当前位置:文档之家› Identification of Differentially Expressed Genes in Mouse Spermatogenesis

Identification of Differentially Expressed Genes in Mouse Spermatogenesis

Identification of Differentially Expressed Genes in Mouse Spermatogenesis
Identification of Differentially Expressed Genes in Mouse Spermatogenesis

899

900Journal of Andrology·November/December2003 itored by denaturing agarose gel electrophoresis.RNA content

was determined by measurement of optical density at260nm

(OD

260).Only RNA samples showing a OD

260/280

ratio higher

than1.8were used for microarray hybridization and QPCR. Hybridization of cDNA Microarray and Data Analysis Radiolabeled cDNA probes were prepared from each type of germ cell by reverse-transcribing1?g of total RNA in the pres-ence of oligo-deoxythymidine primers and10?L of[?-33P]deoxycytidine triphosphate(10mCi/mL,3000Ci/mmol, Amersham Pharmacia,Piscataway,NJ).Mouse GeneFilters mi-croarrays(GF400,Release I)containing5184mouse sequence-veri?ed cDNA elements,each of them comprising of a?1-kb fragment from the3?end of the corresponding gene,were pur-chased from Research Genetics(Huntsville,Ala).Microarray hy-bridizations were performed according to manufacturer’s instruc-tion.Two microarrays were hybridized with probes generated from2separate preparations of germ cells of each stage.Two extra microarrays were hybridized in the same way with probes from a reference cell line C418.After washing,the hybridized microarrays were exposed to a phosphor screen for5hours and scanned for signals with a Storm840scanner(Molecular Dy-namics,Piscataway,NJ)at a resolution of50?m.Images were analyzed by IPLab/ArraySuite v2.0(NGHRI/NIH)as described previously(Su et al,2000).In the preliminary selection,only genes giving signal intensities less than2-fold variation between duplicate experiments were considered to be expressed in that particular cell type.The expression level of selected genes was compared to that of C418cells to obtain a reference ratio to eliminate experimental variation.The genes were required to ex-hibit comparable changes in signal ratio in the duplicate exper-iments.Genes showing2-fold or greater difference in signal ratio in any2stages were considered to be differentially expressing. Gene identities and GenBank accession identi?cations were extract-ed from the mouse GeneFilters database(version gf400a;available at ftp://https://www.doczj.com/doc/d87631907.html,/pub/gene?lters/gf400a??nal?data?070300.txt). Unigene assignment of selected genes was?nalized based on Mouse Unigene cluster Build#118(December4,2002)from NCBI.Biological functions of gene products were queried against LocusLink of NCBI(https://www.doczj.com/doc/d87631907.html,/ LocusLink),Mouse Genome Informatics of the Jackson Labo-ratory(https://www.doczj.com/doc/d87631907.html,),and GeneCards of the Weizmann Institute of Science(http://bioinfo.weizmann.ac.il/). Quantitative Polymerase Chain Reaction

Equal amounts of total RNA from different stages of germ cells were reverse transcribed to prepare the?rst-strand cDNA sam-ples for QPCR analyses.Gene-speci?c primers(Table1)were designed by Primer Express Version2.0(Applied Biosystems, Foster City,Calif)according to the sequence information pro-vided for the cDNAs on the microarray.QPCR was carried out with the7900HTS Sequence Detection System(Applied Bio-systems)and SYBR Green I chemistry according to manufac-turer’s instruction.To compare the expression level of each gene among the different cell types,a standard curve was?rst gen-erated by plotting the threshold cycle(C

T

)values of a series of ?xed amount of RdSd cDNAs(arbitrarily assigned0.1?,1?,

and10?)against these amounts of cDNAs.The C

T values for a

gene in SgA or PcSc were?tted onto the standard curve to

obtain the respective expression levels.A smaller C

T

value in-dicates a higher expression level,and vice versa.Genes show-

ing C

T

values of40or higher were considered to be nonex-pressing.The abundance of18S rRNA in each cell type also

was monitored and the gene expression levels were normalized

to that of18S rRNA.Genes showing2-fold or greater differ-

ence in expression level in any2stages were considered to be

differentially expressing.

Results and Discussion

Highly puri?ed germ cells were used to prepare radiola-

beled cDNA probes for microarray hybridization.For

SgA,190unique Unigene clusters were identi?ed to give

consistent signals from2independent hybridization ex-

periments.Among the30genes showing the strongest

signals,two thirds(20)were expressed sequence tags

(ESTs)(Table2).For PcSc and RdSd,272and245unique

Unigene clusters were recognized,respectively.The num-

ber of ESTs among the most abundant genes is15of30

for PcSc(Table3)and14of30for RdSd(Table4).The

high proportion of ESTs identi?ed re?ects the small num-

ber of characterized genes in male germ cells.

Based on the microarray signals,79differentially ex-

pressing genes(including known genes,uncharacterized

transcripts,and ESTs)were identi?ed,which exhibited11

expression patterns as a function of the3stages of sper-

matogenesis(Table5).The expression patterns of all79

genes were veri?ed by QPCR.When verifying gene ex-

pressions in PcSc and RdSd,only37genes(47%)were

found to demonstrate concordant changes in expression

between the microarray and QPCR experiments.Among

them,20genes showed a2-fold or greater difference in

expression level between PcSc and RdSd.The expression

levels of these genes,plus several known genes showing

concordant change in expression but with less than a2-

fold difference in QPCR,in SgA,were examined.Ac-

cording to our selection scheme,a total of23genes were

con?rmed to be differentially expressed in the3stages of

germ cells,with one half of them(12)representing known

genes and the remaining11genes being ESTs or unchar-

acterized transcripts(Table6).The high percentage of

ESTs and uncharacterized transcripts identi?ed corrobo-

rates the fact that little is known about gene expression

in germ cells.

We speculate the transition of cells throughout sper-

matogenesis to be the result of a programmed change in

gene expression at different stages of differentiation.Up-

regulation of a gene at a particular stage would suggest

requirement at that period of the gene expression,as well

as the inverse corollary.A comparison of the expression

patterns at different stages should provide insight into the

901

Pang et al ·Differential Genes in Spermatogenesis

T a b l e 1.L i s t o f p r i m e r s d e s i g n e d f o r q u a n t i t a t i v e p o l y m e r a s e c h a i n r e a c t i o n a n a l y s e s o f t h e 79g e n e s i d e n t i ?e d i n m i c r o a r r a y e x p e r i m e n t s

G e n B a n k I D

U n i g e n e I D

G e n e D e s c r i p t i o n

F o r w a r d P r i m e r R e v e r s e P r i m e r

A I 449312M m .34012

E S T *w e a k l y s i m i l a r t o J C 1254U b i q u i t i n -p r o t e i n l i g a s e (E C 6.3.2.19)E 1a g a c a c a a a a c a c t g c a g g a c g

a a t g g t t g c a g t t g c c t c g

A I 323755M m .196666H y d r o x y t s t e r o i d 17-b e t a d e h y d r o g e n a s e 5t c t t c t c a g a g a a a c t c t t g g c g a a a c a a t g g g t t g a t c a g a g c t c A I 413324M m .37850E S T w e a k l y s i m i l a r t o T 42761r a t b a s s o o n p r o t e i n a g c t c t g c a c c t c t c a a g t t t a g g c t g a a g g a c a t t g a a g c t c g g A I 449324M m .32145E S T c c a g g g c t a t a g t t t c a a a a a g a a g a a t t t a t g t g t g t a t t g t t t g c a t g t t a g g A I 465389M m .200636

E S T w e a k l y s i m i l a r t o m y o s i n h e a v y c h a i n ,n o n m u s c l e t y p e B a c t t c c a g c a g g c g a a t a a g a g

t g c t a a a a c t g g t a a t g g t t g a g t t g

A I 450088M m .30519E S T w e a k l y s i m i l a r t o z i n c ?n g e r p r o t e i n 111c c a a c t t a a t t g c t t t t a c c c c a c c c a t a t c a t t t g t c a t c t g a a a g g g A I 414337M m .22902M y o s i n V I I b t c c c a a g a a c a a g g c c a c c t g g g t t g t c c t t c g c a g a g A I 447686M m .28880

E S T w e a k l y s i m i l a r t o A 29942d e v e l o p m e n t a l c o n t r o l p r o t e i n K r o x -4f r a g m e n t a t c c a c a t a a a g g c a g a g a a c a c a

a a c a t g g a c t t g g g c a t a t g g

A I 449015M m .206218E S T w e a k l y s i m i l a r t o h i s t o n e d e a c e t y l a s e 2c t g g a g c c t g a a t g g c a c t c t c a t g g c c t c t t t g c c t c t g A I 662233M m .20159T r i p a r t i t e m o t i f p r o t e i n 10(r i n g ?n g e r p r o t e i n 9)c c c a g t g c c c a t c a g a t a c t c g g c t t a a a a t c c a g c a c t g t t t g A I 465387M m .87130

E S T w e a k l y s i m i l a r t o A r a b i d o p s i s t h a l i a n a e x p r e s s e d p r o t e i n A t 1g 58350.1t t t t a c t t g t g a a a a c a g t a a t g c a c t g

a t a c a c a a c a c a g a c t c a a c a a c c c

A I 464359M m .28383

E S T h i g h l y s i m i l a r t o h u m a n d o w n r e g u l a t e d i n o v a r i a n c a n -c e r 1t g t g a c t a t g c a g g c a a c a c a t a g

t c a c c c c t t c c a a a t c c c t a g

A I 451664M m .17962E S T c t a g t t a a a c c t a a a g t g g c c t c a g c g a a t g t t c a a t t c c a t c c c a c t c A I 426564N o U n i g e n e I D E S T g t t g a t c t t t a c t g a g a c c a g a t g t g t a g c c t t t g a a c t c a c a t g a a t c c t c c A I 447998M m .31947E S T t g t c c t g g t g c a g t t t g t g t g t c a a g t a t g c t t c a c t t g g t a c c t g A I 448719M m .210529E S T h i g h l y s i m i l a r t o h u m a n n u c l e o p r o t e i n T P R g g t a t c t a c g g a g g a g c t c g a a g g a a a t t g a t a g c c a g c a g g a a g a g A I 447526M m .195952

P o t a s s i u m l a r g e c o n d u c t a n c e c a l c i u m -a c t i v a t e d c h a n n e l ,s u b f a m i l y M ,b e t a m e m b e r 4c c a c g a a c t c a c t t t c a g t c a a t a a

a a c c c c c a a c a g a c g a a c a a g

A I 426019M m .9935E S T c a g t c t t g c c a g g c a a g t c a g g g c a g t g t t t c c c a c t g c t c A I 414204M m .21406

E S T h i g h l y s i m i l a r t o h u m a n s e r o l o g i c a l l y d e ?n e d c o l o n c a n -c e r a n t i g e n 3g c a c a g g g a g c t g c t t a t g t c

g t g c c t t t t g t a t a g t g c a a t t c a g

A I 447598M m .21284

E S T w e a k l y s i m i l a r t o P H D ?n g e r p r o t e i n 1(T -c o m p l e x t e s -t i s -e x p r e s s e d 3)c t g a c a t g a g g a c a a t g a c t g a c a c

g a t g g c g c a t a c a g a t g a a a a g

A I 448283M m .219636

E S T w e a k l y s i m i l a r t o T 01437h u m a n h y p o t h e t i c a l p r o t e i n R 34001?1a g t c a c c c c t t g c c t t c c t c

t c c c t a c c t a c a c t t t g t c c c c

A I 415236M m .23054

E S T w e a k l y s i m i l a r t o p l a t e l e t -a c t i v a t i n g f a c t o r a c e t y l h y d r o l -a s e I B a l p h a s u b u n i t c t c a a g t c c c c a t a c a a a t c c c

c a c t a a c a g a a g a c a g g c t g a a g c

A I 415362M m .4532

E S T h i g h l y s i m i l a r t o T 12543h u m a n h y p o t h e t i c a l p r o t e i n D K

F Z p 434M 154.1(f r a g m e n t )c c a c c c a c a a t g t a t c t a c c c c

c c t t a c a a t c a c g g c a t t t g g

A I 415719M m .227209S m a l l E D R K -r i c h f a c t o r 2c t c a a g t a c c c c a g c t c t c c t t a c a c t g g a t c g a g c a g a g c c a g A I 326150M m .24643C e n t r i n 2g c a t g a g c a a g g t g a a g t a a t g g t g a c t a a a t c a a c a g g g c a g a a c a A I 429699M m .12393D o w n r e g u l a t e d b y C t n n b 1,a t a g c t a a g t c c a c c t a c a a c c t t g c c a g g t g a t t g t g t c c g a a t c g A I 323595M m .17

B -c e l l r e c e p t o r -a s s o c i a t e d p r o t e i n 31a g t g a g g c g g c c a a g a a a t a c g c t c a t c t t t t a g c t t c c t c a g g t c A I 448833M m .181446

E S T h i g h l y s i m i l a r t o a l p h a -a m y l a s e ,s a l i v a r y a n d h e p a t i c p r e c u r s o r c t t g a c a c a a t g t t g a a t t a c c t g g

a c a t t t g g g c t g a t c t c a c a t t a g

A I 326026M m .6775O r n i t h i n e d e c a r b o x y l a s e a n t i z y m e i n h i b i t o r a a g t c a c a c t g g t c t t c c a c t c a c c c a t t a a c t g g g t t c c c c a t c A I 448820M m .20904C a r t i l a g e -a s s o c i a t e d p r o t e i n t c g g a t g a g c a c t t c c a g c c c g t c t c c a a c a a g t c g t c c A I 415364M m .36746T r a n s d u c i n b e t a -l i k e 2p r o t e i n c c c c a c a c g c a c a c a c a a g g t t t c t g a t a a g a t c a g c c a A I 413759M m .22826

