无多普勒效应。(见本教材《力学》p237)

第五章相对论 ★相对论多普勒效应 光波传播不需介质, 这与机械波声波完全不同;由光速不变原理,无论是光源向接收器运动,还是接收器向光源波运动,对接收器来说光速都是c 。? ?T u S ?因此,可仿声波源朝向接收器情形如图接收器(不动)→S:光源(运动)→S':光波周期T' =T 0,ν'= ν0光波周期T ,频率ν相对论?, 12 β?′=T T c u S =βλ= λ-u S T=cT-u S T =(c-u S )T 缩 T u S ?=λλ 缩 接收频率为:0 11)(νββ λν?+==?==L T u c c c S 缩 ※光源与接收器在连线上 S u r S ?x 接收器 无介质

狭义相对论几个公式公式推导

狭义相对论几个公式公式推导 省永春县东关中心小学 金江 运动物体的长度缩率公式和不同点上的时刻公式推导 爱因斯坦曾假设:“在真空中,光的传播速度相对任何参照系都一样:不论发光体的运动速度如何,也不论光接受体的运动速度如何,光波相对它们的传播速度都是一样的。”否则,我们观察到遥远的恒星(特别是双星)将会发生十分混乱的现象。 根据这个假设,可以推导出:运动方向上长度的缩率和另参照系看我参照系同时事件的情况的规律。 设在S 系中看到两条等长线段AB 和A ’B ’,它们分别在S 参照系和S ’参照系。S 和S ’相对运动速度为v 光秒/秒。并且在S 参照系看来:AB=A ’B ’=a 光秒。如图所示: 图1 设A 和A ’相遇时,A 和A ’会发出闪光,或B 和B ’相遇时,B 和B ’也会发出闪光。 V 光秒/秒 A (0秒) B (0秒) Q V 光秒/秒 A B Q S 系 秒) S’系 S 系

A (0秒) B (t 2 21c v 秒) 我们在S 系看来,由于AB=A ’B ’,所以A 和A ’与B 和B ’是同时相遇的,所以它们同时发出闪光。光波将在AB 中点Q 相遇,在S ’系中光波也必在相应点Q ’相遇(因为光波对S ’系的传播速度和S ’运动无关)。 由于Q ’点不在A ’B ’的中间,所以在S ’系看来,两次闪光不是同时的。因为B ’发出的光波走的距离B ’Q ’比A ’发出的光波走的距离A ’Q ’ 多。因而是B ’先闪光,A ’后闪光。也就是B 和B ’先相遇,A 和A ’后相遇。A ’和B ’的时刻在S ’系看来是不同时的,而是B ’早,A ’迟。 在S ’系中,由于A 、A ’和B 、B ’不同时相遇,所以S ’系看到的两条段AB 和A ’B ’也不相等。因为B 、B ’先相遇,所以必是A ’B ’>AB 。情况如图2所示: t 秒后 A ( 秒) B (0秒) V 光秒/秒 S’系 S 系 A ’(0 V 光秒/秒 A ’ B ’(t 秒) P ’

