当前位置:文档之家› 改进的双线性插值算法在信息隐藏中的应用

改进的双线性插值算法在信息隐藏中的应用

改进的双线性插值算法在信息隐藏中的应用
改进的双线性插值算法在信息隐藏中的应用

线性插值算法实现图像缩放详解

线性插值算法实现图像缩放详解 在Windows中做过图像方面程序的人应该都知道Windows的GDI有?个API函数:StretchBlt,对应在VCL中是 TCanvas类的StretchDraw方法。它可以很简单地实现图像的缩放操作。但问题是它是用了速度最快,最简单但效果也是最差的“最近邻域法”,虽然在大多数情况下,它也够用了,但对于要求较高的情况就不行了。 不久前做了?个小玩意儿,用于管理我用DC拍的?堆照片,其中有?个插件提供了缩放功能,目前的版本就是用了StretchDraw,有时效果不能令人满意,我?直想加入两个更好的:线性插值法和三次样条法。经过研究发现三次样条法的计算量实在太大,不太实用,所以决定就只做线性插值法的版本了。 从数字图像处理的基本理论,我们可以知道:图像的变形变换就是源图像到目标图像的坐标变换。简单的想法就是把源图像的每个点坐标通过变形运算转为目标图像的相应点的新坐标,但是这样会导致?个问题就是目标点的坐标通常不会是整数,而且像放大操作会导致目标图像中没有被源图像的点映射到,这是所谓 “向前映射”方法的缺点。所以?般都是采用“逆向映射”法。 但是逆向映射法同样会出现映射到源图像坐标时不是整数的问题。这里就需要“重采样滤波器”。这个术语看起来很专业,其实不过是因为它借用了电子信号处理中的惯用说法(在大多数情 况下,它的功能类似于电子信号处理中的带通滤波器),理解起来也不复杂,就是如何确定这个非整数坐标处的点应该是什么颜色的问题。前面说到的三种方法:最近邻域法,线性插值法和三次样条法都是所谓的“重采样滤波器”。 所谓“最近邻域法”就是把这个非整数坐标作?个四舍五入,取最近的整数点坐标处的点的颜色。而“线性插值法”就是根据周围最接近的几个点(对于平面图像来说,共有四点)的颜色作线性插值计算(对于平面图像来说就是二维线性插值)来估计这点的颜色,在大多数情况下,它的准确度要高于最近邻域法,当然效果也要好得多,最明显的就是在放大时,图像边缘的锯齿比最近邻域法小非常多。当然它同时还带业个问题:就是图像会显得比较柔和。这个滤波器用专业术语来说(呵呵,卖弄?下偶的专业^_^)叫做:带阻性能好,但有带通损失,通带曲线的矩形系数不高。至于三次样条法我就不说了,复杂了?点,可自行参考数字图像处理方面的专业书籍,如本文的参考文献。 再来讨论?下坐标变换的算法。简单的空间变换可以用?个变换矩阵来表示: [x’,y’,w’]=[u,v,w]*T 其中:x’,y’为目标图像坐标,u,v为源图像坐标,w,w’称为齐次坐标,通常设为1,T为?个3X3的变换矩阵。 这种表示方法虽然很数学化,但是用这种形式可以很方便地表示多种不同的变换,如平移,旋转,缩放等。对于缩放来说,相当于: [Su 0 0 ] [x, y, 1] = [u, v, 1] * | 0 Sv 0 | [0 0 1 ] 其中Su,Sv分别是X轴方向和Y轴方向上的缩放率,大于1时放大,大于0小于1时缩小,小于0时 反转。 矩阵是不是看上去比较晕?其实把上式按矩阵乘法展开就是: { x = u * Su

牛顿插值法原理及应用

牛顿插值法 插值法是利用函数f (x)在某区间中若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值。如果这特定函数是多项式,就称它为插值多项式。当插值节点增减时全部插值基函数均要随之变化,这在实际计算中很不方便。为了克服这一缺点,提出了牛顿插值。牛顿插值通过求各阶差商,递推得到的一个公式: f(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...f[x0,...xn](x-x0 )...(x-xn-1)+Rn(x)。 插值函数 插值函数的概念及相关性质[1] 定义:设连续函数y-f(x) 在区间[a,b]上有定义,已知在n+1个互异的点 x0,x1,…xn上取值分别为y0,y1,…yn (设a≤ x1≤x2……≤xn≤b)。若在函数类中存在以简单函数P(x) ,使得P(xi)=yi,则称P(x) 为f(x)的插值函数. 称x1,x2,…xn 为插值节点,称[a,b]为插值区间。 定理:n次代数插值问题的解存在且唯一。

牛顿插值法C程序 程序框图#include void main() { float x[11],y[11][11],xx,temp,newton; int i,j,n; printf("Newton插值:\n请输入要运算的值:x="); scanf("%f",&xx); printf("请输入插值的次数(n<11):n="); scanf("%d",&n); printf("请输入%d组值:\n",n+1); for(i=0;i

