当前位置:文档之家› Delaunay三角剖分插值算法在MT成图中的应用

Delaunay三角剖分插值算法在MT成图中的应用

Delaunay三角剖分插值算法在MT成图中的应用
Delaunay三角剖分插值算法在MT成图中的应用

牛顿插值法原理及应用

牛顿插值法 插值法是利用函数f (x)在某区间中若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值。如果这特定函数是多项式,就称它为插值多项式。当插值节点增减时全部插值基函数均要随之变化,这在实际计算中很不方便。为了克服这一缺点,提出了牛顿插值。牛顿插值通过求各阶差商,递推得到的一个公式: f(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...f[x0,...xn](x-x0 )...(x-xn-1)+Rn(x)。 插值函数 插值函数的概念及相关性质[1] 定义:设连续函数y-f(x) 在区间[a,b]上有定义,已知在n+1个互异的点 x0,x1,…xn上取值分别为y0,y1,…yn (设a≤ x1≤x2……≤xn≤b)。若在函数类中存在以简单函数P(x) ,使得P(xi)=yi,则称P(x) 为f(x)的插值函数. 称x1,x2,…xn 为插值节点,称[a,b]为插值区间。 定理:n次代数插值问题的解存在且唯一。

牛顿插值法C程序 程序框图#include void main() { float x[11],y[11][11],xx,temp,newton; int i,j,n; printf("Newton插值:\n请输入要运算的值:x="); scanf("%f",&xx); printf("请输入插值的次数(n<11):n="); scanf("%d",&n); printf("请输入%d组值:\n",n+1); for(i=0;i

Delaunay三角形构网的分治扫描线算法

第36卷 第3期测 绘 学 报 Vol.36,No.3  2007年8月 ACTA GEODAETICA et CARTO GRAPHICA SINICA Aug ,2007 文章编号:100121595(2007)0320358205中图分类号:P208 文献标识码:A Delaunay 三角形构网的分治扫描线算法 芮一康,王结臣 (南京大学地理信息科学系,江苏南京210093) A N e w Study of Compound Algorithm B ased on Sw eepline and Divide 2and 2conquer Algorithms for Constructing Delaunay T riangulation RU I Y i 2kang ,WAN G Jie 2chen (Depart ment of Geographic Inf ormation Science ,N anji ng U niversity ,N anji ng 210093,Chi na ) Abstract :As one of the most important DTM model ,Delaunay triangulation is widely applied in manifold fields.A wide variety of algorithms have been proposed to construct Delaunay triangulation ,such as divide 2and 2conquer ,in 2cremental insertion ,trangulation growth ,and so on.The compound algorithm is also researched to construct Delau 2nay triangulation ,and prevalently it is mainly based on divide 2and 2conquer and incremental insertion algorithms.This paper simply reviews and assesses sweepline and divide 2and 2conquer algorithms ,based on which a new com 2pound algorithm is provided after studying the sweepline algorithm seriously.To start with ,this new compound al 2gorithm divides a set of points into several grid tiles with different dividing methods by divide 2and 2conquer algo 2rithm ,and then constructs subnet in each grid tile by sweepline algorithm.Finally these subnets are recursively merged into a whole Delaunay triangulation with a simplified efficient LOP algorithm.For topological structure is im 2portant to temporal and spatial efficiency of this algorithm ,we only store data about vertex and triangle ,thus edge is impliedly expressed by two adjacent triangles.In order to fit two subnets merging better ,we optimize some data structure of sweepline algorithm.For instance ,frontline and baseline of triangulation are combined to one line ,and four pointers point to where maximum and minimum of x axis and y axis are in this outline.The test shows that this new compound algorithm has better efficiency ,stability and robustness than divide 2and 2conquer and sweepline algo 2rithms.Especially if we find the right dividing method reply to different circumstance ,its superiority is remarkable.K ey w ords :Delaunay triangulation ;compound algorithm ;sweepline algorithm ;divide 2and 2conquer algorithm 摘 要:Delaunay 三角网作为一种主要的DTM 表示法,具有极其广泛的用途。基于分治算法和逐点插入法的合成算法是目前研究较多的用于生成Delaunay 三角网的合成算法。简要介绍和评价扫描线算法和分治算法后,提出一种新的基于这两种算法的合成算法。该方法兼顾空间与时间性能,稳定性较高,分别较扫描线算法和分治算法,运行效率和鲁棒性更优。 收稿日期:2006206221;修回日期:2007202206 基金项目:国家自然科学基金(40401046) 作者简介:芮一康(19832),男,江苏溧阳人,研究生,主要从事地理信息系统理论与应用研究。 关键词:Delaunay 三角网;合成算法;扫描线算法;分治算法 1 引 言 2维平面域内任意离散点集的不规则三角网(TIN 2Triangular Irregular Network )的构建是GIS 数据表达、管理、集成和可视化的一项重要内 容,也是地学分析、计算机视觉、表面目标重构、有限元分析、道路CAD 等领域的一项重要的应用技 术。在所有生成TIN 的方法中,Delaunay 三角网 最优,它尽可能避免了病态三角形的出现,常常被用来生成TIN 。Delaunay 三角网是Voronoi 图的直线对偶图,即是连接所有相邻的Voronoi 多边形的生长中心所形成的三角网。它有以下两条重要性质[1]:空外接圆性质,即由点集所形成的三角网中,每个三角形的外接圆均不包含点集中的