15.03狭义相对论的其他结论

人教版《高中物理选修3-4》学案《相对论》 第三节 狭义相对论的其他结论 共1课时 课型:三三四 主备人: 闫保松 审核人: 使用时间 2012年 月 日 第 周 第 个 总第 个 第1页 共2页 第2页 共2页 第十五章 第三节:狭义相对论的其他结论 【本章课标转述】 知道狭义相对论的实验基础、基本原理和主要结论;了解经典时空观与相对论时空观的主要区别,体会相对论的建立对人类认识世界的影响。初步了解广义相对论的几个主要观点以及主要观测数据。关注宇宙学研究的新进展。 教学重点、难点 重点:三个公式 难点:运动速度的相对性变换 【学习目标】 (1)运动速度的相对论变换(2)相对论质量(3)质能方程 【学习过程】 一、相对论的速度变换公式 通过狭义相对论两个原理的学习,知道光对任何物体的运动速度都一样,物体运动的极限速度都不可能越过真空中的光速。在宏观低速运动条件下,伽利略的速度叠加原理简单有效。但对高速运动的物体及微观高速粒子,速度的叠加原理与传统经典观念矛盾,必须要考虑相对论效应。 车对地的速度为v ,人对车的速度为u / 地面上的人看到车上人相对地面的速度为u 2' ' 1c v u v u u + += 如果车上人运动方向与火车运动方向相同,u ’取正值 如果车上人运动方向与火车运动方向相反,u ’取负值 学生通过计算和推导知道相对论的自洽性 注意:相对论速度变换公式,是根据相对论理论中的洛伦兹变换推出的结论,只适用于同一直线运动物体速度的叠加。对于更复杂的速度的叠加, 此公式不适用。 二、相对论质量。 物体的运动速度不能无限增加,那么物体的质量是否随着速度而变化? 严格的论证表明,物体高速(与光速相比)运动时的质量与它静止时的质量之间有下面的关 系:2 01? ? ? ??-= c v m m m 运动质量 > m 0静止质量 微观粒子的速度很高,它的质量明显的大于静止质量.在研究制造回旋加速器时必须考虑相对论效应的影响. 介绍:1988年,中国第一座高能粒子加速器——北京正负电子对撞机首次对撞成功 三、质能方程 引入:物体的能量和质量之间存在密切的联系 让学生知道根据狭义相对论原理及洛伦兹变换,经过高等数学推导,可得到相对论动力学的一个著名结论: 质能方程 2mc E = 质能方程表达了物体的质量和它所具有的能量之间的关系. 0E E E k -= E k 是物体的动能,E 是物体运动时的能量 E 0是物体静止时的能量 在v < < c 时 2 021v m E ≈ 这就是我们过去熟悉的动能表达式,这也能让我们看出,牛顿力学是相对论力学在低速情况下的特例.

狭义相对论的时空变换效应

狭义相对论的时空变换效应 我们经验所能及的唯一空间,是用尺度上二刻度间的距离所规定的长度标准来测量的,唯一时间是用天文现象所规定的时钟来测量的.如果我们的标准也发生了菲茨杰拉德收缩这样的变化,这种变化是我们觉察不到的,因为我们和这些标准一道前进,也发生相同变化,但是,以不同方式运动的观察者却是可以觉察到这种变化的.所以时间与空间,不是绝对的,而只是与观察者相对的.这样,可知由于时间与空间的性质,相对于任何观察者,光总是以所测得的相同的速度进行.长度、质量与时间并非绝对的量.它们真正的物理数值,就是由测量所表示的.它们对双方不一样这一事实说明,它们的意义只能相对于某一观测者而规定. 绝对长度、绝对空间、绝对时间或甚至时间流动的观念都是形而上学的概念,远远超过观测或实验所表示或证明的.相对论摆脱了绝对时间.这些充分表现了狭义相对论引起了时空观 发生重大的变革.狭义相对论揭示了时间和空间的内在联系,并且告诉人们对时空的测量是依赖于参考系的选择的. 中科院朱重远研究员的观点,狭义相对论在理论上很难找到突破口.用美国UAH研究员张先生的话:“如果狭义相对论在数学上、理论上有问题,那狭义相对论当时就不会被世界物理界公认,当时Einstein还是个小人物”.倪光炯说过,“不同时的”光学畸变,抵消了必须“同时”观测的洛仑兹收缩,…………没有绝对的收缩,这才是相对论. 1、从静系到另一个相对于它做匀速移动的坐标系的坐标和时间的变换理论: “尺缩钟慢”是一种几何效应,物体本身是怎样就是怎样的.相对论说的主要是不同坐标系中测量物理量的变换规则.牛顿认为惯性系之间的“变换是相等的”,这只是一个假设.实验证明很多物理量在不同坐标系中,测量结果是不同的.设在“静止的”空间中有两个坐标系,每一个都是由三条从一点发出并且互相垂直的刚性物质直线所组成.设想这两个坐标系的X 轴是叠合在一起的,而它们的 Y 轴和 Z 轴则各自互相平行着②(注:②本文中用大写的拉丁字母 XYZ 和希腊字母ΞHZ 分别表示这两个坐标系 (K系和k系 ) 的轴,而用相应的小写拉丁字母x,y,z 和小写的希腊字母ξ,η,ζ分别表示它们的坐标值一一译者注.)设每一系都备有一根刚性量杆和若干只钟,而且这两根量杆和两坐标系的所有的钟彼此都是完全相同的. 现在对其中一个坐标系 ( k ) 的原点,在朝着另一个静止的坐标系 (K) 的χ增加方向上给一个 ( 恒定 ) 速度v ,设想这个速度也传给了坐标轴、有关的量杆,以及那些钟. 因此,对于静系K 的每一时间 t ,都有动系轴的一定位置同它相对应,由于对称的缘故,