常见的插值方法及其原理

常见的插值方法及其原理 这一节无可避免要接触一些数学知识,为了让本文通俗易懂,我们尽量绕开讨厌的公式等。为了进一步的简化难度,我们把讨论从二维图像降到一维上。 首先来看看最简单的‘最临近像素插值’。 A,B是原图上已经有的点,现在我们要知道其中间X位置处的像素值。我们找出X位置和A,B位置之间的距离d1,d2,如图,d2要小于d1,所以我们就认为X处像素值的大小就等于B处像素值的大小。 显然,这种方法是非常苯的,同时会带来明显的失真。在A,B中点处的像素值会突然出现一个跳跃,这就是为什么会出现马赛克和锯齿等明显走样的原因。最临近插值法唯一的优点就是速度快。 图10,最临近法插值原理 接下来是稍微复杂点的‘线性插值’(Linear) 线性插值也很好理解,AB两点的像素值之间,我们认为是直线变化的,要求X点处的值,只需要找到对应位置直线上的一点即可。换句话说,A,B间任意一点的值只跟A,B有关。由于插值的结果是连续的,所以视觉上会比最小临近法要好一些。线性插值速度稍微要慢一点,但是效果要好不少。如果讲究速度,这是个不错的折衷。 图11,线性插值原理

其他插值方法 立方插值,样条插值等等,他们的目的是试图让插值的曲线显得更平滑,为了达到这个目的,他们不得不利用到周围若干范围内的点,这里的数学原理就不再详述了。 图12,高级的插值原理 如图,要求B,C之间X的值,需要利用B,C周围A,B,C,D四个点的像素值,通过某种计算,得到光滑的曲线,从而算出X的值来。计算量显然要比前两种大许多。 好了,以上就是基本知识。所谓两次线性和两次立方实际上就是把刚才的分析拓展到二维空间上,在宽和高方向上作两次插值的意思。在以上的基础上,有的软件还发展了更复杂的改进的插值方式譬如S-SPline, Turbo Photo等。他们的目的是使边缘的表现更完美。

线性插值法计算公式解析 2

线性插值法计算公式解析 2011年招标师考试实务真题第16题:某机电产品国际招标项目采用综合评价法评标。评标办法规定,产能指标评标总分值为10分,产能在100吨/日以上的为10分,80吨/日的为5分,60吨/日以下的为0分,中间产能按插值法计算分值。某投标人产能为95吨/日,应得( )分。 A、8、65 B.8.75 C、8.85 D、8、95 分析:该题的考点属线性插值法又称为直线内插法,就是评标办法的一种,很多学员无法理解公式含义,只能靠死记硬背,造成的结果就是很快会遗忘,无法应对考试与工作中遇到的问题,对此本人从理论上进行推导,希望对学员有所帮助。 一、线性插值法两种图形及适用情形 F F F2 图一:适用于某项指标越低得分越高的项目评

二、公式推导 ??对于这个插值法,如何计算与运用呢,我个人认为考生在考试时先试着画一下上面的图,只有图出来了,根据三角函数定义,tana=角的对边比上邻边,从图上可以瞧出,∠A就是始终保持不变的,因此,根据三角函数tana,我们可以得出这样的公式 图一:tana=(F1-F2)/(D2-D1)=(F-F2)/(D2-D)=(F 1-F)/(D-D1),通过这个公式,我们可以进行多种推算,得出最终图二:适用于某项投标因素指标越高,得分越高的情 形,如生产效率等

公式如下 F=F2+(F1-F2)*(D2-D)/(D2-D1) 或者F= F1-(F1-F2)*(D-D1)/(D2-D1) 图二:tana=(F1-F2)/(D2-D1)=(F-F2)/ (D-D1)=(F1-F)/(D2-D) 通过这个公式我们不难得出公式: F= F2+(F1-F2)*(D-D1)/(D2-D1) 或者F=F1-(F1-F2)*(D2-D)/(D2-D1) 三:例题解析 例题一:某招标文件规定有效投标报价最高的得30分,有效投标报价最低的得60分,投标人的报价得分用线性插值法计算,在评审中,评委发现有效的最高报价为300万元,有效最低的报价为240万元,某A企业的有效投标报价为280万元,问她的价格得分为多少 分析,该题属于图一的适用情形,套用公式 计算步骤:F=60+(30-60)/(300-240)*(280-240)=40 例题二:某招标文件规定,水泵工作效率85%的3分,95%的8分,某投标人的水泵工作效率为92%,问工作效率指标得多少分? 分析:此题属于图二的适用情形,套用公式 F=3+(92%-85%)*(8-3)/(95%-85%)=3+7/2=6、5

实验5 双线性插值

实验五图像的空间变换 一、实验目的 1、学习图像空间变换,并通过实验体会空间变换的效果,对其作出分析。 2、掌握利用最邻近插值和双线性插值算法(灰度插值)实现图像的缩放。 3、掌握MATLAB编程环境中基本的图像处理函数。 二、实验要求 1.读入图像,对其利用最邻近插值和双线性插值法进行缩放变换,要求先使用IPT函数进行变换,然后自己编写函数实现; 2.对比上述得到的结果。 三、实验原理 图像的空间变换,也称几何变换或几何运算,包括图像的平移、旋转、镜像变换、转置、缩放等。几何运算可改变图像中各物体之间的空间关系,这种运算可以看成是将各物体在图像内移动。 空间变换可如下表示:设(u,v)为源图像上的点,(x,y)为目标图像上的点,则空间变换就是将源图像上(u,v)处的像素值与目标图像上(x,y)处的像素值对应起来,并具有以下关系: x=X(u,v),y=Y(u,v) (即由(u,v)计算对应(x,y))(1.1) 或u=U(x,y),v=V(x,y) (即由(x,y)计算对应(u,v))(1.2) 其中X(u,v)、Y(u,v)、U(x,y)、V(x,y)均为变换。由(1.1)对应的变换称作向前映射法也叫像素移交法,而由(1.2)对应的变换称作向后映射法也叫像素填充法,向后映射法是向前映射法的逆。 最简单的插值算法是最邻近插值,也称为零阶插值。最邻近插值算法简单,在许多情况