E S T w e a k l y s i m i l a r t o B 56708h u m a n e x t r a c e l l u l a r s i g n a l -r e g u l a t e d k i n a s e 5

c a a g c t t c a g t t t c t a c c a t c c t g

t g c a t c a c t c c t a g c c c c t c

902

Journal of Andrology ·November/December 2003

T a b l e 1.C o n t i n u e d

G e n B a n k I D

U n i g e n e I D

G e n e D e s c r i p t i o n

F o r w a r d P r i m e r R e v e r s e P r i m e r

A I 426199M m .30222S t r o m a l c e l l -d e r i v e d f a c t o r 2-l i k e 1t g g c t g a g t g g c a a t c t c g c a g c a a a a a t a a t c c c a g a c c a a c A I 415354M m .156164

E S T w e a k l y s i m i l a r t o B 24264p r o l i n e -r i c h p r o t e i n M P 3(f r a g -m e n t )a c c a g c a c t g a t g t a g g g a g t c a c

a t a a t g t a g a a t g c t g c a t c c c c t c A I 415728M m .209228

E S T m o d e r a t e l y s i m i l a r t o h u m a n N -a c e t y l g l u c o s a m i n e -1-p h o s p h o d i e s t e r a l p h a -N -a c e t y l g l u c o s e a m i n i d a s e t g t g g a a g t g a g g a g c a g g g

c a g a g a a g g a g c a c a t g g a g g

A I 414519M m .27260E S T m o d e r a t e l y s i m i l a r t o N E D D -4c g a t t g t a t g a a t a a a a t t c c t g a t t t g a a g g a a t g g c a g g c a g t a c a a g A I 450390M m .138544E S T m o d e r a t e l y s i m i l a r t o h u m a n H T G N 29p r o t e i n c t g c a a a g t t g t a a a g a a g c t t g g c a c t g g g a t t a t t t g c c g t a t t t c A I 448386M m .27288G e l o n g a t i o n f a c t o r t c a a g c a g a c t c c a t c a t c c c c a g c t t c c c g t a a a a a a a g g g A I 414503M m .27281

E S T w e a k l y s i m i l a r t o I 56134h u m a n t u m o r n e c r o s i s f a c t o r a l p h a –i n d u c e d p r o t e i n 2t g t t a t t t t g c c t c a g c c c c

t c a t t g t c t g a c t t g c t a t c c c t g

A I 413624M m .28800S M A F 1c a a c a c a c c c t g t g a g t t g a c t g g c c a a g c c t c t t g c c a a a c A I 429624M m .29326E S T c c t c c g a g t g c t g g g a t t a a g a g t g t t c g a a g a g t c a g a c a g a t g A I 429630M m .19077E S T w e a k l y s i m i l a r t o r a t r h o

B g e n e g g a c c t g g g t t t g t t t c c a a g g t a c c g a c a g a a g c c a a a t g a A I 428344M m .23423E S T w e a k l y s i m i l a r t o z i n c ?n g e r p r o t e i n 238t g g c t g g g c a a a a a a a a g g t g c t a g a t g g c t c c a g a g a a g g A I 448690M m .142843H y p o t h e t i c a l p r o t e i n M N

C b -2040c c t c c c a g t t c t c c a a a a t c c g a t g g a g t t g t t g a a t c c g a a t g A I 451014M m .24056E S T w e a k l y s i m i l a r t o I 49636

D N A -b i n d i n g p r o t e i n t g c t t t c t g g t g a c a t a g t g a c g a g c t t g a a g g t t c t t t c t c t g a g t t c A I 449806M m .32242G l u c o k i n a s e a c t i v i t y ,r e l a t e d s e q u e n c e 1c t g g a c a c t t g a c a a a t c c c t t a g t g a a a c c t t c c a t g c c a g a a a c A I 449427M m .223650

E S T a c t g c t c c t t a a g c c t g c c c t g a t a g c c a a g g a t a t a c t c c a g a g a g A I 464441M m .28262R e g u l a t o r o f G -p r o t e i n s i g n a l i n g 2g t g g t t c t a g g a a t g t g g t c t g a t g t t g t a c c t g c c c a c t g a g a a a t c A I 449017M m .46613

E S T h i g h l y s i m i l a r t o s e r i n e /t h r e o n i n e p r o t e i n p h o s p h a t a s e 2A ,56k d r e g u l a t o r y s u b u n i t ,e p s i l o n i s o f o r m a g a c g g t c a c t t c g c t c a c a c

g a c c a c t t c a a c c t t a t c c c t a c c

A I 451901M m .1226C o m p l e m e n t r e c e p t o r 2t t g g c a g c a t g c a g t c a g a c t t a g g a a g c t t g c c c t t g t t g A I 428575M m .23465

E S T m o d e r a t e l y s i m i l a r t o S 12207h y p o t h e t i c a l p r o t e i n (B 2e l e m e n t )g g t g a g c t g a g c c t t t a t g g c

t g g g a t c t a t c a a a g g g c t a a c t c

A I 385732M m .30155

H ?-t r a n s p o r t i n g A T P a s e (E C 3.6.1.35),v a c u o l a r ,16-k b c h a i n a g t c t c a g c a a c a g g a a c c c c

a g a t t t g a c c t a t t c a t g c g t c t g

A I 327406M m .29652G l u t a t h i o n e -S -t r a n s f e r a s e z e t a 1a c a t g t a a g g c a g t c a t g g t g c g g a g g t g t g g c c t t c t t g g A I 451005

M m .30595

E S T

t t a t t a t t a t g a a t g a t g t a -t g c t c g a g t g a c a g c c t a g c c t a t c a g t g a a t t t c

A I 426001M m .24669E S T t g t c t g c a t t t c a a c a c t c c a t g a t c t g t a g t c c a g a a t g c t t t c c t c A I 448691M m .32059E S T g g a t c t g t c a g g a t g c t t g t t g t g a c a g g t t t c a g c c c a g c A I 451316M m .32451E S T a t a g c t t t c t t t a g a t g t g c t g t g t t t c a a a t t c t t g g t c t a c t g t g t t t a a c t g c A I 429824M m .1224T -c e l l r e c e p t o r C D 3e t a c h a i n p r e c u r s o r t c t c a c a g t c a c c a c t t c c c c g a g c a c t g g c c c t g t t a t c t g A I 413790M m .22848E S T a c t a t g a g c t a t g c a t t t a a g c g a t c a a g t t g g g a a g c t g a g g c a g A I 451034M m .34092E S T w e a k l y s i m i l a r t o h u m a n h y p o t h e t i c a l p r o t e i n F L J 20721t g a g a c c a c c g a c a c c a c t c c t t a c a a c t t c c a g c c t c c c t c A I 325471M m .30074O x o g l u t a r a t e d e h y d r o g e n a s e (l i p o a m i d e )t c a a a a g a g g g a g g a a g g a c a g t c c c t t g a a c a c a c a g a a g c t g A I 429335M m .6735P r o l y l e n d o p e p t i d a s e g g g g a c g g a t c a g t c a g a a g a t a g a g g t c a c a g t a c c a c a g t c g g A I 666408M m .33584E S T h i g h l y s i m i l a r t o X t r a n s p o r t e r p r o t e i n 3a a t t t g g g t t c c t c t g c a a g a g t t t g g g t g t g t t t g t c c c g A I 450996N o U n i g e n e I D E S T a g t t t a c t g a a a a t g c c c c c c a c g g c t t g c t g t g t g a t t t g A I 323829M m .21758C y t o c h r o m e P 450,2e 1,e t h a n o l i n d u c i b l e a g g g c t g a g g t c g a t a t c c t t a g a a g c g c g t g t g t g t t g g a g A I 451700M m .32519E S T a a c t g a g g c c t g t g a c c a c t t c a g t c a c g c c t t c t g t t t c t g t g A I 324053M m .18843T r a n s g l u t a m i n a s e 2,C p o l y p e p t i d e a c a g a t a g c a c g g c t c a c g g c t g g g t g a t g a g g t c a a a g t t t c A I 661959M m .159813E S T m o d e r a t e l y s i m i l a r t o I 49636D N A -b i n d i n g p r o t e i n c a a g t g a a a g c a a t a c c a c a t g g t g a a a t g a a c a a g t g a a c a g a g c c A I 449518M m .44123

D i f f e r e n t i a l l y e x p r e s s e d i n F D C P 8

g a c c c a c a t c a c a c t c a a a g g a c

g g c t t t a c t c a t g c t g t t t t t c t g

903

Pang et al ·Differential Genes in Spermatogenesis

T a b l e 1.C o n t i n u e d

G e n B a n k I D

U n i g e n e I D G e n e D e s c r i p t i o n

F o r w a r d P r i m e r

R e v e r s e P r i m e r

A I 447538M m .31862E S T a c t a g c a c c a t a g c c c a g c g g a g a c c t a t g g a g g a c t a c t g g g t c A I 452049M m .31742E S T w e a k l y s i m i l a r t o r a t U b i q u i t i n -s p e c i ?c p r o t e a s e 2c a g t c t g t a c t c c t t g a g c t g c c t c t g t t t c g a a g c t g c t g t c A I 427661M m .104771V a s c u l a r R a b -G A P /T

B

C -c o n t a i n i n g ;B U B 2-l i k e p r o t e i n 1a a c c t t g a g g a c a a a c a t t a a a g g c c a a g a g a t c c c a g a a c c a t t g c A I 428089

M m .129498

E S T w e a k l y s i m i l a r t o T 50638h u m a n s y n a p t i c g l y c o p r o t e i n S C 2(i m p o r t e d )t g c a g t t t t c a t g c a t c a t c a c

a c t g t t g g t t t c a a g g a g c c t c A I 450803M m .32360E S T t t c c t a g t t c t t t g t g a a c c t a c c t g a a c t t c c c a c a g a c a c c a t g g A I 413123

M m .179409

E S T w e a k l y s i m i l a r t o T 08696h u m a n h y p o t h e t i c a l p r o t e i n D K

F Z p 564A 043.1(f r a g m e n t )t g g a t t g t t a c a c t t c c t t a a a g g c c g g g a a c t t g t t t t c t c c a g c

A I 426683N o U n i g e n e I D E S T c c a c c t t t a g g a g g t g g t a t g c c c a t g t a t a c c t c a g a t t g g t c c t t a c A I 428924M m .23498R I K E N c D N A 1110051

B 16g a c g g a c c c g g a g g g a t a t a c a c t g t t a c t c t g g c t g g t c t t g a A I 428846M m .29310E S T w e a k l y s i m i l a r t o r a t O -G l c N A c t r a n s f e r a s e p 110s u b u n i t a t a a g a a c a g c a c a c a a t c c a g a g c a a a g t g g g t t t c c a t c t c a c a t g A I 448817M m .231899

E S T g g a c a g t c c t c c a t c c a c t g a g

t g t a g t g c t t t g a a a g a g a g t g g g

*E S T i n d i c a t e s e x p r e s s e d s e q u e n c e t a g .

potential roles these genes would play during spermato-genesis.The expression of the 23genes could be clus-tered into 5changing patterns (group I through V;Figure).Group I genes (n ?7)displayed very low or no expres-sion in SgA,a gradual increase in PcSc,and a maximal increase in RdSd.These genes may be speci?c for meiotic or postmeiotic functions or cellular activities in a more differentiated state.Four of the genes in this group are known genes,and the remaining 3are ESTs and a gene encoding a hypothetical protein (Table 6).In the mouse,glucokinase (glycerol kinase)activity-related sequence 1(Gk-rs1)is an autosomal intronless retrotransposed ele-ment from the X-linked glycerol kinase and expressed only in the testis (Pan et al,1999).Nothing is known about its biological function because it lacks glycerol ki-nase activity.From our data,the total absence in SgA suggests that Gk-rs1is involved in activities of postmi-totic germ cells.Within this group there is a novel gene Smaf1that has uncharacterized biological function.

Two immunocyte-speci?c genes,namely complement receptor 2(Cr2/CD21)and T-cell receptor CD3eta pre-cursor (CD3?),also were identi?ed.Cr2is a receptor for C3d,g complement fragment-tagged immune complexes.The receptor is expressed mainly on follicular dendritic and B cell surfaces and was found to enhance B-cell ac-tivation and differentiation by lowering the signal thresh-old for activation (Prechl and Erdei,2000).CD3?is one of the noncovalently associated subunits of the T-cell re-ceptor (TCR)complexes.It has been shown to participate in the assembly and cell surface expression of TCR com-plexes and transduction of signal from TCR that leads to intrathymic T-cell differentiation (Bauer et al,1991;Mal-issen et al,1993).Because cross-contamination by B or T cells is very unlikely in our germ cell isolation proce-dure,the expression of Cr2and CD3?in male germ cells strongly suggests their involvement in spermatogenesis and the immunocyte-speci?c expression is the result of exclusion of testis tissues in previous studies.As both gene products were expressed on cell surface and in-volved in signaling processes,we speculate a similar mode of action for Cr2and CD3?in germ cells by reg-ulating or transducing signals for cellular differentiation from the extracellular environment.

