当前位置:文档之家› 高中数学学案:三角函数的诱导公式

高中数学学案:三角函数的诱导公式

高中数学学案:三角函数的诱导公式
高中数学学案:三角函数的诱导公式

高中数学学案:三角函数的诱导公式

1. 理解正弦、余弦、正切的诱导公式.

2. 会运用诱导公式将任意角的三角函数化为锐角的三角函数.

3. 能熟练运用诱导公式进行简单的三角函数的化简、求值及恒等式证明.

1. 阅读:必修4第18~21页.

2. 解悟:①三角函数诱导公式:“奇变偶不变,符号看象限”;②用诱导公式求任意角的三角函数值的一般步骤:负角变正角,大角变小角(锐角三角函数).

3. 践习:必修4第20页练习第2题;第22页习题第4、5、6题.

基础诊断

1. sin (-750°)=__-1

2__.

解析:sin (-750°)=-sin 750°=-sin (2×360°+30°)=-sin 30°=-1

2.

2. tan 300°+2sin 450°cos (-120°)的值为.

解析:tan 300°+2sin 450°·cos (-120°)=tan (-60°)+2sin 90°·(-cos 60°)=-3+2×1×? ??

??

-12=-3-1.

3. 若sin (125°-α)=1213,则sin (α+55°)=__12

13__.

解析:sin (α+55°)=sin [180°-(125°-α)]=sin (125°-α)=12

13. 4. 化简:sin ? ??

??

π2-αcos (π-α)sin ? ??

??

π2+αcos (π+α)=__1__.

解析:sin ? ??

??

π2-αcos (π-α)sin ? ??

??

π2+αcos (π+α)=cos α·(-cos α)cos α·(-cos α)=1.

范例导航

考向? 通过诱导公式将角变形 例1

(1) 化简:

sin (2π-α)tan (π+α)

cos (π-α)tan (3π-α)tan (-α-π)

(2) 已知cos ? ????π6-α=2

3,求sin (α-2π3)的值.

解析:(1) sin (2π-α)=sin (-α)=-sin α, tan (3π-α)=tan (π-α)=-tan α, tan (-α-π)=-tan (α+π)=-tan α,

原式=(-sin α)tan α(-cos α)(-tan α)(-tan α)=sin αcos αtan α=sin α

sin α=1.

本题采用的策略是将容易出错的部分分别化简. (2) sin ? ?

?

??α-2π3=sin [-π2-(π6-α)]

=-sin ?

?????π2+? ????π6-α=-cos ? ????

π6-α=-23.

化简:sin ? ??

??

3π2+αcos (3π-α)tan (π+α)cos ? ????

π2+αcos (-α-π)=__1__.

解析:原式=-cos α·(-cos α)tan α

-sin α·(-cos α)=1.

【备用题】 若sin ? ????α-π4=13,求cos ? ????3π4-α与 cos ? ??

??

π4+α的值.

解析:cos ? ????

3π4-α=cos ?

?????π2-? ????α-π4 =sin ? ?

?

??α-π4=13.

cos ? ????

π4+α=cos ?

?????π2+? ????α-π4 =-sin ? ?

?

??α-π4=-13.

【注】 化简的实质是恒等变形,化简的结果应尽可能简洁. 应该满足:①涉及的三角函数名称较少;②表达形式较简单;③特殊角的三角函数应求出它们的值. 考向? 利用诱导公式,进行化简求值

例2 已知cos (π+α)=-1

2,且α为第四象限角,计算: (1) sin (2π-α);

(2) sin [α+(2n +1)π]+sin (π+α)sin (π-α)cos (α+2n π)(n ∈Z).

解析:因为cos(π+α)=-1

2, 所以-cos α=-12,cos α=1

2.

又α在第四象限,所以sin α=-1-cos 2α=-3

2. (1) sin(2π-α)=sin[2π+(-α)]=sin(-α)=-sin α=3

2.

(2) 原式=sin (α+2n π+π)-sin α

sin αcos α

=sin (π+α)-sin αsin αcos α=-2sin αsin αcos α=-

2cos α=-4.

化简:

sin (α+n π)+sin (α-n π)

sin (α+n π)cos (α-n π)

(n ∈Z).

解析:①当n =2k ,k ∈Z 时,

原式=sin (α+2k π)+sin (α-2k π)sin (α+2k π)cos (α-2k π)=2cos α;

②当n =2k +1,k ∈Z 时,

原式=sin[α+(2k +1)π]+sin[α-(2k +1)π]sin[α+(2k +1)π]cos[α-(2k +1)π]

=-2cos α.

【注】 关键是注意题中的整数n 是表示π的整数倍,与公式一中的整数k 的意义有区别,所以必须把n 分成奇数和偶数两种类型,分别加以讨论.

【备用题】 已知sin ? ??

??π2+α=1

3,

求cos (α-2π)

sin ? ????α-7π2cos (α-π)-sin ? ??

??

3π2+α的值.

【点评】 先进行化简,再代入求值,关键是正确应用诱导公式.注意适当化简或变形,如cos(α

-2π)=cos(2π-α)=cos α,

sin ? ????α-7π2=-sin ? ????7π2-α=-sin(3π2-α)=sin ? ??

??

π2-α=cos α. 解析:原式=cos α

cos α·(-cos α)-(-cos α)

=1-cos α+1=1-sin ? ??

??

π2+α+1

=32. 【注】 诱导公式的应用是求任意角的三角函数值,其一般步骤为:①负角变正角;②转化为锐角.

考向? 诱导公式的综合运用

例3 已知sin (3π-α)=2cos ? ????

3π2+β,3cos (-α)=-2cos (π+β),且0<α<π,0<β<π,求α和

β的值.

解析:由已知得???sin α=2sin β, ①

3cos α=2cos β, ②

①2+②2得sin 2α+3cos 2α=2(sin 2β+cos 2β), 即sin 2α+3(1-sin 2α)=2,

化简得sin 2α=12,解得sin α=±2

2.

又0<α<π,所以sin α=22,所以α=π4或α=3π

4.

将α=π4或α=3π

4代入②,

得cos β=32或cos β=-3

2.

又0<β<π,所以β=π6或β=5π

6,

所以α=π4,β=π6或α=3π4,β=5π

6.