下都能得到令人满意的结果,但是当图像中包含像素之间灰度级有变化的细微结构时,最邻近算法会在图像中产生人为加工的痕迹。双线性插值算法计算量比零阶插值大,但缩放后图像质量高,不会出现像素值不连续的的情况,这样就可以获得一个令人满意的结果。最邻近点插值取插值点的4个邻点中距离最近的邻点灰度值作为该点的灰度值。设插值点(i,j)到周边4个邻点fk(i,j)(k =1,2,3,4)的距离为dk(k =1,2,3,4),则:g(i,j)=fk(i,j),dl =min{d1,d2,d3,d4},l=1,2,3,4 。 双线性插值是利用了需要处理的原始图像像素点周围的四个像素点的相关性,通过双线插值算法计算得出的。对于一个目的坐标,通过后映射法得到其在原始图像的对应的浮点坐标(i+u,j+v),其中i,j均为非负整数,u,v为[0,l]区间的浮点数,则这个像素的值f(i+u,j+v)可由原图像中坐标为(i,j)、(i+l,j)、(i,j+1)、(i+1,j+1)所对应的周围四个像素的值决定,即:f(i+u,j+v)=(1-u)×(1-v)×f(i,j)+(1-u)×v×f(i,j+1)+u×(1-v)×f(i+l,j)+u×v×f(i+l,j+1),其中f(i,j)表示源图像(i,j)处的的像素值,以此类推,这就是双线性内插值法。 如下图所示,已知(0,0)、(0,1)、(1,0)、(1,1)四点的的灰度,可以由相邻像素的灰度值f(0,0)和f(1,0)在X方向上线性插值求出(x,0)的灰度f(x,0),由另外两个相邻像素f(0,1)和f(1,1)在X方向上线性插值可求出(x,1)的灰度f(x,1),最后由f(x,0),f(x,1)在Y 方向上进行线性插值就可以得到(x,y)的灰度f(x,y)。 四、实验代码

几种常用的插值方法

几种常用的插值方法 数学系 信息与计算科学1班 李平 指导老师:唐振先 摘要:插值在诸如机械加工等工程技术和数据处理等科学研究中有许多直接的应用,在很多领域都要用插值的办法找出表格和中间值,插值还是数值积分微分方程数值解等数值计算的基础。本文归纳了几种常用的插值方法,并简单分析了其各自的优缺点。 关键词:任意阶多项式插值,分段多项式插值。 引言:所谓插值,通俗地说就是在若干以知的函数值之间插入一些未知函数值,而插值函数的类型最简单的选取是代数多项式。用多项式建立插值函数的方法主要用两种:一种是任意阶的插值多项式,它主要有三种基本的插值公式:单项式,拉格朗日和牛顿插值;另一种是分段多项式插值,它有Hermite 和spine 插值和分段线性插值。 一.任意阶多项式插值: 1.用单项式基本插值公式进行多项式插值: 多项式插值是求通过几个已知数据点的那个n-1阶多项式,即P n-1(X)=A 1+A 2X+…A n X n-1,它是一个单项式基本函数X 0,X 1…X n-1的集合来定义多项式,由已知n 个点(X,Y )构成的集合,可以使多项式通过没数据点,并为n 个未知系数Ai 写出n 个方程,这n 个方程组成的方程组的系数矩阵为Vandermonde 矩阵。 虽然这个过程直观易懂,但它都不是建立插值多项式最好的办法,因为Vandermonde 方程组有可能是病态的,这样会导致单项式系数不确定。另外,单项式中的各项可能在大小上有很大的差异,这就导致了多项式计算中的舍入误差。 2.拉格朗日基本插值公式进行插值: 先构造一组插值函数L i (x ) =011011()()()() ()()()() i i n i i i i i i n x x x x x x x x x x x x x x x x -+-+--------L L L L ,其中i=0,… n.容易看出n 次多项式L i (x )满足L i (x )=1,(i=j );L i (x )=0,(i ≠j ),其中

