当前位置:文档之家› 光衍射的定量研究北大物理学院普物实验报告

光衍射的定量研究北大物理学院普物实验报告

光衍射的定量研究北大物理学院普物实验报告
光衍射的定量研究北大物理学院普物实验报告

光衍射的定量研究--北大物理学院普物实验报告

————————————————————————————————作者: ————————————————————————————————日期:

?

实验二十光衍射的定量研究

一、数据处理

1.单缝缝宽的测量

测得的光强度曲线图象如图1所示:

?将计算用到的具体条纹的相关数据列表如下:

条纹

绝对坐标

x(mm)相对光强I

距离中心

Δx(mm)

Δx????(mm)

0级亮纹12.355 2570 0.000 0.000

左侧0级暗纹8.600 3 3.755

3.695 右侧0级暗纹16.090 3 3.635

左侧1级亮纹7.025 110 5.330

5.298 右侧1级亮纹17.620 113 5.265

对于衍射屏与观察屏距离的测量:z

左=15.28cm,z

=91.00cm,则有

图1

z=z

右?z

+0.4cm=76.12cm?。

下面进行计算:

①利用第一次极强计算缝宽,有

a=1.43λsinθ

=

1.43λ

Δx′/z

=1.300×10?4m

②利用零级暗纹计算缝宽,有

a=

λ

sinθ

=

λ

Δx/z

=1.304×10?4m

2.双缝的缝宽和缝间距的测量

测得的光强度曲线图象如图2所示:

将计算用到的具体条纹的相关数据列表如下:

条纹

绝对坐标

x(mm)

相对光强I

距离中心

Δx(mm)

Δx????(mm)0级亮纹18.145 2579 0.000 0.000

左侧0级暗纹15.400 662.745

2.650

右侧0级暗纹20.700 69 2.555

图2

左侧1级亮纹13.240 1274 4.905

4.855右侧1级亮纹22.950 1308 4.805

左侧单元

因子所致0级暗纹5.220 1 12.925

12.813

右侧单元

因子所致

0级暗纹

30.845 1 12.700

*这里的0级暗纹和1级亮纹的物理含义是与之前在单缝中所说的不同的,在单缝中,是由于衍射导致的暗纹和亮纹,而此处是由干涉导致的。

对于衍射屏与观察屏距离的测量:z

左=15.28cm,z

=90.60cm,则有

z=z

右?z

+0.4cm=75.72cm?。

下面进行计算:

①利用主极强计算缝间距:

d=

λ

sinθ′

=

λ

Δx′/z

=9.869×10?5m

②利用0级暗纹计算缝间距:

出现暗纹时,有Nβ=kπ,在此处具体应写为

N?πdsinθ

λ

=π,

??则有

d=

λ

2sinθ

=

λ

2Δx/z

=9.041×10?5m

③利用单元因子所致0级暗纹计算缝宽

a=

λ

sinθ′′

=

λ

Δx′′/z

=3.740×10?5m

3.其他衍射结构的衍射图样

实验中观察到的衍射图样与对应的衍射屏结构如下表所示:

圆孔方阵单缝四丝

五角星三丝双圆孔

双丝单圆孔方孔密排

矩孔方孔方阵等腰三角

二、分析与讨论

1.误差分析

可以推导出不确定度公式

σa a =√(

σΔx

Δx

)

2

+(

σz

z

)

2

,

σd d =√(

σΔx

Δx

)

2

+(

σz

z

)

2

.

由于计算公式形式上的相似,此不确定度公式对于之前讨论的缝宽、缝间距等均适用。则我们对应上述各种方法测得的缝宽、缝间距等诸量,计算不确定度,并将其列在下面。计算过程中,取钢尺的允差为e z=0.20mm。

用两种方法测量出的单缝缝宽的不确定度均为σa=0.02×

10?4m。故最终测量量可表示如下:

利用第一次极强计算得到的缝宽a=(1.30±0.02)×10?4m

利用零级暗纹计算缝宽a=(1.30±0.02)×10?4m

在这里需要说明的是,在考虑σz时,若直接按照最小步长为0.005mm 进行计算,则得到的不确定度仅为0.001×10?4m量级,明显偏小。其原因是因为探测极大、极小光强时,受感光元件精度限制,连续许多步测出的光强都是一样的,不知哪里才是真正的极值。在实验中我只是对出现零级暗纹时的情况进行了记录,在两侧的零级暗纹(极小值)附近,左右分别有26步及14步测出的光强是一样的。后来的其他测量当中,由于时间有些紧张,就没有一个一个去计数并且记录,这是我实验上的一个失误,以后记录时还是应该注意尽量充分地保留实验得到信息。所以在取不确定度时我只是采取了比较简单的方式,即将所有的e z都取作最小步长0.005mm的20倍,即0.1mm。这里缝宽的参考值为a=1.27×10?4m,我所测得的1.30×10?4m和参考值的差距比所得出的不确定度还要略大一些,所以可能还存在其他没考虑到的影响因素,比如光路调节没有达到最佳状态,背景光的影响等。也可能是最小步长比我粗略所取的数值0.1mm还要更大一些,或远场条件未能充分满足等。具体原因还有待进一步分析。

下面计算双缝相关数据的不确定度。利用主极强计算缝间距的不确定为σd=0.1×10?5m,利用0级暗纹计算缝间距的不确定度则为σd=0.2×10?5m,而缝宽的不确定度为σa=0.01×10?5m故最终测量量可表示如下

利用主极强计算得到的缝间距d=(9.9±0.1)×10?5m

利用0级暗纹计算得到的缝间距d=(9.0±0.2)×10?5m

缝宽a=(3.74±0.01)×10?5m

这里的最小补偿同样按前述方法进行了放大。此处,缝间距参考值为9.0×10?5m,而缝宽参考值则为4.0×10?5m,可以看出利用零级暗纹计算得到的缝间距是落在了误差范围内的。而利用主极强得到的缝间距以及所测得的缝宽与参考值的差距比所得到的不确定度大很多。尤其是缝宽的测量,我试着去进一步的放大步长,即使将其放大到1mm,所得不确定度也仅为0.1×10?5m,而这个步长已经很大了,实际上并不会有200步都测得同样的光强。而放大σz,不确定度也变化甚微。所以我想一定是存在着还没有考虑到的导致误差的因素,但遗憾的是我暂时还没有想到原因,只能把问题先留在这里了。

2.夫琅禾费衍射图样与衍射结构的关系

夫琅禾费衍射场与衍射屏的关系,实际上可由傅里叶变换光知识定量描述。这里只是根据实验中观察到的不同衍射屏的图样总结一些经验性的规律。

总的来说,衍射图样可以看作单元衍射结构造造成的衍射和多个单元因子排列起来造成的干涉的叠加。例如实验中观察到的双圆孔的衍射图样就可以看成单圆孔衍射图样相互干涉形成的新图样。方孔方阵和方孔密排也可看作是许多方孔衍射图样的叠加。而二者的区别在于方阵排列形成的图样看起来更加整齐方正一些,而密排形成的图样中相邻的亮斑则是组成六边形的形状。