若角α满足sin (540°+α)=-13,求sin (180°+α)cos (720°+α)tan (540°+α)

cos (-α-180°)tan (900°+α).

解析:sin (540°+α)=sin (180°+α)=-sin α=-13,则sin α=1

3. 原式=-sin α·cos α·tan α-cos α·tan α

=sin α=13.

【备用题】 已知f(α)=sin ? ????π2+αcos ? ??

??11π2-αcos (-π-α)sin ? ???

?

9π2-α.

(1) 化简f(α);

(2) 若α是第三象限角,且sin ? ?

?

??α-7π2=-12,求f(α);

(3) 若α=-25π

6,求f(α). 解析:(1) f(α)=

cos α·(-sin α)

-cos α·cos α

=tan α.

(2) 因为sin ? ????α-7π2=sin ? ?

?

??α+π2=cos α=-12,且α为第三象限角,所以sin α=-1-cos 2α=

-32,所以f(α)=sin α

cos α= 3.

(3) 因为α=-25π6=-π

6-4π,

所以tan α=tan ? ????-π6-4π=tan ? ??

??

-π6

=-tan π6=-3

3,

即f(α)=-3

3.

自测反馈

1. 若sin ? ????π6-α=-13,则cos ? ??

??

π3+α=__-13__.

解析:cos ? ????π3+α=cos ?

?????π2-? ????π6-α=sin ? ????

π6-α=-13. 2. 计算:sin ? ??

??

-π3+2sin 4π3+3sin 2π3=__0__. 解析:原式=-sin π3-2sin π3+3sin π

3=0. 3. 已知函数f(α)=sin (π-α)cos (2π-α)cos (-π-α)tan (π-α)

,则f ? ????

-25π3=__12__.

解析:f(x)=

sin α·cos α

-cos α·(-tan α)

=cos α,则

f ? ????-25π3=cos ? ????-25π3=cos ? ??

??

-π3=cos π3=12. 4. 在△ABC 中,下列等式成立的是__①__.(填序号)

①sin(A+B)=sin C;

②cos(B+C)=cos A;

③tan A+B

2=tan

C

2;

④sin B+C

2=-cos

A

2.

解析:因为A+B+C=π,

所以sin(A+B)=sin(π-C)=sin C;cos(B+C)=cos(π-A)=-cos A;

tan A+B

2=tan?

?

?

?

?

π

2-

C

2=

sin? ????

π

2-

C

2

cos? ????

π

2-

C

2

cos C 2

sin C

2

1

tan

C

2

;sin

B+C

2=sin?

?

?

?

?

π

2-

A

2=

cos A

2.故只有①成立.

1. 熟记诱导公式,“奇变偶不变,符号看象限”, 处理三角函数问题需从角、名、式三个方面考虑,运用整体代换、去繁为简、未知问题化为已知问题的思想方法.

2. 利用诱导公式把任意的三角函数转化为锐角三角函数的基本步骤是:

3. 你还有那些体悟,写下来:

三角函数的诱导公式教案优质课

三角函数的诱导公式(共5课时) 教学目标: 1、知识目标:理解四组诱导公式及其探究思路,学会利用 四组诱导公式求解任意角的三角函数值,会 进行简单的化简与证明。 2、能力目标:培养学生数学探究与交流的能力,培养学生 直觉猜想与抽象概括的能力。 3、情感目标与价值观:通过不断设置悬念、疑问,来引起 学生的困惑与惊讶,激发学生的好奇心和 求知欲,通过小组的合作与交流,来增强 学生学习数学的自信心。 教学重点:理解四组诱导公式 利用四组诱导公式求任意角的三角函数值和简单的化简与证明。 教学难点:四组诱导公式的推导过程 为了区分下节课的几组公式,要理解为何名称不变 理解确定符号的方法 教学方法:启发式结合讨论式教学方法,结合多媒体课件演示

教学工具:多媒体电脑,投影仪 教学过程: 一、问题情景: 回顾前面已经学习的理论知识,我们已经学习了任意角的三角函数的定义,学习了三角函数线,还有同角三角函数关系,但是我们还有一个关键问题没有解决,那就是:我们如何来求任意角的三角函数值呢 思考:你能填好下面的表吗 二、学生活动: 小组讨论: 1、找出我们可以解决的和目前无法解决的 2、对于还无法解决的,可否借助前面学习的知识求解

3、这些角之间有何关联 教师指导:我们前面学过了三角函数的定义和三角函数线,知道角的 终边和单位圆的交点的坐标就是角对应的三角函数值,大 家先画出一个单位圆,然后把第一个角的终边画出来,它 和单位圆的交点记为(00,x y ),然后我们以每两排为一 组前后左右可以相互讨论,分别画出另外四个角的终边和 单位圆的交点,每组画一个,然后每组推出一名代表发言, 看看你在画图的时候发现了什么。 (给五分钟画图、总结,学生在画图中容易看出另外的几个角和 开始的锐角的关系) 三、 意义建构: 教师指导:请每组推出的代表发言。(按顺序,没合适人选时,教师可以随机指出一名代表) 第一组:由画图发现0390的角的终边和6 的终边是重合的,它们相差 0360,由三角函数定义可知,终边相同的角的同一三角函数值相等,表中第二列和第一列值相同。 教师指导:第一组总结的很好,我们可否也把 它推广到任意的角呢总结一下就是“终 边相同的角的三角函数值相同”,如何

高中数学苏教版必修四学案:1.2.2 同角三角函数关系

第2课时三角函数线 学习目标 1.掌握正弦、余弦、正切函数的定义域. 2.了解三角函数线的意义,能用三角函数线表示一个角的正弦、余弦和正切. 3.能利用三角函数线解决一些简单的三角函数问题.

知识点一有向线段 思考1比如你从学校走到家和你从家走到学校,效果一样吗? 思考2如果你觉得效果不同,怎样直观的表示更好? 梳理有向线段 (1)有向线段:规定了________(即规定了起点和终点)的线段称为有向线段. (2)有向直线:规定了正方向的直线称为有向直线. (3)有向线段的数量:根据有向线段AB与有向直线l的方向相同或相反,分别把它的长度添上______或______,这样所得的数,叫做有向线段的数量,记为AB. (4)单位圆:圆心在________,半径等于____________的圆. 知识点二三角函数线 思考1在平面直角坐标系中,任意角α的终边与单位圆交于点P,过点P作PM⊥x轴,过点A(1,0)作单位圆的切线,交α的终边或其反向延长线于点T,如图所示,结合三角函数的定义,你能得到sin α,cos α,tan α与MP,OM,AT的关系吗?