Group II genes (n ?8)expressed at a lower level in SgA;after reaching a maximum in PcSc,the expression level declined in RdSd.Such expression pattern implies that the gene activities are more important to meiotic germ cells,as the expression level dropped beyond this stage,possibly involved in meiosis or the maintenance of the tetraploid state.Three known genes are in this group.Mitochondrial elongation factor G (Gfm )catalyzes the A-to-P site translocation of peptidyl-tRNA after peptide bond formation in protein biosynthesis (Gao et al,2001).Its preferential expression in PcSc suggests a more de-

904Journal of Andrology·November/December2003 Table2.List of top30genes identi?ed in type A spermatogonia.Raw signal data from the duplicate microarray hybridizations are shown

First Experiment

Second

Experiment GenBank ID Gene Description

819.92881621.9736AI464583ESTs,*weakly similar to podocalyxin(Rattus norvegicus)

661.261861297.5354AI325463ESTs,highly similar to NADH-ubiquinone oxidoreductase PDSW subunit(Bos taurus) 345.88605675.84675AI413169Ferritin heavy chain

873.812011692.67821AI327250ESTs,highly similar to?brinogen beta chain precursor(Homo sapiens)

277.89312537.14944AI327126ESTs,moderately similar to probable peptidyl-prolyl cis-trans isomerase C21E11.05C(Schi-

zosaccharomyces pombe)

436.89368836.5056AI324036ESTs,highly similar to alpha-1-antiproteinase f precursor(Oryctolagus cuniculus)

355.12456679.59642AI327195ESTs,highly similar to hypothetical66.5-kd protein in ADE12-RAP1intergenic region(Sac-

charomyces cerevisiae)

352.29766670.39518AI573377Peroxisomal membrane protein3,35kDa

637.333031210.04042AI449200ESTs,weakly similar to survival motor neuron protein1(Mus musculus)

447.06816836.14464AI448856ESTs,weakly similar to(de?ine not available5931573)(M.musculus)

761.85341404.02724AI448901ESTs,highly similar to KIAA0738protein(H.sapiens)

567.67561020.81784AI662203ESTs,moderately similar to phosphatidylinositol(H.sapiens)

428.0736760.64936AI427137Proteasome(prosome,macropain)26S subunit,non-ATPase,13

585.092971036.85184AI427147DNA segment,Chr18,Wayne State University70,expressed

320.90373568.12147AI449974ESTs,highly similar to KIAA0476protein(H.sapiens)

714.646241264.79684AI327236Mus musculus myotubularin related protein7mRNA,partial cds

509.81061902.09591AI326004ESTs,highly similar to T-cell surface protein tactile precursor(H.sapiens)

1076.807611891.41795AI385678Even skipped homeotic gene2homolog

494.2896857.092AI429293ESTs,highly similar to ubiquitin-conjugating enzyme E2-21kd UBCH6(M.musculus) 472.2036790.38504AI415195Demethylarginine dimethylaminohydrolase2

439.25025716.17032AI662233Ring?nger protein9

494.60676800.15812AI447686ESTs,weakly similar to zinc?nger protein ZFP-37(M.musculus)

366.6106581.8431AI661959ESTs,weakly similar to DNA-binding protein(M.musculus)

336.85208533.94272AI426508ESTs,highly similar to cytochrome P450L1(S.cerevisiae)

621.63515924.97285AI325930ESTs,highly similar to cell division control protein23(S.cerevisiae)

409.51328586.37425AI414965Glutamine synthetase

486.34593675.37809AI451489ESTs,highly similar to KIAA0652protein(H.sapiens)

399.81781533.37109AI449154Phosphatase and tensin homolog

734.0025951.95265AI414785ESTs,weakly similar to DAP-kinase related protein1(M.musculus)

421.85715546.7AI413310ESTs,weakly similar to type VI collagen alpha3subunit(M.musculus)

*EST indicates expressed sequence tag.

manding need of the germ cell for protein synthesis at this stage,presumably to support cellular events at the tetraploid state or the2rounds of meiosis.

Regulator of G-protein signaling2(Rgs2)belongs to a family of proteins that regulate G-protein signaling by accelerating hydrolysis of guanosine triphosphate bound to activated G?subunits,thus limiting the duration of signaling(Kehrl and Sinnarajah,2002).Rgs2also was involved in cellular differentiation(Imagawa et al,1999). Speci?cally it was up-regulated during early stages of dif-ferentiation but down-regulated thereafter.We did not ob-serve a concordant expression pattern of Rgs2in germ cells;this may be attributed to the difference in cellular contexts.The increased expression of Rgs2in PcSc sug-gests the occurrence of more active transmembrane sig-naling events during this stage.

The large conductance calcium-activated potassium channel(BK or MaxiK)is a member of the Shaker-related 6transmembrane domain potassium channel family that is activated by voltage and calcium.BK channel is com-posed of a pore-forming?subunit and a modulatory transmembrane?subunit.The tissue speci?city of?sub-units confers different physiological properties to the channels,for example,?4subunit(encoded by KCNMB4),which is highly expressed in brain and testis, could enhance the opening of BK channel at high[Ca2?] (Brenner et al,2000).Despite the?subunit gene being absent on the microarray,the detection of Kcnmb4in germ cells indicates the presence of functional?and?4 BK channels.In fact,both?-and?4-subunits were found to be active in human testes(Behrens et al,2000;Brenner et al,2000).The augmented expression of Kcnmb4in PcSc suggests more active modulation of the BK channel during this stage.In neurons,BK channels were associ-ated with calcium channels(Marrion and Tavalin,1998). We postulate in male germ cells,the Ca2?in?ux resulting from signaling events would activate BK channels to open to allow entry of K?that triggers downstream bio-chemical responses.Interestingly,heterologously ex-pressed?and?4BK channels could be activated by17?-estradiol(Behrens et al,2000).This?nding suggests that sex steroids may act on?and?4BK channels in germ

905 Pang et al·Differential Genes in Spermatogenesis

Table3.List of top30genes identi?ed in pachytene spermatocytes.Raw signal data from the duplicate microarray hybridizations are shown

First Experiment

Second

Experiment GenBank ID Gene Description

439.91906564.09682AI451433ATP-binding cassette,sub-family A(ABC1),member2

392.2892497.1226AI415313Calcium channel beta3subunit

370.0781455.90226AI666534CD4antigen

403.722496.2672AI451039ESTs,*highly similar to mitochondrial60S ribosomal protein L3(Rattus norvegicus) 407.12595499.91667AI448900Potassium inwardly rectifying channel,subfamily J,member8

548.37475655.88908AI448901ESTs,highly similar to KIAA0738protein(Homo sapiens)

488.02971571.36558AI415629Calumenin

404.1804460.7616AI413758Potassium channel,subfamily K,member1

509.70815566.69305AI324156ESTs,highly similar to NPL4protein(Saccharomyces cerevisiae)

539.11363593.47948AI323810Nucleophosmin1

467.3853514.35498AI324267Deiodinase,iodothyronine,type II

438.3236480.55384AI324113Noncatalytic region of tyrosine kinase adaptor protein2

632.1731688.72336AI666635Gene trap locus3

425.58195463.34723AI427864ESTs,highly similar to transcription factor-like5(H.sapiens)

451.24736482.5746AI448065Aryl-hydrocarbon receptor-interacting protein

454.073485.0515AI413710ESTs,weakly similar to ZnT4(Mus musculus)

766.26333814.74408AI385678Even skipped homeotic gene2homolog

506.85768537.67098AI325463ESTs,highly similar to NADH-ubiquinone oxidoreductase PDSW subunit(Bos taurus) 582.1242611.6328AI464583ESTs,weakly similar to podocalyxin(R.norvegicus)

452.0926472.80295AI661337ESTs,weakly similar to retinoblastoma-associated protein HEC(H.sapiens)

461.08251476.91683AI325930ESTs,highly similar to cell division control protein23(S.cerevisiae)

572.85956590.77785AI465327ESTs,moderately similar to hypothetical protein(H.sapiens)

643.05081661.36608AI327250ESTs,highly similar to?brinogen beta chain precursor(H.sapiens)

444.10926454.75855AI413153ESTs,weakly similar to C11H1.7(Caenorhabditis elegans)

458.79372460.50444AI430998Vav2oncongene

460.04493461.18492AI449200ESTs,weakly similar to survival motor neuron protein1(M.musculus)

535.31302526.88674AI327236Mus musculus myotubularin related protein7mRNA,partial cds

509.91435458.15055AI414785ESTs,weakly similar to DAP-kinase related protein1(M.musculus)

597.42995518.11004AI449123ESTs,moderately similar to tumor suppressor(H.sapiens)

690.6384548.1351AI666733Calcium/calmodulin-dependent protein kinase IV

*EST indicates expressed sequence tag.

cells.It would be tempting to investigate the interplay between sex steroids and?and?4BK channels in mod-ulating germ cell physiology in vivo.

The expression level of group III genes(n?2)was maintained in SgA and PcSc but dropped in RdSd,sug-gesting the encoded functions were less essential to the postmeiotic germ cells.Only1known gene is present in this group.Trim10(also known as Herf1)was reported to be involved in erythroid differentiation(Harada et al, 1999).The higher expression of Trim10in SgA and PcSc suggests its involvement in differentiation in the earlier stages of spermatogenesis.Similar to Cr2and CD3?, Trim10was previously not known to be active in testis. Group IV genes(n?5)had the highest expression level in SgA,the lowest in PcSc,and more elevated in RdSd,but less than in SgA.These genes are likely to mediate functions speci?c to spermatogonia.The up-reg-ulation in RdSd may re?ect the requirement of the gene products at this stage(eg,for subsequent sperm matura-tion)or result from relaxation of restraints imposed by X-chromosome inactivation process(McCarrey et al,2002).Four known genes and1uncharacterized transcript are in this group.

Cartilage-associated protein(Crtap)was?rst identi?ed to exhibit a developmentally regulated expression pattern in chick chondrocytes(Castagnola et al,1997).Crtap was implied to function in the differentiation process,because its expression was up-regulated when chondrocytes dif-ferentiated.Examination of our data demonstrated a sim-ilar expression pattern of Crtap,in which the more dif-ferentiated RdSd showed a higher expression than PcSc. However,the less differentiated SgA showed the highest expression level.This observation suggests an alternate function for Crtap in SgA or Crtap may play a totally different role in germ cells than in chick chondrocytes. Because little is known about Crtap,the signi?cance of this gene in germ cell development will be revealed by direct manipulation of its expression.

Prolyl oligopeptidase(Pop)is a widely distributed ser-ine endopeptidase catalyzing the hydrolysis of the car-boxyl side of proline residues in peptides.Pop was found to involve in peptide hormone maturation and degrada-

906Journal of Andrology·November/December2003 Table4.List of top30genes identi?ed in RdSd.Raw signal data from the duplicate microarray hybridizations are shown

First Experiment

Second

Experiment GenBank ID Gene Description

641.50305766.96656AI413324ESTs,*moderately similar to HH0712cDNA clone for KIAA0442has a574-bp insertion at

position1474

552.27326511.73815AI448901ESTs,highly similar to KIAA0738protein(Homo sapiens)

577.02315502.75335AI414785ESTs,weakly similar to DAP-kinase–related protein1(Mus musculus)

580.65013497.9895AI415629Calumenin

667.86324565.42095AI327250ESTs,highly similar to?brinogen beta chain precursor(H.sapiens)

676.96453565.5837AI413315Glutamine synthetase

859.9482716.77953AI385678Even skipped homeotic gene2homolog

571.5958473.80374AI449164Immunoglobulin-associated beta

604.773474.201AI450790ESTs,highly similar to hypothetical36.7-kd protein AH6.2in chromosome II(Caenorhab-

ditis elegans)

582.53664447.0034AI449362ESTs,weakly similar to testis-speci?c protein A(Rattus norvegicus)

647.35812491.47194AI327236Mus musculus myotubularin-related protein7mRNA,partial cds

590.77785443.66387AI465327ESTs,moderately similar to hypothetical protein(H.sapiens)

649.8204483.1836AI464583ESTs,weakly similar to podocalyxin(R.norvegicus)

631.00937464.61794AI325160MARCKS-like protein

596.44431436.49766AI666733Calcium/calmodulin–dependent protein kinase IV

671.15772486.66149AI428004DNA segment,Chr9,University of California at Los Angeles2

645.23664467.5776AI893883Cardiotrophin1

825.2827590.39695AI413310ESTs,weakly similar to type VI collage alpha3subunit(M.musculus)

653.23197462.7485AI427478ESTs,highly similar to diphosphomevalonate decarboxylase(R.norvegicus)

642.19656453.73482AI385562Cytochrome P450,2b9,phenobarbital inducible,type a

659.72767456.73985AI323314Neuropeptide nociceptin1

639.6042441.10254AI894225ESTs,highly similar to drebrins E1and E2(Gallus gallus)

656.49264441.85944AI528643Adaptor-related protein complex AP-1,mu subunit1

755.43444501.06412AI894196ESTs,weakly similar to ubiquitin carboxyl-terminal hydrolase13(Saccharomyces cerevi-

siae)

853.24248561.93552AI413305ESTs,highly similar to neural F box protein NFB42(R.norvegicus)

680.79528443.75364AI430998Vav2oncogene

696.9402447.9948AI894211Otoconin90

723.36218459.1604AI323310Fos-like antigen2

695.79203433.60411AI414297Phosphodiesterase6D,cGMP-speci?c,rod,delta

862.92892485.37042AI451489ESTs,highly similar to KIAA0652protein(H.sapiens)

*EST indicates expressed sequence tag.

tion,cellular differentiation(Kimura et al,1999),and re-cently meiosis of spermatocytes and differentiation of spermatids in mice(Kimura et al,2002).In the latter study,Pop showed the highest expression level in2-week-old mouse testes that contained differentiated cell species from SgA to PcSc;the expression decreased suc-cessively until8weeks of age when all stages of sper-matogenesis were present.In situ hybridization revealed Pop mRNA in all germ cells in2-week-old testes,but only in RdSd in8-week-old testes.Because the PcSc and RdSd used in our study were isolated from animals at a similar age(60days)as in study of Kimura et al(2002) (8weeks),we expected a similar result.Indeed,we ob-served a higher expression of Pop in RdSd.In contrast, we did not see a total absence of Pop expression in PcSc. We also found that SgA displayed the highest level of Pop expression,which was not addressed by Kimura et al(2002).Thus,rather than being involved in meiosis,we believe Pop plays a more important role in SgA mitotic functions.

