当前位置:文档之家› 狭义相对论公式及证明

狭义相对论公式及证明

狭义相对论公式及证明
狭义相对论公式及证明

狭义相对论公式及证明

单位符号单位符号

坐标: m (x, y, z) 力: N F(f)

时间: s t(T) 质量:kg m(M)

位移: m r 动量:kg*m/s p(P)

速度: m/s v(u) 能量: J E

加速度: m/s^2 a 冲量:N*s I

长度: m l(L) 动能:J E k

路程: m s(S) 势能:J E p

角速度: rad/s ω力矩:N*m M

角加速度:rad/s^2α功率:W P

一:

牛顿力学(预备知识)

(一):质点运动学基本公式:(1)v=dr/dt, r=r0+∫rdt

(2)a=dv/dt, v=v0+∫adt

(注:两式中左式为微分形式,右式为积分形式)

当v不变时,(1)表示匀速直线运动。

当a不变时,(2)表示匀变速直线运动。

只要知道质点的运动方程r=r(t),它的一切运动规律就可知了。

(二):质点动力学:

(1)牛一:不受力的物体做匀速直线运动。

(2)牛二:物体加速度与合外力成正比与质量成反比。

F=ma=mdv/dt=dp/dt

(3)牛三:作用力与反作与力等大反向作用在同一直线上。

(4)万有引力:两质点间作用力与质量乘积成正比,与距离平方成反比。

F=GMm/r2,G=6.67259*10-11m3/(kg*s2)

动量定理:I=∫Fdt=p2-p1(合外力的冲量等于动量的变化)

动量守恒:合外力为零时,系统动量保持不变。

动能定理:W=∫Fds=E k2-E k1(合外力的功等于动能的变化)

机械能守恒:只有重力做功时,E k1+E p1=E k2+E p2

(注:牛顿力学的核心是牛二:F=ma,它是运动学与动力学的桥梁,我们的目的是知道物体的运动规律,即求解运动方程r=r(t),若知受力情况,根据牛二可得a,再根据运动学基本公式求之。同样,若知运动方程r=r(t),可根据运动学基本公式求a,再由牛二可知物体的受力情况。)

二:

狭义相对论力学:(注:γ=1/sqr(1-u2/c2),β=u/c, u为惯性系速度。)

(一)基本原理:(1)相对性原理:所有惯性系都是等价的。

(2)光速不变原理:真空中的光速是与惯性系无关的常数。

(此处先给出公式再给出证明)

(二)洛仑兹坐标变换:

X=γ(x-ut)

Y=y

Z=z

(三)速度变换:

V(x)=(v(x)-u)/(1-v(x)u/c2)

V(y)=v(y)/(γ(1-v(x)u/c2))

V(z)=v(z)/(γ(1-v(x)u/c2))

(四)尺缩效应:△L=△l/γ或dL=dl/γ

(五)钟慢效应:△t=γ△τ或dt=dτ/γ

(六)光的多普勒效应:ν(a)=sqr((1-β)/(1+β))ν(b)

(光源与探测器在一条直线上运动。)

(七)动量表达式:P=Mv=γmv,即M=γm.

(八)相对论力学基本方程:F=dP/dt

(九)质能方程:E=Mc2

(十)能量动量关系:E2=E02+P2c2

(注:在此用两种方法证明,一种在三维空间内进行,一种在四维时空中证明,实际上他们是等价的。)

三:

三维证明:

(一)由实验总结出的公理,无法证明。

(二)洛仑兹变换:

设(x, y, z, t)所在坐标系(A系)静止,(X,Y, Z,T)所在坐标系(B系)速度为u,且沿x轴正向。在A系原点处,x=0,B系中A原点的坐标为X=-uT,即X+uT=0。可令x=k(X+uT),(1).又因在惯性系内的各点位置是等价的,因此k是与u有关的常数(广义相对论中,由于时空弯曲,各点不再等价,因此k不再是常数。)同理,B系中的原点处有X=K(x-ut),由相对性原理知,两个惯性系等价,除速度反向外,两式应取相同的形式,即k=K.故有X=k(x-ut),(2).对于y, z, Y, Z皆与速度无关,可得Y=y,(3).Z=z(4).将(2)代入(1)可得:x=k2(x-ut)+kuT,即T=kt+((1-k2)/(ku))x,(5).(1)(2)(3)(4)(5)满足相对性原理,要确定k需用光速不变原理。当两系的原点重合时,由重合点发出一光信号,则对两系分别有x=ct, X=cT.代入(1)(2)式得:ct=kT(c+u), cT=kt(c-u).两式相乘消去t和T得:k=1/sqr(1-u2/c2)=γ.将γ反代入(2)(5)式得坐标变换:

X=γ(x-ut)

Y=y

Z=z

T=γ(t-ux/c2)

(三)速度变换:

V(x)=dX/dT=γ(dx-ut)/(γ(dt-udx/c2))

=(dx/dt-u)/(1-(dx/dt)u/c2)

=(v(x)-u)/(1-v(x)u/c2)

同理可得V(y),V(z)的表达式。

(四)尺缩效应:

B系中有一与x轴平行长l的细杆,则由X=γ(x-ut)得:△X=γ(△x-u△t),又△t=0(要同时测量两端的坐标),则△X=γ△x,即:△l=γ△L,△L=△l/γ

(五)钟慢效应:

由坐标变换的逆变换可知,t=γ(T+Xu/c2),故△t=γ(△T+△Xu/c2),又△X=0,(要在同地测量),故

(注:与坐标系相对静止的物体的长度、质量和时间间隔称固有长度、静止质量和固有时,是不随坐标变换而变的客观量。)

(六)光的多普勒效应:(注:声音的多普勒效应是:ν(a)=((u+v1)/(u-v2))ν(b).)

B系原点处一光源发出光信号,A系原点有一探测器,两系中分别有两个钟,当两系原点重合时,校准时钟开始计时。B系中光源频率为ν(b),波数为N,B系的钟测得的时间是△t(b),由钟慢效应可知,A△系中的钟测得的时间为△t(a)=γ△t(b),(1).探测器开始接收时刻为t1+x/c,最终时刻为t2+(x+v△t(a))/c,则△t(N)=(1+β)△t(a),(2).相对运动不影响光信号的波数,故光源发出的波数与探测器接收的波数相同,即ν(b)△t(b)=ν(a)△t(N),(3).由以上三式可得:ν(a)=sqr((1-β)/(1+β))ν(b).