前述讨论中已提到衍射图样可看成是不同单元衍射结构的图样相互干涉形成的。按照这个思路,我们就先来讨论一下单元衍射结构

的衍射图样。因为互补屏原理告诉了我们互补屏之间的关系,我们可以只讨论缝和孔的情况,其互补屏的衍射情况是可以由此推出的。最简单的是一维结构的单缝,其衍射图样就在一个方向上展开,此方向垂直于缝方向。接着是三角形,其衍射图样中类似于单缝衍射的亮斑主要出现在三个方向,且这三个方向分别与三条边垂直。且若为等腰三角形,则与腰垂直的两个方向上衍射图样对称。若为等边三角形,则三个方向上都是对称的。然后是矩孔,其类似于单缝衍射的亮斑主要出现在两个方向上,分别与两对边垂直。之后是五角星,可以观察到主要在十个方向上出现了类似于单缝衍射的亮斑。那么我们可以用简单归纳法得出结论,单元多边形孔的衍射,其在垂直于每条边的方向上都会出现类似于单缝图样的亮斑,且亮斑就主要出现在这些方向上,其他地方几乎看不到亮斑。

接下来再讨论一下多个相同结构干涉的情况。简单起见我们就讨论多缝的情况。其他单元结构重复排列造成的干涉与其是相似的。丝的情况也可由先是双缝干涉,这我们在杨氏干涉实验中已经很熟悉了,但要注意的是这里叠加了缝的衍射因子后亮条纹的亮度不再是差不多的了。当出现N(N≥2)条缝时,在相邻的主极大之间还会出现次极大的情况,且由简单归纳法可得知次极大数目为N?2条。可由此判断缝的数目。

?通过前述讨论可以看到,即使只是通过简单地根据经验定性的分析,衍射屏和衍射图样之间也还是存在一定规律的,但是如果想要准确的通过衍射屏的形状来预言衍射图样的光强分布,还是需要进一

步定量分析。

大学物理实验-目录(北大版)

目 录 绪论 (1) 第1篇 不确定度与数据处理基础 (3) 1.1 测量与误差的基本概念 (3) 1.2 随机误差的估算 (5) 1.3 测量的不确定度 (8) 1.4 有效数字及测量结果的表示 (12) 1.5 实验数据处理方法 (14) 习题 (19) 第2篇 力学及热学实验 (20) 2.1 力学及热学实验基础知识 (20) 2.1.1 长度测量器具 (20) 2.1.2 时间测量仪器 (21) 2.1.3 质量测量仪器 (23) 2.1.4 温度测量仪器 (25) 2.2 实验2-1 长度的测量 (27) 2.3 实验2-2 物体密度的测定 (31) 2.4 实验2-3 气轨上滑块的速度和加速度的测定 (38) 2.5 实验2-4 气轨上动量守恒定律的研究 (46) 2.6 实验2-5 气轨上简谐振动的研究 (52) 2.7 实验2-6 固体线膨胀系数的测定及温度的PID调节 (55) 2.8 实验2-7 动力学法测定材料的杨氏弹性模量 (59) 2.9 实验2-8 扭摆法测定物体转动惯量 (64) 2.10 实验2-9 落球法测定液体在不同温度下的黏度 (70) 2.11 实验2-10 拉伸法测定金属丝的杨氏弹性模量 (73) 第3篇 电磁学实验 (78) 3.1 电磁学实验基础知识 (78) 3.1.1 实验室常用设备 (78) 3.1.2 电学实验操作规则 (83) 3.2 实验3-1 伏安法测电阻 (85) 3.3 实验3-2 电表的改装和校正 (87) 3.4 实验3-3 线性电阻和非线性电阻的伏安特性曲线 (91) 3.5 实验3-4 三极管的伏安特性曲线 (95)

北京大学物理学院

北京大学物理学院 “脉冲激光沉积和磁控溅射双模式沉积系统” 招标采购项目 招标文件 编号:2013[012] 北京大学实验室与设备管理部 二〇一三年月三十日

目录 第一部分投标邀请 (2) 第二部分招标说明 (4) 第三部分货物需求一览表及技术规格 (7) 第四部分设备明细表 (12) 第五部分技术规格偏离表 (13) 第六部分原厂授权书 (14) 开标一览表 (15)

第一部分投标邀请 公告日期:2013年5月29日 项目名称:北京大学物理学院“脉冲激光沉积和磁控溅射双模式沉积系统”招标采购项目 招标编号: 2013[012] 招标机构名称: 北京大学实验室与设备管理部 地址:北京市海淀区颐和园路5号北京大学红5楼邮编:100871 电话: 62758587 62751412;传真:62751411 联系人:张宇波石铄 北京大学实验室与设备管理部(以下简称“招标机构”)具体承办北京大学物理学院“脉冲激光沉积和磁控溅射双模式沉积系统”招标采购项目的招标采购事宜,邀请合格投标人就下列货物和有关服务提交密封投标。合格投标人均可在招标机构得到进一步的信息和查阅招标文件。 1.招标内容 1.1招标货物名称:脉冲激光沉积和磁控溅射双模式沉积系统 1.2数量及技术规格要求:数量壹套,技术规格要求详见标书 1.3交货地点:北京首都机场 2.合格投标人必须符合《中华人民共和国政府采购法》第二十二条之规定。 3.招标文件购买时间和办法:2013年5月30日—2013年6月24日9:00至16:30时在招标机构(北京大学西门内红1楼、红2楼之间横楼二层5216室)购买招标文件。标书售价200元人民币,售后不退。 4.投标人可从北京大学招标公告栏或实验室与设备管理部网站下载本次招标的电子版标书(https://www.doczj.com/doc/d75043019.html,/more2.asp),以供参考。 5.接受投标时间、投标截止时间及开标时间 5.1接受投标及投标截止时间:所有投标书应于2013年6月25日8:30前递交到上述购买标书地址, 逾期恕不接受。 5.2开标时间:兹定于2013年6月25日8:30整在北京大学实验室与设备管理部后院会议室进行开标、 评标工作。 6.投标细则 6.1 投标内容 6.1.1最终用户:北京大学物理学院 6.1.2设备名称:“脉冲激光沉积和磁控溅射双模式沉积系统”

北京大学物理实验报告:霍尔效应测量磁场(pdf版)