Among the genes in this group are two X-linked genes, namely B-cell receptor–associated protein31(Bap31)and centrin2(Cetn2).Bap31associates with membrane im-munoglobulin D on mature B cells and is highly enriched in endoplasmic reticulum(Ng et al,1997).It also regu-lates apoptosis by processing procaspase-8L to modulate caspase activation(Breckenridge et al,2002).In fact, Bap31is a preferred substrate of caspase-8,and its cleav-age product p20contributes directly to apoptosis pro-gression(Nguyen et al,2000).Cetn2is a centriole protein within the centrosome.In addition to its involvement in cytokinesis and cell cycle progression,Cetn2is essential to centriole duplication and the proper progression of mi-tosis;its loss leads to aberrant mitosis and cell death(Sal-isbury et al,2002).Both genes were preferentially ex-pressed in SgA,suggestive of a role for Bap31and Cetn2 in regulating spermatogonial apoptosis and proper main-tenance of mitosis,respectively.As germ cells differen-tiate,the expression of Bap31and Cetn2dropped dra-matically in PcSc,a phenomenon attributable to X-chro-

Pang et al·Differential Genes in Spermatogenesis

907

Table5.List of79genes showing differential expression pattern in microarray analyses.Red color denotes a higher gene expression level in the respective type of germ cells than in reference cells,whereas green color shows the opposite phenomenon

908

Journal of Andrology ·November/December 2003

T a b l e 6.L i s t o f 23g e n e s s h o w i n g d i f f e r e n t i a l e x p r e s s i o n p a t t e r n a s i d e n t i ?e d b y m i c r o a r r a y a n a l y s i s a n d q u a n t i t a t i v e p o l y m e r a s e c h a i n r e a c t i o n *

G e n e D e s c r i p t i o n

G e n B a n k I D U n i g e n e I D

R e p o r t e d T e s t i s E x p r e s -s i o n

B i o l o g i c a l F u n c t i o n

F o l d C h a n g e i n Q P C R

S g A P c S c R d S d C T i n R d S d ?

G r o u p I

G l u c o k i n a s e a c t i v i t y ,r e l a t e d s e q u e n c e 1(G k -r s l )A I 449806

M m .32242Y e s ?

U n k n o w n

00.78?0.051§24.62?0.50

S m a ?A I 413624M m .28800Y e s U n k n o w n 0.03?0.0040.42?0.02127.84?0.11C o m p l e m e n t r e c e p t o r 2(C r 2)A I 451901M m .1226N o S i g n a l i n g 0.14?0.020.27?0.05133.61?0.08T -c e l l r e c e p t o r C D 3e t a c h a i n p r e c u r s o r (C d 3?)A I 429824

M m .1224N o S i g n a l i n g

0.28?0.010.63?0.01128.41?0.05

E S T w e a k l y s i m i l a r t o B 24264p r o l i n e -r i c h p r o t e i n M P 3(f r a g m e n t )A I 415354

M m .156164Y e s

U n k n o w n

00.42?0.01

1

32.55?0.14

H y p o t h e t i c a l p r o t e i n M N C b -2040A I 448690M m .142843Y e s U n k n o w n 0.06?0.010.11?0.002122.30?0.02E S T w e a k l y s i m i l a r t o h u m a n h y p o t h e t i c a l p r o t e i n F L J 20721A I 451034

M m .34092Y e s U n k n o w n

0.06?0.010.31?0.01

1

25.68?0.04

G r o u p I I

G e l o n g a t i o n f a c t o r (G f m )A I 448386M m .27288Y e s P r o t e i n b i o s y n t h e s i s 0.33?0.053.03?0.07130.99?0.22R e g u l a t o r o f G -p r o t e i n s i g n a l i n g 2(R g s 2)A I 464441M m .28262Y e s S i g n a l i n g 0.55?0.051.27?0.14135.27?0.28P o t a s s i u m l a r g e c o n d u c t a n c e c a l c i u m -a c t i -v a t e d c h a n n e l ,s u b f a m i l y M ,b e t a m e m -b e r 4(K c n m b 4)A I 447526

M m .195952Y e s

S i g n a l i n g

1.22?0.06

3.09?0.07

1

31.97?0.04

E S T w e a k l y s i m i l a r t o 156134h u m a n t u -m o r n e c r o s i s f a c t o r a l p h a –i n d u c e d p r o -t e i n 2A I 414503

M m .27281Y e s

U n k n o w n

0.05?0.004

2.33?0.05

1

26.91?0.04

E S T w e a k l y s i m i l a r t o m y o s i n h e a v y c h a i n ,n o n m u s c l e t y p e B A I 465389

M m .200636Y e s

U n k n o w n

0.21?0.02

4.50?0.21

1

31.43?0.12

E S T A I 449427M m .223650N o U n k n o w n 0.76?0.047.36?0.21133.84?0.55E S T s w e a k l y s i m i l a r t o z i n c ?n g e r p r o t e i n 111A I 450088

M m .30519N o U n k n o w n

1.25?0.11

2.88?0.14

1

33.13?0.10

E S T h i g h l y s i m i l a r t o h u m a n n u c l e o p r o t e i n T P R A I 448719

M m .210529Y e s

N u c l e a r p r o t e i n i m p o r t (?)1.25?0.09

3.32?0.06

1

27.89?0.15

G r o u p I I I

T r i p a r t i t e m o t i f p r o t e i n 10(T r i m 10)A I 662233M m .20159N o C e l l d i f f e r e n t i a t i o n 1.89?0.322.07?0.49134.61?0.35E S T w e a k l y s i m i l a r t o P H D ?n g e r p r o t e i n 1(T -c o m p l e x t e s t i s -e x p r e s s e d 3)A I 447598

M m .21284Y e s U n k n o w n

1.64?0.21

2.06?0.20

1

31.20?0.09

G r o u p I V

C a r t i l a g e -a s s o c i a t e d p r o t e i n (C r t a p )A I 448820M m .20904Y e s C e l l d i f f e r e n t i a t i o n 1.38?0.020.48?0.02126.20?0.04B -c e l l r e c e p t o r -a s s o c i a t e d p r o t e i n 31(B a p 31)A I 323595

M m .17Y e s

A p o p t o s i s 1.49?0.05

0.22?0.01

1

26.72?0.02

C e n t r i n 2(C e t n 2)

A I 326150

M m .24643

Y e s

C e n t r i o l e d u p l i c a t i o n c y t o k i n e s i s 1.89?0.18

0.38?0.01

1

31.49?0.06

P r o l y l o l i g o p e p t i d a s e (P o p )

A I 429335

M m .6735

Y e s

C e l l d i f f e r e n t i a t i o n s p e r m m o t i l i t y 4.14?0.28

0.47?0.02

1

27.39?0.05

R I K E N c D N A 1110051B 16A I 428924M m .23498N o U n k n o w n 4.24?0.120.43?0.07136.99?0.25G r o u p V

E S T

A I 426564

N o U n i g e n e I D

N o

U n k n o w n

10.28?0.89

2.34?0.36

1

36.18?0.57

*Q P C R i n d i c a t e s q u a n t i t a t i v e p o l y m e r a s e c h a i n r e a c t i o n ;S g A ,t y p e A s p e r m a t o g o n i a ;P c S c ,p a c h y t e n e s p e r m a t o c y t e s ;R d S d ,r o u n d s p e r m a t i d s ;C T ,t h r e s h o l d c y c l e ;a n d E S T ,e x p r e s s e d s e q u e n c e t a g .?C T v a l u e s o f R d S d w h e n e x p r e s s i o n l e v e l o f R d S d i s c o n s i d e r e d t o b e 1.?S h o w n t o b e p r e s e n t i n b o t h s p e r m a t o c y t e s a n d s p e r m a t i d s .§E x p r e s s i o n l e v e l i n R d S d i s s e t t o b e 1f o r c o m p a r i s o n .

909

Pang et al ·Differential Genes in

Spermatogenesis The expression patterns of the 23differentially expressing genes in type A spermatogonia (SgA),pachytene spermatocytes (PcSc),and round spermatids (RdSd).The fold differences in expression level of each gene at the 3stages of germ cells were compared.The genes were classi?ed into group I through V (A through E ,accordingly)as described in the text.

mosome inactivation.This functionally elusive inactiva-tion process takes place in PcSc,which results in a transient repression of gene transcription from the single X chromosome in male germ cells (McCarrey et al,2002).The down-regulation of Cetn2coincides with an up-regulation of its autosomal retrotransposon Cetn1that may compensate for its repression and allow completion of meiosis (Hart et al,1999).This mechanism implies an indispensable role of the Cetn family in spermatogenesis.To date no retrotransposon of Bap31has been identi?ed.The repression likely re?ects a cessation of the need for apoptosis in PcSc.For some X-linked genes the inacti-vation process persists beyond the pachytene stage,but other X-linked genes would be reactivated in post-meiotic RdSd,for example,Ube1x (Odorisio et al,1996)and Pgk-1(Kumari et al,1996),or activated for the ?rst time at this stage,for example,Mage (McCarrey et al,2002).From our data,both Bap31and Cetn2became reactivated in postmeiotic RdSd,indicating that their functions were required in this stage.

Only 1EST was classi?ed into group V .The limited sequence information made us unable to speculate on the function of the encoded protein.This EST reached the highest expression level in SgA but it dropped drastically in PcSc and RdSd,implying that the translated product is important to cellular activities in spermatogonia,possibly related to mitosis,and is less important in the following stages.The full characterization of the ESTs and unchar-acterized transcripts identi?ed in the 5groups should per-mit speculation about their roles in spermatogenesis.A search of the GenBank cDNA database identi?ed 7of the 23genes not known to be expressed in the testis (Table 6).In addition to the discovery of novel testicular transcripts,the identi?cation of 3known genes (Cr2,CD3?,and Trim10)suggests a more general biological function of them in diverse cellular contexts than previ-ously postulated.Of the known genes identi?ed,a high proportion are implicated to be functional in the process of signaling (4of 12)and cellular differentiation (3of 12;Table 6),suggesting these as the major biological ac-tivities in spermatogenesis.Nevertheless,the small num-ber of genes identi?ed limits the generality of this spec-ulation.A more detailed study is required to elucidate the biochemistry of male germ cells.

Extensive analysis of gene expression in germ cells is limited by the small number of germ cells at earlier stages of development and the availability of ef?cient germ cell isolation method.Nevertheless,recent advances in mo-lecular biotechnology have led to multiple studies of tes-ticular gene expression on a larger scale,for example,identi?cation of novel genes at particular stages of sper-matogenesis by differential display (Anway et al,2003),cDNA subtraction (Wang et al,2001;Fujii et al,2002),and microarray analysis of testes in mutant animals en-riched for speci?c types of germ cells (Tanaka et al,2002).Gene pro?ling experiments were reported on the spermatozoal mRNA pro?les of healthy fertile men (Os-termeier et al,2002)and the pattern of testicular gene expression in neonatal and mature animals (Sha et al,2002).However,the conclusions that may be drawn from these experiments are limited to single stages of germ cells only.We adopted the use of 3different develop-mental stages of germ cells isolated from mice to examine the changes in gene expression patterns during spermato-genesis.Although one may challenge the potential risk of altering the properties,and consequently the gene expres-sion,of germ cells upon isolation because the cells are not maintained in their natural microenvironment,the use of whole testes from animals of different ages would yield results that may be dif?cult to interpret because the iden-ti?ed transcripts can be contributed by a single or multiple cell types.Also,one cannot eliminate the interference

910Journal of Andrology·November/December2003 from other testicular somatic cells whose gene expression

patterns can be changing over time.

Just before submission of this manuscript,a report on

gene expression pro?ling of various stages of mouse germ

cells with a1176cDNA microarray was published(Yu

et al,2003).In that report,radioactive signals of the genes

from one stage were compared with those of the neigh-

boring stage to identify differentially expressed genes.

From our experience and that of others(Pie′tu et al,1996;

Eickhoff et al,1999),radioactive signals generated from

membrane-based microarrays are not totally reliable be-

cause of various experimental variances.This is illustrat-

ed by the low level of concordance between the mem-

brane hybridization and QPCR results in this report.Con-

clusions based solely on radioactive signals are highly

prone to errors.In contrast,we used microarray analysis

as a tool to screen for differentially expressed genes.The

leads identi?ed were con?rmed by QPCR.Only genes

showing consistent changes in both experiments were

considered to be truly differentially expressed during

spermatogenesis.To our knowledge,our report is the

most comprehensive comparison of the changes in gene

expression patterns during spermatogenesis.In our study,

the transcriptomes of germ cells were partially character-

ized because of the incomplete representation of genes on

the microarray.A more detailed analysis by more pow-

erful tools such as SAGE is required to identify the mo-

lecular signature of male germ cells.We reported the dif-

ferential expression patterns of a set of genes and tran-

scripts at different stages of spermatogenesis.The speci?c

gene/transcript expression patterns strongly suggest spe-

cialized functions for the encoded products during male

germ cell development,and identify targets for manipu-

lation to unravel the molecular mechanism of spermato-

genesis.