(七)动量表达式:(注:dt=γdτ,此时,γ=1/sqr(1-v2/c2)因为对于动力学质点可选自身为参考系,β=v/c)

牛二在伽利略变换下,保持形势不变,即无论在那个惯性系内,牛二都成立,但在洛伦兹变换下,原本简洁的形式变得乱七八糟,因此有必要对牛顿定律进行修正,要求是在坐标变换下仍保持原有的简洁形式。

牛顿力学中,v=dr/dt, r在坐标变换下形式不变,(旧坐标系中为(x, y, z)新坐标系中为(X,Y,Z))只要将分母替换为一个不变量(当然非固有时dτ莫属)就可以修正速度的概念了。即令V=dr/dτ=γdr/dt=γv为相对论速度。牛顿动量为p=mv, 将v替换为V,可修正动量,即p=mV=γmv。定义M=γm(相对论质量)则p=Mv.这就是相对论力学的基本量:相对论动量。(注:我们一般不用相对论速度而是用牛顿速度来参与计算)

(八)相对论力学基本方程:

由相对论动量表达式可知:F=dp/dt,这是力的定义式,虽与牛二的形式完全一样,但内涵不一样。(相对论中质量是变量)

(九)质能方程:

Ek=∫Fdr=∫(dp/dt)*dr=∫dp*dr/dt=∫vdp=pv-∫pdv

=Mv2-∫mv/sqr(1-v2/c2)dv=Mv2+mc2*sqr(1-v2/c2)-mc2

=Mv2+Mc2(1-v2/c2)-mc2

=Mc2-mc2

即E=Mc2=Ek+mc2

(十)能量动量关系:

E=Mc2,p=Mv, γ=1/sqr(1-v2/c2),E0=mc2,可得:E2=E02+p2c2

四:

四维证明:

(一)公理,无法证明。

(二)坐标变换:由光速不变原理:dl=cdt,即dx2+dy2+dz2+(icdt)2=0在任意惯性系内都成立。定义dS为四维间隔,dS2=dx2+dy2+dz2+(icdt)2,(1).则对光信号dS恒等于0,而对于任意两时空点的dS一般不为0。dS2>0称类空间隔,dS2<0称类时间隔,dS2=0称类光间隔。相对论原理要求(1)式在坐标变换下形式不变,因此(1)式中存在与坐标变换无关的不变量,dS2dS2光速不变原理要求光信号在坐标变换下dS是不变量。因此在两个原理的共同制约下,可得出一个重要的结论:dS是坐标变换下的不变量。

由数学的旋转变换公式有:(保持y, z轴不动,旋转x和ict轴)

X=xcosφ+(ict)sinφ

icT=-xsinφ+(ict)cosφ

Y=y

Z=z

当X=0时,x=ut,则0=utcosφ+ictsinφ

得:tanφ=iu/c,则cosφ=γ,sinφ=iuγ/c反代入上式得:

X=γ(x-ut)

Y=y

Z=z

T=γ(t-ux/c2)

(三)(四)(五)(六)(八)(十)略。

(七)动量表达式及四维矢量:(注:γ=1/sqr(1-v2/c2),下式中dt=γdτ)

令r=(x, y, z, ict)则将v=dr/dt中的dt替换为dτ,V=dr/dτ称四维速度。

则V=(γv,icγ)γv为三维分量,v为三维速度,icγ为第四维分量。(以下同理)

四维动量:P=mV=(γmv,icγm)=(Mv, icM)

四维力:f=dP/dτ=γdP/dt=(γF,γicdM/dt)(F为三维力)

四维加速度:ω=/dτ=(γ4a,γ4iva/c)

则f=mdV/dτ=mω

(九)质能方程:

f V=mωV=m(γ5va+i2γ5va)=0

故四维力与四维速度永远“垂直”,(类似于洛伦兹磁场力)

由fV=0得:γ^2mFv+γic(dM/dt)(icγm)=0(F, v为三维矢量,且Fv=dE k/dt(功率表达式))

故dE k/dt=c2dM/dt即∫dE k=c^2∫dM,即:E k=Mc2-mc2

故E=Mc2=E k+mc2

关于第六条:

通过速度变换和质能方程(E=Mc2)可以导出两个坐标系间的能量变换公式(证明很简单,但很繁琐,就不写了):E'=γE(1-u*v/c2)

(注:u、v都是矢量,u为参考系速度,v为光源速度,*表示点乘,也可以写做:

E'=γE(1-uv(x)/c2))

上式对任意粒子都成立,对于光子:E=hν代入得:

ν'=γν(1-ucosθ/c) (普遍公式)

对于θ=0可得:ν'=νsqr((1-β)/(1+β)) (特例)

利用速度变换和动量关系(p=Mv)一样可导出两坐标系之间的动量变换公式:

p(x)'=γp(x)(1-u/v(x))

p(y)'=p(y)

p(z)'=p(z)

动量变换与能量变换不仅仅适用于光子,对所有的粒子都是适用的。

狭义相对论的基本原理

基础知识 1.下列说法中正确的是( ) A电和磁在以太这种介质中传播 B相对不同的参考系,光的传播速度不同 C.牛顿定律仅在惯性系中才能成立 D.时间会因相对速度的不同而改变 2.爱因斯坦相对论的提出,是物理学思想的一场重大革命,他( ) A.否定了xx的力学原理 B.提示了时间、空间并非绝对不变的属性 C.认为时间和空间是绝对不变的 D.承认了“以太”是参与电磁波传播的重要介质 3.爱因斯坦狭义相对论的两个基本假设: (1)爱因斯坦的相对性原理: _______________. (2)光速不变原理: ___________________. 4.下列哪些说法符合狭义相对论的假设( ) A在不同的惯性系中,一切力学规律都是相同的 B.在不同的惯性系中,一切物理规律都是相同的 C.在不同的惯性系中,真空中的光速都是相同的

D.在不同的惯性系中,真空中的光速都是不同的 5.在一惯性系中观测,两个事件同时不同地,则在其他惯性系中观测,它们( ) A.一定同时 B.可能同时 C.不可能同时,但可能同地 D.不可能同时,也不可能同地 6.假设有一列很长的火车沿平直轨道飞快匀速前进,车厢中央有一个光源发出了一个闪光,闪光照到了车厢的前后壁,根据狭义相对论原理,下列说法中正确的是( ) A地面上的人认为闪光是同时到达两壁的 B车厢里的人认为闪光是同时到达两壁的 C.地面上的人认为闪光先到达前壁 D.车厢里的人认为闪光先到达前壁 能力测试 7.关于牛顿力学的适用范围,下列说法正确的是( )

A.适用于宏观物体 B.适用于微观物体 C.适用于高速运动的物体 D.适用于低速运动的物体 8.下列说法中正确的是( ) A.相对性原理能简单而自然的解释电磁学的问题 B.在真空中,若物体以速度v背离光源运动,则光相对物体的速度为c-v C在真空中,若光源向着观察者以速度v运动,则光相对于观察者的速度为c+v D.迈xx一xx实验得出的结果是: 不论光源与观察者做怎样的相对运动,光速都是一样的 9.地面上的 A、B两个事件同时发生,对于坐在火箭中沿两个事件发生地点连线,从A 到B方向飞行的人来说哪个事件先发生( ) A.两个事件同时发生 B.A事件先发生 C.B事件先发生 D.无法判断 10.关于电磁波,下列说法正确的是( )