霍尔效应测量磁场 【实验目的】 (1) 了解霍尔效应的基本原理 (2) 学习用霍尔效应测量磁场 【仪器用具】 仪器名参数 电阻箱? 霍尔元件? 导线? SXG-1B毫特斯拉仪±(1% +0.2mT) PF66B型数字多用表200 mV档±(0.03%+2) DH1718D-2型双路跟踪稳压稳流电源0~32V 0~2A Fluke 15B数字万用表电流档±(1.5%+3) Victor VC9806+数字万用表200 mA档±(0.5%+4) 【实验原理】 (1)霍尔效应法测量磁场原理 若将通有电流的导体至于磁场B之中,磁场B(沿着z轴)垂直于电流I S(沿着x轴)的方向,如图1所示则在导体中垂直于B和I S方向将出现一个横向电位差U H,这个现象称之为霍尔效应。 图 1 霍尔效应示意图 若在x方向通以电流I S,在z方向加磁场B,则在y方向A、A′两侧就开始聚积异号电荷而产生相应的附加电场.当载流子所受的横向电场力F E洛伦兹力F B相等时: q(v×B)=qE 此时电荷在样品中不再偏转,霍尔电势差就有这个电场建立起来。 N型样品和P型样品中建立起的电场相反,如图1所示,所以霍尔电势差有不同的符号,由此可以判断霍尔元件的导电类型。

设P型样品的载流子浓度为p,宽度为w,厚度为的d。通过样品电流I S=pqvwd,则空穴速率v=I S/pqwd,有 U H=Ew=I H B =R H I H B =K H I H B 其中R H=1/pq称为霍尔系数,K H=R H/d=1/pqd称为霍尔元件灵敏度。(2)霍尔元件的副效应及其消除方法 在实际测量过程中,会伴随一些热磁副效应,这些热磁效应有: 埃廷斯豪森效应:由于霍尔片两端的温度差形成的温差电动势U E 能斯特效应:热流通过霍尔片在其端会产生电动势U N 里吉—勒迪克效应:热流通过霍尔片时两侧会有温度差产生,从而又产生温差电动势U R 除此之外还有由于电极不在同一等势面上引起的不等位电势差U0 为了消除副效应,在操作时我们需要分别改变IH和B的方向,记录4组电势差的数据 当I H正向,B正向时:U1=U H+U0+U E+U N+U R 当I H负向,B正向时:U2=?U H?U0?U E+U N+U R 当I H负向,B负向时:U3=U H?U0+U E?U N?U R 当I H正向,B负向时:U4=?U H+U0?U E?U N?U R 取平均值有 1 (U1?U2+U3?U4)=U H+U E≈U H (3)测量电路 图 2 霍尔效应测量磁场电路图 霍尔效应的实验电路图如图所示。I M是励磁电流,由直流稳流电源E1提供电流,用数字万用表安培档测量I M。I S是霍尔电流,由直流稳压电源E2提供电流,用数字万用表毫安档测量I S,为了保证I S的稳定,电路中加入电阻箱R进行微调。U H是要测的霍尔电压,接入高精度的数字多用表进行测量。 根据原理(2)的说明,在实验中需要消除副效应。实际操作中,依次将I S、 I M的开关K1、K2置于(+,+)、(?,+)、(?,?)、(+,?)状态并记录U i即可,其 中+表示正向接入,?表示反向接入。

北京大学物理学专业情况

学科概况 物理学院教学科研涉及物理学、大气科学、天文学和核科学与技术4个一级学科。一级学科博士点(4个):物理学、大气科学、天文学、核科学与技术 国家一级重点学科(2个):物理学、大气科学 国家二级重点学科(2个):天体物理、核技术及应用 博士后流动站(4个):物理学、大气科学、天文学、核科学与技术 国家理科基础研究和教学人才培养基地(3个):物理学、核科学与技术、大气科学 本科专业/学科(4个):物理学、大气科学、核科学与技术(以上三个为一级学科招生)、天文学 物理学学科 物理学专业既是活跃的物质世界基础研究前沿,又是现代高新技术的基础和源泉。受到良好物理学教育的学生,既适合在微观、介观和宇观物质科学前沿从事研究,同时在信息科学、生物工程、通讯、航天、新材料开发、新能源等方面也有独特的优势。在科学技术飞速发展的时代,物理学专业的毕业生由于基础宽、能力强而具有很好的就业前景和广阔的就业领域,比如国内外物理学研究、高等教育、材料科学技术、信息产业、生物技术、能源技术、高科技产品开发、企业管理、金融研究和管理等等。

物理学院实体单位及学科专业图1 北京大学物理学科是1991年评定的全国第一批“国家理科基础研究和教学人才培养基地”。经过8年的建设,于1999年11月通过了教育部组织的专家组验收评估,正式挂牌(目前全国物理学科仅此一个);在此后的历次评估和验收中,都被评为优秀基地。其开设的课程中,7门课程是国家级精品课程(力学、电磁学、光学、数学物理方法、量子力学、普通物理实验、近代物理实验),全国所有高校的一个学科中最多。 北京大学物理学科设有理论物理、凝聚态物理与材料物理、光学、粒子物理与核物理、等离子体物理等五个二级学科,研究工作涉及物理学的众多研究方向,具有物理学一级学科博士学位授予权,其理论物理、凝聚态物理与材料物理、光学和粒子物理与核物理为国家重点学科,并设有一个博士后流动站。物理学科拥有“人工微结构和介观物理”国家重点实验室,“量子色动力学与强子物理”、“飞秒光物理与介观光学”、“生物网络研究”等三个国家自然科学基金委员会创新研究群体(拥有如此众多创新研究群体,北京大学也是全国唯一一个)。依托物理学科,设有“高能物理研究中心”和“国际量子材料研究中心”等研究单位,吸引国际顶尖物理学家加盟北京大学物理学科。 核科学与技术学科 核科学是人类物质科学研究的前沿学科,既追求对亚原子层次物质的结构、性质和运动规律的深入理解,又以研究解决核能和核技术应用相关的物理问题和其他科学技术问题为目标。经过近百年的发展与融合,核科学与技术已经成为一门由物理科学、技术科学和工程科学相结合的综合性尖端学科,对于人类的生存与发展、国家的地位与安全产生了重大影响,是衡量一个国家科学技术现代化和综合国力的主要标志之一。 本学科从物理学院大类招生中分流培养国家急需的在核科学技术、核能及相关专业领域从事基础研究、应用研究和管理工作等方面的专门人才。在强调基础理论体系的同时,加强严格的实验课程教学和高水平的科研实践训练,掌握物理学和核科学技术的基本科学知识和体系,尤其培养通过创造性思维进行科学技术研究开发的能力。 本学科学术环境优良,同时与国际高水平的大学和研究机构建立了密切的学术合作与交流关系。经过长期教学实践和丰富科研成果的积累,建立了完整的理论和实验课程教学体系。核科学技术学科的教师共编(译)著出版了60余部高水平的教材和科技专著,其中12部获得国家级、省部级优秀教材奖或科技进步奖,曾对全国核科技专业的教学和科研产生了深远的影响。本学科拥有包括2×6MV串列静电加速器、4.5MV单级静电加速器、2×1.7MV串列静电加速器和14C专用加

北京大学物理实验报告:弗兰克-赫兹实验(docx版)

北京大学物理实验报告:弗兰克-赫兹实验(docx版)