References

Anway MD,Li Y,Ravindranath N,Dym M,Griswold MD.Expression

of testicular germ cell genes identi?ed by differential display analysis.

J Androl.2003;24:173–184.

Bauer A,McConkey DJ,Howard FD,Clayton LK,Novick D,Koyasu S,

Reinherz EL.Differential signal transduction via T-cell receptor

CD3?

2,CD3?-?,and CD3?

2

isoforms.Proc Natl Acad Sci USA.1991;

88:3842–3846.

Behrens R,Nolting A,Reimann F,Schwarz M,Waldschu¨tz R,Pongs O.

hKCNMB3and hKCNMB4,cloning and characterization of two members of the large-conductance calcium-activated potassium chan-nel?subunit family.FEBS Lett.2000;474:99–106.

Breckenridge DG,Nguyen M,Kuppig S,Reth M,Shore GC.The pro-caspase-8isoform,procaspase-8L,recruited to the BAP31complex at the endoplasmic reticulum.Proc Natl Acad Sci USA.2002;99: 4331–4336.

Brenner R,Jegla TJ,Wickenden A,Liu Y,Aldrich RW.Cloning and functional characterization of novel large conductance calcium-acti-vated potassium channel?subunits,hKCNMB3and hKCNMB4.J Biol Chem.2000;275:6453–6461.Castagnola P,Gennari M,Morello R,Tonachini L,Marin O,Gaggero A, Cancedda R.Cartilage associated protein(CASP)is a novel devel-opmentally regulated chick embryo protein.J Cell Sci.1997;110: 1351–1359.

Dym M.Spermatogonial stem cells of the testis.Proc Natl Acad Sci USA.

1994;91:11287–11289.

Dym M,Jia M-C,Dirami G,Price M,Rabin SJ,Mocchetti I,Ravindran-ath N.Expression of c-kit receptor and its autophosphorylation in immature rat type A spermatogonia.Biol Reprod.1995;52:8–19. Eickhoff B,Korn B,Schick M,Poustka A,van der Bosch J.Normali-zation of array hybridization experiments in differential gene expres-sion analysis.Nucleic Acids Res.1999;27:e33.

Fujii T,Tamura K,Masai K,Tanaka H,Nishimune Y,Nojima https://www.doczj.com/doc/d87631907.html,e of stepwise subtraction to comprehensively isolate mouse genes whose transcription is up-regulated during spermiogenesis.EMBO Rep.

2002;3:367–372.

Gao J,Yu L,Zhang P,Jiang J,Chen J,Peng J,Wei Y,Zhao S.Cloning and characterization of human and mouse mitochondrial elongation factor G,GFM and Gfm,and mapping of GFM to human chromosome 3q25.1-q26.2.Genomics.2001;74:109–114.

Harada H,Harada Y,O’Brien DP,Rice DS,Naeve CW,Downing JR.

HERF1,a novel hematopoiesis-speci?c RING?nger protein,is re-quired for terminal differentiation of erythroid cells.Mol Cell Biol.

1999;19:3808–3815.

Hart PE,Glantz JN,Orth JD,Poynter GM,Salisbury JL.Testis-speci?c murine centrin,Cetn1:genomic characterization and evidence for re-troposition of a gene encoding a centrosome protein.Genomics.1999;

60:111–120.

Imagawa M,Tsuchiya T,Nishihara T.Identi?cation of inducible genes at the early stage of adipocyte differentiation of3T3-L1cells.Biochem Biophys Res Commun.1999;254:299–305.

Kehrl JH,Sinnarajah S.RGS2:a multifunctional regulator of G-protein signaling.Int J Biochem Cell Biol.2002;34:432–438.

Kimura A,Matsui H,Takahashi T.Expression and localization of prolyl oligopeptidase in mouse testis and its possible involvement in sperm motility.Zool Sci.2002;19:93–102.

Kimura A,Yoshida I,Takagi N,Takahashi T.Structure and localization of the mouse prolyl oligopeptidase gene.J Biol Chem.1999;274: 24047–24053.

Kumari M,Stroud JC,Anji A,McCarrey JR.Differential appearance of DNase I-hypersensitive sites correlates with differential transcription of Pgk genes during spermatogenesis in the mouse.J Biol Chem.

1996;271:14390–14397.

Malissen M,Gillet A,Rocha B,et al.T cell development in mice lacking the CD3-?/?gene.EMBO J.1993;12:4347–4355.

Marrion NV,Tavalin SJ.Selective activation of Ca2?-activated K?chan-nels by co-localized Ca2?channels in hippocampal neurons.Nature.

1998;395:900–905.

McCarrey JR,Watson C,Atencio J,Ostermeier GC,Marahrens Y,Jaen-isch R,Krawetz SA.X-chromosome inactivation during spermato-genesis is regulated by an Xist/Tsix-independent mechanism in the mouse.Genesis.2002;34:257–266.

Ng FWH,Nguyen M,Kwan T,Branton PE,Nicholson DW,Cromlish JA,Shore GC.p28Bap31,a Bcl-2/Bcl-X

L

-and procaspase-8-asso-ciated protein in the endoplasmic reticulum.J Cell Biol.1997;139: 327–338.

Nguyen M,Breckenridge DG,Ducret A,Shore GC.Caspase-resistant BAP31inhibits Fas-mediated apoptotic membrane fragmentation and release of cytochrome c from mitochondria.Mol Cell Biol.2000;20: 6731–6740.

Odorisio T,Mahadevaiah SK,McCarrey JR,Burgoyne PS.Transcription-al analysis of the candidate spermatogenesis gene Ube1y and of the closely related Ube1x shows that they are coexpressed in spermato-

911 Pang et al·Differential Genes in Spermatogenesis

gonia and spermatids but are repressed in pachytene spermatocytes.

Dev Biol.1996;180:336–343.

Ostermeier GC,Dix DJ,Miller D,Khatri P,Krawetz SA.Spermatozoal RNA pro?les of normal fertile https://www.doczj.com/doc/d87631907.html,ncet.2002;360:772–777. Pan Y,Decker WK,Huq AHHM,Craigen WJ.Retrotransposition of glyc-erol kinase-related genes from the chromosome to autosomes:func-tional and evolutionary aspects.Genomics.1999;59:282–290.

Pie′tu G,Alibert O,Guichard V,et al.Novel gene transcripts preferentially expressed in human muscles revealed by quantitative hybridization of

a high density cDNA array.Genome Res.1996;6:492–503.

Prechl J and Erdei A.Immunomodulatory functions of murine CR1/2.

Immunopharmacology.2000;49:117–124.

Salisbury JL,Suino KM,Busby R,Springett M.Centrin-2is required for centriole duplication in mammalian cells.Curr Biol.2002;12:1287–1292.

Sha J,Zhou Z,Li J,et al.Identi?cation of testis development and sper-

matogenesis-related genes in human and mouse testes using cDNA arrays.Mol Hum Reprod.2002;8:511–517.

Su YA,Bittner ML,Chen Y,Tao L,Jiang Y,Zhang Y,Stephan DA,Trent JM.Identi?cation of tumor-suppressor genes using human melanoma cell lines UACC903,UACC903(?6),and SRS3by comparison of expression pro?les.Mol Carcinog.2000;28:119–127.

Tanaka K,Tamura H,Tanaka H,Katoh M,Futamata Y,Seki N,Nishi-mune Y,Hara T.Spermatogonia-dependent expression of testicular genes in mice.Dev Biol.2002;246:466–479.

Wang PJ,McCarrey JR,Yang F,Page DC.An abundance of X-linked genes expressed in spermatogonia.Nat Genet.2001;27:422–426.

Yu Z,Guo R,Ge Y,et al.Gene expression pro?les in different stages of mouse spermatogenic cells during spermatogenesis.Biol.Reprod.

2003;69:37–47.

Zhang L,Zhou W,Velculescu VE,Kern SE,Hruban RH,Hamilton SR, Vogelstein B,Kinzler KW.Gene expression pro?les in normal and cancer cells.Science.1997;276:1268–1272.

细数北汽新能源纯电动汽车E150EV的十大优势

细数北汽新能源纯电动汽车E150EV的十大优势 据中国汽车工业协会统计,今年上半年国内新能源汽车销售20477辆,比上年同期增长达220%,销量已超过2013全年数量,其中纯电动汽车的表现最为突出,销售 达11777辆。 2013年实现纯电动汽车全国市场占有率第一的北汽新能源,今年表现同样可圈可点。自6月5日启动“卫蓝先锋”行动以来,北汽新能源不仅号召了濮存昕等大批知名人士极力倡导“护卫蓝天电动出行”,推热了社会对电动汽车的关注,旗下的纯电动汽车E150EV更顺势拿下2000多台订单,其中私人单数已经超过1250台,创下了国内最短时间内纯电动汽车的最大销量纪录。 目前北汽新能源的“卫蓝先锋”政策仍在延续,购买北汽纯电动车的消费者在享受国家、北京市补贴后,还将享受北汽出资的每台5.1万的“第三级”补贴。这样,原价230800的E150EV纯电动汽车,最终消费者仅需支付84800元即可购得。有兴趣的朋友,可登陆京东商城,搜索“北汽新能源“查询详情。

E150EV之所以在市场上有如此火爆表现,业内人士认为这与其超强的产品力分不开。在这里,我们细数下购买E150EV在购买便捷和使用经济方面的十大优势。 一是牌照便捷。目前北京的传统汽车摇号率已经低至1/150,而北汽新能源 E150EV享受北京市2万个新能源汽车牌照的单独摇号政策,每双数月份的26日摇出1666个私人指标,目前摇号中签率约90%。 二是使用便捷。北汽新能源E150EV使用25.6度电的磷酸铁锂高容量高性能动力电池,满充一次可以保证160-200公里的续航,而北汽还将免费赠送充电设备(在北京还可免费安装)。该设备使用220V家用电源,充满仅需6-8小时;如使用快充功能,半小时就可充满80%,1小时即可充满。 三是充电便捷。E150EV自带三相插头,可在家用普通插座充电,也可通过专用充电设备充电。考虑到出行需要,北汽集团将在旗下特约店安装100多个免费充电桩,同时将协助北京市政府,围绕环线和主要社区再新建1000个充电桩,形成5公里充电圈。另悉,北京市目前已有的1115座、能同时满足3000辆电动车充电的公用充电设施也正在向公众开放,普通消费者通过登陆“北京市智能充换电网“或使用手机APP预约即可充电。 四是服务便捷。与传统汽车不同,纯电动汽车核心部件很少需要维护保养,但北汽新能源仍推出了“智惠管家”无忧服务,不仅协助客户申请和安装充电桩,还将在2014年建设100家服务站,围绕环线新增15家快速救援服务站,提供3年内24小时全免费救援、免费拖车等服务。更值得一提的是,北汽新能源已成功开发了“移动充电车“,半小时内它就可出现在用户身边,30分钟内就可充上80%的电。 五是购车成本低。购买北汽新能源E150EV,不仅可以享受高达9.5万元的政府补贴,还可享受北汽“卫蓝先锋”活动的5.1万元企业补贴,即最终可用8.48万元

北京新能源汽车经销商入网申请书

北京新能源汽车经销商入网申请书 (2016年) 申请地点: 省 市 申请单位: (公司盖章) 申请时间: 年 月 日 北京新能源汽车经销商入网审批表 意向申请 网点类型 4S 店 城市展厅

注意事项 说明: (1)如申请单位愿意加入北京新能源汽车经销商选择程序,请按要求如实填写申请书; (2)请将填写完整的《北京新能源汽车经销商入网申请书》的电子版本word文件及附件资料的扫描件打包命名为:“XX市XX公司北京新能 源汽车经销商入网申请书”,并通过E-mail发送至:;邮件大小请控 制在15M以内; (3)北京新能源汽车加盟申请书需提报资料明细,包括但不仅限于下表中所涉及项目: (4)北京新能源汽车郑重承诺:申请单位提供的申请资料将被作为商业机密得到妥善管理,不会透露给任何第三方;

(5)《北京新能源汽车经销商入网申请书》装订要求: a.封面、封底:250g铜版纸覆亚膜(必须按照北汽新能源提供的封 面、封底模板制作); b.内页:A4普通纸彩色打印 c.连同附录提到的“必备附件清单”胶装成册,特快专递至: 地址:北京市朝阳区华威里10号鹏龙大厦配楼2层 北京新能源汽车营销有限公司网络管理科 邮编:100000 联系人:张晶 联系电话: 申请单位声明 本单位作为北京新能源汽车股份有限公司(以下简称[北汽新能源])经销商的申请单位,自愿遵守如下承诺: 1.本单位承诺提供申请书所要求的全部资料,如因资料的不完整造成[北汽新 能源]对申请做出不利的判断,一切责任由本单位承担; 2.本单位承诺按本申请书要求所提供的所有资料和信息都是真实准确的。无论 何种原因,所呈交的相关申请资料中如有错误内容,[北汽新能源]将有权决定不再考虑其申请或者立即终止由[北汽新能源]与其签署的任何协议; 3.本单位同意[北汽新能源]对认为有必要核对的资料进行调查,而不认为这是 对其权利的侵犯; 4.无论本申请是否被[北汽新能源]公司批准,由申请者承担的义务或花费完全 由本申请者自行承担; 5.鉴于[北汽新能源]承诺对申请者的所有资料保密,本单位在申请过程中向 [北汽新能源]所提供的所有文件(原件或复印件)等所有资料在今后将由[北汽新能源]保管,不再退还此申请书;