狭义相对论_完整版_

《大学物理》作业 No.6 狭义相对论 班级 ________ 学号 _________ 姓名 _________ 成绩 _______ 一、选择题 1.按照狭义相对论的时空观,判断下列叙述中正确的是: [ ] (A ) 在一个惯性系中,两个同时的事件,在另一个惯性系中一定是同时事件 (B ) 在一个惯性系中,两个同时的事件,在另一个惯性系中一定是不同时事件 (C ) 在一个惯性系中,两个同时同地的事件,在另一个惯性系中一定是同时同地事件 (D )在一个惯性系中,两个同时不同地的事件,在另一个惯性系中只可能同时不同地 (E )在一个惯性系中,两个同时不同地的事件,在另一个惯性系中只可能同地不同时 2.在狭义相对论中,下列说法正确的是 [ ] ① 一切运动物体相对于观测者的速度都不能大于真空中的光速 ② 长度、质量、时间的测量结果都是随物体与观测者的相对运动状态而改变的 ③ 在一个相对静止的参考系中测得两事件的时间间隔是固有时 ④ 惯性系中的观测者观测一只与他做相对匀速直线运动的时钟时,会发现这只钟比与他静止的相同的钟走得慢些。 (A )① ③ ④(B )① ② ④(C )① ② ③(D )② ③ ④ 3. 在某地发生两件事,静止位于该地的甲测得时间间隔为4 s ,若相对于甲作匀速直线 运动的乙测得时间间隔为5 s ,则乙相对于甲的运动速度是(c 表示真空中光速) [ ] (A) (4/5) c . (B) (3/5) c . (C) (2/5) c . (D) (1/5) c . 4. 有一直尺固定在K ′系中,它与Ox ′轴的夹角θ′=45°,如果K ′系以匀速度沿Ox 正方向相对于K 系运动,K 系中观察者测得该尺与Ox 轴的夹角 (A) 大于45° (B) 小于45° (C) 等于45° (D) 无法确定 [ ] *5. 一火箭的固有长度为L ,相对于地面作匀速直线运动的速度为v 1,火箭上有一个人从火箭的后端向火箭前端上的一个靶子发射一颗相对于火箭的速度为v 2的子弹. 在火箭参考系中测得子弹从射出到击中靶的时间间隔是: [ B ] 在地面参考系中测得子弹从射出到击中靶的时间间隔是:(c 表示真空中光速) [ C ] (A) 21v v +L . (B) 2v L (C) 21212)/v (1c v c L v L -+ . (D) 222) /v (1v c L - .

狭义相对论推导详细计算过程

狭义相对论 狭义相对论基本原理: 1. 基本物理定律在所有惯性系中都保持相同形式的数学表达式,因此一切惯性系都是等价 的。 2. 在一切惯性系中,光在真空中的传播速率都等于c ,与光源的运动状态无关。 假设S 系和S ’系是两个相对作匀速运动的惯性坐标系,规定S ’系沿S 系的x 轴正方向以速度v 相对于S 系作匀速直线运动,x ’、y ’、z ’轴分别与x 、y 、z 轴平行,两惯性系原点重合时,原点处时钟都指示零点。 Ⅰ洛伦兹变换 现假设,x ’=k(x-vt)①,k 是比例系数,可保证变化是线性的,相应地,S ’系的坐标变换为S 系,有x=k(x ’+vt) ②,另有y ’=y ,z ’=z 。将①代入②: x=k[k(x-vt)+vt ’] x=k^2*(x-vt)+kvt ’ t ’=kt+(1-k^2)x/kv 两原点重合时,有t=t ’=0,此时在共同原点发射一光脉冲,在S 系,x=ct ,在S ’系,x ’=ct ’,将两式代入①和②: ct ’=k(c-v)t 得 ct ’=kct-kvt 即t ’=(kct-kvt)/c ct=k(c+v)t ’ 得 ct=kct ’+kvt ’ 两式联立消去t 和t ’ ct=k(kct-kvt)+kv(kct-kvt)/c ct=k^2ct-k^2vt+k^2vt-k^2v^2t/c c^2=k^2c^2-k^2v^2 k= 2 2 /11c v - 将k 代入各式即为洛伦兹变换: x ’=2 2 /1c v vt x -- y ’=y z ’=z t ’= 2 2 2/1/c v c vx t -- 或有 x=k(x ’+vt ’) x ’=k(x-vt) =k(1+v/c)x ’ =k(1-v/c)x 两式联立, x ’=k(1-v/c)k(1+v/c)x ’ k= 2 2 /11c v - Ⅱ同时的相对性

狭义相对论尺缩效应的数学推导

狭义相对论之尺缩效应高中数学推导 1首先依据光速不变原理,假设垂直光子钟,在相对于地面以V 速度匀速运行的火车上相对于火车垂直上下运动,推导出钟慢效应公式 22 1C V t T -= 此处T 表示相对运动坐标系观察的时间(数值大) t 表示在相对运动物体静止的时钟观察到的时间(数值小)。 2 假设在该火车上有人自车尾部使用激光测距朝列车运行方向照射测量火车长度,则火车上 人测量的距离 2ct l = ,而地面上的人观察到的测量过程为光子在某一时刻自火车后面追击火车头,飞向前方,列车运行t1时刻后,追上列车头反射,间隔t2时间长度与相向而行的火车尾部的观测仪器相遇。 T t t ct vt L ct vt L =++==+212 21 1 L cT t t 221≠> 由此必须使用时间这唯一能沟通两个参照系的量来测算距离 22 212112,2//c v t T c l t ct l V C L V C L t t T V C L t V C L t -===++-= +=+=-=

22 212112,2//c v t T c l t ct l V C L V C L t t T V C L t V C L t -===++-=+=+=-= 最后三个公式可形成等式 2222221212c v c l c v t V C LC V C L V C L T -=-=-=++-= 22 2222222222222222 22221, 1,11,1, 1,1c v l L l c v L c v l C V L c v l C V C L c v l V C LC V v c C c v c l V C LC -==--=--=--=-==-=- 由此可知 运动物体在空间中所占有的的长度 在运动方向上会减少,数值为静止坐标系下

狭义相对论公式及证明

狭义相对论公式及证明 单位符号单位符号 坐标: m (x, y, z) 力: N F(f) 时间: s t(T) 质量:kg m(M) 位移: m r 动量:kg*m/s p(P) 速度: m/s v(u) 能量: J E 加速度: m/s^2 a 冲量:N*s I 长度: m l(L) 动能:J E k 路程: m s(S) 势能:J E p 角速度: rad/s ω力矩:N*m M 角加速度:rad/s^2α功率:W P 一: 牛顿力学(预备知识) (一):质点运动学基本公式:(1)v=dr/dt, r=r0+∫rdt (2)a=dv/dt, v=v0+∫adt (注:两式中左式为微分形式,右式为积分形式) 当v不变时,(1)表示匀速直线运动。 当a不变时,(2)表示匀变速直线运动。 只要知道质点的运动方程r=r(t),它的一切运动规律就可知了。 (二):质点动力学: (1)牛一:不受力的物体做匀速直线运动。 (2)牛二:物体加速度与合外力成正比与质量成反比。 F=ma=mdv/dt=dp/dt (3)牛三:作用力与反作与力等大反向作用在同一直线上。 (4)万有引力:两质点间作用力与质量乘积成正比,与距离平方成反比。 F=GMm/r2,G=6.67259*10-11m3/(kg*s2) 动量定理:I=∫Fdt=p2-p1(合外力的冲量等于动量的变化) 动量守恒:合外力为零时,系统动量保持不变。 动能定理:W=∫Fds=E k2-E k1(合外力的功等于动能的变化) 机械能守恒:只有重力做功时,E k1+E p1=E k2+E p2 (注:牛顿力学的核心是牛二:F=ma,它是运动学与动力学的桥梁,我们的目的是知道物体的运动规律,即求解运动方程r=r(t),若知受力情况,根据牛二可得a,再根据运动学基本公式求之。同样,若知运动方程r=r(t),可根据运动学基本公式求a,再由牛二可知物体的受力情况。) 二: 狭义相对论力学:(注:γ=1/sqr(1-u2/c2),β=u/c, u为惯性系速度。) (一)基本原理:(1)相对性原理:所有惯性系都是等价的。 (2)光速不变原理:真空中的光速是与惯性系无关的常数。 (此处先给出公式再给出证明) (二)洛仑兹坐标变换: X=γ(x-ut) Y=y Z=z

