当前位置:文档之家› 高二数学必修5 正弦定理、余弦定理(一)

高二数学必修5 正弦定理、余弦定理(一)

高二数学必修5 正弦定理、余弦定理(一)
高二数学必修5 正弦定理、余弦定理(一)

高二数学必修5

教学目标: 进一步熟悉正、余弦定理内容,能够应用正、余弦定理进行边角关系的相互转化,判断三角形的形状,证明三角形中的三角恒等式;通过正、余弦定理在边角互换时所发挥的桥梁作用来反映事物之间的内在联系;通过三角恒等式的证明来反映事物外在形式可以相互转化而内在实质的不变性.

教学重点:

利用正、余弦定理进行边角互换.

教学难点:

1.利用正、余弦定理进行边角互换时的转化方向;

2.三角恒等式证明中结论与条件之间的内在联系的寻求.

教学过程:

Ⅰ.复习回顾

前面两节课,我们一起学习了正弦定理、余弦定理的内容,并且接触了利用正、余弦定理解三角形的有关题型.下面,我们先来回顾一下正、余弦定理的内容.正弦定理、余弦定理实质上反映了三角形内的边角关系,运用定理可以进行边与角之间的转换,这一节,我们将通过例题分析来学习正、余弦定理的边角转换功能在证明三角恒等式及判断三角形形状时的应用. Ⅱ.讲授新课

[例1]已知△ABC ,BD 为B 的平分线,求证:AB ∶BC =AD ∶DC

分析:前面大家所接触的解三角形问题是在一个三角形内研究问题,而

B 的平分线BD 将△AB

C 分成了两个三角形:△AB

D 与△CBD ,故要证结论成立,可证明它的等价形式:AB ∶AD =BC ∶DC ,从而把问题转化到两个三角形内,而在三角形内边的比等于所对角的正弦值的比,故可利用正弦定理将所证继续转化为AB sin ∠ADB =AD sin ∠ABD ,BC sin ∠BDC =DC sin ∠DBC

,再根据相等角正弦值相等,互补角正弦值也相等即可证明结论. 证明:在△ABD 内,利用正弦定理得:

AB sin ∠ADB =AD sin ∠ABD

,即AB AD =sin ∠ADB sin ∠ABD 在△BCD 内,利用正弦定理得:

BC sin ∠BDC =DC sin ∠DBC

,即BC DC =sin ∠BDC sin ∠DBC . ∵BD 是B 的平分线.∴∠ABD =∠DBC ,

∴sin ABD =sin DBC .

∵∠ADB +∠BDC =180°,∴sin ADB =sin (180°-∠BDC )=sin BDC

∴AB AD =sin ∠ADB sin ∠ABD =sin ∠BDC sin ∠DBC =BC DC ,∴AB BC =AD DC

评述:此题可以启发学生利用正弦定理将边的关系转化为角的关系,并且注意互补角的正弦值相等这一特殊关系式的应用.

[例2]在△ABC 中,求证:a 2sin2B +b 2sin2A =2ab sin C

分析:此题所证结论包含关于△ABC 的边角关系,证明时可以考虑两种途径:一是把角的关系通过正弦定理转化为边的关系,若是余弦形式则通过余弦定理;二是把边的关系转化为角的关系,一般是通过正弦定理.

另外,此题要求学生熟悉相关的三角函数的有关公式,如sin2B =2sin B ·cos B 等,以便在化为角的关系时进行三角函数式的恒等变形.

证明一:(化为三角函数)

a 2sin2B +

b 2sin2A

=(2R sin A )2·2sin B ·cos B +(2R sin B )2·2sin A ·cos A

=8R 2sin A ·sin B (sin A cos B +cos A sin B )=8R 2sin A sin B sin C

=2·2R sin A ·2R sin B ·sin C =2ab sin C

所以原式得证.