北汽集团新能源发展情况

北汽集团新能源发展情 况 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

北汽集团新能源发展情况 1. 北汽集团简介 北京汽车集团有限公司 北汽集团是原"北京汽车工业集团总公司"的简称,2000年9月更名为“北京汽车工业控股有限责任公司”,2010年11月更名为“北京汽车集团有限公司”(简称“北汽集团”)。北汽集团是中国五大汽车集团之一,也是世界500强企业。2016 年度,北汽集团的实际主营业务为在中国境内从事乘用车、发动机和汽车零部件的制造和销售。北汽集团的主要资本布局如下图1。 图 1北汽集团主要资本布局图 北京汽车股份有限公司 北京汽车股份有限公司(简称“北京汽车”)是经北京市人民政府国有资产监督管理委员会于2010 年9 月15 日以京国资[2010]199 号文件批准,由北京汽车集团有限公司、北京首钢股份有限公司、北京市国有资产经营有限责任公司、现代创新控股有限公司、北京国有资本经营管理中心、北京能源投资(集团)有限公司共同发起设立的股份有限公司。北京汽车已经于2014 年12 月19 日在香港联合交易所主板上市。

北京汽车及其子公司主要在中国境内从事乘用车、发动机和汽车零部件的制造和销售。北京汽车的母公司和最终控股母公司为北汽集团,由北京市人民政府国有资产监督管理委员会受益拥有。 北京新能源汽车股份有限公司 北京新能源汽车股份有限公司(简称“北汽新能源”)成立于2009年,是由北京汽车集团有限公司发起并控股,联合北京工业发展投资管理有限公司、北京国有资本经营管理中心、北京电子控股有限责任公司共同设立的新能源汽车产业发展平台。 目前,北汽新能源共推出11款纯电动车型,覆盖B级到A00级、轿车到SUV 市场。在销量方面,2016年,北汽新能源整车销售万辆,同比增长156%,在新能源车市销量居首。今年,北汽新能源预计实现17万辆的销售目标,并将经销商网点扩充至350-400家。 2. 北汽集团新能源汽车发展战略和规划 北汽集团旗下与新能源汽车相关的子公司主要包括北汽新能源、福田汽车、北京汽车、昌河汽车、北汽银翔等。北汽新能源是北汽集团专门成立负责新能源乘用车项目并且独立运营的子公司,并于2016年成功获得我国第一家纯电动乘用车生产资质。 此外,在电池供应厂商方面,北汽新能源与普莱德、国轩高科有密切的合作,宁德时代、孚能科技也是其配套电池供应商。 以下重点对北汽新能源的发展战略和规划做介绍。 北汽新能源“十三五”规划 自2016年起,北汽新能源将全面开启“十三五战略”。 十三五期间,北汽新能源提出了“5615”发展目标,其中“5”指年产销达到50万辆(其中全新平台30万辆);“6”是指年营业收入达到600亿元;“1”是指企业实现上市,市值达到1000亿元;“5”是指实施五大战略,包括品质增长、创新发展、服务转型、互联网+、开放合作。 技术战略层面,十三五期间北汽新能源将坚持1条纯电动驱动(含增程)技术路线,掌握3大核心技术(电池、电机、电控),打造3大新兴优势(智能化、轻量化、网联化),达到世界水平,继续推进“234”技术战略,具备400公里续航能力,企业产品平均能耗百公里低于12度电。 研发战略方面,打造1个世界级科技创新中心,具备正向开发能力,构建4层次研发体系,在研发总部建成9大研发中心,整合全球资源,组建5大海外研发中心,除去已经组建的硅谷、底特律、亚琛三个海外研发中心外,都灵和日本研发中心将在十三五期间陆续建成。

北汽新能源汽车EC180于今日正式上市

北汽新能源汽车EC180于今日正式上市 在外观方面,新车整体设计与宝马i3有些相似,尤其是在前脸 的设计上,窄条式的前进气格栅连接两侧大灯,使得前脸多了几分 俏皮与可爱。而车身尺寸方面,EC180长宽高分别为 3675/1630/1518mm,轴距为2360mm。 内饰方面,EC180的整体设计更加偏向于实用主义,简洁明快的 设计风格可以让任何一位使用者一目了然。三辐式方向盘配以多功 能按键,增添了使用性能。此外,中控台上配备一块8英寸显示屏,突显了科技感。 该车搭载了最大功率为41马力的电动机,电池方面则匹配的是20.3kWh的电池组,根据官方数据显示,该车在NEDC工况续航里程 为156公里,最高时速超过100km/h,同时,在慢充模式下,新车 将在7小时内完成充电。 上面介绍了北汽新能源汽车EC180于今日正式上市的相关内容,下面一起来看看北汽集团简介。 "北汽集团"是原"北京汽车工业集团总公司"的简称,2000年9 月改为现在的“北京汽车工业控股有限责任公司”,2010年11月 更名为“北京汽车集团有限公司”。北京汽车股份有限公司(简称北 汽股份公司)成立于2010年9月28日,由北京汽车集团有限公司、 北京首钢股份有限公司、北京市国有资产经营有限责任公司、现代 创新控股有限公司、北京国有资产经营管理中心和北京能源投资(集团)有限公司共同发起组成,公司注册资本56亿元,员工总数超过22000人,是北汽集团乘用车整车资源聚合和业务发展的平台,是 北京市政府重点支持发展的企业。北京吉普现已改制为北京奔驰(今 后社会上将没有北京吉普车公司之称),北京奔驰、北京现代和北京 福田都在"北汽控股"领导下称为"北京汽车工业三大版块"。 北京汽车集团有限公司(简称“北汽集团”),总部在北京,是中国五大汽车集团之一,主要从事整车制造、零部件制造、汽车服务

电动汽车百科-电动汽车使用指南

电动汽车知识百科 电动汽车知识百科,共为三部分,第一部分让你认识电动汽车,第二部分:解读电动汽车政策,第三部分:教你如何使用电动汽车。 本篇为: 电动汽车使用指南 关键词:驾驶要领,电池维护保养,电动汽车简单维修 制作日期:2014.12 宝工商城

一、驾驶操作要领 1、出车前检查 绕车一周明确汽车周围、车底等无人和障碍物(图1-1)。 ②检查轮胎气压是否符合标准,轮胎螺栓是否松动,清除轮胎间杂物。 ③检查是否漏水、漏电、漏气。 ④检查门锁、后视镜、转向盘是否灵活自如、自由转动惯量是否符合要求。 ⑤检查制动踏板、驻车制动器操作装置是否正常。 图1-1 2、行车途中检查 ①制动器踏板自由行程及制动效果。 ②转向盘是否灵活可靠。

①身体对正转向盘,上身正直,胸部微挺,头部端正,两眼平视前方。 ②两膝盖自然张开,右脚放在加速踏板上,脚跟应靠在驾驶室底板上。 ③两手分别握在转向盘的左右两侧,两肘保持自然屈曲伸展,切忌完全伸直。 4、转向盘的操纵 ①转动转向盘时应以左手为主,右手为辅,以便在右手操纵其他机构时,左手能够自如地掌握转向盘,如图1-2所示。 ②连续向右转动转向盘,左手推送,右手顺势拉动,两手连续交替操作,做到柔和均匀,快慢适当,如图1-3所示。 ③连续向左转动转向盘,右手推送,左手顺势拉动,两手连续交替操作,做到柔和均匀,快慢适当,如图1-4所示。 注意事项: ①转向盘转动的角度与速度要与转向的角度与速度相适应。 ②在高低不平的路面行驶时,应握紧转向盘,以免转向盘因颠簸的作用力而猛烈振动或转动,击伤手指或手腕。 ③转动转向盘不可用力过猛,修正方向用力要轻柔,避免左右晃动。 图1-2

北汽新能源EC180_北汽新能源汽车EC180于今日正式上市

北汽新能源EC180_北汽新能源汽车EC180于今日正式上市 2017年1月18日,北汽新能源汽车为消费者们带来一款全新入门级车型-EC180,新车共推出灵动版和灵秀版两款车型。下面跟着小编一起来看看吧。 北汽新能源汽车EC180于今日正式上市 在外观方面,新车整体设计与宝马i3有些相似,尤其是在前脸的设计上,窄条式的前进气格栅连接两侧大灯,使得前脸多了几分俏皮与可爱。而车身尺寸方面,EC180长宽高分别为3675/1630/1518mm,轴距为2360mm。 内饰方面,EC180的整体设计更加偏向于实用主义,简洁明快的设计风格可以让任何一位使用者一目了然。三辐式方向盘配以多功能按键,增添了使用性能。此外,中控台上配备一块8英寸显示屏,突显了科技感。 该车搭载了最大功率为41马力的电动机,电池方面则匹配的是20.3kWh的电池组,根据官方数据显示,该车在NEDC工况续航里程为156公里,最高时速超过100km/h,同时,在慢充模式下,新车将在7小时内完成充电。 上面介绍了北汽新能源汽车EC180于今日正式上市的相关内容,下面一起来看看北汽集团简介。 北汽集团简介 ”北汽集团”是原”北京汽车工业集团总公司”的简称,2000年9月改为现在的北京汽车工业控股有限责任公司,2010年11月更名为北京汽车集团有限公司。北京汽车股份有限公司(简称北汽股份公司)成立于2010年9月28日,由北京汽车集团有限公司、北京首钢股份有限公司、北京市国有资产经营有限责任公司、现代创新控股有限公司、北京国有资产经营管理中心和北京能源投资(集团)有限公司共同发起组成,公司注册资本56亿元,员工总数超过22000人,是北汽集团乘用车整车资源聚合和业务发展的平台,是北京市政府重点支持发展的企业。北京吉普现已改制为北京奔驰(今后社会上将没有北京吉普车公司之称),北京奔驰、北京现代和北京福田都在”北汽控股”领导下称为”北京汽车工业三大版块”。 北京汽车集团有限公司(简称北汽集团),总部在北京,是中国五大汽车集团之一,主要

新能源汽车技术分类及三大关键技术详解

新能源汽车技术分类及三大关键技术详解(总 10页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

新能源汽车技术分类及三大关键技术详解 来源:第一电动网作者:杨伟斌2015年01月12日 14:03 [导读]为了使新能源爱好者和初级研发人员更好地了解新能源汽车的核心技术,笔者结合研发过程中的经验总结,从新能源汽车分类、模块规划、电控技术和充电设施等方面进行了分析。## 在三级模块体系和平台架构中,整车控制器(VCU)、电机控制器(MCU)和电池管理系统(BMS)是最重要的核心技术。##充电设施不完善是阻碍新能源汽车市场推广的重要因素,对特斯拉成功的解决方案进行分析,并提出新能源汽车的充电解决方案、剖析充电系统组成。 关键词:VCUBMS特斯拉MCU新能源汽车 2014年国内新能源汽车产销突破8万辆,发展态势喜人。为了使新能源爱好者和初级研发人员更好地了解新能源汽车的核心技术,笔者结合研发过程中的经验总结,从新能源汽车分类、模块规划、电控技术和充电设施等方面进行了分析。 1新能源汽车分类 在新能源汽车分类中,“弱混、强混”与“串联、并联”不同分类方法令非业内人士感到困惑,其实这些名称是从不同角度给出的解释、并不矛盾。 消费者角度 消费者角度通常按照混合度进行划分,可分为起停、弱混、中混、强混、插电和纯电动,节油效果和成本增等指标加如表1所示。表中“-”表示无此功能或较弱、“+”个数越多表示效果越好,从表中可以看出随着节油效果改善、成本增加也较多。 表1 消费者角度分类 技术角度

图1 技术角度分类 技术角度由简到繁分为纯电动、串联混合动力、并联混合动力及混联混合动力,具体如图1所示。其中P0表示BSG(Belt starter generator,带传动启停装置)系统,P1代表ISG(Integrated starter generator,启动机和发电机一体化装置)系统、电机处于发动机和离合器之间,P2中电机处于离合器和变速器输入端之间,P3表示电机处于变速器输出端或布置于后轴,P03表示P0和P3的组合。从统计表中可以看出,各种结构在国内外乘用或商用车中均得到广泛应用,相对来说P2在欧洲比较流行,行星排结构在日系和美系车辆中占主导地位,P03等组合结构在四驱车辆中应用较为普遍、欧蓝德和标致3008均已实现量产。新能源车型选择应综合考虑结构复杂性、节油效果和成本增加,例如由通用、克莱斯勒和宝马联合开发的三行星排双模系统,尽管节油效果较好,但由于结构复杂且成本较高,近十年间的市场表现不尽如人意。 2新能源汽车模块规划 尽管新能源汽车分类复杂,但其中共用的模块较多,在开发过程中可采用模块化方法,共享平台、提高开发速度。总体上讲,整个新能源汽车可分为三级模块体系、如图2所示,一级模块主要是指执行系统,包括充电设备、电动附件、储能系统、发动机、发电机、离合器、驱动电机和齿轮箱。二级模块分为执行系统和控制系统两部分,执行部分包括充电设备的地面充电机、集电器和车载充电机,储能系统的单体、电箱和PACK,发动机部分的气体机、汽油机和柴油机,发电机的永磁同步和交流异步,离合器中的干式和湿式,驱动电机的永磁同步和交流异步,齿轮箱部分的有级式自动变速器(包括AMT、AT和DCT等)、行星排和减速齿轮;二级模块的控制系统包括BMS、ECU、GCU、CCU、MCU、TCU和VCU,分别表示电池管理系统、发动机电子控制单元、发电机控制器、离合器控制单元、电机控制器、变速器控制系统和整车控制器。三级模块体系中,包括电池单体的功率型和能量型,永磁和异步电机的水冷和风冷形式,控制系统的三级模块主要包括硬件、底层和应用层软件。