三次样条插值方法的应用

CENTRAL SOUTH UNIVERSITY 数值分析实验报告

三次样条插值方法的应用 一、问题背景 分段低次插值函数往往具有很好的收敛性,计算过程简单,稳定性好,并且易于在在电子计算机上实现,但其光滑性较差,对于像高速飞机的机翼形线船体放样等型值线往往要求具有二阶光滑度,即有二阶连续导数,早期工程师制图时,把富有弹性的细长木条(即所谓的样条)用压铁固定在样点上,在其他地方让他自由弯曲,然后沿木条画下曲线,称为样条曲线。样条曲线实际上是由分段三次曲线并接而成,在连接点即样点上要求二阶导数连续,从数学上加以概括就得到数学样条这一概念。下面我们讨论最常用的三次样条函数及其应用。 二、数学模型 样条函数可以给出光滑的插值曲线(面),因此在数值逼近、常微分方程和偏微分方程的数值解及科学和工程的计算中起着重要的作用。 设区间[]b ,a 上给定有关划分b x x n =<<<= 10x a ,S 为[]b ,a 上满足下面条件的函数。 ● )(b a C S ,2∈; ● S 在每个子区间[]1,+i i x x 上是三次多项式。 则称S 为关于划分的三次样条函数。常用的三次样条函数的边界条件有三种类型: ● Ⅰ型 ()()n n n f x S f x S ''0'',==。 ● Ⅱ型 ()()n n n f x S f x S ''''0'''',==,其特殊情况为()()0''''==n n x S x S 。 ● Ⅲ型 ()() 3,2,1,0,0==j x S x S n j j ,此条件称为周期样条函数。 鉴于Ⅱ型三次样条插值函数在实际应用中的重要地位,在此主要对它进行详细介绍。 三、算法及流程 按照传统的编程方法,可将公式直接转换为MATLAB 可是别的语言即可;另一种是运用矩阵运算,发挥MATLAB 在矩阵运算上的优势。两种方法都可以方便地得到结果。方法二更直观,但计算系数时要特别注意。这里计算的是方法一的程序,采用的是Ⅱ型边界条件,取名为spline2.m 。 Matlab 代码如下: function s=spline2(x0,y0,y21,y2n,x) %s=spline2(x0,y0,y21,y2n,x) %x0,y0 are existed points,x are insert points,y21,y2n are the second