证明二:(化为边的式子)

左边=a 2·2sin B cos B +b 2·2sin A ·cos A

=a 2

·2b k ·a 2+c 2-b 22ac +b 2·2a k ·b 2+c 2-a 22bc =

ab kc (a 2+c 2-b 2+b 2+c 2-a 2) =ab kc ·2c 2=2ab ·c k

=2ab sin C 评述:由边向角转化,通常利用正弦定理的变形式:a =2R sin A ,b =2R sin B ,c =2R sin C ,在转化为角的关系式后,要注意三角函数公式的运用,在此题用到了正弦二倍角公式sin2A =2sin A ·cos A ,正弦两角和公式sin (A +B )=sin A ·cos B +cos A ·sin B ;由角向边转化,要结合正弦定理变形式以及余弦定理形式二.

三角形的有关证明问题,主要围绕三角形的边和角的三角函数展开,从某种意义上来看,这类问题就是有了目标的含边和角的式子的化简问题.

[例3]已知A 、B 、C 是△ABC 的三个内角,且满足(sin A +sin B )2-sin 2C =3sin A sin B 求证:A +B =120°

分析:要证A +B =120°,由于A +B +C =180°,只要证明C =60°,而已知条件为三角函数关系,故应考虑向三角函数的转化,又在0°~180°之间,余弦值所对应角唯一,故

可证明cos C =12 ,而由余弦定理cos C =a 2+b 2-c 22ab

,所以应考虑把已知的角的关系式转化为边的关系.

证明:由(sin A +sin B )2-sin 2C =3sin A ·sin B

可得sin 2A +sin 2B -sin 2C =sin A ·sin B

又∵sin A =a k ,sin B =b k ,sin C =c k

, ∴a 2k 2 +b 2k 2 -c 2k 2 =a k ·b k

整理得a 2+b 2-c 2=ab

∴cos C =a 2+b 2-c 22ab =12

又0°<C <180°,∴C =60°

∴A +B =180°-C =120°

评述:(1)有关三角形内角的证明,选择余弦值与正弦值相比较,要省去取舍的麻烦.但注意在根据三角函数值求角时,应先确定角的范围;

(2)在将已知条件中角的关系转化为边的关系时,运用了正弦定理的变形式:a =2R sin A ,b =2R sin B ,c =2R sin C ,这一转化技巧,要求学生熟练掌握.

[例4]在△ABC 中,b cos A =a cos B ,试判断三角形的形状.

分析:三角形形状的判断,可以根据角的关系,也可根据边的关系,所以在已知条件的运用上,可以考虑两种途径:将边转化为角,将角转化为边,下面,我们从这两个角度进行分析.

解法一:利用余弦定理将角化为边.

∵b cos A =a cos B

∴b ·b 2+c 2-a 22bc =a ·a 2+c 2-b 2

2ac

∴b 2+c 2-a 2=a 2+c 2-b 2

∴a 2=b 2 ∴a =b

故此三角形是等腰三角形.

解法二:利用正弦定理将边转化为角.

∵b cos A =a cos B

又b =2R sin B ,a =2R sin A

∴2R sin B cos A =2R sin A cos B

∴sin A cos B -cos A sin B =0

∴sin (A -B )=0

∵0<A ,B <π,∴-π<A -B <π

∴A -B =0,即A =B

故此三角形是等腰三角形.

评述:(1)在判定三角形形状时,一般考虑两个方向进行变形,一个方向是边,走代数变形之路,通常是正、余弦定理结合使用;另一个方向是角,走三角变形之路.通常是运用正弦定理.要求学生要注重边角转化的桥梁——正、余弦定理;

(2)解法二中用到了三角函数中两角差的正弦公式,但应注意在根据三角函数值求角时,一定要先确定角的范围.另外,也可运用同角三角函数的商数关系,在等式sin B ·cos A =sin A cos B 两端同除以sin A sin B 得cot A =cot B ,再由0<A ,B <π,而得A =B .

为巩固本节所学的解题方法,下面我们进行课堂练习.