弗兰克-赫兹实验 【实验目的】 (1) 了解弗兰克-赫兹实验用伏-安证明原子存在能级的原理和方法 (2) 学习用伏-安法测量非线性器件 (3) 学习微电流的测量 【仪器用具】 仪器名参数 F-H-II 弗兰克赫兹实验仪?F-H-II 弗兰克赫兹实验仪微电流放大器10?7档F-H-II 弗兰克赫兹实验仪电源组V F 0~5V2.5级 V G1K 0~5V 2.5级 V G2P0~15V2.5级Victor VC9806+数字万用表200 mV档±(0.5%+4) 【实验原理】 (1)原子的受激辐射 玻尔的氢原理理论指出,原子只能较长久地停留在一些稳定状态(称为定态)。这些定态的能量(称为能级)是不连续分布的,其中能级最低的状态称为基态。原子在两个定态之间发生跃迁时,要吸收或发射一定的能量,该能量等于两个定态之间的能量差 ΔE mn=E m?E n 原子在能级之间的跃迁可以通过有一定能量的电子与原子碰撞交换能量来实现。初速度为零的电子经过电势差U0加速获得能量eU0,当这些电子与稀薄气体(例如汞)发生碰撞,就会发生能量交换。当电子能量满足 eU0=ΔE mn 便会使得原子从E n被激发到E m,电子能量被吸收。 (2)弗兰克-赫兹实验 图 1 弗兰克-赫兹装置示意图

图1是弗兰克-赫兹实验装置示意图。图中左侧为弗兰克-赫兹管(F-H管),它是一种密封的玻璃管,其中充有稀薄的原子量较大的汞或惰性气体原子。在这里灯丝用来对阴极K加热,使其发射热电子。灯丝电压U F越高,阴极K发射的电子流也就越大。第一栅极G1的主要作用是消除空间电荷对阴极电子发射的影响。第二栅极G2的作用是在G2和K之间形成对电子加速的静电场。发射的电子穿过栅极G2达到极板P,形成板流I P。板流I P的大小由微电流测试仪进行测量。在板极P和G2之间加有一反向电压,它对电子减速,使经过碰撞后动能非常低的电子折回。 由热阴极发射的电子初速度为零,受加速电场V G2K作用,V G2K较低时,电子能量小于原子的激发能,电子与汞原子只能发生弹性碰撞。当V G2K增大到原子的第一激发电位时,电子与原子间就产生非弹性碰撞,汞原子吸收电子的能量,由基态被激发到第一激发态。电子损失能量后不能穿越拒斥场,引起板流I P聚减,于是I P?V G2K特性曲线上出现第一个峰值。V G2K继续增大,电子经第一次非弹性碰撞后的剩余能量足以使其与汞原子产生第二次非弹性碰撞,汞原子再次从电子中取得能量,能量交换的结果使I P再次下降。 峰间距正是第一激发态和基态的能极差,在本次实验中,通过测量各个峰值并对其进行线性拟合可以更准确地测得能极差。 (3)实验装置 图 2 四栅式F-H管 实验仪器如图2所示,仪器分为三部分。 加热炉和控温仪:中有FH管,保持FH处于预定温度中 电源组:包括三组独立的稳压电源,分别提供V F灯丝加热电源,V G1K控制电子束强度的加速电压,V G2P减速用的反向电压 微电流放大器:将板流I P并输出U out,本次试验中用U out代替I P 【实验原理】 1预热汞管至180度 2如图2所示搭建实验装置 3根据参考数据调节V F V G1K V G2P,在允许范围内使得峰谷比较大 4调节V G2K,粗测U out?V G2K,了解峰出现的范围

大学物理实验 复摆实验讲义

复 摆 【实验目的】 (1)研究复摆的物理特性; (2)用复摆测定重力加速度; (3)用作图法和最小二乘法研究问题及处理数据。 【仪器用具】 复摆,光电计时器,电子天平,米尺等。 【实验原理】 1.复摆的振动周期公式 在重力作用下,绕固定水平转轴在竖直平面内摆动的刚体称为复摆(即物理摆).设一复摆 (见图1-1)的质量为m ,其重心G 到转轴O 的距离为h ,g 为重力加速度,在它运动的某一时刻t,参照平面(由通过O 点的轴和重心G 所决定)与铅垂线的夹角为0,相对于O 轴的恢复力矩为 M=-mgh sin θ (1.1) 图 1-1复摆示意图 根据转动定理, 复摆(刚体)绕固定轴O 转动,有 M=I β (1.2) 其中M 为复摆所受外力矩,I 为其对O 轴的转动惯量,β为复摆绕O 轴转动的角加速度, 且 22dt d θβ= 则有 M=I 2 2dt d θ (1.3) 结合式(1.1)和式(1.3),有 I 22dt d θ +mgh sin θ=0 (1.4) 当摆角很小的时候, sin θ≈θ, ,式(1.4)化为

22dt d θ + θI mgh =0 (1.5) 解得 θ=A cos(ωt+θ0) (1.6) 式中A ,θ由初条件决定;ω是复摆振动的角频率,ω=I mgh /, 则复摆的摆动周期 T=2πmgh I (1.7) 2.复摆的转动惯量,回转半径和等值单摆长 由平行轴定理,I=I G +mh 2,式中I G 为复摆对通过重心G 并与摆轴平行的轴的转动惯量, (1.7) 式可写为 T=2πmgh mh I G 2 + (1.8) 可见, 复摆的振动周期随悬点O 与质量中心G 之间的距离h 而改变。还可将I =I G +mh 2改写 2 2G 2I mR mh mR =+= (1.9) 式中R G = m I G 为复摆对G 轴的回转半径, 同样也有R=m I , R 称为复摆对悬点O 轴的回转半径。复摆周期公式也可表示为 T=2π g h h R G +2 (1.10) 事实上, 总可以找到一个单摆,它的摆动周期等于给定的复摆的周期,令 L =h h R G +2 (1.11) 则 T= 2π g L (1.12) 式中L 称为复摆的等值单摆长。这样, 就它的振动周期而论,一个复摆的质量可以被认为集中到一个点上, 这个点距悬点(支点)的距离为