三次样条插值方法的应用

CENTRAL SOUTH UNIVERSITY 数值分析实验报告

三次样条插值方法的应用 一、问题背景 分段低次插值函数往往具有很好的收敛性,计算过程简单,稳定性好,并且易于在在电子计算机上实现,但其光滑性较差,对于像高速飞机的机翼形线船体放样等型值线往往要求具有二阶光滑度,即有二阶连续导数,早期工程师制图时,把富有弹性的细长木条(即所谓的样条)用压铁固定在样点上,在其他地方让他自由弯曲,然后沿木条画下曲线,称为样条曲线。样条曲线实际上是由分段三次曲线并接而成,在连接点即样点上要求二阶导数连续,从数学上加以概括就得到数学样条这一概念。下面我们讨论最常用的三次样条函数及其应用。 二、数学模型 样条函数可以给出光滑的插值曲线(面),因此在数值逼近、常微分方程和偏微分方程的数值解及科学和工程的计算中起着重要的作用。 设区间[]b ,a 上给定有关划分b x x n =<<<= 10x a ,S 为[]b ,a 上满足下面条件的函数。 ● )(b a C S ,2∈; ● S 在每个子区间[]1,+i i x x 上是三次多项式。 则称S 为关于划分的三次样条函数。常用的三次样条函数的边界条件有三种类型: ● Ⅰ型 ()()n n n f x S f x S ''0'',==。 ● Ⅱ型 ()()n n n f x S f x S ''''0'''',==,其特殊情况为()()0''''==n n x S x S 。 ● Ⅲ型 ()() 3,2,1,0,0==j x S x S n j j ,此条件称为周期样条函数。 鉴于Ⅱ型三次样条插值函数在实际应用中的重要地位,在此主要对它进行详细介绍。 三、算法及流程 按照传统的编程方法,可将公式直接转换为MATLAB 可是别的语言即可;另一种是运用矩阵运算,发挥MATLAB 在矩阵运算上的优势。两种方法都可以方便地得到结果。方法二更直观,但计算系数时要特别注意。这里计算的是方法一的程序,采用的是Ⅱ型边界条件,取名为spline2.m 。 Matlab 代码如下: function s=spline2(x0,y0,y21,y2n,x) %s=spline2(x0,y0,y21,y2n,x) %x0,y0 are existed points,x are insert points,y21,y2n are the second

双线性内插值(精)

三种插值算法 最近邻插值法的 双线性内插值: 对于图像中一个目的像素,设置坐标通过反向变换得到的浮点坐标为 (i+u,j+v,其中i、j均为非负整数,u、v为[0,1区间的浮点数,则这个像素得值 f(i+u,j+v可由原图像中坐标为(i,j、(i+1,j、(i,j+1、(i+1,j+1所对应的周围四个像素的值决定,即: f(i+u,j+v = (1-u(1-vf(i,j + (1-uvf(i,j+1 + u(1-vf(i+1,j + uvf(i+1,j+1 其中f(i,j表示源图像(i,j处的的像素值,以此类推 这就是双线性内插值法。双线性内插值法计算量大,但缩放后图像质量高,不会 出现像素值不连续的的情况。由于双线性插值具有低通滤波器的性质,使高频分量受损,所以可能会使图像轮廓在一定程度上变得模糊 插值的计算方法有很多,比较常用的有最近像素插值算法、双线性插值算法、双三次插值算法和分形算法的四种。其中,最近像素插值算法是最简单的一种插值 算法,这种方法是当图片放大时,缺少的像素通过直接使用与之最接近的原有像素的颜色生成,也就是说照搬旁边的像素。如图1所示,当图片扩大时,要增加X点处的像素,由于X点与A、B这两个有效像素中的B点最接近,因此X点会直接照搬B点的像素,从而使到X点生成的效果与B点一样。虽然这种算法简单,因此处理的速度很快,但结果通常会产生明显可见的锯齿,效果往往不佳。 双线性插值算法,是指输出的图像的每个像素都是原图中四个像素运算的结果 , 由于它是从原图四个像素中运算的,因此这种算法很大程度上消除了锯齿现象,而且效果也比较好。双三次插值算法是双线性插值算法的改进算法,它输出图像的每个像素都

插值法在管理决策中的应用及其Matlab实现

插值法在管理决策中的应用及其Matlab实现 张英俊,孙大宁*,张亚娟 (北方工业大学理学院,北京100144) 摘 要:利用插值曲线,即三次样条插值和立方插值法来比较分析随机网络评审法中两个随机变量之间的相关 性.经分析表明,立方插值不仅是分析相关性的实用曲线工具,而且利用Matlab所构造的函数有足够的光滑性、平顺性,且图像在考察变量的相关性时具有直观性的优点,因此对它的应用研究非常有价值. 关键词:插值 Matlab程序相关性 中图分类号:O29;TB115文献标识码:A文章编号:1674-0874(2008)03-0040-03 收稿日期:2008-01-15 作者简介:张英俊(1982-),女,山西平遥人,在读硕士,研究方向:风险决策;*孙大宁,男,教授,通讯作者. 随机网络评审法是基于随机网络和计算机仿真的一种随机型的定量评估方法,它是以风险评审技术(简称VERT)为基础的,VERT是一种计算机仿真技术,它把网络理论,仿真原理和概率论综合起来,其特点之一就是在各种信息不完全,不充分和不肯定的情况下,对各种工程系统和工程项目的发展计划有关的时间T(周期或工作量),费用C(耗费、成本或投入),功能P(性能、效益或输出等)三种指标来描述,从而描述决策分析对象应达到的目标.一般情况下,在进行风险决策分析时为了有利于模型的建立和使分析计算工作更快更有效,我们需要对网络中各个节点上相应随机参数的频数直方图以及3个参数中任意两者之间的相关性进行分析.在处理我国飞机预研计划这一课题发展起来的 SNSS系统是采用Fortran77语言编写的[1],以卡片形式进行输入输出的,在输出直方图以及进行时间、 费用、效益三者中任两者之间相互关系的计算上不是很直观、很简洁.其实两个随机参数之间的这种函数关系,在数值分析中有许多的方法可以求得,但是哪种方法能更直观、更合乎实际地给出反映这种相关性的平滑曲线呢?本文所选的插值方法能够较好地满足这一要求. 1插值方法的选择及其数学原理 插值是已知某函数在若干离散点上的函数值或者导数信息,通过求解该函数中待定形式的插值函数以及待定系数,使得该函数在给定离散点上满足约束.也即要求通过平面上已知n个点(xi,yi),i= 1,2,…,n作一条光滑的曲线,完成这项工作的方 法有多种,如拉格朗日插值、埃尔米特插值和分段 插值等.实际表明,拉格朗日插值和埃尔米特插值函数对于数据较多且具有随机性的变量相关性分析,做一个高次插值多项式是不理想的,因为它带有近似性,且计算也相当复杂.而分段插值是克服高次插值的Runge现象而提出的,只能保证曲线的连续性,却不能保证曲线的光滑性.但是在生产和科学实验中,对所做的插值曲线既要简单,又要在曲线的连接处比较光滑,即所作的分段插值函数在分段上要求多项式次数低,而在节点上不仅连续,还存在连续的低阶导数,我们把满足这样条件的插值函数,称为样条插值函数,它所对应的曲线称为样条曲线,其节点称为样点,这种插值方法称为样条插值[2]. 2 应用举例 2.1 资料说明 某企业的领导和管理者,得知与其竞争的另一 企业正在研制一种新产品,一旦这种新产品研制成功,将给另一企业带来销售市场上的绝对优势,如 第24卷第3期山西大同大学学报(自然科学版) Vol.24.No.32008年6月 JournalofShanxiDatongUniversity(NaturalScience) Jun.2008