2018年新能源汽车行业分析报告

2018年新能源汽车行业分析报告 2018年9月

目录 一、行业管理 (4) 1、行业主管部门和监管体制 (4) 2、行业主要法律法规和政策 (5) 二、新能源汽车行业概况 (7) 1、全球新能源汽车市场概况 (7) 2、我国新能源汽车市场概况 (9) 三、新能源汽车市场竞争格局与市场化程度 (11) 四、行业主要企业及其市场份额 (13) 1、郑州宇通客车股份有限公司 (13) 2、中通客车控股股份有限公司 (14) 3、比亚迪股份有限公司 (14) 4、厦门金龙旅行车有限公司 (14) 5、北汽福田汽车股份有限公司 (15) 6、东风汽车股份有限公司 (15) 五、行业市场供求状况及变动原因 (15) 六、行业利润水平的变动趋势及变动原因 (17) 七、影响行业发展的因素 (18) 1、有利因素 (18) (1)宏观经济运行良好,居民收入保持较快增长 (18) (2)国家相关政策支持 (18) (3)我国发展新能源汽车产业具有资源优势 (20)

2、不利因素 (20) (1)配套设施有待完善 (20) (2)未来新能源汽车补贴将逐步退坡 (21) 八、进入行业的主要壁垒 (21) 1、生产资质壁垒 (21) 2、资金壁垒 (22) 3、技术壁垒 (23) 4、规模壁垒 (23) 九、行业技术水平及技术特点 (24) 十、行业经营模式及特征 (25) 1、行业经营模式 (25) 2、周期性 (27) 3、季节性 (27) 4、地域性 (28) 十一、上下游行业的关联性及对本行业的影响 (28) 1、与上游行业的关联性 (29) (1)与动力电池行业的关联性 (29) (2)与驱动电机行业的关联性 (30) (3)与其他零部件行业的关联性 (31) 2、与下游行业的关联性 (31) (1)与公共交通系统的关联性 (31) (2)与充电设施的关联性 (33)

中国新能源汽车“技术派”北汽EV200纯电动升级上市

中国新能源汽车“技术派”北汽EV200纯电动升级上市 12月16日,北汽新能源公司“E起轻生活”品牌主张正式发布,与此同时,北汽纯电动明星车型EV200正式上市。承袭北汽新能源EV系列纯电动产品经典品质,EV200 实现多项全新升级,价格226900—246900元,彰显新一代“家庭首选纯电动车”性价比之王的非凡竞争力。 “EV200是北汽新能源全新推出的代表性产品之一,汇集北汽新能源全价值产业链体系核心技术优势,不仅为消费者带来全新的科技、品质与驾乘体验,更为中国新能源汽车市场繁荣注入新的活力。”北汽新能源总经理郑刚说。 作为中国新能源汽车技术派的代表,EV200在结合其“家庭首选纯电动车”的市场定位,承袭北汽纯电动产品系列卓越性能的基础上,实现五大核心品质的全面升级。 日常出行与远郊出游覆盖了家庭用车的主要需求,全面倡导低碳环保“轻生活”理念的北汽新能源为车主提供了成熟、完备的长效续航解决方案。北汽EV200选用韩国SK的三元锂电池,综合工况下里程超越200公里,全面领先市场同级别主流纯电动车型,在经济时速下,续驶路程可到达240公里,相当于北京到天津之间往返的距离。此外,EV200为环保主义时尚人群特别设计了E挡模式,可在原有续航里程基础上再度延长13%的额外行驶距离。 对车主安全需求的考量使北汽EV200在同级车型中率先采用激光焊接技术,在确保车身精准细节工艺的同时,整车结构强度、耐腐蚀性均达到国际领先水平;其电池组采用了全封闭式组装工艺,即使在0.3m的深水中行驶半小时也能安然无恙;而独有的动力电池底盘保护仓技术,能在车辆发生严重碰撞时确保电池组安全无忧。 在配置方面,EV200搭载北汽自主研发的高性能轻量化永磁同步电机,充分爆发速度与能量的激情与活力,EV200在0-50km/h加速时间仅为5.3秒,最高车速为125km/h,性能全面匹敌2.0排量传统燃油发动机,与传统燃油车体验无异。在2014环青海湖(国际)电动汽

全面解析北汽EU300

新能源极速发展的当下,越来越多的电动汽车涌入市区服务于民。作为新能源汽车生产企业则需要具备新能源汽车控制系统的开发能力,以及车载能源和驱动系统的集成和匹配能力。只有具备这些条件,才能打造出适合老百姓出行的电动车,北汽集团旗下的北汽EU300正是一个成功的案例。 回顾这几年关于新能源汽车的成绩,北汽集团旗下的自主品牌仅用5年多时间就取得了第一个产销100万辆的成绩,让众多同行称赞不已,北汽新能源汽车的增长更是引人注目,这与北汽集团的技术和产品优势是分不开的。2009年北汽集团成功收购瑞典萨博汽车相关知识产权,并于2011年下线第一款自主品牌整车;2014年北京汽车在香港联交所主板挂牌上市;2016年北汽集团跻身世界500强第160位。同时,北汽集团还整合全球先进汽车技术资源,通过自主优化和提高,搭建起了更适于国内市场的整车、系统、零部件设计标准及规范技术体系。 除此之外,北汽集团在环保理念上也做出了巨大贡献。北汽集团自主研发的北汽EU300引起了市场的轰动。据悉,北汽EU300采用类单体壳式动力舱设计及超高刚性的车身机构,搭载高端西门子电机和控制系统,电机最大功率可达100kw,0-50km/h加速不超过4.5秒。这款车搭配先进的三元电池正极材料保障了综合续驶里程可达300km,完整充换电可循环超过2000次。同时,北汽EU300将可适用五种充电方式:慢充、快充、家用电充,而EU200则可实现应急车补电和电池快换,真正实现“快意充能”。 北汽EU300结合环保的新思路,大胆创新设计,打造符合市场规律的新能源汽车,满足广大消费者的出行需求。作为环保与创新想结合的产物,北汽EU300无疑是新能源汽车的首选。

北汽新能源财务报告管理办法

北汽新能源管理制度 ★ 财务报告管理办法 BJEV.04.01.16.1-2015 2015年4月29日发布 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 北京新能源汽车股份有限公司

1.目的 为了规范北京新能源汽车股份有限公司(以下简称新能源公司)财务报告管理,保证财务报告的真实、完整,满足财务对外信息披露及法人财务报告管理的需要,特制定本制度。 2.适用范围 本办法适用于新能源公司本部及其设立的全资子公司、控股子公司和其他所属单位(以下简称所属单位)。 3.术语 本制度所称的财务报告,是指公司对外提供的反映公司某一特定日期财务状况和某一会计期间经营成果、现金流量的文件,包括财务报表、财务报表附注和其他应当在财务报告中披露的相关信息和资料。 4.引用文件 《北京汽车工业控股有限责任公司财务会计报告报送管理办法-14京汽集政财字【2013】280号》 《北汽新能源会计核算管理办法》 5.职责 5.1财务管理部 5.1.1 公司财务报告的归口管理部门,行使新能源公司法人财务报告管理职责; 5.1.2负责公司所属单位财务报告的搜集、分类、汇总、合并以及财务报告信息的分析、规范、检查、考核; 5.1.3 负责公司对外披露的财务报告信息的编制。 5.2子公司财务部 5.2.1本单位财务报告的归口管理部门,负责本单位财务报告的管理。 5.2.2负责按本规定要求上报各类财务报告、解释相关财务事项。 6.管理内容和规定 6.1 财务报告报送的内容 财务报告报送内容包括:年报、月报、快报及其他根据公司管理需要要求上报的财务报告。 6.1.1年报主要包括:(1)会计报表主附表;(2)财务情况表;(3)会计报表附注;(4)财务决算专项说明;(5)财务情况说明书。

北汽集团新能源发展情况

北汽集团新能源发展情况 1. 北汽集团简介 1.1北京汽车集团有限公司 北汽集团是原"北京汽车工业集团总公司"的简称,2000年9月更名为“北京汽车工业控股有限责任公司”,2010年11月更名为“北京汽车集团有限公司”(简称“北汽集团”)。北汽集团是中国五大汽车集团之一,也是世界500强企业。2016年度,北汽集 团的实际主营业务为在中国境内从事乘用车、发动机和汽车零部件的制造和销售。北汽集 团的主要资本布局如下图1 图1北汽集团主要资本布局图 ∣?ΛH?i∣*≡l∣iΓht if

1.2北京汽车股份有限公司 北京汽车股份有限公司(简称“北京汽车”)是经北京市人民政府国有资产监督管理委 员会于2010年9月15日以京国资[2010]199号文件批准,由北京汽车集团有限公司、北京首钢股份有限公司、北京市国有资产经营有限责任公司、现代创新控股有限公司、北京国有资本经营管理中心、北京能源投资(集团)有限公司共同发起设立的股份有限公司。北京汽车已经于2014年12月19日在香港联合交易所主板上市。 北京汽车及其子公司主要在中国境内从事乘用车、发动机和汽车零部件的制造和销售。 北京汽车的母公司和最终控股母公司为北汽集团,由北京市人民政府国有资产监督管理委 员会受益拥有。 1.3北京新能源汽车股份有限公司 北京新能源汽车股份有限公司(简称“北汽新能源”)成立于2009年,是由北京汽 车集团有限公司发起并控股,联合北京工业发展投资管理有限公司、北京国有资本经营管理中心、北京电子控股有限责任公司共同设立的新能源汽车产业发展平台。 目前,北汽新能源共推出11款纯电动车型,覆盖B级到A00级、轿车到SUV市场 在销量方面,2016年,北汽新能源整车销售5.16万辆,同比增长156% ,在新能源车市销量居首。今年,北汽新能源预计实现17万辆的销售目标,并将经销商网点扩充至350- 400 家。

北汽新能源汽车售后服务体系分析毕业论文

摘要 在当今的汽车消费领域,对于汽车消费者来说,他们在购买汽车的时候,不仅仅是看重汽车的质量,同时也十分重视汽车的售后服务工作,因此,汽车售后服务的优劣直接影响到某品牌、以致某车型的销售情况,成为激烈的市场竞争中致胜的关键。本文阐释了售后服务的定义及其影响,并分析了汽车市场售后服务普遍存在的问题,最后根据汽车售后服务市场发展的规律,并结合汽车售后服务市场的实际情况,提出相应的对策。 随着经济的发展,私家车拥有量越来越多,这就促使形成了专门为汽车提供整车销售(Sale)、零配件(Sparepart)、售后服务(Service)、信息反馈(Survey)等多项服务为一体的汽车特许经营模式来为庞大的汽车市场提供综合服务,简称汽车4S店。纵观汽车4S店的发展历史,现在仍然处于该经营模式发展的初期阶段,汽车4S店种类繁多,又缺乏统一的市场规范和标准,导致汽车4S店的服务质量达不到公众期望的要求,很大程度上影响着消费者对整个汽车行业的印象,从而直接制约着汽车销售、维修等方面的发展。本文专门对目前存在的汽车4S 店服务质量和服务体系进行统计和分析,基于服务质量差距模型和服务质量的属性综合评价方法针对目前汽车4S店存在问题进行评价和分析,分别以PDCA循环方法和6σ服务质量管理方法为理论基础,提出了如何提高服务质量的对策建议,研究汽车4S店的服务质量提升策略,为未来汽车服务行业的发展提出建议,为广大4S店经营者就如何提高服务质量提供在理论上和策略上的探讨和借鉴。 关键词:汽车4S店;服务体系;服务质量;提升策略;售后服务

目录 第一章引言 (1) 第二章汽车售后服务的相关概念 (2) 2.1 售后服务的重要性 (2) 2.2 售后服务的特性 (2) 第三章北汽新能源4s店售后的服务模式 (4) 3.1 4S店的含义 (4) 3.2 北汽4S店产生的市场基础 (4) 3.3 北汽4S店持续发展的对策 (4) 3.4 北汽汽车售后服务业的不足之处 (5) 3.4.1 销售和服务脱节 (5) 3.4.2 维修保养价格高,技术水平差 (5) 3.4.3 网络布局不合理 (6) 3.4.4 消费者自我保护意识差 (6) 3.4.5 有关部门与社会脱节 (6) 第四章北汽汽车售后服务业的发展方向与建议 (7) 4.1 树立先进的售后服务理念,并付诸实施 (7) 4.2 保证服务质量 (7) 第五章汽车4S店的售后服务质量提升策略 (8) 5.1 以PDCA循环方法为理论基础的提升策略 (8) 5.1.1 PDCA循环方法 (8) 5.1.2 PDCA循环方法的汽车4S店提升策略 (10) 5.2 以6σ服务质量管理方法为理论基础的提升策略 (11) 5.2.1 6σ服务质量管理方法 (11) 4.2.2 6σ服务质量管理方法的汽车4S店提升策略 (12) 第五章结论 (14) 第六章致谢 (15) 参考文献 (16)

北汽新能源发布“蜂鸟计划”开启新能源汽车3.0时代

郑  刚  Zheng gang 北京新能源汽车股份有限公司党委书记、总经理  BAIC EV General Manager, Party Secretary

B J E V ?蜂鸟计划   技术?梦 想 Innovation For Y our Imagination H u m m i n g b i r d P l a n

+ +=新能源汽车 N e w e n e r g y v e h i c l e?