实验报告格式

《客户关系管理》课程实验实训报告

集团、卢森堡剑桥集团、亚洲创业投资基金(原名软银中国创业基金)共同投资成立。 当当网成立于1999年11月,以图书零售起家,已发展成为领先的在线零售商:中国最大图书零售商、高速增长的百货业务和第三方招商平台。当当网致力于为用户提供一流的一站式购物体验,在线销售的商品包括图书音像、服装、孕婴童、家居、美妆和3C数码等几十个大类,在库图书超过90万种,百货超过105万种。当当网的注册用户遍及全国32个省、市、自治区和直辖市。注册用户遍及全国32个省、市、自治区和直辖市。当当网于美国时间2010年12月8日在纽约证券交易所正式挂牌上市,是中国第一家完全基于线上业务、在美国上市的B2C网上商城。 当当网于2010年12月8日在纽约证券交易所正式挂牌上市,是中国第一家完全基于线上业务、在美国上市的B2C网上商城。2012年,当当网的活跃用户数达到1570万,订单数达到5420万。 2014年2月28日,当当和1号店已经签订合作协议,当当将在1号店销售图书,1号店将在当当平台上销售食品和日用百货。 公司创建: 当当网由李国庆和俞渝创立,李国庆先生任当当网CEO,俞渝女士目任当当网董事长。二人是夫妻,联手创业,早已在业内传为佳话。 李国庆毕业于北大,两次创业,均以出版为主体。在图书出版领域摸爬滚打了10年,很了解中国传统的图书出版和发行方面的所有环节。俞渝是纽约大学学金融MBA毕业的,在华尔街做融资,有过几个很成功的案例。她在美国生活了整整10年,投资者非常信任她,又有共同语言。 1996年,李国庆和俞渝邂逅,然后在纽约结婚,当当的故事也就开了头。两人从谈恋爱开始,就经常一起思考,一起聊亚马逊的商业模型与传统贸易手段的根本区别。后来夫妇俩常探讨在图书这个行业中间赚钱最关键的环节是什么,有着多年图书出版运营经验的李国庆说肯定是出版社和读者的直接联系。于是他们一起去找风险投资商,说服了IDG、LCHG(卢森堡剑桥集团,该集团公司拥有欧洲最大的出版集团)共同投资,目标锁定在凭借发达国家现代图书市场的运作模式和成熟的管理经验,结合当今世界最先进的计算机技术和网络技术,用来推动中国图书市场的“可供书目”信息事业,及“网上书店”的门户建设,成为中国最大的图书资讯集成商和供应商。 公司历史: 1999年11月,网站进入运营。 2000年2月,当当网首次获得风险投资。 2000年11月,当当网周年店庆大酬宾,在网民中引起巨大反响。 2001年6月,当当网开通网上音像店。 2001年7月,当当网日访问量超过50万(Unique Visitor),成为最繁忙的图书、音像店。 2003年4月,在“非典”肆虐之时,当当网坚持高速运转,满足读者对精神食粮的需求,被文化部等四家政府部门首推为“网上购物”优秀网站。 2003年6月,当当网、新浪网、SOHO、网通等公司举办“中国精神”活动,呼唤开放乐观的民族精神,引起轰动的社会反响。 2004年2月,当当网获得第二轮风险投资,著名风险投资机构老虎基金投资当当1100万美元。 2004年3月,当当网开通期刊频道。

北大物理专业考研经验分享

这是一篇“经验文”,各位父老乡亲兄弟姐妹老少爷们弯直型宅看一看权当参考,看完后有啥问题可以给俺发邮件交流。悲催的是,对我来说,系里排名不靠前,也没有保送名额,桑心,因此想上北大或清华只能硬碰硬地考研了最后选择考北京大学物理学院。毕业后我在北京租了个房子复习半年,前段时间物理学院网上贴出最终结果,也算是尘埃落定(虽然面试结束后就当场知道结果了)。可能学弟学妹们在大学里有时候觉得自己有些颓,找不着方向,这些我也经历过,对大多数人来说四年就是这样起起伏伏,正常的事儿。退一万步讲,实在茫然颓废的时候咱就看看这段温暖人心的话:“发生这种事,大家都不想的。感情的事呢,是不能强求的。所谓吉人自有天相,做人呢,最要紧的就是开心。饿不饿?我给你煮碗面”。话说回来,最要紧的是咱要知道机会来时盯紧不放,紧追不舍,直至达成目标。考研就是这样的一个机会。 进入正题,咱先按考试顺序来讲一讲吧。 一、政治 工具书:政治考研大纲+肖秀荣1000题+肖秀荣最后4套卷。 时间:11月中旬—初试。 我是按着大纲,顺着1000题对照着做,看一章做一章题,在大纲上做一些标记帮助记忆,最后做完1000题就不用再回看了(也没时间,没必要),直接看大纲,对里面的知识点越熟悉越好,这些八股知识不必倒背如流,混个眼熟就好。最后4套卷是帮助背诵5道大题的,要到12月20号左右才发售,在最后半个月时间背一背。我没有用风中劲草,是因为每天俺看大纲做选择题已经吐

血花去2个多小时,实在没时间再看,耗不起。不过风中劲草最后的时事政治归纳的要点(PDF打印出来)很不错,整理得有条理又全面,值得多看看。我九月份和十一月份各有一段时间在手机上用一个App来做题,顺便说一下,这个App是12元/月付费的,这是我当时每天一套做完的动力之一,发现效果还行,但是由于我定力不强,忍不住做完一套选择题就上微博啥的奖励自个儿一些时间放松,还有就是做完错题回看不方便,又不能导出打印,因此最后弃用。其实最后基本就不怎么带手机了,晚上自习后回到宿舍再看短信、电话回复,办法虽笨,效果不错。 二、英语 英语方面我觉得自己的基础还行,毕竟大学几年追剧看电影一直保持着听英语看英文的习惯。(虽然考研不考听力,但是如果想锻炼一下英语听力顺便晚上放松一下的话,找一些美剧或电影自己看还是不错的。当然,生活大爆炸之类的堆砌词藻耍嘴皮的就算了,推荐一些生活剧、喜剧或剧情类的,如绝望主妇、好汉两个半、绝命毒师)。但是考试方面还是得用八股取士小题狂做的死方法,我开始的时候大约是一周一套卷,真题或者模拟题,花一个下午完整做完同时积累一些生词与句型,没事翻一翻看一看整理的本子。最后一个月强度提一点起来,一周2套3套模拟题,培养一些做题手感,对最后考试做题速度有帮助。关于张剑的模拟题,我感到阅读理解题目问得有些别扭,因此弃之不用。许多人推荐张剑的黄皮书真题集,我觉得没有必要,那解释得过于详细,而且是真题和答案分开装订不方便,应该每年的真题答案一起装订成一本,方便对答案又方便携带,

大学物理实验 复摆实验讲义

利用复摆测量重力加速度 【实验目的】 (1)根据复摆的物理特性测量重力加速度; (2)利用拟和方法处理实验数据; (3)练习测量不确定度的评定。 【仪器用具】 复摆,光电计时器,游标卡尺等。 【实验原理】 在测量重力加速度的方法中,有一类利用了摆的性质:小振动周期的平方与成反比(由量纲分析即可得到此结论)。对于大家熟悉的单摆,由于摆球并不是理想的质点,摆线也有一定的质量,导致等效的摆长很难精确测定,严重制约了的测量精度(因为周期测量可以达到很高的精度)。我们这次实验使用的复摆就是为了克服这个困难而设计的专用于重力加速度测量的仪器。 所谓的复摆就是一个刚体摆。在重力作用下,刚体绕固定水平转轴在竖直平面内摆动(见图1)。设复摆的质量为m,其重心G到转轴O的距离为h,从重心到转轴的垂线OG与铅垂线的夹角为,则重力对复摆产生的恢复力矩为 图1 复摆示意图 根据刚体定轴转动定理,复摆的角加速度 其中I为刚体相对O轴的转动惯量,为刚体相对其重心的转动惯量,这里用到了转动惯量的平行轴定理:。