狭义相对论的基本原理

第五章相对论 第一节狭义相对论的基本原理 基础知识 1.下列说法中正确的是( ) A电和磁在以太这种介质中传播 B相对不同的参考系,光的传播速度不同 C.牛顿定律仅在惯性系中才能成立 D.时间会因相对速度的不同而改变 2.爱因斯坦相对论的提出,是物理学思想的一场重大革命,他( ) A.否定了牛顿的力学原理 B.提示了时间、空间并非绝对不变的属性 C.认为时间和空间是绝对不变的 D.承认了“以太”是参与电磁波传播的重要介质 3.爱因斯坦狭义相对论的两个基本假设: (1)爱因斯坦的相对性原理:_____________________________. (2)光速不变原理:_____________________________________. 4.下列哪些说法符合狭义相对论的假设( ) A在不同的惯性系中,一切力学规律都是相同的 B.在不同的惯性系中,一切物理规律都是相同的 C.在不同的惯性系中,真空中的光速都是相同的 D.在不同的惯性系中,真空中的光速都是不同的 5.在一惯性系中观测,两个事件同时不同地,则在其他惯性系中观测,它们( ) A.一定同时 B.可能同时 C.不可能同时,但可能同地 D.不可能同时,也不可能同地 6.假设有一列很长的火车沿平直轨道飞快匀速前进,车厢中央有一个光源发出了一个闪光,闪光照到了车厢的前后壁,根据狭义相对论原理,下列说法中正确的是( ) A地面上的人认为闪光是同时到达两壁的 B车厢里的人认为闪光是同时到达两壁的 C.地面上的人认为闪光先到达前壁 D.车厢里的人认为闪光先到达前壁 能力测试 7.关于牛顿力学的适用范围,下列说法正确的是( ) A.适用于宏观物体 B.适用于微观物体 C.适用于高速运动的物体 D.适用于低速运动的物体 8.下列说法中正确的是( ) A.相对性原理能简单而自然的解释电磁学的问题 B.在真空中,若物体以速度v背离光源运动,则光相对物体的速度为c-v C在真空中,若光源向着观察者以速度v运动,则光相对于观察者的速度为c+v D.迈克耳逊一莫雷实验得出的结果是:不论光源与观察者做怎样的相对运动,光速都是一样的 9.地面上的A、B两个事件同时发生,对于坐在火箭中沿两个事件发生地点连线,从A到B方向飞行的人来说哪个事件先发生( ) A.两个事件同时发生 B.A事件先发生 C.B事件先发生 D.无法判断 10.关于电磁波,下列说法正确的是( ) A.电磁波与机械波一样有衍射、干涉现象,所以它们没有本质的区别 B.在一个与光速方向相对运动速度为u的参考系中,电磁波的传播速度为c+u或c-u C电磁场是独立的实体,不依附在任何载体中 D.伽利略相对性原理包括电磁规律和一切其他物理规律 11.一列火车以速度v相对地面运动,如果地面上的人测得,某光源发出的闪光同时到达车厢的前壁和后壁(如图5-1-1).那么按照火车上人的测量,闪光先到达前壁还是后壁?火车上的人怎样解释自己的测量结果? 12.如图5-1-2所示,在地面上M点,固定一光源,在离光源等距的A、B两点上固定有两个光接收器,今使光源发出一闪光,问 (1)在地面参考系中观察,谁先接收到光信号?