一种基于TDOA与三角形加权质心定位的混合算法

邮局订阅号:82-946120元/年技术创新 软件时空 《PLC 技术应用200例》 您的论文得到两院院士关注 一种基于TDOA 与三角形加权质心定位的混合算法 A Hybrid Algorithm Based On TDOA And Triangle Weighted Centroid Localization (1.兰州大学;2.总参谋部通信训练基地) 傅涛 1,2 杨凌 1 李晓燕 1 闫胜武 1 FU Tao YANG Ling LI Xiao-yan YAN Sheng-wu 摘要:提出一种基于TDOA 与三角形加权质心定位的混合算法,该算法仅采用三个信标节点,充分利用节点的数据处理单元和通信单元,通过三角形加权质心定位算法得到一个定位信息,同时待定节点充分利用接收信号进行相关运算,求时差得到另一个定位信息。对两组定位信息比较、取均值,得到相对稳定的定位信息,实验证明该算法不仅减小了定位误差,提高了定位精度,而且解决了TDOA 的模糊定位问题。 关键词:TDOA;信标节点;三角形加权质心定位;混合定位 中图分类号:TP393 文献标识码:A Abstract:A hybrid algorithm based on TDOA and triangle weighted centroid localization was proposed.This algorithm only used three beacon nodes,make full use of the data processing unit and node communication unit,We can get a location information through the triangle weighted centroid localization algorithm,and at the same time,an Unknown node make full use of accept signal related calculation,for time to get another location information.For both groups positioning information comparison,Calculate average and get a relatively stable location information,the experiment shows that this algorithm not only improve location accuracy,reducing the positioning error,and solve the problem of the fuzzy TDOA localization. Key words:TDOA;Beacon nodes;Triangle weighted centroid localization;Hybrid localization 文章编号:1008-0570(2012)10-0395-02 1引言 在无线传感器网络(WSN)中,没有位置信息的监测消息是毫无意义的,因而节点定位技术成为无线传感器网络中的一项关键支撑技术。依据定位过程中是否需要测量实际节点间的距离,可将WSN 定位算法分为基于测距定位算法(Range-Based)和基于非测距定位算法(Range-Free)。前者包括:到达时间法 (TOA)、 到达时间差法(TDOA)、到达角度法(AOA)、信号强度法(RSSI)等。后者包括:质心算法、DV-HOP 算法、Amorphous 算法和APIT 算法等。事实上,每种定位算法都有其适用范围和局限性,因而本文提出一种基于TDOA 与三角形加权质心定位的混合算法。 2TDOA 双曲线定位算法 WSN 中传统的TDOA 测距技术是利用两种不同信号(一般是射频信号和超声波)到达同一节点所产生的时间差来确定节点间的距离,不仅增加了硬件成本和体积,而且应用规模受限,不符合本文要求,而移动通信系统中的TDOA 作为一种双曲线定位技术,可以很好的移植到WSN 当中,在不增加节点硬件成本的情况下完成节点定位功能。 2.1TDOA 定位算法原理如图1所示,假设A(x A ,y A )、B(x B ,y B )、C(x C ,y C )是三个信标节点,O(x,y)点是待定节点,T ij 表示信号从i 点到待定节点所用时间与信号从j 点到待定节点所用时间差,v 表示信号传播速度,d ij 表示待定节点到信标节点i 和j 点的距离差,解以下双曲线方程组即可得出未知节点的坐标,但此种方法存在模糊定位问题,可能存在双解两交点的情况,需要优化。 2.2TDOA 互相关方法数学模型 TDOA 算法关键在于得到两个信标节点到待定节点的时间差T 。直接计算TOA 需要节点达到严格同步,会大幅度增加节点的成本和能量消耗,实现起来困难,所以本文采用互相关技术求解时间差T,从而达到不增加节点硬件成本的效果。 如图1所示,当待定节点发起请求定位信号时,信标节点A 和B 发射的连续波信号为s(t),经传输后受到噪声干扰,待定节点O 接收到信号分别为x 1(t)、x 2(t): 由(2)式化简可得(3)式: 式中:T 是传输时延,T=d 1-d 2;A 为幅度比,A=A 1/A 2,则待定节点接收到信号的互相关函数为: 根据自相关函数的性质,,可以用互相关函数达到极大值来估计时延差T 。当取极大值时,τ就是我们需要测算的到达时间差T 的值,将T 代入公式,得解。 3基于RSSI 的定位算法 3.1基于RSSI 的三角形质心定位算法 傅涛:讲师硕士研究生 395--

三角剖分

Delaunay三角剖分算法 默认分类2009-12-16 11:41:23 阅读33 评论0 字号:大中小订阅 转载:https://www.doczj.com/doc/d615569892.html,/renliqq/archive/2008/02/06/1065399.html 1. 三角剖分与Delaunay剖分的定义 如何把一个散点集合剖分成不均匀的三角形网格,这就是散点集的三角剖分问题,散点集的三角剖分,对数值分析以及图形学来说,都是极为重要的一项预处理技术。该问题图示如下: 1.1.三角剖分定义 【定义】三角剖分:假设V是二维实数域上的有限点集,边e是由点集中的点作为端点构成的封闭线段, E为e的集合。那么该点集V的一个三角剖分T=(V,E)是一个平面图G,该平面图满足条件: 1.除了端点,平面图中的边不包含点集中的任何点。 2.没有相交边。 3.平面图中所有的面都是三角面,且所有三角面的合集是散点集V的凸包。 1.2. Delaunay三角剖分的定义 在实际中运用的最多的三角剖分是Delaunay三角剖分,它是一种特殊的三角剖分。先从Delaunay边说起: 【定义】Delaunay边:假设E中的一条边e(两个端点为a,b),e若满足下列条件,则称之为Delaunay边:存在一个圆经过a,b两点,圆内(注意是圆内,圆上最多三点共圆)不含点集V中任何其他的点,这一特性又称空圆特性。 【定义】Delaunay三角剖分:如果点集V的一个三角剖分T只包含Delaunay边,那么该三角剖分称为Delaunay三角剖分。 1.3.Delaunay三角剖分的准则 要满足Delaunay三角剖分的定义,必须符合两个重要的准则:

解三角形应用举例练习高考试题练习

解三角形应用举例练习 班级 姓名 学号 得分 一、选择题 1.从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α、β的关系为…………………( ) A.α>β B.α=β C.α+β=90° D.α+β=180° 2.在200米高的山顶上,测得山下一塔顶与塔底的俯角分别为30°、60°,则塔高为…..( ) A. 3 400 B. 33400米 C. 2003米 D. 200米 3.在?ABC 中, 已知sinA = 2 sinBcosC, 则?ABC 一定是…………………………………….( ) A. 直角三角形; B. 等腰三角形; C.等边三角形; D.等腰直角三角形. 4.如图,△ABC 是简易遮阳棚,A 、B 是南北方向上两个定点,正东方向射出的太阳光线与地面 成40°角,为了使遮阴影面ABD 面积最大,遮阳棚ABC 与地面所成的角为……………….( ) A C D B 阳光地面 A.75° B.60° C.50° D.45° 5.台风中心从A 地以20 km/h 的速度向东北方向移动,离台风中心30 km 内的地区为危险区,城市B 在A 的正东40 km 处,B 城市处于危险区内的时间为…………………………………..( ) A.0.5 h B.1 h C.1.5 h D.2 h 6.在△ABC 中,已知b = 6,c = 10,B = 30°,则解此三角形的结果是 …………………( ) A 、无解 B 、一解 C 、两解 D 、解的个数不能确定 二、填空题 7. 甲、乙两楼相距20米,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲、乙两楼的高分别是 8.我舰在敌岛A 南50°西相距12nmile 的B 处,发现敌舰正由岛沿北10°西的方向以10nmile/h 的速度航行,我舰要用2小时追上敌舰,则需要速度的大小为 9.有一两岸平行的河流,水速为1,小船的速度为2,为使所走路程最短,小船应朝_______方 向行驶. C D 12 A B D 6045 0 m o o 10..在一座20 m 高的观测台顶测得地面一水塔塔顶仰角为60°,塔底俯角为45°,那么这座塔的 高为_______.

delaunay算法简介

三角剖分原理: 很多时候我们获取的信息信号都是很离散的信号,比如大地高程测量时的成果测网,纸质各种参数曲线的数字化数据等等,靠大量增加采样点的方法不现实而且会超乎想象的增加处理的计算量,通过趋势分析插值的方法可以使得数字化的模型更逼近原始模型,但是终归于这些离散数据是要通过一种方式在电脑中成为一种整体数据,不管是2d还是3d。 三角剖分最终是要将离散的数据通过连接成很多三角形来达到面化或体化的目的(四面体其实就是四个三角形)。那么我们是不是可以随便来连三角形呢?当然不行了,咱们连成的面或体要与离散化前的原始模型越接近越好。 怎么样才能使咱们连成的面或体要与离散化前的原始模型越接近越好呢?一般来说每个离散点都有一定的作用范围,那么我们在连三角形是不是就要想到,尽量让每个三角形内的三个点相对来说隔得近一点。 首先有两个原则: 1 产生的三角形不相重叠。(如果重叠,那么其中的一个三角形岂不是多余了) 2 不产生新的顶点。(如果产生新的顶点了,那么这个顶点的值我们可以确认它符合于原始模型吗?),不过这条原则很难完全保证不产生。 然后有两个问题要解决:

1 面化或体化时是否要考虑到边界的问题?也就是是否考虑边界离散点的凹凸判断,如果要考虑的话,所有边界点依次相连就行,如果不用考虑的话,所有凸点边界点依次相连就行。一般来说是要考虑的。 2 面化或体化时是否要考虑到面内或体内空洞的问题?也就是是否考虑内部空白区的判断,如果要考虑的话,内部空白区的边界点要跟问题1同等考虑。 再次我们看一下经典的三角剖分方法: 谈到三角剖分,这个名字你不得不熟悉,这就是经典---Delaunay 三角剖分。 Delaunay三角剖分具有四个特有的性质: (1)保证最邻近的点构成三角形,即三角形的边长之和尽量最小,且每个Delaunay三角形的外接圆不包含面内的其他任何点,称之为Delaunay三角网的空外圆性质。这个特征已经作为创建Delaunay三角网的一项判别标准; (2)它的另一个性质最大最小角性质:在由点集中所能形成的三角网中,Delaunay三角网中三角形的最小内角尽量最大,即三角形尽量接近等边三角形,从这个意义上讲,Delaunay三角网是“最接近于规则化的”的三角网。 (3)Delaunay三角网是唯一的。 (4)三角网的外边界构成了点集的凸多边形“外壳”; 大概的道理我们是懂了,但是给你任意一些点,你采用什么思路