当摆角很小的时候, 上式简化为 这是简谐运动的方程。由此可知,与单摆一样,复摆在平衡位置附近的小振动是周期为 的简谐振动。注意 不是 的单调函数:当 趋于零或无穷大时,周期都趋于无穷大(见图2)。 图2 复摆 曲线(A,C 为一对共轭点) 在实验中,我们可以改变转动轴O 轴(即悬点)的位置。悬点始终在经过复摆重心G 的一条直线(即复摆摆杆的中心线)上。通过改变悬点而改变 ,测量不同 对应的周期 ,用理论公式对测量结果进行拟合,就可以得到 了。 除了上述的曲线拟合方法,这里再介绍一种只需要测量两个点的方法,这也是利用复摆测量重力加速度的传统方法。如图2所示,我们选择的两个悬点O 1和O 2分处重心的两侧,它们到重心的距离分别为 ,振动周期分别为 和 ,根据周期公式有 如果O 1、O 2满足 但 ,则称它们互为共轭点。对于共轭点的情况,上式右边第二项为零,只需要测量两个悬点的距离 就可以计算 了。由于不需要确定重心的实际位置(这一步的精度远比测量两个悬点的距离要低),共轭点法测量重力加速度可以达到很高的精度。注意,即便O 1、O 2不是一对精确的共轭点,只要 和 相差做够小(比如

北京大学物理实验报告:弗兰克赫兹实验docx版

北京大学物理实验报告:弗兰克-赫兹实验(docx版)

————————————————————————————————作者:————————————————————————————————日期:

弗兰克-赫兹实验 【实验目的】 (1) 了解弗兰克-赫兹实验用伏-安证明原子存在能级的原理和方法 (2) 学习用伏-安法测量非线性器件 (3) 学习微电流的测量 【仪器用具】 仪器名参数 F-H-II 弗兰克赫兹实验仪?F-H-II 弗兰克赫兹实验仪微电流放大器10?7档F-H-II 弗兰克赫兹实验仪电源组V F 0~5V2.5级 V G1K 0~5V 2.5级 V G2P 0~15V2.5级Victor VC9806+数字万用表200 mV档±(0.5%+4) 【实验原理】 (1)原子的受激辐射 玻尔的氢原理理论指出,原子只能较长久地停留在一些稳定状态(称为定态)。这些定态的能量(称为能级)是不连续分布的,其中能级最低的状态称为基态。原子在两个定态之间发生跃迁时,要吸收或发射一定的能量,该能量等于两个定态之间的能量差 ΔE mn=E m?E n 原子在能级之间的跃迁可以通过有一定能量的电子与原子碰撞交换能量来实现。初速度为零的电子经过电势差U0加速获得能量eU0,当这些电子与稀薄气体(例如汞)发生碰撞,就会发生能量交换。当电子能量满足 eU0=ΔE mn 便会使得原子从E n被激发到E m,电子能量被吸收。 (2)弗兰克-赫兹实验 图1弗兰克-赫兹装置示意图 图1是弗兰克-赫兹实验装置示意图。图中左侧为弗兰克-赫兹管(F-H管),

它是一种密封的玻璃管,其中充有稀薄的原子量较大的汞或惰性气体原子。在这里灯丝用来对阴极K加热,使其发射热电子。灯丝电压U F越高,阴极K发射的电子流也就越大。第一栅极G1的主要作用是消除空间电荷对阴极电子发射的影响。第二栅极G2的作用是在G2和K之间形成对电子加速的静电场。发射的电子穿过栅极G2达到极板P,形成板流I P。板流I P的大小由微电流测试仪进行测量。在板极P和G2之间加有一反向电压,它对电子减速,使经过碰撞后动能非常低的电子折回。 由热阴极发射的电子初速度为零,受加速电场V G2K作用,V G2K较低时,电子能量小于原子的激发能,电子与汞原子只能发生弹性碰撞。当V G2K增大到原子的第一激发电位时,电子与原子间就产生非弹性碰撞,汞原子吸收电子的能量,由基态被激发到第一激发态。电子损失能量后不能穿越拒斥场,引起板流I P聚减,于是I P?V G2K特性曲线上出现第一个峰值。V G2K继续增大,电子经第一次非弹性碰撞后的剩余能量足以使其与汞原子产生第二次非弹性碰撞,汞原子再次从电子中取得能量,能量交换的结果使I P再次下降。 峰间距正是第一激发态和基态的能极差,在本次实验中,通过测量各个峰值并对其进行线性拟合可以更准确地测得能极差。 (3)实验装置 图 2 四栅式F-H管 实验仪器如图2所示,仪器分为三部分。 加热炉和控温仪:中有FH管,保持FH处于预定温度中 电源组:包括三组独立的稳压电源,分别提供V F灯丝加热电源,V G1K控制电子束强度的加速电压,V G2P减速用的反向电压 微电流放大器:将板流I P并输出U out,本次试验中用U out代替I P 【实验原理】 1预热汞管至180度 2如图2所示搭建实验装置 3根据参考数据调节V F V G1K V G2P,在允许范围内使得峰谷比较大 4调节V G2K,粗测U out?V G2K,了解峰出现的范围 5缓慢调节V G2K,细测U out?V G2K曲线 6处理实验数据

大学物理创新实验报告

大学物理创新实验报告 篇一:大学物理创新实验报告 大学物理实验报告总结 一:物理实验对于物理的意义 物理学是研究物质的基本结构,基本的运动形式,相互作用及其转化规律的一门科学。它 的基本理论渗透在基本自然科学的各个领域,应用于生产部门的诸多领域,是自然科学与 工程科学的基础。物理学在本质上是一门实验学科,物理规律的发现和物理理论的建立都 必须以物理实验为基础,物理学中的每一项突破都与实验密切相关。物理概念的确立,物 理规律的发现,物理理论的确立都有赖于物理实验。 二:物理实验对于学生的意义 大学物理实验已经进行了两个学期,在这两个学期,通过二十几个物理实验,我们对物理 学的理解和认识又更上了一步台阶。通过对物理实验的熟悉,可以帮助我们掌握基本的物 理实验思路和实验器材的操作,进一步稳固了对相关的定理的理解,锻炼理性思维的能力。在提高我们学习物理物理兴趣的同时,培养我们的科学思维和创新意识,掌握实验研究的 基本方法,提高基本科学实验能力。它也是我们进入大学接触的第一门实践性教学环节, 是我们进行系统的科学实验方法和技能训练的重要必修课。它还能培养我们“实事求是的 科学态度、良好的实验习惯、严谨踏实的工作作风、主动研究的创新与探索精神、爱护公 物的优良品德”。 三:我眼中的物理实验的缺陷 1:实验目的与性质的单一性 21世纪的学科体系中,多种学科是相互结合,相互影响的,没有一门学科能独立于其他 学科而单独生存,但是在我们的实验过程中,全都是关于物理,这一单科的实验内容,很 少牵涉到其他。有些实验完全是为了实验而实验,根本不追求与其他学科的联系与结合。2:实验的不及时性及实验信息的不对称性 物理是一门以实验为基础的基本学科,在我们所学的物理内容中,更多的是关于公式定理的,这些需要及时的理解和记忆,最简单的方式是通过实验来进行。但是我们所做的实验,都是学过很久以后,甚至是已经学完物理学科后进行的,这就造成我们对物理知识理解的 不及时性,不能达到既定的效果。而且,我们重复科学实验伟人的实验很大程度上是得知结论后凭借少量的实验数据轻易得出相似的结论,与前人广袤的数据量不可同日而语,这就造成实验信息的不对称性, 不利于从本质上提高我们的实验能力。