线性插值法计算公式解析

线性插值法计算公式解析 2011年招标师考试实务真题第16题:某机电产品国际招标项目采用综合评价法评标。评标办法规定,产能指标评标总分值为10分,产能在100吨/日以上的为10分,80吨/日的为5分,60吨/日以下的为0分,中间产能按插值法计算分值。某投标人产能为95吨/日,应得()分。A.8.65 B.8.75 C.8.85 D.8.95 分析:该题的考点属线性插值法又称为直线内插法,是评标办法的一种,很多学员无法理解公式含义,只能靠死记硬背,造成的结果是很快会遗忘,无法应对考试和工作中遇到的问题,对此本人从理论上进行推导,希望对学员有所帮助。 一、线性插值法两种图形及适用情形 F F F2

图一:适用于某项指标越低得分越高的项目评 分计算,如投标报价得分的计算 图二:适用于某项投标因素指标越高,得分越高的情 形,如生产效率等 二、公式推导 对于这个插值法,如何计算和运用呢,我个人认为考生在考试时先试着画一下上面的图,只有图出来了,根据三角函数定义,tana=角的对边比上邻边,从图上可以看出,∠A是始终保持不变的,因此,根据三角函数tana,我们可以得出这样的公式 图一:tana=(F1-F2)/(D2-D1)=(F-F2)/(D2-D)=(F1-F)/(D-D1),

通过这个公式,我们可以进行多种推算,得出最终公式如下F=F2+(F1-F2)*(D2-D)/ (D2-D1) 或者F= F1-(F1-F2)*(D-D1)/(D2-D1) 图二:tana=(F1-F2)/(D2-D1)=(F-F2)/ (D-D1)=(F1-F)/(D2-D)通过这个公式我们不难得出公式: F= F2+(F1-F2)*(D-D1)/(D2-D1) 或者F=F1-(F1-F2)*(D2-D)/(D2-D1) 三:例题解析 例题一:某招标文件规定有效投标报价最高的得30分,有效投标报价最低的得60分,投标人的报价得分用线性插值法计算,在评审中,评委发现有效的最高报价为300万元,有效最低的报价为240万元,某A企业的有效投标报价为280万元,问他的价格得分为多少 分析,该题属于图一的适用情形,套用公式 计算步骤:F=60+(30-60)/(300-240)*(280-240)=40 例题二:某招标文件规定,水泵工作效率85%的3分,95%的8分,某投标人的水泵工作效率为92%,问工作效率指标得多少分? 分析:此题属于图二的适用情形,套用公式 F=3+(92%-85%)*(8-3)/(95%-85%)=3+7/2=6.5 (此文档部分内容来源于网络,如有侵权请告知删除,文档可自行编辑修改内容, 供参考,感谢您的配合和支持)

双线性插值

双线性插值,又称为双线性内插。在数学上,双线性插值是有两个变量的插值函数的线性插值扩展,其核心思想是在两个方向分别进行一次线性插值。例如已知的红色数据点与待插值得到的绿色点如图1所示: 图1 假如我们想得到未知函数在点的值,假设我们已知函数 在, , , 及四个点的值。首先在 x 方向进行线性插值,得到 然后在 y 方向进行线性插值,得到 这样就得到所要的结果, 如果选择一个坐标系统使得的四个已知点坐标分别为(0, 0)、(0, 1)、(1, 0) 和(1, 1),那么插值公式就可以化简为