几种插值法比较与应用

多种插值法比较与应用 (一)Lagrange 插值 1. Lagrange 插值基函数 n+1个n 次多项式 ∏ ≠=--=n k j j j k j k x x x x x l 0)( n k ,,1,0ΛΛ= 称为Lagrange 插值基函数 2. Lagrange 插值多项式 设给定n+1个互异点))(,(k k x f x ,n k ,,1,0ΛΛ=,j i x x ≠,j i ≠,满足插值条件 )()(k k n x f x L =,n k ,,1,0ΛΛ= 的n 次多项式 ∏∏ ∏=≠==--==n k n k j j j k j k k n k k n x x x x x f x l x f x L 0 00 ))(()()()( 为Lagrange 插值多项式,称 ∏=+-+=-=n j j x n n x x n f x L x f x E 0 )1()()!1()()()()(ξ 为插值余项,其中),()(b a x x ∈=ξξ (二)Newton 插值 1.差商的定义 )(x f 关于i x 的零阶差商 )(][i i x f x f = )(x f 关于i x ,j x 的一阶差商

i j i j j i x x x f x f x x f --= ][][],[ 依次类推,)(x f 关于i x ,1+i x ,……,k i x +的k 阶差商 i k i k i i k i i k i i i x x x x f x x f x x x f --= +-+++++] ,,[],,[],,,[111ΛΛΛΛΛ 2. Newton 插值多项式 设给定的n+1个互异点))(,(k k x f x ,n k ,,1,0ΛΛ=,j i x x ≠,j i ≠, 称满足条件 )()(k k n x f x N =,n k ,,1,0ΛΛ= 的n 次多项式 )()](,,,[)](,[][)(10100100---++-+=n n n x x x x x x x f x x x x f x f x N ΛΛΛΛΛ 为Newton 插值多项式,称 ],[,)(],,,[)()()(010b a x x x x x x f x N x f x E n j j n n ∈-=-=∏=ΛΛ 为插值余项。 (三)Hermite 插值 设],[)(1b a C x f ∈,已知互异点0x ,1x ,…,],[b a x n ∈及所对应的函数值为0f ,1f ,…,n f ,导数值为'0f ,'1f ,…,'n f ,则满足条件 n i f x H f x H i i n i i n ,,1,0,)(,)(''1212Λ===++ 的12+n 次Hermite 插值多项式为 )()()(0 '12x f x f x H j n j j j n j i n βα∏∏=++= 其中 )())((,)]()(21[)(2 2'x l x x x l x l x x x j j j j j j j j ---=βα

word版本hslogic_Delaunay三角剖分算法应用

本课题的研究方法 三角网格化主要有两种准则:一种称为Delaunay三角剖分,即在生成的三角形网格中,各三角形的最小内角和为最大;另一种是在生成的三角网格中,所有三角形的边长和最小.其中, Delaunay三角剖分是目前研究应用最广的一种剖分方法.本课题的研究方法主要是以Delaunay三角网的两个重要性质(空外接圆性质和最大最小角度性质)以及Delaunay三角网的基本原理为基础,参照传统算法思路,在构建三角网的过程中,改进算法的实现方法,数据结构,以达到提高效率的目的。 Delaunay的重要性质 空外接圆性质:在由点集V生成的Delaunay三角网中,每个三角形的外接圆均不包含该点集的其他任意点。λ 最大最小角度性质:在由点集V生成的Delaunay三角网中,所有三角形中的最小角度是最大的,即在生成的三角形网格中,各三角形的最小内角和为最大。λ唯一性:不论从区域何处开始构网,最终都将得到一致的结果。λ 由于以上特性,决定了Delaunay三角网具有极大的应用价值。Miles证明了Delaunay三角网是“好的”三角网;Lingas进一步论证了“在一般情况下,Delauany三角网是最优的。”同时以上特性也成为建立Delaunay三角网的重要算法依据。 3.3 详细算法描述 算法基于上述的传统构建算法,但仅有两步: 第一步: (1)在离散点集中寻找一纵坐标最小的点A。 (2)以点A为起点,寻找两个点B、D,使得向量AB与横坐标轴夹角最小,向量AD与横坐标轴夹角最大。若点A、B、D共线,将原B点标记为A,寻找点D,使得向量AD与直线AB夹角最大;寻找点C使得向量BC与线段AB夹角最小。否则,若A、B、D不共线,则寻找点C使得向量BC与线段AB夹角最小。这样,所有点都在逆时针旋转的折线DABC的左侧。 (3)上面一步生成的点C、D如果为同一点,则△ABC(或△ABD)即为包含所有不规则点的Delaunay三角形,生成凸包的过程结束跳过一下各步;否