思考2三角函数线的方向是如何规定的? 思考3三角函数线的长度和方向各表示什么?梳理

知识点三正弦、余弦、正切函数的定义域 思考对于任意角α,sin α,cos α,tan α都有意义吗?梳理三角函数的定义域

类型一 三角函数线 例1 作出-5π 8的正弦线、余弦线和正切线. 反思与感悟 (1)作正弦线、余弦线时,首先找到角的终边与单位圆的交点,然后过此交点作x 轴的垂线,得到垂足,从而得到正弦线和余弦线. (2)作正切线时,应从点A (1,0)引单位圆的切线交角的终边或终边的反向延长线于一点T ,即可得到正切线AT . 跟踪训练1 在单位圆中画出满足sin α=1 2的角α的终边,并求角α的取值集合.

高中数学公式三角函数公式大全

高中数学公式:三角函数公式大全三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在,下面是三角函数公式大全: 锐角三角函数公式 sin α=∠α的对边 / 斜边 cos α=∠α的邻边 / 斜边 tan α=∠α的对边 / ∠α的邻边 cot α=∠α的邻边 / ∠α的对边 倍角公式 Sin2A=2SinA?CosA Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 tan2A=(2tanA)/(1-tanA^2) (注:SinA^2 是sinA的平方 sin2(A)) 三倍角公式 sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α) tan3a = tan a · tan(π/3+a)· tan(π/3-a) 三倍角公式推导 sin3a

=sin(2a+a) 页 1 第 =sin2acosa+cos2asina 辅助角公式 Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中 sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2) tant=B/A Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B 降幂公式 cos(2α))/2=versin(2α)/2sin^2(α)=(1- cos^2(α)=(1+cos(2α))/2=covers(2α)/2 -cos(2α))/(1+cos(2α))tan^2(α)=(1 推导公式 tanα+cotα=2/sin2α 2cot2α-cotα=-tanα s2α=2cos^2α1+co 1-cos2α=2sin^2α 1+sinα=(sinα/2+cosα /2)^2=2sina(1-sin2a)+(1-2sin2a)sina =3sina-4sin3a cos3a =cos(2a+a) =cos2acosa-sin2asina 页 2 第 =(2cos2a-1)cosa-2(1-sin2a)cosa =4cos3a-3cosa

《三角函数的诱导公式》(学案)

三角函数的诱导公式(第1课时)(学案) 一.教学目标 1.知识与技能 (1)能够借助三角函数的定义推导三角函数的诱导公式。 (2)能够运用诱导公式,把任意角的三角函数的化简、求值问题转化为锐角三角函数的化简、求值问题。 2.过程与方法 (1)经历由几何直观探讨数量关系式的过程,培养学生数学发现能力和概括能力。 (2)通过对诱导公式的探求和运用,提高学生分析问题和解决问题的能力。 3.情感、态度、价值观 (1)通过对诱导公式的探求,培养学生的探索能力、钻研精神和科学态度。 (2)在诱导公式的探求过程中,运用合作学习的方式进行,培养学生团结协作的精神。 二.教学重点与难点 教学重点:探求π-α的诱导公式。π+α与-α的诱导公式在小结π-α的诱导公式发现过程的基础上,教师引导学生推出。 教学难点:π+α,-α与角α终边位置的几何关系,发现由终边位置关系导致(与单位圆交点)的坐标关系,运用任意角三角函数的定义导出诱导公式的“研究路线图”。 三.教学方法与教学手段 问题教学法、合作学习法,结合多媒体课件 四.教学过程 角的概念已经由锐角扩充到了任意角,前面已经学习过任意角的三角函数,那么任意角的三角函数值.怎么求呢? (一)情境创设及问题提出 如何将任意角三角函数求值问题转化为0°~360°角三角函数 求值问题。 【情境创设】摩天轮旋转一周(比如如图30°角的位置)后又会 回到原位,你能否从数学角度或者用数学学语言来刻画一下什么是 “回到原位”?摩天轮旋转一周后,发生变化和没有变化的量分别 是什么?它们之间有何关系?从中你能得到什么结论? 一般地,由三角函数的定义可以知道,终边相同的角的同一三 角函数值__________,三角函数看重的就是终边位置关系。即有: (二)尝试推导 如何利用对称推导出角π-α与角α的三角函数之间的关系。 【问题2】你能找出和30°角正弦值相等,但终边不同的角吗? 角与角α的终边关于y轴对称,有:

三角函数的诱导公式第一课时教学设计

课题名称:三角函数的诱导公式(一) 课程模块及章节:必修4第一章节 教学背景分析 (一)课标的理解与把握 能够借助三角函数的定义及单位圆中的三角函数线推导三角函数的诱导公式 (二)教材分析: 本节课教学内容“诱导公式(二)、(三)、(四)”是人教版数学4,第一章1、3节内容,是学生已学习过的三角函数定义、同角三角函数基本关系式及诱导公式(一)等知识的延续和拓展,又是推导诱导公式(五)的理论依据。 (三)学情分析: 如何引导学生从单位圆的对称性与任意角终边的对称性中,发现问题,提出研究方法. 教学目标 1记忆正弦、余弦的诱导公式. 2. 诱导公式并运用其进行三角函数式的求值、化简以及简单三角恒等式的证明. 教学重点和难点 运用诱导公式进行简单三角函数式的求值、化简与恒等式的证明 教学准备、教学资源和主要教学方法 模型、直尺、多媒体。 自主性学习法;反馈练习式学习法 教学过程 教 学环节教师为主的活动 学生为主 的活动 设 计 意 图 导入新课一.问题引入: 角的概念已经由锐角扩充到了任意角,前面已经学习过任 意角的三角函数,那么任意角的三角函数值.怎么求呢先看一个 具体的问题。 求390°角的正弦、余弦值. 一般地,由三角函数的定义可以知道,终边相同的角的同 一三角函数值相等,即有: sin(+2kπ) = sinα,cos(+2kπ) = cosα,ta n(+2k π) = tanα (k∈Z) 。 (公式一) 通过复习 知识引人 新课 激 发 学 生 的 学 习 兴 趣 目 标 引 把学习目标板在黑板的右上角,并对目标进行解读。