7.5 相对论时空观与牛顿力学的局限性学案

7.5 相对论时空观与牛顿力学的局限性学案 [学科素养] 1.了解相对论时空观,知道时间延缓效应和长度收缩效应. 2.认识牛顿力学的成就,适用范围及局限性. 3.了解科学理论的相对性,体会科学理论是不断发展和完善的. 一、相对论时空观 1.19世纪,英国物理学家麦克斯韦根据电磁场理论预言了电磁波的存在,并证明电磁波的传播速度等于光速c . 2.1887年迈克耳孙—莫雷实验以及其他一些实验表明:在不同的参考系中,光的传播速度都是一样的!这与牛顿力学中不同参考系之间的速度变换关系不符(填“相符”或“不符”). 3.爱因斯坦假设:在不同的惯性参考系中,物理规律的形式都是相同的;真空中的光速在不同的惯性参考系中大小都是相同的. 4.时间延缓效应 (1)如果相对于地面以v 运动的惯性参考系上的人观察到与其一起运动的物体完成某个动作的时间间隔为Δτ,地面上的人观察到该物体在同一地点完成这个动作的时间间隔为Δt ,那么两者之间的关系是Δt =Δτ 1-(v c )2. (2)Δt 与Δτ的关系总有Δt >Δτ,即物理过程的快慢(时间进程)与运动状态有关.(填“有关”或“无关”) 5.长度收缩效应: (1)如果与杆相对静止的人测得杆长是l 0,沿着杆的方向,以v 相对杆运动的人测得杆长是l ,那么两者之间的关系是l =l 01-(v c )2. (2)l 与l 0的关系总有l <l 0,即运动物体的长度(空间距离)跟物体的运动状态有关.(填“无关”或“有关”) 二、牛顿力学的成就与局限性 1.牛顿力学的成就:牛顿力学的基础是牛顿运动定律,万有引力定律的建立与应用更是确立了人们对牛顿力学的尊敬. 2.牛顿力学局限性:牛顿力学的适用范围是低速(填“高速”或“低速”)运动的宏观(填“宏观”或“微观”)物体.

狭义相对论的其他结论学案

狭义相对论的其他结论 【学习目标】 1.了解运动速度的相对论变换,相对论质量 2.理解质能方程,并能进行简单的计算 【自主学习】 一、相对论的速度变换公式 在第一节内容的学习中,遗留一个问题,那就是经典物理中速度叠加原理与光速不变之间的矛盾,显然经典的速度叠加原理在高速情况下是不适用的,下面我们来认识相对论的速度叠加原理 设车对地的速度为v ,人对车的速度为u / 地面上的人看到车上人相对地面的速度为u (说明:1.如果车上人运动方向与火车运动方向相同,u ’取正值 2.如果车上人运动方向与火车运动方向相反,u ’取负值 3.相对论速度变换公式,是根据相对论理论中的洛伦兹变换推出的结 论,只适用于同一直线运动物体速度的叠加。对于更复杂的速度的叠加, 此公式不 适用。) 例题1如图,高速火车对地速度为v ,车上小球相对于车的速度为u ′, 则地上观察者观察到它的速度为u 。下面请大家计算下列三种情况下地 面观察者看到的球速度,并比较u 与u ′+v 以及u 与c 的大小关系 (1)当u ′=2c v =4 3c 时, u = ______,u ′+v =______,可见u <(u ′+v )并且u <c (2)当u ′=c v =c 时, u = ______,u ′+v = ______, (3)当u ′=-c v =2 c 时, u = ______,表示合速度大小仍然为c ,方向与v 相反, 从二、三两个结果可以看出,u ′=c 时,不论v 如何取值,在什么参考系中观察,光速都是c . 二、相对论质量。 物体的运动速度不能无限增加,那么物体的质量是否随着速度而变化? 严格的论证表明,物体高速(与光速相比)运动时的质量与它静止时的质量之间有下面的关系: 20 1??? ??-=c v m m ( m 运动质量,m 0静止质量),微观粒子的速度很高,它的质量明显的大于静止质量. 例题2回旋加速器给带电粒子加速时,不能把粒子的速度无限制地增大,其原因是( ) A .加速器功率有限,不能提供足够大的能量 B .加速器内无法产生磁感强度足够大的磁场 C .加速器内无法产生电场强度足够大的电场 D .速度增大使粒子质量增大,粒子运行的周期与交变电压不再同步,无法再加速 三、质能方程 物体的能量和质量之间存在密切的联系根据狭义相对论原理及洛伦兹变换,经过高等数学推导,可得到相对论动力学的一个著名结论:质能方程2m c E = (质能方程表达了物体的质量和它所具有的能量之间的关系.) 设E k 是物体的动能,E 是物体运动时的能量 E 0是物体静止时的能量,则:0E E E k -= 2''1c v u v u u ++=

相关主题
文本预览
相关文档 最新文档