最新解三角形应用举例练习题

解三角形应用举例练习题 一、选择题 1.某人向正东方向走x km后,他向右转150°,然后朝新方向走3 km,结果他离出发点恰好 3 km,那么x的值为() A.3B.2 3 C.23或 3 D.3 2.已知船A在灯塔C北偏东85°且到C的距离为2km,船B在灯塔C西偏北25°且到C的距离为3km,则A,B两船的距离为() A.23km B.32km C.15km D.13km 3.已知△ABC的三边长a=3,b=5,c=6,则△ABC的面积是() A.14 B.214 C.15 D.215 4.两座灯塔A和B与海洋观察站C的距离都等于a km,灯塔A在观察站C的北偏东20°,灯塔B在观察站C的南偏东40°,则灯塔A与灯塔B的距离为() A.a km B.3a km C.2a km D.2a km 5.已知△ABC中,a=2、b=3、B=60°,那么角A等于() A.135°B.90° C.45°D.30° 6.一船向正北航行,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°方向上,另一灯塔在船的南偏西75°方向上,则这艘船的速度是每小时() A.5海里B.53海里 C.10海里D.103海里 二、填空题 7.(2010~2011·醴陵二中、四中期中)已知A、B两地的距离为10km,BC两地的距离

为20km,经测量∠ABC=120°,则AC两地的距离为________km. 8.如图,为了测量河的宽度,在一岸边选定两点A,B,望对岸的标记物C,测得∠CAB=30°,∠CBA=75°,AB=120 m,则河的宽度是__________. 9. (2011·北京朝阳二模)如图,一艘船上午在A处测得灯塔S在它的北偏东30°处,之后它继续沿正北方向匀速航行,上午到达B处,此时又测得灯塔S在它的北偏东75°处,且与它相距42n mile,则此船的航行速度是________n mile/h. 三、解答题

几种插值法的应用和比较

插值法的应用与比较 信科1302 万贤浩 13271038 1格朗日插值法 在数值分析中,拉格朗日插值法是以法国十八世纪数学家约瑟夫·路易斯·拉格朗日命名的一种多项式插值方法.许多实际问题中都用函数来表示某种内在联系或规律,而不少函数都只能通过实验和观测来了解.如对实践中的某个物理量进行观测,在若干个不同的地方得到相应的观测值,拉格朗日插值法可以找到一个多项式,其恰好在各个观测的点取到观测到的值.这样的多项式称为拉格朗日(插值)多项式.数学上来说,拉格朗日插值法可以给出一个恰好穿过二维平面上若干个已知点的多项式函数.拉格朗日插值法最早被英国数学家爱德华·华林于1779年发现,不久后由莱昂哈德·欧拉再次发现.1795年,拉格朗日在其著作《师范学校数学基础教程》中发表了这个插值方法,从此他的名字就和这个方法联系在一起. 1.1拉格朗日插值多项式 图1 已知平面上四个点:(?9, 5), (?4, 2), (?1, ?2), (7, 9),拉格朗日多项式:)(x L (黑色)穿过所有点.而每个基本多项式:)(00x l y ,)(11x l y , )(22x l y 以及)(x l y ??各穿过对应的一点,并在其它的三个点的x 值上取零. 对于给定的若1+n 个点),(00y x ,),(11y x ,………),(n n y x ,对应于它们的次数不超过n 的拉格朗日多项式L 只有一个.如果计入次数更高的多项式,则有无穷个,因为所有与L 相差 ))((10x x x x --λ……)(n x x -的多项式都满足条件. 对某个多项式函数,已知有给定的1+k 个取值点: ),(00y x ,……,),(k k y x ,

delaunay算法简介.(优选.)

最新文件---- 仅供参考------已改成word文本------ 方便更改 三角剖分原理: 很多时候我们获取的信息信号都是很离散的信号,比如大地高程测量时的成果测网,纸质各种参数曲线的数字化数据等等,靠大量增加采样点的方法不现实而且会超乎想象的增加处理的计算量,通过趋势分析插值的方法可以使得数字化的模型更逼近原始模型,但是终归于这些离散数据是要通过一种方式在电脑中成为一种整体数据,不管是2d还是3d。 三角剖分最终是要将离散的数据通过连接成很多三角形来达到面化或体化的目的(四面体其实就是四个三角形)。那么我们是不是可以随便来连三角形呢?当然不行了,咱们连成的面或体要与离散化前的原始模型越接近越好。 怎么样才能使咱们连成的面或体要与离散化前的原始模型越接近越好呢?一般来说每个离散点都有一定的作用范围,那么我们在连三角形是不是就要想到,尽量让每个三角形内的三个点相对来说隔得近一点。 首先有两个原则: 1 产生的三角形不相重叠。(如果重叠,那么其中的一个三角形岂不是多余了) 2 不产生新的顶点。(如果产生新的顶点了,那么这个顶点的值我们可以确认它符合于原始模型吗?),不过这条原则很难完全保证不产生。