北京工业大学实验报告1

1.有一硅单晶片,厚0.5mm,其一面上每107个硅原子包含两个镓原子,另一个面经处理后含镓的浓度增高。试求在该面上每107个硅原子需包含几个镓原子,才能使浓度梯度为2×10-26原子/m3m硅的晶格常数为0.5407nm。 2.为研究稳态条件下间隙原子在面心立方金属中的扩散情况,在厚0.25mm的金属薄膜的一个端面(面积1000mm2)保持对应温度下的饱和间隙原子,另一端面为间隙原子为零。测得下列数据: 温度(K)薄膜中间隙原子的溶解度 (kg/m3) 间隙原子通过薄膜的速率 (g/s) 122314.40.0025 113619.60.0014 计算在这两个温度下的扩散系数和间隙原子在面心立方金属中扩散的激活能。 3.一块含0.1%C的碳钢在930℃渗碳,渗到0.05cm的地方碳的浓度达到0.45%。在t>0的全部时间,渗碳气氛保持表面成分为1%, 4.根据上图4-2所示实际测定lgD与1/T的关系图,计算单晶体银和多晶体银在低于700℃温度范围的扩散激活能,并说明两者扩散激活能差异的原因。 5.设纯铬和纯铁组成扩散偶,扩散1小时后,Matano平面移动了1.52×10-3cm。已知摩尔分数C Cr=0.478时,dC/dx=126/cm,互扩散系数为1.43×10-9cm2/s,试求Matano面的移动速度和铬、铁的本征扩散系数D Cr,D Fe。(实验测得Matano 面移动距离的平方与扩散时间之比为常数。D Fe=0.56×10-9(cm2/s)) 6.对于体积扩散和晶界扩散,假定Q晶界≈1/2Q体积,试画出其InD相对温度倒数1/T的曲线,并指出约在哪个温度范围内,晶界扩散起主导作用。 7.γ铁在925℃渗碳4h,碳原子跃迁频率为1.7×109/s,若考虑碳原子在γ铁中的八面体间隙跃迁,(a)求碳原子总迁移路程S;(b)求碳原子总迁移的均方根位移; (c)若碳原子在20℃时跃迁频率为Γ=2.1×10-9/s,求碳原子的总迁移路程和根均方位移。 8.假定聚乙烯的聚合度为2000,键角为109.5°,求伸直链的长度为L max与自由旋转链的均方根末端距之比值,并解释某些高分子材料在外力作用下可产生很大变形的原因。(l=0.154nm,h2=nl2) 9.已知聚乙烯的Tg=-68℃,聚甲醛的Tg=-83℃,聚二甲基硅氧烷的Tg=-128℃,试分析高分子链的柔顺性与它们的Tg的一般规律。 10.试分析高分子的分子链柔顺性和分子量对粘流温度的影响。 11.有两种激活能分别为E1=83.7KJ/mol和E2=251KJ/mol的扩散反应。观察在温度从25℃升高到600℃时对这两种扩散的影响,并对结果作出评述。

光衍射的定量研究报告__北大物理学院普物实验报告

实验二十光衍射的定量研究 一、数据处理 1.单缝缝宽的测量 测得的光强度曲线图象如图1所示: 将计算用到的具体条纹的相关数据列表如下: 条纹 绝对坐标 相对光强 距离中心 0级亮纹12.355 2570 0.000 0.000 左侧0级暗纹8.600 3 3.755 3.695 右侧0级暗纹16.090 3 3.635 左侧1级亮纹7.025 110 5.330 5.298 右侧1级亮纹17.620 113 5.265 对于衍射屏与观察屏距离的测量:,,则有 图1

。 下面进行计算: ①利用第一次极强计算缝宽,有 ②利用零级暗纹计算缝宽,有 2.双缝的缝宽和缝间距的测量 测得的光强度曲线图象如图2所示: 将计算用到的具体条纹的相关数据列表如下: 条纹 绝对坐标 相对光强 距离中心0级亮纹18.145 2579 0.000 0.000 左侧0级暗纹15.400 66 2.745 2.650 图2

右侧0级暗纹20.700 69 2.555 左侧1级亮纹13.240 1274 4.905 4.855 右侧1级亮纹22.950 1308 4.805 左侧单元因子所致0级暗纹5.220 1 12.925 12.813 右侧单元因子所 致0级暗纹 30.845 1 12.700 *这里的0级暗纹和1级亮纹的物理含义是与之前在单缝中所说的不同的,在单缝中,是由于衍射导致的暗纹和亮纹,而此处是由干涉导致的。 对于衍射屏与观察屏距离的测量:,,则有 。 下面进行计算: ①利用主极强计算缝间距: ②利用0级暗纹计算缝间距: 出现暗纹时,有,在此处具体应写为 则有 ③利用单元因子所致0级暗纹计算缝宽

复摆实验 实验报告

复摆实验报告 一、实验数据 复摆质量m=396.71 g 复摆重心位置H G=0.00 cm 铜刀口质量m′=6.30 g 表1 数据记录、计算与列表 h/cm 20T/s T/s h2/m2 T2|h|/(s2m) 28.16 25.0594 1.25297 0.07929856 0.442093364 27.16 24.8624 1.24312 0.07376656 0.419716336 26.12 24.6864 1.23432 0.06822544 0.397950179 25.16 24.5101 1.225505 0.06330256 0.377868606 24.12 24.3415 1.217075 0.05817744 0.357282699 23.12 24.1924 1.20962 0.05345344 0.338287342 22.14 24.0407 1.202035 0.04901796 0.319898234 21.16 23.9264 1.19632 0.04477456 0.302838014 20.14 23.8218 1.19109 0.04056196 0.285725251 19.14 23.7382 1.18691 0.03663396 0.269635774 18.16 23.7012 1.18506 0.03297856 0.255033084 17.14 23.6818 1.18409 0.02937796 0.240314649 16.16 23.72 1.186 0.02611456 0.227305914 15.18 23.7819 1.189095 0.02304324 0.214637142 14.16 23.9204 1.19602 0.02005056 0.20255368 13.16 24.1304 1.20652 0.01731856 0.191568871 12.16 24.4062 1.22031 0.01478656 0.18108143 11.14 24.7928 1.23964 0.01240996 0.171189197 10.14 25.319 1.26595 0.01028196 0.162506621 8.16 26.8804 1.34402 0.00665856 0.147401404 6.16 29.6492 1.48246 0.00379456 0.135377559 4.12 34.6873 1.734365 0.00169744 0.123930504 2.18 46.7125 2.335625 0.00047524 0.118922142 1.12 61.3588 3.06794 0.00012544 0.105417265 -28.28 25.0597 1.252985 0.07997584 0.443987915 -27.28 24.8769 1.243845 0.07441984 0.422062625 -26.26 24.6732 1.23366 0.06895876 0.399655403 -25.28 24.4948 1.22474 0.06390784 0.379196983