(完整版)1-7两个重要极限练习题

1-7 两个重要极限练习题 教学过程: 引入:考察极限x x x sin lim 0 → 当x 取正值趋近于0时,x x sin →1,即+→0lim x x x sin =1; 当x 取负值趋近于0时,-x →0, -x >0, sin(-x )>0.于是 ) () sin(lim sin lim 00x x x x x x --=+ -→-→. 综上所述,得 一.1sin lim 0=→x x x . 1sin lim 0=→x x x 的特点: (1)它是“00”型,即若形式地应用商求极限的法则,得到的结果是0 ; (2)在分式中同时出现三角函数和x 的幂. 推广 如果a x →lim ?(x )=0,(a 可以是有限数x 0, ±∞或∞), 则 a x →lim ()[]()x x ??sin =()()[]() x x x ???sin lim 0→=1. 例1 求x x x tan lim 0→. 解 x x x tan lim 0→=111cos 1 lim sin lim cos 1sin lim cos sin lim 0000=?=?=?=→→→→x x x x x x x x x x x x x . 例2 求x x x 3sin lim 0→. 解 x x x 3sin lim 0→=3sin lim 3)3(33sin 3lim 00==→→t t t x x x t x 令. 例3 求20cos 1lim x x x -→. 解 2 0cos 1lim x x x -→=2 12 2sin 22sin 21lim )2(22sin lim 2sin 2lim 02 202 2 0=??==→→→x x x x x x x x x x x . 例4 求x x x arcsin lim 0→.

狭义相对论几个公式公式推导

狭义相对论几个公式公式推导 省永春县东关中心小学 金江 运动物体的长度缩率公式和不同点上的时刻公式推导 爱因斯坦曾假设:“在真空中,光的传播速度相对任何参照系都一样:不论发光体的运动速度如何,也不论光接受体的运动速度如何,光波相对它们的传播速度都是一样的。”否则,我们观察到遥远的恒星(特别是双星)将会发生十分混乱的现象。 根据这个假设,可以推导出:运动方向上长度的缩率和另参照系看我参照系同时事件的情况的规律。 设在S 系中看到两条等长线段AB 和A ’B ’,它们分别在S 参照系和S ’参照系。S 和S ’相对运动速度为v 光秒/秒。并且在S 参照系看来:AB=A ’B ’=a 光秒。如图所示: 图1 设A 和A ’相遇时,A 和A ’会发出闪光,或B 和B ’相遇时,B 和B ’也会发出闪光。 V 光秒/秒 A (0秒) B (0秒) Q V 光秒/秒 A B Q S 系 秒) S’系 S 系

A (0秒) B (t 2 21c v 秒) 我们在S 系看来,由于AB=A ’B ’,所以A 和A ’与B 和B ’是同时相遇的,所以它们同时发出闪光。光波将在AB 中点Q 相遇,在S ’系中光波也必在相应点Q ’相遇(因为光波对S ’系的传播速度和S ’运动无关)。 由于Q ’点不在A ’B ’的中间,所以在S ’系看来,两次闪光不是同时的。因为B ’发出的光波走的距离B ’Q ’比A ’发出的光波走的距离A ’Q ’ 多。因而是B ’先闪光,A ’后闪光。也就是B 和B ’先相遇,A 和A ’后相遇。A ’和B ’的时刻在S ’系看来是不同时的,而是B ’早,A ’迟。 在S ’系中,由于A 、A ’和B 、B ’不同时相遇,所以S ’系看到的两条段AB 和A ’B ’也不相等。因为B 、B ’先相遇,所以必是A ’B ’>AB 。情况如图2所示: t 秒后 A ( 秒) B (0秒) V 光秒/秒 S’系 S 系 A ’(0 V 光秒/秒 A ’ B ’(t 秒) P ’

两个重要极限(可编辑修改word版)

2.5.1 两个重要极限(第一课时) ——新浪微博:月牙 LHZ 一、教学目标 1. 复习该章的重点内容。 2. 理解重要极限公式。 3. 运用重要极限公式求解函数的极限。 二、教学重点和难点 重点:公式的熟记与理解。难点:多种变形的应用。 三、教学过程 1、复习导入 (1)极限存在性定理: lim f (x ) = A ? x → x lim x → x 0+ f (x ) = lim x → x 0- f (x ) = A ( 2) 无 穷 大 量 与 无 穷 小 量 互 为 倒 数 , 若 f (x ) → ∞(x → x 0), 则 1 f (x ) → (0 x → x 0) (3) 极限的四则运算: lim [ f (x ) ± g (x )] = lim f (x ) ± lim g (x ) lim [ f (x ) ? g (x )] = lim f (x ) ? lim g (x ) lim f (x ) = lim f (x ) (lim g (x ) ≠ 0) g (x ) lim g (x ) (4) lim [cf (x )] = c lim f (x ) (加法推论) (5) lim [ f (x )]k = [lim f (x )]k (乘法推论) (6) lim [无穷小量? 有界变量] = 0 (无穷小量的性质) eg: lim sin x = lim ? 1 ? sin x ? = 0 x →∞ x ? x →∞? x ?

lim ? = lim ? ? 那么, lim sin x = ?呢,这是我们本节课要学的重要极限 x →0 x 2、掌握重要极限公式 lim sin x = 1 x →0 x 公式的特征:(1) 0 型极限; (2) 分子是正弦函数; (3) sin 后面的变量与分母的变量相同。 3、典型例题 【例 1】 求 lim sin x (k ≠ 0) x →0 kx 解: lim sin x = 1 lim sin x = 1 ?1 = 1 x →0 kx k x →0 x k k 【例 2】 求 lim tan x x →0 x 解: lim tan x = ? sin x 1 ? = lim sin x ? lim 1 = 1?1 = 1 x →0 x x →0 ? x cos x ? x →0 x x →0 cos x (推导公式: lim tan x = 1 ) x →0 x 【例 3】 求 lim sin 5x x →0 x 解: lim sin 5x = lim 5 ? sin 5x = 5 ? lim sin 5x = 5 ?1 = 5 x →0 x x →0 5x x →0 5x 4、强化练习 (1) lim sin x (2) lim sin kx (k ≠ 0)(3) lim sin 5x (4) lim tan 2x x →0 3x x →0 x x →0 3x x →0 x 解:(1) lim sin x = 1 lim sin x = 1 ?1 = 1 x →0 3x 3 x →0 x 3 3 (2) lim sin kx = lim k ? sin kx = k ? lim sin kx = k ?1 = k x →0 x x →0 kx x →0 kx (3) lim sin 5x = ? sin 5x 5 ? lim ? 5 ? l im sin 5x = 5 ?1 = 5 x →0 3x x →0 ? 5x 3 ? 3 x →0 5x 3 3 (4) lim tan 2x = ? sin 2x 1 ? = 2 ? lim sin 2x ? lim 1 = 2 ?1?1 = 1 x →0 x x →0 ? x cos 2x ? x →0 2x x →0 cos 2x 四、小结:

解释相对论

数学仅仅涉及概念间的相互关系,而不考虑它们与经验之间的关系。物理学也涉及到数学概念,但是,只有当清楚地确定了它们与经验对象的关系之后,这些概念才获得物理内涵。这一点在运动、空间、时间概念上表现得尤为明显。 相对论正是建立在对以上这三个概念前后一贯的解释基础之上。“相对论”这个名称是与如下事实相关的,即:从可能的经验观点来看,运动总是表现为一个物体对于另一个物体的相对运动(比如汽车相对于地面的运动,地球相对于太阳和恒星的运动)。运动绝不会作为“相对于空间的运动”——或者,像有人所表述的——“绝对运动”而被加以观察。“相对性原理”在其最广泛的意义上为如下一句论断所蕴含:所有的物理现象都有这样一个特点,它们未给“绝对运动”概念的引进提供任何依据;或较为简洁却不怎么精确的表述:不存在绝对运动。 从这样一个否定的论断中,我们似乎看不到什么洞见。但事实上,它却是对(可以想象的)自然规律的一个严格限制。在这种意义上,相对论与热力学有着某种类似之处。后者也是基于“不存在永动机”这一否定性论断之上。 相对论的发展历经了“狭义相对论”和“广义相对论”两个阶段。后者假定了前者作为一种极限情形的有效性,它是前者的连贯一致的延续。 A.狭义相对论 经典力学中对空间和时间的物理解释 从物理的观点来看,几何学是一些定律的总和,由这些定律能把相互静止的刚体置于彼此相对的位置上(比如,一个三角形由三条端点永远连接的杆组成)。人们设定用这种解释,欧几里得定律是有效的。在这种解释中,“空间”原则上是一个无限的刚体(或框架),其他的物体是与之相关联的(参照系)。解析几何(笛卡尔)用三个相互正交的刚性杆作为参照体表现空间,在这些刚性杆上通过垂直投影这一熟悉的办法(利用刚体的单位尺度),便测得空间点的“坐标”(x,y,z)。 物理学研究空间和时间中的“事件”。每一个事件不仅有自己的空间坐标x,y,z,还有一个时间值t。后者被认为可利用一个其空间大小可以忽略(作理想周期循环)的钟来测得,这个钟C被看作在坐标系中一点,例如在坐标原点(x=y=z=0)处是静止的,在空间点P(x,y,z)上发生的事件的时刻便被规定为与事件同时的钟C所显示的时刻。在这里,假定“同时”的概念无需专门的定义就有物理上的意义。这种精确性的缺乏似乎是无害的,只因光(其速度在我们日常经验看来几乎是无限的)使得空间上分开的事件的同时性看起来能被立即加以确定。 通过利用光信号来从物理上定义同时性,狭义相对论消除了这个精确性的缺乏。在P点发生事件的时间t就是从该事件发出的光信号到达时钟C时从C上读的时间。考虑到光信号通过这一距离所需事件,对这一时刻进行了修正。在做这种修正时,(假定)光速为常数。 这个定义把空间上分开的两个事件的同时性概念归化为在同一地点发生的两个事件(即光信

狭义相对论的基本原理

第五章相对论 第一节狭义相对论的基本原理 基础知识 1.下列说法中正确的是( ) A电和磁在以太这种介质中传播 B相对不同的参考系,光的传播速度不同 C.牛顿定律仅在惯性系中才能成立 D.时间会因相对速度的不同而改变 2.爱因斯坦相对论的提出,是物理学思想的一场重大革命,他( ) A.否定了牛顿的力学原理 B.提示了时间、空间并非绝对不变的属性 C.认为时间和空间是绝对不变的 D.承认了“以太”是参与电磁波传播的重要介质 3.爱因斯坦狭义相对论的两个基本假设: (1)爱因斯坦的相对性原理:_____________________________. (2)光速不变原理:_____________________________________. 4.下列哪些说法符合狭义相对论的假设( ) A在不同的惯性系中,一切力学规律都是相同的 B.在不同的惯性系中,一切物理规律都是相同的 C.在不同的惯性系中,真空中的光速都是相同的 D.在不同的惯性系中,真空中的光速都是不同的 5.在一惯性系中观测,两个事件同时不同地,则在其他惯性系中观测,它们( ) A.一定同时 B.可能同时 C.不可能同时,但可能同地 D.不可能同时,也不可能同地 6.假设有一列很长的火车沿平直轨道飞快匀速前进,车厢中央有一个光源发出了一个闪光,闪光照到了车厢的前后壁,根据狭义相对论原理,下列说法中正确的是( ) A地面上的人认为闪光是同时到达两壁的 B车厢里的人认为闪光是同时到达两壁的 C.地面上的人认为闪光先到达前壁 D.车厢里的人认为闪光先到达前壁 能力测试 7.关于牛顿力学的适用范围,下列说法正确的是( ) A.适用于宏观物体 B.适用于微观物体 C.适用于高速运动的物体 D.适用于低速运动的物体 8.下列说法中正确的是( ) A.相对性原理能简单而自然的解释电磁学的问题 B.在真空中,若物体以速度v背离光源运动,则光相对物体的速度为c-v C在真空中,若光源向着观察者以速度v运动,则光相对于观察者的速度为c+v D.迈克耳逊一莫雷实验得出的结果是:不论光源与观察者做怎样的相对运动,光速都是一样的 9.地面上的A、B两个事件同时发生,对于坐在火箭中沿两个事件发生地点连线,从A到B方向飞行的人来说哪个事件先发生( ) A.两个事件同时发生 B.A事件先发生 C.B事件先发生 D.无法判断 10.关于电磁波,下列说法正确的是( ) A.电磁波与机械波一样有衍射、干涉现象,所以它们没有本质的区别 B.在一个与光速方向相对运动速度为u的参考系中,电磁波的传播速度为c+u或c-u C电磁场是独立的实体,不依附在任何载体中 D.伽利略相对性原理包括电磁规律和一切其他物理规律 11.一列火车以速度v相对地面运动,如果地面上的人测得,某光源发出的闪光同时到达车厢的前壁和后壁(如图5-1-1).那么按照火车上人的测量,闪光先到达前壁还是后壁?火车上的人怎样解释自己的测量结果? 12.如图5-1-2所示,在地面上M点,固定一光源,在离光源等距的A、B两点上固定有两个光接收器,今使光源发出一闪光,问 (1)在地面参考系中观察,谁先接收到光信号?