然后有两个问题要解决: 1 面化或体化时是否要考虑到边界的问题?也就是是否考虑边界离散点的凹凸判断,如果要考虑的话,所有边界点依次相连就行,如果不用考虑的话,所有凸点边界点依次相连就行。一般来说是要考虑的。 2 面化或体化时是否要考虑到面内或体内空洞的问题?也就是是否考虑内部空白区的判断,如果要考虑的话,内部空白区的边界点要跟问题1同等考虑。 再次我们看一下经典的三角剖分方法: 谈到三角剖分,这个名字你不得不熟悉,这就是经典---Delaunay 三角剖分。 Delaunay三角剖分具有四个特有的性质: (1)保证最邻近的点构成三角形,即三角形的边长之和尽量最小,且每个Delaunay三角形的外接圆不包含面内的其他任何点,称之为Delaunay三角网的空外圆性质。这个特征已经作为创建Delaunay三角网的一项判别标准; (2)它的另一个性质最大最小角性质:在由点集中所能形成的三角网中,Delaunay三角网中三角形的最小内角尽量最大,即三角形尽量接近等边三角形,从这个意义上讲,Delaunay三角网是“最接近于规则化的”的三角网。 (3)Delaunay三角网是唯一的。 (4)三角网的外边界构成了点集的凸多边形“外壳”;

解三角形应用举例

东方中学教案 1.知识与技能: 会在各种应用问题中,抽象或构造出三角形,标出已知量、未知量,确定解三角形的方法;搞清利用解斜三角形可解决的各类应用问题的基本图形和基本等量关系;理解各种应用问题中的有关名词、术语,如:坡度、俯角、仰角、方向角、方位角等;通过解三角形的应用的学习,提高解决实际问题的能力 2.过程与方法: 通过巧妙的设疑,顺利的引导新课,为下节课做好铺垫。结合学生的实际情况,采用“提出问题—引发思考—探索猜想—总结规律—反馈练习”的教学过程,根据大纲要求以及教学内容之间的内在联系,铺开例题,设计变式,同时通过多媒体、图形观察等直观演示,帮助学生掌握在各种应用问题中,抽象或构造出三角形,标出已知量、未知量,确定解三角形的方法。 3.情感、态度与价值观: 实际问题中抽象出一个或几个三角形,然后逐个解三角形,得到实际问题的解。

修改简记教学过程: 一、复习引入: 二、讲解范例: 例1 自动卸货汽车的车箱采用液压结构,设计时需要计算 油泵顶杆BC的长度已知车箱的最大仰角为60°,油泵顶点 B与车箱支点A之间的距离为1.95m,AB与水平线之间的夹角 为6°20′,AC长为1.40m,计算BC的长(保留三个有效数字) 分析:求油泵顶杆BC的长度也就是在△ABC内,求边长BC的问题,而根据已知条件, AC=1.40m,AB=1.95 m,∠BAC=60°+6°20′=66°20′相当于已知△ABC 的两边和它们的夹角,所以求解BC可根据余弦定理解:由余弦定理,得 BC2=AB2+AC2-2AB·AC cos A =1.952+1.402-2×1.95×1.40×cos66°20′=3.571 ∴BC≈1.89 (m) 答:油泵顶杆B C约长1.89 m 评述:此题虽为解三角形问题的简单应用,但关键是把未知边所处的三角形找到,在转 换过程中应注意“仰角”这一概念的意义,并排除题目中非数学因素的干扰,将数量关系 从题目准确地提炼出来 例2某渔船在航行中不幸遇险,发出求救信号,我海军舰艇在A处获悉后,立即测出该渔 船在方位角为45°、距离A为10海里的C处,并测得渔船正沿方位角为105°的方向, 以9海里/h的速度向某小岛B靠拢,我海军舰艇立即以21海里/h的速度前去营救, 试问舰艇应按照怎样的航向前进?并求出靠近渔船所用的时间