或者用矩阵运算表示为 这就是双线性内插值法。双线性内插值法计算量大,但缩放后图像质量高,不会出现像素值 不连续的的情况。由于双线性插值具有低通滤波器的性质,使高频分量受损,所以可能会使 图像轮廓在一定程度上变得模糊。 双线性插值法的MATLAB源代码为: I=imread('lena.jpg'); %读入原图像 [nrows,ncols,z]=size(I); %读取图像矩阵大小,方便后面操作 K = str2double(inputdlg('please input scale factor (must between 0.2 - 5.0)', 'INPUT scale factor', 1, {'0.5'})); width = K * nrows; height = K * ncols; J = uint8(zeros(width,height,z)); widthScale = nrows/width; heightScale = ncols/height; for x = 5:width - 5 % 5是为了防止矩阵超出边界溢出 for y = 5:height - 5 for z=1:3 xx = x * widthScale; % xx, yy为原坐标,x,y为新坐标 yy = y * heightScale; if((xx/double(uint16(xx))==1.0)&&(yy/double(uint16(yy))==1.0)) J(x,y,z) = I(int16(xx),int16(yy),z); %若xx,yy为整数,直接赋值 else a = double(uint16(xx)); b = double(uint16(yy)); x11 = double(I(a,b,z)); % x11 <- I(a,b) x12 = double(I(a,b+1,z)); % x12 <- I(a,b+1) x21 = double(I(a+1,b,z)); % x21 <- I(a+1,b) x22 = double(I(a+1,b+1,z));% x22 <- I(a+1,b+1) J(x,y,z) = uint8((b+1-yy)*((xx-a)*x21+(a+1-xx)*x11)+(yy-b)* ((xx-a)*x22+(a+1-xx)*x12)); %用双线性插值计算公式计算 end end end end

几种插值法比较与应用

多种插值法比较与应用 (一)Lagrange 插值 1. Lagrange 插值基函数 n+1个n 次多项式 ∏ ≠=--=n k j j j k j k x x x x x l 0)( n k ,,1,0ΛΛ= 称为Lagrange 插值基函数 2. Lagrange 插值多项式 设给定n+1个互异点))(,(k k x f x ,n k ,,1,0ΛΛ=,j i x x ≠,j i ≠,满足插值条件 )()(k k n x f x L =,n k ,,1,0ΛΛ= 的n 次多项式 ∏∏ ∏=≠==--==n k n k j j j k j k k n k k n x x x x x f x l x f x L 0 00 ))(()()()( 为Lagrange 插值多项式,称 ∏=+-+=-=n j j x n n x x n f x L x f x E 0 )1()()!1()()()()(ξ 为插值余项,其中),()(b a x x ∈=ξξ (二)Newton 插值 1.差商的定义 )(x f 关于i x 的零阶差商 )(][i i x f x f = )(x f 关于i x ,j x 的一阶差商

i j i j j i x x x f x f x x f --= ][][],[ 依次类推,)(x f 关于i x ,1+i x ,……,k i x +的k 阶差商 i k i k i i k i i k i i i x x x x f x x f x x x f --= +-+++++] ,,[],,[],,,[111ΛΛΛΛΛ 2. Newton 插值多项式 设给定的n+1个互异点))(,(k k x f x ,n k ,,1,0ΛΛ=,j i x x ≠,j i ≠, 称满足条件 )()(k k n x f x N =,n k ,,1,0ΛΛ= 的n 次多项式 )()](,,,[)](,[][)(10100100---++-+=n n n x x x x x x x f x x x x f x f x N ΛΛΛΛΛ 为Newton 插值多项式,称 ],[,)(],,,[)()()(010b a x x x x x x f x N x f x E n j j n n ∈-=-=∏=ΛΛ 为插值余项。 (三)Hermite 插值 设],[)(1b a C x f ∈,已知互异点0x ,1x ,…,],[b a x n ∈及所对应的函数值为0f ,1f ,…,n f ,导数值为'0f ,'1f ,…,'n f ,则满足条件 n i f x H f x H i i n i i n ,,1,0,)(,)(''1212Λ===++ 的12+n 次Hermite 插值多项式为 )()()(0 '12x f x f x H j n j j j n j i n βα∏∏=++= 其中 )())((,)]()(21[)(2 2'x l x x x l x l x x x j j j j j j j j ---=βα

五种插值法的对比研究开题报告

五种插值法的对比研究 1. 选题依据 1.1 选题背景 插值法是一种古老的数学方法,插值法历史悠久。据考证,在公元六世纪时, 我国焯(zhuo) 已经把等距二次插值法应用于天文计算。十七世纪时,Newton 和 Gregory(格雷格里) 建立了等距节点上的一般插值公式,十八世纪时,Lagrange(拉格朗日) 给出了更一般的非等距节点插值公式。 而它的基本理论是在微积分产生以后逐渐完善的,它的实际应用也日益增多,特别是在计算机工程中。许多库函数的计算实际上归结于对逼近函数的计算。 1.2 研究的目的和意义 插值法是数值分析中最基本的方法之一。 在实际问题中碰到的函数是各种各样的,有的甚至给不出表达式,只提供了一些离散数据,例如,在查对数表时, 要查的数据在表中找不到,就先找出它相邻的数,再从旁边找出它的修正值, 按一定关系把相邻的数加以修正,从而找出要找的数,这种修正关系实际上就是一种插值。 在实际应用中选用不同类型的插值函数,逼近的效果也不同。在数值计算方法中,我们学习过五种基本的插值方法,即Lagrange 插值、Newton 插值、分段线性插值、分段三次Hermite 插值、样条插值函数。所以通过从这五种插值法的基本思想、特征、性质和具体实例入手,探讨五种插值法的优缺点和适用围,让学习者能够迅速而准确的解决实际问题,掌握插值法的应用。 2. 研究的方法 从具体实例入手并结合Matlab 在科学计算中的优势,通过实验对它们的精度和效率进行比较分析。 3. 论文结构 3.1 论文的总体结构 第一部分 导言 主要介绍选题的背景、目的及意义、研究现状、文献综述等。 第二部分 五种插值法的基本思想、性质及特点 在数值计算方法中,插值法是计算方法的基础,数值微分、数值积分和微分方程数值解都建立在此基础上。 插值问题的提法是:已知f(x)(可能未知或非常复杂函数)在彼此不同的n+1 个实点0x ,1x ,…n x 处的函数值是f(0x ),f(1x ),…,f(n x ),这时我们简单的说f(x)有n+1 个 离散数据对0n i i )}y ,{(x i .要估算f(x)在其它点x 处的函数值,最常见的一种办法就是插 值,即寻找一个相对简单的函数y(x),使其满足下列插值条件:y(i x )=f(i x ),i=0,1,…,n.,并以y(x)作为f(x)的近似值.其中y(x)称为插值函数,f(x)称为被插函数。