《狭义相对论》

3狭义相对论 3.1狭义相对论基本假设 1. 有下列几种说法: (1) 所有惯性系对物理基本规律都是等价的. (2) 在真空中,光的速度与光的频率、光源的运动状态无关. (3)在任何惯性系中,光在真空中沿任何方向的传播速率都相同. 若问其中哪些说法是正确的, 答案是 (A) 只有(1)、(2)是正确的. (B) 只有(1)、(3)是正确的. (C) 只有(2)、(3)是正确的. (D) 三种说法都是正确的. 答案:(D) 参考解答: 光速不变原理和相对性原理是爱因斯坦在创立狭义相对论时提出的两大基本假设。光速不变原理:在真空中的任何惯性参考系上,光沿任意方向的传播速度都是C;相对性原理:所有物理规律在所有不同惯性参考系中的形式都相同。 所有选择,均给出参考解答,进入下一题。 3.2狭义相对论时空观 1. 在狭义相对论中,下列说法中哪些是正确的? (1) 一切运动物体相对于观察者的速度都不能大于真空中的光速. (2) 质量、长度、时间的测量结果都是随物体与观察者的相对运动状态而改变的. (3) 在一惯性系中发生于同一时刻,不同地点的两个事件在其他一切惯性系中也是同时发生的. (4)惯性系中的观察者观察一个与他作匀速相对运动的时钟时,会看到这时钟比与他相对静止的相同的时钟走得慢些. (A) (1),(3),(4).(B) (1),(2),(4). (C) (1),(2),(3).(D) (2),(3),(4). 答案:(B) 参考解答: 在狭义相对论中,根据洛仑兹变换物体运动速度有上限,即不能大于真空中的光速;质量、长度、时间都是相对的,其测量结果取决于物体与观察者的相对运动状态,有动尺收缩和运钟膨胀的相对论效应。 对于所有选择,均给出以下思考题。 1.1相对论的时间和空间概念与牛顿力学的有何不同?有何联系? 参考解答: 牛顿力学时空观的基本观点是,长度和时间的测量与运动(或说与参考系)无关;而相对论时空观的基本观点是,长度和时间的测量不仅与运动有关,还与物质分布有关。 牛顿力学时空概念是相对论时空观在低速(即运动速度远远小于光速)时的

狭义相对论的整个推导过程

狭义相对论的整个推导过程 一、两大假设 1.惯性系的平权 2.光速不变原理 二、洛仑兹变换 令x’=k1(x-ut) x=k2(x’+ut’) 根据假设1,有k1=k2 令k1=k2=γ 所以x’x=γ^2(x-ut)(x’+ut’) 根据假设2,有 x=ct,x’=ct’ 所以c^2tt’=γ^2(c-u)(c+u)tt’ 所以γ=1/sqr(1-u^2/c^2) 所以x’=γ(x-ut) x=γ(x’+ut’) 由x’=γ(x-ut),得 ct’=γ(x-ut) 所以t’=γ(x/c-ut/c) 所以t’=γ(t-ux/c^2) 同理,有t=γ(t’+ux’/c^2) 因为很自然的有 y’=y,z’=z y=y’,z=z’ 所以 x’=γ(x-ut) x=γ(x’+ut’) y’=y y=y’ z’=z z=z’ t’=γ(t-ux/c^2) t=γ(t’+ux’/c^2)

其中:γ=1/sqr(1-u^2/c^2) 三、洛仑兹速度变换 v x’=dx’/dt’=(dx’/dt)*[1/(dt’/dt)]=(v x-u)/(1-uv x/c^2) v y’=dy’/dt’=(dy’/dt)*[1/(dt’/dt)]=v y sqr(1-u^2/c^2)/(1-uv x/c^2) v z’=dz’/dt’=(dz’/dt)*[1/(dt’/dt)]=v z sqr(1-u^2/c^2)/(1-uv x/c^2) 同理,有 v x=(v x’+u)/(1+uv x’/c^2) v y=v y’sqr(1+u^2/c^2)/(1+uv x’/c^2) v z=v z’sqr(1+u^2/c^2)/(1+uv x’/c^2) 所以 v x’=(v x-u)/(1-uv x/c^2) v x=(v x’+u)/(1+uv x’/c^2) v y’= v y sqr(1-u^2/c^2)/(1-uv x/c^2) v y=v y’sqr(1+u^2/c^2)/(1+uv x’/c^2) v z’=v z sqr(1-u^2/c^2)/(1-uv x/c^2) v z=v z’sqr(1+u^2/c^2)/(1+uv x’/c^2)四、 因为t’=γ(t-ux/c^2) 所以t1’=γ(t1-ux1/c^2) t2’=γ(t2-ux2/c^2) 所以t’=t2’-t1’=γ[(t2-t1)-u(x2-x1)/c^2] (x1=x2) 所以t’=γt 又因为x=γ(x’+ut’) 所以 x1=γ(x1’+ut1’) X2=γ(x2’+ut2’) 所以l0=x2-x1=γ[(x2’-x1’)+u(t2’-t1’)] 所以l0=γl 所以l=l0/γ 所以 t’=γt’, l=l0/γ其中:γ=1/sqr(1-u^2/c^2) 五、

狭义相对论新的延伸推导、纵质量、横质量

关于爱因斯坦狭义相对论中02 1m m v c = ??- ??? 的证明,探讨洛伦兹的纵质量与横质 量与爱因斯坦狭义相对论的联系 作者:王逸源 单位:华北电力大学 摘要:本文通过运用,动量守恒定律,和其相关的一个实验,联系相似性原理,通过数学推导,证明了,狭义相对论的质量关系式。再深入探讨,结合爱因斯坦相对论中,其它关系式,进一步推导出,与相对论相有关的另一个新的质量关系式。 关键词:相似性原理、新的质量关系式、纵质量、横质量 著名的爱因斯坦狭义相对论中,已经通过数学的方法证明了两个公式,一个公式为: 2 1v t t c ?? ?=?- ??? ,另一个公式为:2 1v l l c ?? =- ??? ,而著名的2 1v m m c ??=- ??? 公式,爱因斯坦并没有给出数学证明,下面通过爱因斯坦的狭义相对论,动量守恒定律等来证明。 全日制普通高中教材的第二册物理书中,学生实验部分有验证动量守恒定律的实验。这个实验的实验原理是:1、质量分别为1m 和2m 的两个小球,发生正碰,若碰前1m 运动,2m 静止,根据动量守恒有:**111122m v m v m v =+;2、若能测出1m 、2m 及1v 、*1v 、* 2v 代入上式,则可验证碰撞中动量守恒;3、1m 、2m 用天平测出,1v 、* 1v 、* 2v ,用小球碰撞后运动的水平距离代替,(让各小球在同一高度做平抛运动,其水平速度等于水平位移和运动的比值,而各小球运动时间相同,则它们的水平位移之比等于他们的水平速度之比),则动量守恒时112m op m om m on =+(如下图)。 从这个实验,联系相似性原理,在不受其它任何场的影响下,即真空状态下,一个单独小球,小球静止不动时,测出它的质量为0m (静止质量);当这个小球在真空状态下,以恒定速度v 运动时,有加速过程,取无限远处(不会受到加速过程中,外部条件干扰的地方),不考虑相对论的情况下,则这个单独小球的动量守恒,即:000=-v m v m ,若这个