领 活动导学二.尝试推导 由上一组公式,我们知道,终边相同的角的同一三角函数 值一定相等。反过来呢 问题:你能找出和30°角正弦值相等,但终边不同的角吗 角π与角的终边关 于y轴对称,有 sin(π ) = sin , cos(π ) = cos ,(公式二) tan(π ) = tan 。 因为与角终边关于y轴 对称是角π-,,利用这种对称关系,得到它们的终边与单位 圆的交点的纵坐标相等,横坐标互为相反数。于是,我们就得 到了角π与角的三角函 数值之间的关系:正弦值相等, 余弦值互为相反数,进而,就得 到我们研究三角函数诱导公式 的路线图: 角间关系→对称关系→坐 标关系→三角函数值间关系。 三.自主探究 问题:两个角的终边关于x 轴对称,你有什么结论两个角的终边关于原点对称呢 角与角的终边关于x轴对称,有: sin() = sin , cos() = cos ,(公式三) tan() = tan 。 角π + 与角终边关于 原点O对称,有: sin(π + ) = sin , cos(π + ) = cos ,(公式四) tan(π + ) = tan 。 上面的公式一~四都称为三角函数的诱导公式。 结论:α π α π α± - ∈ ? +, , ) ( 2Z k k的三角函数值,等 于α的同名函数值,前面加上一个把α看成锐角时原函数值的 符号. 学生阅读、 观察、思 考、讨论交 流。 提问式回 答,教师再 补充完整。 学生观察 图形,思考 学生观察、 思考、讨论 以 问 题 式 给 出, 把 课 堂 较 给 学 生, 激 发 学 生 学 习 的 自 主 性。 培 养 学 生 的 空 间 想 象 能 力

【2019A新教材高中数学必修第一册】5.2.1 三角函数的概念 导学案

5.2.1 三角函数的概念 1.借助单位圆理解任意角三角函数的定义; 2.根据定义认识函数值的符号。理解诱导公式一; 3.能初步运用定义分析和解决与三角函数值有关的一些简单问题。 1.教学重点:任意角的三角函数(正弦函数、余弦函数、正切函数)的定义; 2.教学难点:任意角的三角函数概念的建构过程,解决与三角函数值有关的一些简单问题。 一、设角, 是一个任意角,R ∈αα它的终边与单位圆交于点),(P y x 。 那么(1) 的正弦函数。叫做α记作 ,;sin α=y 即 (2) 的余弦函数。叫做α记作 ,;cos α=x 即 (3) 的正切。叫做α记作 ;tan α=x y 即 )0(tan ≠=x x y α是 以角为自变量,以单位圆上点的纵坐标与横坐标的比值为函数值的函数,称为 (tangent function)。 二、三角函数的定义域。 三角函数 定义域 αsin =y αcos =y αtan =y 三、诱导公式 =+)2sin(παk ;=+)2(cos παk ; =+)2(tan παk 。Z k ∈ 一、探索新知 探究一.角α的始边在x 轴非负半轴,终边与单位圆交于点P 。当πα=时,点P 的坐标是什么?当

322ππα或= 时,点P 的坐标又是什么?它们唯一确定吗? 探究二 :一般地,任意给定一个角α,它的终边OP 与单位圆交点P 的坐标能唯一确定吗? 1.任意角的三角函数定义 设角, 是一个任意角,R ∈αα它的终边与单位圆交于点),(P y x 。 那么(1) 的正弦函数。叫做α记作 ,;sin α=y 即 (2) 的余弦函数。 叫做α记作 ,;cos α=x 即 (3) 的正切。叫做α记作 ;tan α=x y 即 )0(tan ≠=x x y α是 以角为自变量,以单位圆上点的纵坐标与横坐标的比值为函数值的函数,称为 (tangent function)。 正弦函数,余弦函数,正切函数都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们将他们称为三角函数. 通常将它们记为:正弦函数 R x x y ∈=,sin 余弦函数 R x x y ∈=,cos 正切函数 )(2,tan Z k k x x y ∈+≠=ππ 探究三:在初中我们学了锐角三角函数,知道它们都是以锐角为自变量。以比值为函数值的函数,设)2 ,0(π ∈x ,把按锐角三角函数定义求得的锐角x 的正弦记为1z ,并把按本节三角函数定义求得的 x 的正弦记为1y 。1z 与1y 相等吗?对于余弦、正切也有相同的结论吗?

高中数学三角函数公式大全全解

三角函数公式 1.正弦定理: A a sin = B b sin =C c sin = 2R (R 为三角形外接圆半径) 2.余弦定理:a 2=b 2+c 2-2bc A cos b 2=a 2+c 2-2ac B cos c 2=a 2+b 2-2ab C cos bc a c b A 2cos 2 22-+= 3.S ⊿= 21a a h ?=21ab C sin =21bc A sin =21ac B sin =R abc 4=2R 2A sin B sin C sin =A C B a sin 2sin sin 2=B C A b sin 2sin sin 2=C B A c sin 2sin sin 2=pr=))()((c p b p a p p --- (其中)(2 1 c b a p ++=, r 为三角形内切圆半径) 4.诱导公试 注:奇变偶不变,符号看象限。 注:三角函数值等于α的同名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名不变,符号看象限 注:三角函数值等于α的 异名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:

函数名改变,符号看象限 5.和差角公式 ①βαβαβαsin cos cos sin )sin(±=± ②βαβαβαsin sin cos cos )cos( =± ③β αβ αβαtg tg tg tg tg ?±= ± 1)( ④)1)((βαβαβαtg tg tg tg tg ?±=± 6.二倍角公式:(含万能公式) ①θ θ θθθ2 12cos sin 22sin tg tg += = ②θ θ θθθθθ2 22 2 2 2 11sin 211cos 2sin cos 2cos tg tg +-=-=-=-= ③θθθ2122tg tg tg -= ④22cos 11sin 222θθθθ-=+=tg tg ⑤22cos 1cos 2 θθ+= 7.半角公式:(符号的选择由 2 θ 所在的象限确定) ①2cos 12 sin θθ -± = ②2 cos 12sin 2θ θ-= ③2cos 12cos θθ+±= ④2cos 12 cos 2 θθ += ⑤2sin 2cos 12θθ=- ⑥2 cos 2cos 12θθ=+ ⑦2 sin 2 cos )2 sin 2 (cos sin 12θ θθθθ±=±=± ⑧θ θ θθθθθ sin cos 1cos 1sin cos 1cos 12 -=+=+-± =tg 8.积化和差公式: [])sin()sin(21cos sin βαβαβα-++=[] )sin()sin(21 sin cos βαβαβα--+=[])cos()cos(21cos cos βαβαβα-++= ()[]βαβαβα--+-=cos )cos(2 1 sin sin 9.和差化积公式:

三角函数诱导公式学案(一)

1.2.三角函数诱导公式学案(一) 预习案(限时20分钟) 学习目标: (1)能够借助三角函数的定义及单位圆中的三角函数线推导三角函数的诱导公式; (2)能够运用诱导公式,把任意角的三角函数的化简、求值问题转化为锐角三角函数的化简、求值问题 学习重点: 用联系的观点发现并证明诱导公式,体会把未知问题化归为已知问题的思想方法 学习难点:如何引导学生从单位圆的对称性与任意角终边的对称性中,发现问题,提出研究方法. 预习指导:请根据任务提纲认真预习课本P23-25 ? 任务一:探究三角函数诱导公式(二) (三)(四) 思考: (1)各象限内三角函数值的符号是什么?(只讨论正弦、余弦、正切) (2)任意角的三角函数的定义是什么? (3)公式一的内容与作用是什么? 探究一:任意角α与(π+α)三角函数值的关系. ①α与 (π+α)角的终边关系如何? ②设α与(π+α)角的终边分别交单位圆于点P 1,P 2,则点P 1与P 2位置关系如何? ③设点P 1(x ,y ),那么点P 2的坐标怎样表示? ④sin α与sin(π+α),cos α与cos(π+α),tan α与tan(π+α)的关系如何? 利用三角函数定义,自己探索,归纳成公式(二) _______)tan(_______)cos(_______)sin(=+=+=+απαπαπ 探究二:任意角α与(-α)三角函数值的关系. ①α与(-α)角的终边位置关系如何? ②设α与(-α)角的终边分别交单位圆于点P 1,P 2点P 1与P 2位置关系如何? ③设点P 1(x ,y ),则点P'的坐标怎样表示? ④sin α与sin(-α),cos α与cos(-α) ,tan α与tan(-α)关系如何? 利用三角函数定义,经过探索,归纳成公式(三) _______)tan(_______)cos(_______)sin(=-=-=-ααα 探究三:α与(π-α)的三角函数值的关系. ①α与(π-α)角的终边位置关系如何? ②设α与(π-α)角的终边分别交单位圆于点P 1,P 2点P 1与P 2位置关系如何? ③设点P 1(x ,y ),则点P'的坐标怎样表示? ④sin α与sin(π-α),cos α与cos(π-α) ,tan α与tan(π-α)关系如何? 经过探索,归纳成公式(四) _______)tan(_______)cos( _______)sin(=-=-=-απαπαπ 预习检测 1.cos 225?=_________ 2.)45sin(ο-=_________ 3.)150tan(ο =________ _______)180tan()cos()180sin(.4=--?+οοααα 5.若,31)tan(=+απ则=αtan __________________

三角函数的诱导公式教案

1.3三角函数的诱导公式 贾斐三维目标 1、通过学生的探究,明了三角函数的诱导公式的来龙去脉,理解诱导公式的推导过程;培养学生的逻辑推理能力及运算能力,渗透转化及分类讨论的思想. 2、通过诱导公式的具体运用,熟练正确地运用公式解决一些三角函数的求值、化简和证明问题,体会数式变形在数学中的作用. 3、进一步领悟把未知问题化归为已知问题的数学思想,通过一题多解,一题多变,多题归一,提高分析问题和解决问题的能力. 重点难点 教学重点:五个诱导公式的推导和六组诱导公式的灵活运用,三角函数式的求值、化简和证明等. 教学难点:六组诱导公式的灵活运用. 课时安排2课时 教学过程 导入新课 思路1.①利用单位圆表示任意角的正弦值和余弦值. ②复习诱导公式一及其用途.

思路2.在前面的学习中,我们知道终边相同的角的同名三角函数值相等,即公式一,并且利用公式一可以把绝对值较大的角的三角函数转化为0°到360°(0到2π)内的角的三角函数值,求锐角三角函数值,我们可以通过查表求得,对于90°到 到2π)范围内的角的三角函数怎样求解,能不能有像360°( 2 公式一那样的公式把它们转化到锐角范围内来求解,这一节就来探讨这个问题. 新知探究 提出问题 由公式一把任意角α转化为[0°,360°)内的角后,如何进一步求出它的三角函数值? 活动:在初中学习了锐角的三角函数值可以在直角三角形中求得,特殊角的三角函数值学生记住了,对非特殊锐角的三角函数值可以通过查数学用表或是用计算器求得.教师可组织学生思考讨论如下问题:0°到90°的角的正弦值、余弦值用何法可以求得?90°到360°的角β能否与锐角α相联系?通过分析β与α的联系,引导学生得出解决设问的一种思路:若能把求[90°,360°)内的角β的三角函数值,转化为求有关锐角α的三角函数值,则问题将得到解决,适时提出,这一思想就是数学的化归思想,教师可借此向学生介绍化归思想.