分段线性插值法

《数值分析》实验报告 实验序号:实验五 实验名称: 分段线性插值法 1、 实验目的: 随着插值节点的增加,插值多项式的插值多项式的次数也增加,而对于高次的插值容易带来剧烈的震荡,带来数值的不稳定(Runge 现象)。为了既要增加插值的节点,减小插值的区间,以便更好的逼近插值函数,又要不增加插值多项式的次数以减少误差,可采用分段线性插值。 2、 实验内容: 求一个函数?(x )用来近似函数f (x ),用分段线性插值的方法来求解近似函数?(x )并画出近似函数图像及原函数图像。 设在区间[a,b]上,给定n+1个插值节点b x x x x a n =<<<<=...210和相应的函数值n y y y ,...,,10,求一个插值函数)(x ?,满足以下条件: (1) ),...,2,1,0()(n j y x j j ==?; (2) )(x ?在每一个小区间[1,+j j x x ]上是线性函数。 对于给定函数11-,2511)(2≤≤+= x x x f 。在区间[]11-,上画出f (x )和分段线性插值函数)(x ?的函数图像。 1. 分段线性插值的算法思想: 分段线性插值需要在每个插值节点上构造分段线性插值基函数)(x l j ,然后再 作它们的线性组合。分段线性插值基函数的特点是在对应的插值节点上函数值取 1,其它节点上函数值取0。插值基函数如下: 设在节点a ≤x0

最邻近插值和双线性插值算法的比较

最邻近插值和双线性插值算法的比较 摘要:图像缩放是数字图像处理的一个基本内容,为了更好地对数字图像细节进行描述,本文简单介绍了图像处理中的空间变换、最邻近插值算法,重点分析了双线性插值算法,并通过MATLAB仿真进行图像的缩放,比较实验结果,从而验证双线性插值算法效果较好。 关键词:图像缩放;空间变换;最邻近插值;双线性插值; 0引言 数字图像处理的对象因其涉及到社会的各个领域,倍受到越来越多的关注,而图像缩放作为数字图像处理中的基本操作尤为重要,在社会的很多领域都需要对图像进行放大和缩小。本文主要比较了空间变换、最邻近插值算法和双线性插值算法。 1图像处理中的空间变换 图像的空间变换[1],也称几何变换或几何运算,包括图像的平移、旋转、镜像变换、转置、缩放等。几何运算可改变图像中各物体之间的空间关系,这种运算可以跛看成是将各物体在图像内移动。 空间变换可如下表示:设(u,v)为源图像上的点,(x,y)为目标图像上的点,则空间变换就是将源图像上(u,v)处的颜色值与目标图像上(X,y)处的颜色对应起来 (u,v) (x,y) 并具有以下关系: x=X(u,v),y=Y(u,v) (即由(u,v)计算对应(x,y))(1) 或 u=U(x,y),v=V(x,y) (即由(x,y)计算对应(u,v))(2) 其中X(u,v)、Y(u,v)、U(x,y)、V(x,y)均为变换。由(1.1)对应的变换称作向前映射法也叫像素移交法,而由(1.2)对应的变换称作向后映射法也叫像素填充法,向后映射法是向前映射法的逆[1,4]。 对于向前映射法来说,由于许多输入像素可能映射到输出图像的边界之外,故向前映射法有些浪费,而且每个输出像素的灰度值可能要由许多输入像素的灰

几种插值法的应用和比较

插值法的应用与比较 信科1302 万贤浩 13271038 1格朗日插值法 在数值分析中,拉格朗日插值法是以法国十八世纪数学家约瑟夫·路易斯·拉格朗日命名的一种多项式插值方法.许多实际问题中都用函数来表示某种内在联系或规律,而不少函数都只能通过实验和观测来了解.如对实践中的某个物理量进行观测,在若干个不同的地方得到相应的观测值,拉格朗日插值法可以找到一个多项式,其恰好在各个观测的点取到观测到的值.这样的多项式称为拉格朗日(插值)多项式.数学上来说,拉格朗日插值法可以给出一个恰好穿过二维平面上若干个已知点的多项式函数.拉格朗日插值法最早被英国数学家爱德华·华林于1779年发现,不久后由莱昂哈德·欧拉再次发现.1795年,拉格朗日在其著作《师范学校数学基础教程》中发表了这个插值方法,从此他的名字就和这个方法联系在一起. 1.1拉格朗日插值多项式 图1 已知平面上四个点:(?9, 5), (?4, 2), (?1, ?2), (7, 9),拉格朗日多项式:)(x L (黑色)穿过所有点.而每个基本多项式:)(00x l y ,)(11x l y , )(22x l y 以及)(x l y ??各穿过对应的一点,并在其它的三个点的x 值上取零. 对于给定的若1+n 个点),(00y x ,),(11y x ,………),(n n y x ,对应于它们的次数不超过n 的拉格朗日多项式L 只有一个.如果计入次数更高的多项式,则有无穷个,因为所有与L 相差 ))((10x x x x --λ……)(n x x -的多项式都满足条件. 对某个多项式函数,已知有给定的1+k 个取值点: ),(00y x ,……,),(k k y x ,