狭义相对论

狭义相对论 关于狭义相对论发现和形成的历史,请见“狭义相对论发现史”。 沿着快速加速的观察者的世界线来看的时空。 竖直方向表示时间。水平方向表示距离,虚划线是观察者的时空轨迹(“世界线”)。图的下四分之一表示观察者可以看到的事件。 上四分之一表示光锥- 将可以看到观察者的事件点。小点是时空中的任意的事件。 世界线的斜率(从竖直方向的偏离)给出了相对于观察者的速度。注意看时空的图像随着观察者加速时的变化。 狭义相对论(Special Theory of Relativity)是由爱因斯坦、洛仑兹和庞加莱等人创立的,应用在惯性参考系下的时空理论,是对牛顿时空观的拓展和修正。爱因斯坦在1905年完成的《论动体的电动力学》论文中提出了狭义相对论[1]。 牛顿力学是狭义相对论在低速情况下的近似。 背景 伽利略变换与电磁学理论的不自洽 到19世纪末,以麦克斯韦方程组为核心的经典电磁理论的正确性已被大量实验所证实,但麦克斯韦方程组在经典 力学的伽利略变换下不具有协变性。而经典力学中的相对性原理则要求一切物理规律在伽利略变换下都具有协变性。麦克尔逊寻找以太的实验 为解决这一矛盾,物理学家提出了“以太假说”,即放弃相对性原理,认为麦克斯韦方程组只对一个绝对参考系(以太)成立。根据这一假说,由麦克斯韦方程组计算得到的真空光速是相对于绝对参考系(以太)的速度;在相对于“以太”运动的参考系中,光速具有不同的数值[2]。 实验的结果——零结果 但斐索实验和迈克耳孙-莫雷实验表明光速与参考系的运动无关。该实验结果否定了以太假说,表明相对性原理的正确性。洛伦兹把伽利略变换修改为洛伦兹变换,在洛伦兹变换下,麦克斯韦方程组具有相对性原理所要求的协变性。洛伦兹的假说解决了上述矛盾,但他不能对洛伦兹变换的物理本质做出合理的解释。随后数学家庞加莱猜测洛伦兹变换和时空性质有关。 爱因斯坦的狭义相对论

狭义相对论的诞生和意义

狭义相对论的诞生和意义 姓名:王祚恩学号:1120100190 班级:01311002 【摘要】在科学史上,爱因斯坦创立相对论的过程艰辛而充满质疑,然而当我们真正认识和了解到相对论时,我们知道爱因斯坦为什么能够称之为伟大。几十年来的历史发展证明,狭义相对论大大推动了科学进程,成为现代物理学的基本理论之一。 【关键词】爱因斯坦,狭义相对论,意义 一.时代的召唤。 在世界科学史上,爱因斯坦所处的时代是一个呼唤巨人,也创造出了大批巨匠的时代。在伯尔尼专利局工作的岁月,是爱因斯坦在科学研究方面大丰收的几年。在这期间,他解决了布朗运动的问题,创立了光子论和狭义相对论。他的划时代的发现,表明对立统一规律不仅适用于人类社会,而且适用于自然界,是最普遍的规律,彻底改变了人们关于时间、空间、质量、能量等旧有的观念,为辩证唯物主义时空观的基本原理的正确性提供了最有利的科学依据,开始引起了科学界和思想界的普遍重视。 二.狭义相对论建立的历史背景。 一门新理论的诞生有其外在条件,也有其内在因素。就外在条件而言:18世纪欧洲工业革命兴起,经过一个多世纪,到19世纪末,工业生产、科学技术有了长足的进步。电力应用逐渐推广,内燃机、蒸汽机被采用,交通运输不断扩展……,所有这些对物理学的发展都有着直接的影响。生产的发展需要科学;反过来,生产的发展又进一步推动了科学的进步。相对论理论同其他任何一门科学理论一样,是生产水平和科学技术发展到一定阶段的必然产物。 牛顿力学是狭义相对论在低速情况下的近似。经典物理学经过近300年的发展,到19世纪末已经建立起比较完整的理论体系 到19世纪末,以麦克斯韦方程组为核心的经典电磁理论的正确性已被大量实验所证实,但麦克斯韦方程组在经典力学的伽利略变换下不具有协变性。而经典力学中的相对性原理则要求一切物理规律在伽利略变换下都具有协变性。在这样的背景下,才有了狭义相对论。 解开以太之谜,是爱因斯坦在相对论建立的道路上走出的第一步。其实,爱伊斯坦在对以太的长期思索中早就对以太的存在产生了怀疑。也就是在这些不断的怀疑中,爱因斯坦一步步的建立的属于自己的观点——狭义相对论,当然之后也被科学界认可。 三.狭义相对论的建立。 1905年,爱因斯坦在《论运动物体的电动力学》一文中正式提出了他的狭义相对论。他首先提出了两条假设: [1]相对性原理。在伽利略力学相对性原理的基础上,爱因斯坦提出一切惯性系对于描述物理现象来说都是等价的,物理定律对于一切惯性系都应采取相同的数学形式。 [2]光速不变原理。在迈克尔逊-莫雷的基础上,爱因斯坦提出,光在真空中的传播速度是c,与光源的运动状态无关。这就是说,在一切惯性系(都是匀速直线运动)中所测得

解读“狭义相对论”——从方法论视角

解读“狭义相对论” ——从方法论视角 张丽 重庆大学贸易行政学院科技哲学室(400044) 中共中央党校哲学部2008级博士研究生(100091) 摘要:爱因斯坦的狭义相对论以相对经济和解释性简化而著称于世界,其影响之大,更是其他理论所不能望其项背。以致许多理论学家们自觉或不自觉地把它作为构建理论的方法论模板。其实在与经典热力学的三次类比中(其中有二次是爱因斯坦本人给出的比较)我们不难发现,在很大程度上这是一种误读,误导,其实质是陷入一场方法论的危机。此文的目的正是要抵制这一思想,并指出爱因斯坦1905年创立的方法论理论仅代表的是一种功利主义,实用主义的胜利,而远远不是解释深度的胜利,它的作用效果也仅限于在混乱、无秩序的状态背景下。 关键词:狭义相对论;经典热力学;方法论;量子力学; CBH法则 比较狭义相对论和量子力学,前者以它的相对经济和解释性简化而著称于世界,其影响之大,更是其他理论所不能望其项背。以至于此后的大量的理论物理学家们自觉或不自觉的受此引导去寻找少量的基本假设,基本原理。期望他们能够在量子力学中发挥作用,就象相对性原理和光假设曾经联合起来在爱因斯坦1905年创立的狭义相对论中发挥基础作用一样,达到简化量子力学的目的。其实在与经典热力学的三次类比中(其中有二次是爱因斯坦本人给出的)我们不难发现,这是一种误读,误导,其实质是陷入一场方法论的危机。此文的目的正是要抵制这一思想,并指出爱因斯坦1905年创立的方法论理论仅代表的是一种功利主义,实用主义的胜利,而远远不是解释深度的胜利,它的作用效果也仅限于在混乱、无秩序的状态背景下。这一点,也正是爱因斯坦本人所非常熟知的。 第一次类比与CBH法则的启示: 爱因斯坦本人曾坦言:相对论原则是使可能性缩小的理论;它不是一个模型(模版),恰似热力学第二定律不是一个模版一样。①(the principle of relativity is a principle that narrows the possibilites ; it is not a model, just as the second law of thermodynamics is not a model.). 另外,在量子力学最近的重要进展中,克利夫顿(CLIFTON)、巴伯(BUB)、哈沃森(HALVORSON)即CBH以三个“information_ _theoretic constraints ”为依据提出的“知识初概念”(notion of information)在理解量子理论中的作用已经变得值得注目了。CBH所关注的正是处于一种危险状态中的“方法论”。在其论文的开头,CBH写到:一个人能够仅以少数几个简单的知识理论原则来刻画量子理论特征的这一事实,是提供信任给这样一种思