高中数学三角函数模型的简单应用学案苏教版必修

§1.6三角函数模型的简单应用 【学习目标 细解考纲】 1、会用三角函数解决一些简单的问题,体会三角函数是描述周期变化现象的重要函数模型. 2通过对三角函数的应用,发展数学应用意识,求对现实世界中蕴涵的一些数学模型进行思考和作出判断. 【知识梳理 双基再现】 1、三角函数可以作为描述现实世界中_________现象的一种数学模型. 2、|sin |y x =是以____________为周期的波浪型曲线. 3、如图所示,有一广告气球,直径为6m ,放在公司大楼上空,当行人仰望气球中心的仰角030BAC ∠=时,测得气球的视角01β=,若θ很小时,可取sin θθ≈,试估算该气球离地高度BC 的值约为( ). A .72cm B .86cm C .102cm 【小试身手 轻松过关】 1、设()y f t =是某港口水的深度关于时间t (时)的函数,其中024t ≤≤,下表是该港口某一天从0至24时记录的时间与水深的关系. 经长期观察,函数()y f t =的图象可以近似地看成函数sin()y k A t ω?=++的图象. 根据上述数据,函数()y f t =的解析式为( ) A .123sin ,[0,24]6t y t π=+∈ B .123sin(),[0,24]6 t y t ππ=++∈ C .123sin ,[0,24]12t y t π=+∈ D .123sin(),[0,24]122 t y t ππ=++∈ 2、如图,是一弹簧振子作简谐运动的图象,横轴表示振动的时间,纵轴表示振子的位移,则这个振子振动的函数解析式是____________. 3、如图是一向右传播的绳波在某一时刻绳子各点的位置图,经过 12 周期后,乙点的位置将移至( ) A .甲 B .乙 C .丙 D .丁

《三角函数的诱导公式》教学设计

1.3 三角函数的诱导公式 (名师:杨峻峰) 一、教学目标 (一)核心素养 从对称性出发,获得一些三角函数的性质.会选择合适的诱导公式将任意角的三角函数转化为锐角三角函数. (二)学习目标 1. 牢固掌握五组诱导公式. 2. 理解和掌握公式的内涵及结构特征,熟练运用公式进行三角函数的求值、化简及恒等证明. 3. 通过诱导公式的推导,培养学生的观察能力、分析归纳能力. 4.渗透把未知转化为已知以及分类讨论的数学思想. (三)学习重点 熟练、准确地运用公式进行三角函数求值、化简及证明. (四)学习难点 相关角终边的几何对称关系及诱导公式结构特征的认识,诱导公式的推导、记忆及符号判断. 二、教学设计 (一)课前设计 1. 阅读教材第23页至第27页,填空: (1)如图,πα+的终边与角α的终边关于 原点 对称; (2)如图,α-的终边与角α的终边关于 x轴 对称; (3)如图,πα-的终边与角α的终边关于 y 轴 对称; (4)如图, 2 π α-的终边与角α的终边关于 直线y =x 对称;

(5)诱导公式: 公式二:()sin πα+=sin α-,()cos πα+=cos α-,()tan πα+=tan α; 公式三:()sin α-=sin α-,()cos α-=cos α,()tan α-=tan α-; 公式四:()sin πα-=sin α,()cos πα-=cos α-,()tan πα-=tan α-; 公式五:sin 2πα??-= ???cos α,cos 2πα?? -= ???sin α; 公式六:sin 2πα??+= ???cos α,cos 2πα?? += ??? sin α-. 2.预习自测 1.下列选项错误的是( ) A.利用诱导公式二可以把第三象限的三角函数化为第一象限的三角函数.? B.利用诱导公式三可以把负角的三角函数化为正角的三角函数. ? C. sin cos 2παα? ?+=- ?? ?. ? ? ? D .若α为第四象限角,则sin cos 2παα? ?-=- ???.? ? ? 答案:C. (二)课堂设计 1.知识回顾

三角函数的诱导公式(教案)

三角函数的诱导公式 (教案) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

课题:三角函数的诱导公式 授课教师:吴淑群 教材:苏教版数学4第1章1.2.3 教学目标 1.理解三角函数的诱导公式; 2.能运用这些公式处理简单的三角函数的化简、求值等问题; 目标解析 1.在理解的基础上,熟记诱导公式; 2.能运用诱导公式将任意角的三角函数化为锐角的三角函数,并进行简单的三角变换; 3.经历由几何特征(终边的对称)到发现数量关系(诱导公式)的探索过程;4.从公式推导和运用的过程中,体会数形结合、转化与化归等思想方法; 5.初步体会三角函数和周期性变化的内在联系; 教学重点、难点 重点:四组诱导公式的推导、记忆和运用。 难点:诱导公式推导过程中数形关系的转换;符号的判断。 教学方法与教学手段 探究教学法、多媒体辅助教学。 教学过程 一、创设情景 先行组织者

师:我们已经学习了任意角三角函数的概念。三角函数是以圆周运动为原型,为 了刻画周期性运动而建立的数学模型。那么,周期性是怎样体现在三角函数的概念之中的?今天,我们仅就上述问题做一个初步的探讨。 二、建构数学 1.终边相同的角的三角函数 (1)提出问题(展示课件) 已知任意..角α,观察角α的终边绕着原点逆时针旋转的过程。 问题1:在上述变化过程中,有哪些东西会周而复始的重复出现? (2)解决问题 (根据学生回答的情况,视机提出下列提示性问题) 问题1-1:角的终边的位置会重复出现吗三角函数值会重复出现吗 问题1-2:什么时候“角的终边位置”会重复出现什么时候三角函数值会重复出现 要求学生把分析的结论用数学等式表示出来: ) (tan )2tan()(cos )2cos()(sin )2sin(Z k k Z k k Z k k ∈=+∈=+∈=+απααπαα πα 问题1-3 :角α与角παk 2+)(Z k ∈的三角函数值为什么相等呢? (让学生回到定义去解决问题) (3)小结: 回顾解决问题的思路,得到下面的框图

高中数学学案:三角函数的最值问题

高中数学学案:三角函数的最值问题 1. 会通过三角恒等变形、利用三角函数的有界性、结合三角函数的图象,求三角函数的最值和值域. 2. 掌握求三角函数最值的常见方法,能运用三角函数最值解决一些实际问题. 1. 阅读:必修4第24~33页、第103~116页、第119~122页. 2. 解悟:①正弦、余弦、正切函数的图象和性质是什么?②三角函数y =A sin (ωx +φ)(A>0,ω>0)的最值及对应条件;③两角和与差的正弦、余弦、正切公式是什么?辅助角公式是否熟练?④二倍角公式是什么?由倍角公式得到的降幂扩角公式是什么?必修4第123页练习第4题怎么解? 3. 践习:在教材空白处,完成必修4第131页复习题第9、10、16题. 基础诊断 1. 函数f(x)=sin x,x ∈? ????π6,2π3的值域为? ?? ??12,1__. 2. 函数f(x)=sin x -cos ? ?? ??x +π6的值域为3]__. 解析:因为f(x)=sin x -cos (x +π6)=sin x -32cos x +12sin x =32sin x -32cos x =3sin (x -π6), 所以函数f(x)=sin x -cos (x +π6)的值域为[-3,3]. 3. 若函数f(x)=(1+3tan x)cos x,0≤x<π2,则f(x)的最大值为__2__. 解析:f(x)=(1+3tan x)cos x =cos x +3sin x =2sin ? ????x +π6.因为0≤x<π2,所以π6≤x +π6<2π3,所以sin ? ????x +π6∈???? ??12,1, 所以当sin ? ?? ??x +π6=1时,f(x)有最大值2. 4. 函数y =2sin 2x -3sin 2x 范例导航 考向? 形如y =a sin 2x +b cos x +c 的三角函数的最值