线性插值法计算公式解析

线性插值法计算公式解析 LELE was finally revised on the morning of December 16, 2020

线性插值法计算公式解析 2011年招标师考试实务真题第16题:某机电产品国际招标项目采用综合评价法评标。评标办法规定,产能指标评标总分值为10分,产能在100吨/日以上的为10分,80吨/日的为5分,60吨/日以下的为0分,中间产能按插值法计算分值。某投标人产能为95吨/日,应得()分。A. B.8.75 C. D. 分析:该题的考点属线性插值法又称为直线内插法,是评标办法的一种,很多学员无法理解公式含义,只能靠死记硬背,造成的结果是很快会遗忘,无法应对考试和工作中遇到的问题,对此本人从理论上进行推导,希望对学员有所帮助。 一、线性插值法两种图形及适用情形 F F F2

图一:适用于某项指标越低得分越高的项目 评分计算,如投标报价得分的计算 图二:适用于某项投标因素指标越高,得分越高的 情形,如生产效率等 二、公式推导 对于这个插值法,如何计算和运用呢,我个人认为考生在考试时先试着画一下上面的图,只有图出来了,根据三角函数定义,tana=角的对边比上邻边,从图上可以看出,∠A是始终保持不变的,因此,根据三角函数tana,我们可以得出这样的公式

图一:tana=(F1-F2)/(D2-D1)=(F-F2)/(D2-D)=(F1-F)/(D-D1),通过这个公式,我们可以进行多种推算,得出最终公式如下 F=F2+(F1-F2)*(D2-D)/ (D2-D1) 或者F= F1-(F1-F2)*(D-D1)/(D2-D1) 图二:tana=(F1-F2)/(D2-D1)=(F-F2)/ (D-D1)=(F1-F) /(D2-D) 通过这个公式我们不难得出公式: F= F2+(F1-F2)*(D-D1)/(D2-D1) 或者F=F1-(F1-F2)*(D2-D)/(D2-D1) 三:例题解析 例题一:某招标文件规定有效投标报价最高的得30分,有效投标报价最低的得60分,投标人的报价得分用线性插值法计算,在评审中,评委发现有效的最高报价为300万元,有效最低的报价为240万元,某A企业的有效投标报价为280万元,问他的价格得分为多少 分析,该题属于图一的适用情形,套用公式 计算步骤:F=60+(30-60)/(300-240)*(280-240)=40 例题二:某招标文件规定,水泵工作效率85%的3分,95%的8分,某投标人的水泵工作效率为92%,问工作效率指标得多少分

几种常用的插值方法

数学系 信息与计算科学1班 李平 指导老师:唐振先 摘要:插值在诸如机械加工等工程技术和数据处理等科学研究中有许多直接的应用,在很多领域都要用插值的办法找出表格和中间值,插值还是数值积分微分方程数值解等数值计算的基础。本文归纳了几种常用的插值方法,并简单分析了其各自的优缺点。 关键词:任意阶多项式插值,分段多项式插值。 引言:所谓插值,通俗地说就是在若干以知的函数值之间插入一些未知函数值,而插值函数的类型最简单的选取是代数多项式。用多项式建立插值函数的方法主要用两种:一种是任意阶的插值多项式,它主要有三种基本的插值公式:单项式,拉格朗日和牛顿插值;另一种是分段多项式插值,它有Hermite 和spine 插值和分段线性插值。 一.任意阶多项式插值: 1.用单项式基本插值公式进行多项式插值: 多项式插值是求通过几个已知数据点的那个n-1阶多项式,即P n-1(X)=A 1+A 2X+…A n X n-1,它是一个单项式基本函数X 0,X 1…X n-1的集合来定义多项式,由已知n 个点(X,Y )构成的集合,可以使多项式通过没数据点,并为n 个未知系数Ai 写出n 个方程,这n 个方程组成的方程组的系数矩阵为Vandermonde 矩阵。 虽然这个过程直观易懂,但它都不是建立插值多项式最好的办法,因为Vandermonde 方程组有可能是病态的,这样会导致单项式系数不确定。另外,单项式中的各项可能在大小上有很大的差异,这就导致了多项式计算中的舍入误差。 2.拉格朗日基本插值公式进行插值: 先构造一组插值函数L i (x ) =011011()()()() ()()()() i i n i i i i i i n x x x x x x x x x x x x x x x x -+-+--------,其中i=0,… n.容易看出n 次多项式L i (x )满足L i (x )=1,(i=j );L i (x )=0,(i ≠j ),其中i=0,1…n ,令L i (x )=0()n i i i y l x =∑这就是拉格朗日插值多项式。与单项式基本 函数插值多项式相比,拉格朗日插值有2个重要优点:首先,建立插值多项式不需要求解方程组;其次,它的估计值受舍入误差要小得多。拉格朗日插值公式结构

相关主题
文本预览
相关文档 最新文档