这只是1.0时代This is just the “Generation 1.0”

我们一直在定义新能源汽车 新能源汽车1.0把握先发优势新能源汽车3.0 全面引领创新新能源汽车2.0 技术、产品全面领先 平台:协同平台  技术:超级电驱、i-Link、轻量化  产品:EU、EX、EH系列等  生态:人、车、能源等智能出行            一体化 We d e f i n e n e w e n e r g y v e h i c l e s 平台:传统车改装平台  技术:分级电安全、三电高集成  产品:EV系列  生态:充售一体            从示范运营到规模推广  平台:全新正向开发平台  技术:蜂鸟计划  产品:A RCFOX系列  生态:众享、众创的绿色开放            生态,聚焦情景个性化 

全新平台正向开发 大规模个性智造 A l l -ne w P la tf o rm De ve lo pe d O r ig in al ly Intelligent Tailor-made Mass Production

北汽新能源销量及目标

北汽新能源销量及目标 今年上半年北汽新能源实现销量6223辆,已经远远超出去年全年的5500辆。而北汽新能源今年的业绩目标是2万辆,目前还有8000辆左右尚未交付。“北汽新能源汽车虽然总数不多,但是依然是北汽业务增长三大主力之一,已经实现扭亏为盈。”徐和谊称,“集团目前每年研发费用的1/3都用于新能源汽车,未来还要加大研发支持力度。” 私人购买的市场大门也正在逐步打开。在北京新能源摇号指标告别百分百中签之后,申请购买新能源汽车的人数进一步攀升。“目前已有7000人报名下轮摇号,这一数字将在8月8日破万,按照新能源汽车指标的配置方案(即包括每期固定分配的3333个指标及往期未使用指标),8月份的摇号中签率预计低于30%。”北汽新能源市场部总监王水利认为,随着申请人数的不断增多,新能源摇号的中签率很可能会继续降低。 而带给北汽新能源的机会在于,私人购买比例得到大幅提高。数据显示,2013年,北汽新能源销售的1600辆车几乎全是政府购买。去年,5500辆纯电动车销量中,私人购买的比例已上升为44%-45%。仅在今年前6个月,北汽新能源共销售纯电动汽车6223辆,其中私人购买比例已经攀升至83%。 数据显示,北汽新能源已占据全国纯电动乘用车市场份额的22.5%,市场占有率全国第一,在北京市场的占有率更是高达66%。当然,北汽新能源并未止步于此。目前,北汽新能源正不断推进销售聚焦“北上广深”的目标。

按照“中国制造2025”的既定目标,到2020年自主品牌纯电动和插电式销量突破100万辆,2025年突破年销量300万辆。同时,工业增加值能耗下降幅度34%、单位工业增加值二氧化碳排放量下降幅度40%、单位工业增加值用水量下降幅度41%。无论是新能源汽车,或是“绿色制造”,北汽持续发力的方向正与此不谋而合。

北汽新能源纯电动汽车驱动电机控制系统故障维修

近年来,在我国作为技术的纯的研发与应用取得了突破性发展。这就客观要求行业提升维修 水平,升级故障维修手段,利用有效的电子诊断技术提升效率。本文以北汽纯的具体故障作 为切入点,通过故障分析及其排除过程,对关键技术进行相应的探究。 一、故障现象 一辆北汽生产的EV 160新能源纯,整车型号为:BJ7000B3D5-BEV,电机型号为: TZ20S02,电池型号为:29/135/220-80Ah,电池工作电压为320V。该车行驶里程为0.56万km,出现无法行驶且仪表报警灯常亮、报警音鸣叫的故障;故障发生时电机有沉闷的“咔、咔”声。 二、系统重要作用及其结构原理 驱动电机系统由驱动电动机(DM)、驱动电机控制器(MCU)构成,通过高低压线束与 整车其它系统作电气连接。驱动电机系统是纯三大核心部件之一,是车辆行驶的主要执行机构,其特性决定了车辆的主要性能指标,直接影响车辆动力性、经济性和用户驾乘感受。 1.驱动电机系统工作原理 在驱动电机系统中,驱动电机的输出动作主要是执行控制单元给出的命令,即控制器输出 命令。如图1所示,控制器主要是将输入的直流电逆变成电压、频率可调的三相交流电,供 给配套的三相交流永磁同步电机使用。 整车控制器(VCU)根据驾驶员意图发出各种指令,电机控制器响应并反馈,实时调整驱 动电机输出,以实现整车的怠速、前行、倒车、停车、能量回收以及驻坡等功能。电机控制 器另一个重要功能是通信和保护,实时进行状态和故障检测,保护驱动电机系统和整车安全 可靠运行。 电机控制器(MCU)由逆变器和控制器两部分组成。驱动电机控制器采用三相两电平电 压源型逆变器。逆变器负责将动力电池输送的直流电电能逆变成三相交流电给汽车驱动电机 提供电源;控制器接受驱动电机和其它部件的信号反馈到仪表,当发生制动或者加速行为时,它能控制频率的升降,从而达到加速或减速的目的。 电机控制器是依靠内置旋转变压器、温度传感器、电流传感器、电压传感器等来提供电 机的工作状态信息,并将驱动电机运行状态信息实时发送给VCU。驱动电机系统的控制中心,又称智能功率模块,以绝缘栅双极型晶体管模块(IGBT)为核心,辅以驱动集成电路、主控集成电路,对所有的输入信号进行处理,并将驱动电机控制系统运行状态的信息通过 CAN2.0网络发送给整车控制器,同时也会储存故障码和数据。

比亚迪新能源汽车市场营销战略分析

比亚迪新能源汽车市场营销战略分析 发表时间:2019-06-24T11:56:12.247Z 来源:《成功》2019年第5期作者:吴静 [导读] 本文运用4Ps理论以及SWOT分析理论对比亚迪新能源汽车的营销战略进行分析,并对其存在的问题提出建议,这将有助于为我国新能源汽车品牌的市场开拓和发展提供经验。 东北财经大学辽宁大连 116025 【摘要】本文运用4Ps理论以及SWOT分析理论对比亚迪新能源汽车的营销战略进行分析,并对其存在的问题提出建议,这将有助于为我国新能源汽车品牌的市场开拓和发展提供经验。 【关键词】比亚迪;新能源汽车;4Ps分析;SWOT分析 比亚迪于1995年创立,从二次充电电池制造起步,于2008年启动客车研发,2010年提出公交电动化方案。比亚迪不断加强新能源汽车的技术攻关和推广,经过十多年的发展,比亚迪新能源汽车连续多年获得纯电动大客车销售冠军,持续引领全球新能源汽车产业变革,并奠定了世界新能源汽车引领者地位。 一、比亚迪新能源汽车4P分析 (一)产品策略 目前,比亚迪公司在新能源产品策略上采取的是“7+4战略布局”,7代表的是七种道路车辆,即私家车,城市公交,道路客运,商品物流,建筑物流,环卫车;4代表的是四种特殊用途车辆,即在仓储,矿山,机场,港口领域推出一批新能源专用车辆。这种全市场战略会极有力地扩大新能源市场份额,给产品线单一的厂家造成非常大的威胁。其次,比亚迪注重以客户需求为导向,可充分满足客户的定制化需求。 (二)定价策略 为了抢占更多的市场份额,传统的低价策略是比亚迪新能源汽车初期的定位。但是一味地走低价策略,会是自降档次。比亚迪公司对这个问题的认识非常清楚,若想在市场份额中长久占有一席之地,比亚迪还要加大自主创新力度,不断研发新能源产品。比亚迪采取了产品差异化定价策略。例如丹麦采购多台比亚迪K9,单价高达400多万人民币。因为北欧地区冬天气候寒冷,比亚迪专门为其配备了隔热装置,独立的辅助加热系统,和辅助系统等配置。这种差异化定价有助于比亚迪抓住每一个销售机会和扩大市场份额。 (三)渠道策略 比亚迪汽车的销售渠道主要是经销商模式,但比亚迪不满足于国内市场,积极面对新能源汽车在国际上的众多竞争对手,如特斯拉,丰田,奔驰等公司。目前,欧洲和美国客户与比亚迪公司已经建立了合作关系。荷兰的质量认证体系使比亚迪在质量方面更有可信度,为通向欧洲市场提供了必要的条件。美国加利福尼亚州的集团客户公务用车已与比亚迪公司达成长期合作意向,此举动对比亚迪新能源汽车起到了很好的宣传效果。 (四)促销策略 比亚迪新能源汽车的主要促销策略是广告促销。通过报刊,邀请明星代言人,赞助真人秀节目等宣传手段,以此提升比亚迪品牌的影响力,另外,展会营销是比亚迪另一大促销策略。比亚迪每年会参加众多国内国外相关展会,消费者能够现场感受比亚迪新能源汽车,对新能源认识又会更加深入一步。 二、比亚迪新能源汽车SWOT分析 (一)优势分析 研发优势。比亚迪凭借自己多年来手机锂电池积累的技术经验,在新能源领域的发展非常迅猛。拿比亚迪K9纯电动公交车来说,车体搭载的电池为自主研发的磷酸锂铁,行驶过程中完全无污染,并且其含的化学物质均可回收,是绿色环保电池。 (二)劣势分析 消费者对品牌的信心不足。多年来,国产品牌在广大消费者心中仍是价格低廉,质量差的刻板印象。这就使得在激烈的市场竞争中很难获得广大消费者的认可。第二,研发问题。电量和行驶速度是现在新能源汽车发展的两大瓶颈。相关数据显示,新能源汽车最佳工作温度是25℃。温度越低,电池续航性能越缩水。再者,行驶速度对续航里程也会产生影响。因为在高速行驶过程中,需要输出更大的功率,相应地新能源汽车的续航能力会减弱。 (三)机会分析 政策支持,市场前景广阔。近年来,燃油汽车行业的发展一边给人们的出行生活带来便利,另一边也在污染着环境。目前,国家出台了一系列利好政策支持新能源汽车产业的发展。 (四)威胁分析 竞争对手强大。比亚迪新能源汽车不仅面对国内汽车品牌如北汽,上汽,吉利的竞争,还要面对国外大品牌如特斯拉的竞争。 配套设施不完善。充电不方便是消费者遇到的问题,而且被燃油汽车占用车位的现象也经常发生。比亚迪需要完善新能源汽车发展配套问题,以免在未来被其他新能源汽车品牌赶超。 三、建议及启示 (一)不断提高品牌意识 长期的市场竞争给消费者留下了低价的刻板印象。而品牌是一个企业的无形资产,一笔巨大的财富。即使产品有着较高的价值,较好的质量,在消费者群体这认可度低也是无用。所以公司管理者的视野应当以全球市场为定位,在加大产品创新的同时也要积极建立和扩大营销渠道,提高品牌知名度。 (二)明确非用户市场细分 比亚迪应该将非用户依据其争取的难易程度进行细分。非用户通常被归为以下四个消费群体:1.容易争取型,这类消费者对比亚迪品

北汽新能源威旺307EV交付 北京纯电物流车运营启动

北汽新能源威旺307EV交付北京纯电物流车运营启动 日前,北汽新能源于中冀斯巴鲁大厦向北京市商委及5家物流公司正式交付了232辆北汽新能源威旺307EV电动物流车,这是北汽新能源首次大规模、集中化向北京市物流配送企业交付纯电动绿色物流车。同时北京市电动物流车运营项目正式启动,标志着北京市配送行业正式进入绿色、生态、智能化的新阶段。 近年来,在电商行业的带动之下,物流快递行业已经成为政府重点扶持的新兴经济增长点,而城市内配送中心与分拨中心间的快件运输通常使用传统的货运汽车,对环境造成较大污染。在各大城市严格的入城限制政策下,传统物流车支撑下的城市物流配送时效、快捷和便利优势已经不再明显,而且配送成本居高不下。 北汽新能源威旺307EV配备了多功能液晶指示组合仪表、液压助力转向,同时还使用遥控中控门锁、中门儿童保护锁等细节配置。在安全方面,威旺307EV车身采用可溃缩式吸能转向管柱、高强度四侧门防撞机构,进一步保证了车内乘客的人身安全。 新能源汽车作为我国战略性新兴产业,经过近两年的发展积累,逐渐被消费者接受和认可,并已进入加速发展新时期。随着新能源汽车行业景气度持续走高,新能源物流车市场正在逐步兴起,多个车企在政策的大力扶持下纷纷进场,试图抢先站上新能源物流车的市场有利位置。

此外,北京市交通运输部在去年9月发布的《关于加快新能源汽车推广应用的实施意见(征求意见稿)》中提出,到2020年新能源汽车在交通运输行业的应用初具规模,在城市公交、出租汽车和城市物流配送等领域的总量达到30万辆。其中明确指出2020年新能源城市物流配送车辆应达到5万辆,同时城市物流配送车运营权也将优先授予新能源汽车,更是从顶层设计层面确定了打造绿色末端物流配送体系的目标。 在上述基础之上,北京市开始在邮政快递、电子商务末端物流等领域推广应用电动物流车。据了解,今年8月由北京市商务委员会牵头,北京市交通委员会、北京市公安局公安交通管理局联合出台了《关于征集2015年北京市电动物流车运营试点企业的通知》。随后经过筛选,共有包括锦绣大地物流港、庞大银企联等在内的9家企业获得了电动物流车运营试点资格。 另一方面,北汽新能源作为一家纯电动车制造商,在拥有传统物流车制造经验的基础上,更是积累长达6年的纯电动物流车研发、生产和制造经验。目前在北京市,北汽新能源已拥有18家服务网点,覆盖北京市各个区、县。北京新能源汽车营销有限公司副总经理卜红升向网易汽车表示,2015年北汽新能源总体销量突破2万辆,其中纯电物流车的占比达到了11%。不论是从自身实力还是行业占有率方面,北汽新能源都成为了为试点企业提供电动物流车的首选。

相关主题
文本预览
相关文档 最新文档