《三角函数的诱导公式》

三角函数的诱导公式(第1课时) 南京师范大学附属中学刘洪璐 教材:苏教版《普通高中课程标准实验教科书(必修4)·数学》第1.2.3节 一.教学目标 1.知识与技能 (1)能够借助三角函数的定义及单位圆中的三角函数线推导三角函数的诱导公式。 (2)能够运用诱导公式,把任意角的三角函数的化简、求值问题转化为锐角三角函数的化简、求值问题。 2.过程与方法 (1)经历由几何直观探讨数量关系式的过程,培养学生数学发现能力和概括能力。 (2)通过对诱导公式的探求和运用,培养化归能力,提高学生分析问题和解决问题的能力。 3.情感、态度、价值观 (1)通过对诱导公式的探求,培养学生的探索能力、钻研精神和科学态度。 (2)在诱导公式的探求过程中,运用合作学习的方式进行,培养学生团结协作的精神。 二.教学重点与难点 教学重点:探求π-α的诱导公式。π+α与-α的诱导公式在小结π-α的诱导公式发现过程的基础上,教师引导学生推出。 教学难点:π+α,-α与角α终边位置的几何关系,发现由终边位置关系导致(与单位圆交点)的坐标关系,运用任意角三角函数的定义导出诱导公式的“研究路线图”。 三.教学方法与教学手段 问题教学法、合作学习法,结合多媒体课件 四.教学过程 角的概念已经由锐角扩充到了任意角,前面已经学习过任意角的三角函数,那么任意角的三角函数值.怎么求呢?先看一个具体的问题。 (一)问题提出 如何将任意角三角函数求值问题转化为0°~360°角三角函数求值问题。 【问题1】求390°角的正弦、余弦值. 一般地,由三角函数的定义可以知道,终边相同的角的同一三角函数值相等,三角函数看重的就是终边位置关系。即有:sin(α+k·360°) = sinα, cos(α+k·360°) = cosα,(k∈Z) tan(α+k·360°) = tanα。 这组公式用弧度制可以表示成sin(α+2kπ) = sinα, cos(α+2kπ) = co sα,(k∈Z) (公式一) tan(α+2kπ) = ta nα。

2018版高中数学三角函数1.2.1任意角的三角函数一导学案新人教A版

1.2.1 任意角的三角函数(一) 学习目标 1.通过借助单位圆理解并掌握任意角的三角函数定义,了解三角函数是以实数为自变量的函数.2.借助任意角三角函数的定义理解并掌握正弦、余弦、正切函数值在各象限内的符号.3.通过对任意角的三角函数定义的理解,掌握终边相同的角的同一三角函数值相等. 知识点一 任意角的三角函数 使锐角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,在终边上任取一点P ,作PM ⊥x 轴于M ,设P (x ,y ),|OP |=r . 思考1 角α的正弦、余弦、正切分别等于什么? 答案 sin α=y r ,cos α=x r ,tan α=y x . 思考2 对确定的锐角α,sin α,cos α,tan α的值是否随P 点在终边上的位置的改变而改变? 答案 不会.因为三角函数值是比值,其大小与点P (x ,y )在终边上的位置无关,只与角α的终边位置有关,即三角函数值的大小只与角有关. 思考3 在思考1中,当取|OP |=1时,sin α,cos α,tan α的值怎样表示? 答案 sin α=y ,cos α=x ,tan α=y x . 梳理 (1)单位圆 在直角坐标系中,我们称以原点O 为圆心,以单位长度为半径的圆为单位圆. (2)定义 在平面直角坐标系中,设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么: ①y 叫做α的正弦,记作sin α, 即sin α=y ; ②x 叫做α的余弦,记作cos α,即cos α=x ; ③y x 叫做α的正切,记作tan α,即tan α=y x (x ≠0). 对于确定的角α,上述三个值都是唯一确定的.故正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,统称为三角函数.

最全高中数学三角函数公式

定义式 ) ct 函数关系 倒数关系:;; 商数关系:;. 平方关系:;;.诱导公式

公式一:设为任意角,终边相同的角的同一三角函数的值相等: 公式二:设为任意角,与的三角函数值之间的关系: 公式三:任意角与的三角函数值之间的关系: 公式四:与的三角函数值之间的关系: 公式五:与的三角函数值之间的关系: 公式六:及与的三角函数值之间的关系:

记背诀窍:奇变偶不变,符号看象限.即形如(2k+1)90°±α,则函数名称变为余名函数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。形如2k×90°±α,则函数名称不变。 诱导公式口诀“奇变偶不变,符号看象限”意义: k×π/2±a(k∈z)的三角函数值.(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作 锐角时原三角函数值的符号; (2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。 记忆方法一:奇变偶不变,符号看象限:

记忆方法二:无论α是多大的角,都将α看成锐角. 以诱导公式二为例: 若将α看成锐角(终边在第一象限),则π十α是第三象限的角(终边在第三象限),正弦函数的函数值在第三象限是负值,余弦函数的函数值在第三象限是负值,正切函数的函数值在第三象限是正值.这样,就得到了诱导公式二. 以诱导公式四为例: 若将α看成锐角(终边在第一象限),则π-α是第二象限的角(终边在第二象限),正弦函数的三角函数值在第二象限是正值,余弦函数的三角函数值在第二象限是负值,正切函数的三角函数值在第二象限是负值.这样,就得到了诱导公式四. 诱导公式的应用: 运用诱导公式转化三角函数的一般步骤: 特别提醒:三角函数化简与求值时需要的知识储备:①熟记特殊角的三角函数值;②注意诱导公式的灵活运用;③三角函数化简的要求是项数要最少,次数要最低,函数名最少,分母能最简,易求值最好。