几种常用的插值方法

数学系 信息与计算科学1班 李平 指导老师:唐振先 摘要:插值在诸如机械加工等工程技术和数据处理等科学研究中有许多直接的应用,在很多领域都要用插值的办法找出表格和中间值,插值还是数值积分微分方程数值解等数值计算的基础。本文归纳了几种常用的插值方法,并简单分析了其各自的优缺点。 关键词:任意阶多项式插值,分段多项式插值。 引言:所谓插值,通俗地说就是在若干以知的函数值之间插入一些未知函数值,而插值函数的类型最简单的选取是代数多项式。用多项式建立插值函数的方法主要用两种:一种是任意阶的插值多项式,它主要有三种基本的插值公式:单项式,拉格朗日和牛顿插值;另一种是分段多项式插值,它有Hermite 和spine 插值和分段线性插值。 一.任意阶多项式插值: 1.用单项式基本插值公式进行多项式插值: 多项式插值是求通过几个已知数据点的那个n-1阶多项式,即P n-1(X)=A 1+A 2X+…A n X n-1,它是一个单项式基本函数X 0,X 1…X n-1的集合来定义多项式,由已知n 个点(X,Y )构成的集合,可以使多项式通过没数据点,并为n 个未知系数Ai 写出n 个方程,这n 个方程组成的方程组的系数矩阵为Vandermonde 矩阵。 虽然这个过程直观易懂,但它都不是建立插值多项式最好的办法,因为Vandermonde 方程组有可能是病态的,这样会导致单项式系数不确定。另外,单项式中的各项可能在大小上有很大的差异,这就导致了多项式计算中的舍入误差。 2.拉格朗日基本插值公式进行插值: 先构造一组插值函数L i (x ) =011011()()()() ()()()() i i n i i i i i i n x x x x x x x x x x x x x x x x -+-+--------,其中i=0,… n.容易看出n 次多项式L i (x )满足L i (x )=1,(i=j );L i (x )=0,(i ≠j ),其中i=0,1…n ,令L i (x )=0()n i i i y l x =∑这就是拉格朗日插值多项式。与单项式基本 函数插值多项式相比,拉格朗日插值有2个重要优点:首先,建立插值多项式不需要求解方程组;其次,它的估计值受舍入误差要小得多。拉格朗日插值公式结构

平面点线集三角剖分的扫描算法

第24卷 第2期2004年2月北京理工大学学报 T r ansactions of Beijing Instit ute o f T echnolog y V ol.24 N o.2F eb.2004 文章编号:1001-0645(2004)02-0129-04 平面点线集三角剖分的扫描算法 周培德 (北京理工大学信息科学技术学院计算机科学工程系,北京 100081) 摘 要:提出计算平面点线集三角剖分的一种算法.该算法是利用平面扫描的思想,当扫描线达到事件点时,处理事件点,即将事件点与已被扫描的某些点连接,这样便将已扫描的区域三角剖分.当扫描线达到最左边的事件点时,处理该事件点,就完成了平面点线集的三角剖分.证明了算法的时间复杂性为O (N lb N ),其中N 是点线集中点的数目与线段端点数之和. 关键词:散乱点线集;三角剖分;平面扫描;算法;时间复杂性中图分类号:T P 301.6 文献标识码:A Sweeping Algorithm for Triangulation of Plane Point -Line Set ZHOU Pei-de (Depar tment of Co mputer Science and Engineer ing ,School o f Infor matio n Science and T echno lo gy ,Beijing Instit ut e of T echno lo gy ,Beijing 100081,China) Abstract :Sw eeping alg orithm is presented fo r the tr iangulation of plane point -line set .T he algor ithm m akes use of the idea of plane sw eeping .When the sw eep -line reaches it ,the event -po int w ill be dealt w ith,viz.,the event-point is connected w ith so me points sw ept and thus the sw ept regions are triang ulated.When the sw eep-line r eaches the leftmost event-point,the point w ill be dealt w ith ,and the triang ulation of the plane point -line set is accom plished .It is prov ed in detail that the time co mplex ities o f the alg orithm is O (N lb N ),w here N is the sum of the num ber of points and the num ber of line-seg ment endpoints w ithin the point-line set. Key words :debunching point-line set;triang ulation;plane sw eep;alg orithm;tim e co mplex ity 收稿日期:20030321 作者简介:周培德(1941-),男,教授. 平面点集三角剖分问题是计算几何中的一个重要问题,它是从许多实际问题中提出来的,至今,人们已研究了求解该问题的许多算法,其中以Delaunay 算法最为著名.将平面点集中的某些点组成点对并满足某些特殊关系,比如它们为平面线段的两个端点,而另外一些点仍为孤立点,这样便构成点线集.平面点集三角剖分问题可以转换为平面点线集的三角剖分问题,并且它们具有相同的时间复杂性下界.平面点线集三角剖分问题要求三角形的三条边或为点线集中的线段,或为点线集中不同线段端点的连线,或为点线集中点与线段端点的连线, 或为点线集中点与点的连线.三角形的顶点为点线集中的点或线段端点.另外还要求连线与连线,连线与点线集中线段均不相交.给定的平面点线集中线段互不相交(线段端点处相交除外).不难看出,平面散乱点线集三角剖分问题是平面点集三角剖分问题的一个特殊情况.按照常规,求解平面点集三角剖分的算法(比如Delaunay 三角剖分算法)可以用于平面散乱点线集的三角剖分.但在平面点集三角剖分的算法中如何保证点线集中的线段必是三角形的一条边,以及连线与点线集中线段不相交.只要解决这个问题就可以实现点线集的三角剖分.目前解决这

相关主题
文本预览
相关文档 最新文档