北大物理院光学初试第一名考研经验

北大物理院光学初试第一名考研经验

————————————————————————————————作者:————————————————————————————————日期:

北大物理院光学初试第一名考研经验 2013年北大光学专业只有1个统考生名额,我与第三名的同学一起进入复试(第二名的同学由于单科受限,没能进入复试),竞争很激烈,两个人中有一个人会被淘汰,我就是那个被淘汰的。最后调剂去了北京大学医学部。下面谈谈自己的经历及经验吧。 先简单介绍一下自己,我本科毕业于一所普通211物理系,2013年报考北京大学物理学院光学专业,初试成绩为:英语61,政治70,量子力学107,电磁学与电动力学120,总分358,是光学专业初试第一名,物理学院初试第14名。 2013年北大光学专业只有1个统考生名额,我与第三名的同学一起进入复试(第二名的同学由于单科受限,没能进入复试),竞争很激烈,两个人中有一个人会被淘汰,我就是那个被淘汰的。最后调剂去了北京大学医学部。下面谈谈自己的经历及经验吧。 对于考研统考科目的备考,网上已经有很多经验帖了,我只分享一下专业课的备考。之前我在网上搜过很多北大物院的考研经验帖,大部分都是理论物理专业的,有一篇是光学专业的,但是很可惜,这位同学没有详细介绍光学专业的复试内容。 【初试篇:(仅供参考)】 一、量子力学 量子力学这门专业课很多经验帖也总结了,一般卷面分为两部分:第一部分就是简答判断的小题,第二部分就是计算题,对于计算题,我的方法就是刷习题集,山东大学陈鄂生的那本书,有时间的可以再看看钱伯初,曾谨言的那本习题集,因为今年的量子力学里面有一道是一模一样的原题,在曾谨言卷一的课后题里面也可以找到,总的来说计算部分的题目比较容易解决,都是相关的题型。简答部分的分值很大,大概有50分吧,这些题我感觉比较“难”,需要自己对量子力学的理解,不是靠刷习题集就可以刷出来的。要多注意对教材基本概念的理解。 二、电磁学与电动力学 这门专业课我找了许多经验帖似乎都没有系统的介绍,我简单的说一下我的经验。从这么课的名称就可以看出,分为两部分,一部分叫电磁学,一部分叫电动力学。但是这两门课有很多相似之处,所以有时候大部分同学都只专注于电动力学,例如我就是,结果今年的考试题里面有一道就是专门考电磁学的题。 电磁学与电动力学的题目类型近几年都没有变,估计2014年也不会变,就是6道大题,今年电磁学专门设置了一道题,25分,我没有答出来,另外5道都是电动力学的基础题,在那本著名的电动力学题解里面都能找到类似的甚至原题。今年的六道题里面,有四道都是历年原题,其中包括:麦氏方程组形式,电偶极子的振荡或旋转辐射,证明电磁波进入理想导体内的能量全部转化为焦耳热,粒子碰撞问题。后面我附上我搜集到的电磁学与电动力学的历年真题。相信大家仔细做完之后在考场上一定会有惊喜。 【复试篇:(仅供参考)】 作为专业第一名,被刷的确心理很难受,但也证明了那句话,只要进了复试,谁都有机会被录取,何况光学今年只招一个人,初试相差个几十分根本不能看出两个人的真实能力差距。 在我复试失败之后,我总结了我的教训,虽然我没有机会进入物理学院念书,但是我希望我的经验教训能够帮助今后考北大光学的同学们。 一、关注导师研究方向。

大学物理实验报告

---------------------------------------------------------------范文最新推荐------------------------------------------------------ 大学物理实验报告 摘要:热敏电阻是阻值对温度变化非常敏感的一种半导体电阻,具有许多独特的优点和用途,在自动控制、无线电子技术、遥控技术及测温技术等方面有着广泛的应用。本实验通过用电桥法来研究热敏电阻的电阻温度特性,加深对热敏电阻的电阻温度特性的了解。 关键词:热敏电阻、非平衡直流电桥、电阻温度特性 1、引言 热敏电阻是根据半导体材料的电导率与温度有很强的依赖关系而制成的一种器件,其电阻温度系数一般为(-0.003~+0.6)℃-1。因此,热敏电阻一般可以分为: Ⅰ、负电阻温度系数(简称NTC)的热敏电阻元件 常由一些过渡金属氧化物(主要用铜、镍、钴、镉等氧化物)在一定的烧结条件下形成的半导体金属氧化物作为基本材料制成的,近年还有单晶半导体等材料制成。国产的主要是指MF91~MF96型半导体热敏电阻。由于组成这类热敏电阻的上述过渡金属氧化物在室温范围内基本已全部电离,即载流子浓度基本上与温度无关,因此这类热敏电阻的电阻率随温度变化主要考虑迁移率与温度的关系,随着温度的升高,迁移率增加,电阻率下降。大多应用于测温控温技术,还可以制 1 / 12

成流量计、功率计等。 Ⅱ、正电阻温度系数(简称PTC)的热敏电阻元件 常用钛酸钡材料添加微量的钛、钡等或稀土元素采用陶瓷工艺,高温烧制而成。这类热敏电阻的电阻率随温度变化主要依赖于载流子浓度,而迁移率随温度的变化相对可以忽略。载流子数目随温度的升高呈指数增加,载流子数目越多,电阻率越小。应用广泛,除测温、控温,在电子线路中作温度补偿外,还制成各类加热器,如电吹风等。 2、实验装置及原理 【实验装置】 FQJ—Ⅱ型教学用非平衡直流电桥,FQJ非平衡电桥加热实验装置(加热炉内置MF51型半导体热敏电阻(2.7kΩ)以及控温用的温度传感器),连接线若干。 【实验原理】 根据半导体理论,一般半导体材料的电阻率和绝对温度之间的关系为 (1—1) 式中a与b对于同一种半导体材料为常量,其数值与材料的物理性质有关。因而热敏电阻的电阻值可以根据电阻定律写为 (1—2) 式中为两电极间距离,为热敏电阻的横截面,。 对某一特定电阻而言,与b均为常数,用实验方法可以测定。为了便于数据处理,将上式两边取对数,则有

相关主题
文本预览
相关文档 最新文档