2019-2020学年高中数学 三角函数诱导公式学案2 新人教A版必修4.doc

2019-2020学年高中数学 三角函数诱导公式学案2 新人教A 版必 修 4 二、重点、难点 重点: 借助于单位圆,推导出正弦、余弦相互转化的诱导公式。 难点: 利用诱导公式解决有关三角函数求值、化简和恒等式证明问题。 三、教学过程 引入新课 1函数名称 )(2Z k k ∈+πα α- απ- απ+ αsin αcos αtan 2.(1)=6 sin π _____;=3 cos π _____。 (2)=4 sin π _____;=4 cos π _____。 (3)=0sin _____;=2 cos π _____。 那么能否将锐角推广到任意角呢? 猜测公式五: 。 3.角6π与3 π 的终边有何关系?利用单位圆,画出三角函数线,证明你的结论。 4.(1)=65sin π_____;=3cos π_____。(2)=43sin π_____;=4cos π_____。 (3)=65cos π_____;=3sin π_____。(4)=43cos π_____;=4 sin π_____。 x y O 知识链接:初中学习过,任意锐角的正弦 值等于它的余角的余弦值;任意锐角的余弦值 等于它的角的正弦值。 由2π βα= +得απ β-= 2 , )2cos(sin απα-=,)2 sin(cos απ α-=

猜测公式六: 。 5.你能否用公式二和五证明你猜测的公式六? 例题剖析 例1.求证:(1)ααπcos )2 3sin(-=+ (2)ααπsin )2 3cos(=+ 例2.已知3 1)75cos(=+α ,且?-<

必修四1.3.三角函数的诱导公式(教案)

人教版新课标普通高中◎数学④ 必修 1 1.3 三角函数的诱导公式 教案 A 教学目标 一、知识与技能 1.理解诱导公式的推导过程; 2.通过诱导公式的具体运用,熟练正确地运用公式解决一些三角函数的求值、化简和证明问题,体会数式变形在数学中的作用. 3.进一步领悟把未知问题化归为已知问题的数学思想,通过一题多解,一题多变,多题归一,提高分析问题和解决问题的能力. 二、过程与方法 利用三角函数线,从单位圆关于x 轴、y 轴、直线y x 的轴对称性以及关于原点O 的中心对称性出发,通过学生的探究,明了三角函数的诱导公式的来龙去脉,理解诱导公式的推导过程;培养学生的逻辑推理能力及运算能力,渗透转化及分类讨论的思想. 三、情感、态度与价值观 通过本节的学习使学生认识到了解任何新事物须从它较为熟悉的一面入手,利用转化的方法将新事物转化为我们熟知的事物,从而达到了解新事物的目的,并使学生养成积极探索、科学研究的好习惯. 教学重点、难点 教学重点:五组诱导公式的推导和六组诱导公式的灵活运用,三角函数式的求值、化简和证明等. 教学难点:六组诱导公式的灵活运用. 教学关键:五组诱导公式的探究. 教学突破方法:问题引导,充分利用多媒体引导学生主动探究. 教法与学法导航 教学方法:探究式,讲练结合. 学习方法:切实贯彻学案导学,以学生的学为主,教师起引导的作用,具体表现在教学过程当中. 1. 充分利用多媒体引导学生完善从特殊到一般的认知过程; 2. 强调记忆规律,加强公式的记忆; 3. 通过对例题的学习,完成学习目标. 教学准备 教师准备:多媒体,投影仪、直尺、圆规. 学生准备:练习本、直尺、圆规. 教学过程 一、创设情境,导入新课 我们利用单位圆定义了三角函数,而圆具有很好的对称性.能否利用圆的这种对称

高中数学第一章三角函数1.1.1任意角学案(含解析)新人教A版必修4

高中数学第一章三角函数1.1.1任意角学案(含解析)新人教A 版必修4 考试标准 课标要点学考要求高考要求 任意角的概念 a a 终边相同的角的表示 b b 象限角的概念 b b 注:“a”表示“了解”,“b”表示“理解”,“c”表示“掌握”. 知识导图 学法指导 1.结合实例明确任意角的概念. 2.本节的重点是理解并掌握正角、负角、零角的概念,掌握用集合的形式表示终边相同的角,并会判断角的终边所在的象限. 1.角的概念 角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形. 2.角的表示 顶点:用O表示; 始边:用OA表示,用语言可表示为起始位置; 终边:用OB表示,用语言可表示为终止位置. 状元随笔(1)在画图时,常用带箭头的弧来表示旋转的方向.

(2)为了简单起见,在不引起混淆的前提下,“角α”或“∠α”可以简记成“α”. 3.角的分类 类型定义图示 正角按逆时针方向旋转形成的角 负角按顺时针方向旋转形成的角 零角一条射线没有作任何旋转,称它形成了一个零角 在直角坐标系中研究角时,当角的顶点与原点重合,角的始边与x轴的非负半轴重合时,角的终边在第几象限,就说这个角是第几象限角,如果角的终边在坐标轴上,就认为这个角不属于任何一个象限. 5.终边相同的角 所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z},即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.状元随笔(1)α为任意角,“k∈Z”这一条件不能漏. (2)k·360 °与α中间用“+”连接,k·360 °-α可理解成k·360 °+(-α). (3)当角的始边相同时,相等的角的终边一定相同,而终边相同的角不一定相等.终边相同的角有无数个,它们相差360 °的整数倍.终边不同则表示的角一定不同. [小试身手] 1.判断下列命题是否正确. (正确的打“√”,错误的打“×”) (1)角的始边、终边是确定的,角的大小是确定的.( ) (2)第一象限的角一定是锐角.( ) (3)终边相同的角是相等的角.( ) 答案:(1)×(2)×(3)× 2.下列各角:-60°,126°,-63°,0°,99°,其中正角的个数是( ) A.1 B.2 C.3 D.4 解析:结合正角、负角和零角的概念可知,126°,99°是正角,-60°,-63°是负角,0°是零角,故选B. 答案:B

相关主题
文本预览
相关文档 最新文档