两个重要极限-重要极限

2.5.1两个重要极限(第一课时) ——新浪微博:月牙LHZ 一、教学目标 1.复习该章的重点内容。 2.理解重要极限公式。 3.运用重要极限公式求解函数的极限。 二、教学重点和难点 重点:公式的熟记与理解。 难点:多种变形的应用。 三、教学过程 1、复习导入 (1)极限存在性定理:A x f x f A x f x x x x x x ==?=- +→→→)(lim )(lim )(lim 000 (2)无穷大量与无穷小量互为倒数,若)(0)(x x x f →∞→,则 )(00) (1 x x x f →→ (3)极限的四则运算: [])(lim )(lim )()(lim x g x f x g x f ±=± [])(lim )(lim )()(lim x g x f x g x f ?=? ) (lim ) (lim )()(lim x g x f x g x f = ()()0lim ≠x g (4)[])(lim )(lim x f c x cf =(加法推论) (5)[][]k k x f x f )(lim )(lim =(乘法推论) (6)[]0lim =?有界变量无穷小量(无穷小量的性质) eg: 0sin 1lim sin lim =?? ? ???=∞→∞ →x x x x x x

那么,? =→x x x sin lim 0呢,这是我们本节课要学的重要极限 2、掌握重要极限公式 1sin lim 0=→x x x 公式的特征:(1)0 型极限; (2)分子是正弦函数; (3)sin 后面的变量与分母的变量相同。 3、典型例题 【例1】 求 kx x x sin lim 0→()0≠k 解:kx x x sin lim 0→=k k x x k x 1 11sin lim 10=?=→ 【例2】 求 x x x tan lim 0→ 解:x x x tan lim 0→=111cos 1lim sin lim cos 1sin lim 000=?=?=?? ? ??→→→x x x x x x x x x (推导公式:1tan lim 0=→x x x ) 【例3】 求 x x x 5sin lim 0→ 解:51555sin lim 555sin 5lim 5sin lim 000=?=?=?=→→→x x x x x x x x x 4、强化练习 (1)x x x 3sin lim 0→(2)x kx x sin lim 0→()0≠k (3)x x x 35sin lim 0→ (4) x x x 2tan lim 0→ 解:(1)x x x 3sin lim 0→=3 1 131sin lim 310=?=→x x x (2) k k kx kx k kx kx k x kx x x x =?=?=?=→→→1sin lim sin lim sin lim 000 (3)3513555sin lim 35 3555sin lim 35sin lim 000=?=?=??? ???=→→→x x x x x x x x x (4)x x x 2tan lim →=11122cos 1lim 22sin lim 22cos 12sin lim 000=??=??=?? ? ??→→→x x x x x x x x x 四、小结:

狭义相对论的一些介绍

狭义相对论的一些介绍 狭义相对论从提出到现在已经一百多年了,人们对这个理论的认识自然也不能一直停在一百多年前。这篇帖子就是想要帮助大家重新整理一下狭义相对论的思路。 一、我们先来复习一下如何算一条线段的长度。 如果我们在平整的地面画一条短线,如何计算线的长度?这个谁都会算,那就是末端的坐标减去始端的坐标,比如用尺子量, 拿到始端和末端的读书,相减得到直线的长度。 这里量一条直线,一维坐标系就可以了。但是如果我们偏偏要找麻烦呢?非要把这条直线斜着量?那也简单的很:

要测量线段长度也不过是测量出「甲」和「乙」的长度,然后勾股定理算出来。也就是(末端横坐标 - 起始端横座标)^2 + (末端纵坐标 - 起始端纵座标)^2 明显是把这条线拆解成横着的和纵的的嘛~ 如果我们再找麻烦,非要在一个三维的坐标系中来计算呢?那也不难,依葫芦画瓢,把线端拆成三部分:横、纵、竖,这样一来,计算方法就是: (末端横坐标 - 起始端横座标)^2 + (末端纵坐标 - 起始端纵座标)^2 + (末端竖坐标 - 起始端竖座标)^2 依次类推,可以放到任意正整数维的坐标系里面来算。 可是,实际上有个问题,我们这样算长度,是有条件的。那,当然这些方法来自于我们的生活经验,我们的生活经验是,时间是用来给不同的事件加标签用的,加了时间标签就可

以知道事情发生的先后顺序了。 二、闵可夫斯基空间 但是 Einstein 的狭义相对论提出了一种很棒的思路,就是为什么我们非要把自己的眼界放在三维空间中呢?我们可以把时间也放进来作为一个坐标分量,而我们不再去算两个地点的空间距离,而是去算发生的两个事件的间隔(既包含了时间部分,又包含了空间部分)。 我们继续前面的思考。 计算两个点的空间距离的方法我们已经掌握了,那么我们如何通过一种方法来把时间因素也加进来呢? 我们的方法是通过定义一种新的两点距离的计算方法来实现的。我们上面的那种计算两点距离的方法,是在欧几里得空间的距离的计算方法,我们在狭义相对论中定义的新的方法是闵科夫斯基空间的距离计算方法。 比如我们要计算「事件甲」和「事件乙」之间的时空间隔,事件甲发生在「地点甲」,事件乙发生在「地点乙」,那么时空间隔的计算方法是: (地点乙横坐标 - 地点甲横座标)^2 + (地点甲纵坐标 - 地点乙纵座标)^2 + (地点甲竖坐标 - 地点乙竖座标)^2 - (时间乙发生的时间 - 时间甲发生的时间)^2 看啦,只不过是把时间差减掉而已。细心的读者立刻就会提到一个问题: 「咦?你这个计算方法有毛病嘛!!量纲不统一的啊!!!」 没错,你掌握了物理的一大精髓啊,量纲分析是推导完成后首要任务的。不过这里的要改进也忒简单了点,改成这样: (地点乙横坐标 - 地点甲横座标)^2 + (地点甲纵坐标 - 地点乙纵座标)^2 + (地点甲竖坐标 - 地点乙竖座标)^2 - (时间乙发生的时间 - 时间甲发生的时间)^2 * 某个速度^2 好了嘛。其实这就是 1907 年 Minkowski 对 Einstein 的狭义相对论的解释,而这种解释,就是那个年代最杰出的解释。 如果能明白这个距离的定义,狭义相对论最重要的一点您就掌握了。 三、「某个速度」 可是可是,这个「某个速度」是嘛意思啊?这是个什么速度啊??? 什么速度捏?我们只好去搜肠刮肚,找遍我们已知的整个物理规律,发现这样一件很奇妙的事情。那就是 Maxwell 方程组,把四个方程化简下,得到电磁波的波动方程。波动方程告诉我们这样一件事情,那就是这个波速跟时间和空间坐标都没关系。什么意思啊?那就是说这个电磁波的波速不管我们是站在路上看,还是骑车看,还是坐火车看,这个波速都是

相关主题
文本预览
相关文档 最新文档