Ⅲ.课堂练习

1.在△ABC 中,证明下列各式:

(1)(a 2-b 2-c 2)tan A +(a 2-b 2+c 2)tan B =0

(2)cos2A a 2 -cos2B b 2 =1a 2 -1b 2 . 证明:(1)左边=(a 2-b 2-c 2)sin A cos A +(a 2-b 2+c 2)sin B cos B

=(a 2-b 2-c 2)·a k ·2bc b 2+c 2-a 2 +(a 2-b 2+c 2)·b k ·2ac a 2+c 2-b 2

=2abc k [-(b 2+c 2-a 2)b 2+c 2-a 2 +a 2+c 2-b 2a 2+c 2-b 2 ] =2abc k

(-1+1)=0=右边 故原命题得证.

(2)左边=1-2sin 2A a 2 -1-2sin 2B b 2 =(1a 2 -1b 2 )-2sin 2A k 2 sin 2A +2sin 2B k 2 sin 2B

=1a 2 -1b 2 -2k 2 +2k 2 =1a 2 -1b 2 =右边 故原命题得证.

评述:(1)在(1)题证明时应注意两点:一是切化弦的思路,二是结合正、余弦定理将角的关系转化为边的关系;

(2)(2)题证明过程中用到了余弦二倍角的公式,而此公式有三种形式cos2A =cos 2A -sin 2A =2cos 2A -1=1-2sin 2A ,由于考虑到等式右端为边的关系,故选用第三种形式,在转化为边的关系时较为简便.

2.在△ABC 中,已知sin B ·sin C =cos 2A 2

,试判断此三角形的类型. 解:∵sin B ·sin C =cos 2A 2 ,∴sin B ·sin C =1+cos A 2

∴2sin B ·sin C =1+cos [180°-(B +C )]

将cos (B +C )=cos B cos C -sin B sin C 代入上式得cos B cos C +sin B sin C =1

∴cos (B -C )=1

又0<B ,C <π,∴-π<B -C <π

∴B -C =0,∴B =C

故此三角形是等腰三角形.

评述:(1)此题在证明过程中,要用到余弦二倍角公式cos A =2cos 2A 2

-1的逆用,要求学生注意;

(2)由于已知条件就是三角函数关系式,故无需向边的关系转化,而是进行三角函数式的恒等变形.

Ⅳ.课时小结

通过本节学习,我们熟悉了正、余弦定理在进行边角关系转换时的桥梁作用,并利用正、余弦定理对三角恒等式进行证明以及对三角形形状进行判断.其中,要求大家重点体会正、余弦定理的边角转换功能.

Ⅴ.课后作业

补充作业:

1.在△ABC 中,已知sin A sin C =sin (A -B )sin (B -C )

,求证:2b 2=a 2+c 2. 证明:由已知得sin (B +C )sin (B -C )=sin (A +B )·sin (A -B )

cos2B -cos2C =cos2A -cos2B

2cos2B =cos2A +cos2C

2·1-cos2B 2 =1-cos2A 2 +1-cos2B 2

∴2sin 2B =sin 2A +sin 2C

由正弦定理可得2b 2=a 2+c 2.

2.在△ABC 中,A =30°,cos B =2sin B - 3 sin C .

(1)求证:△ABC 为等腰三角形;(提示B =C =75°)

(2)设D 为△ABC 外接圆的直径BE 与AC 的交点,且AB =2,求AD ∶DC 的值. 答案:(1)略 (2)1∶ 3

2018年必修五《正弦定理》教案

§1.1.2 正弦定理 一、知识与技能 1会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题 2通过三角函数、正弦定理等多处知识间联系来体现事物之间的普遍联系与辩证统一. 3.在问题解决中,培养学生的自主学习和自主探索能力. 二、过程与方法 让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。 三、教学重点与难点: 重点:正弦定理的探索及其基本应用。 难点:已知两边和其中一边的对角解三角形时判断解的个数。 【授课类型】:习题拔高课 四、教学过程 一、知识回顾 1正弦定理的内容是什么? 二、例题讲解 例 1试推导在三角形中 A a s i n =B b sin =C c sin =2R 其中R 是外接圆半径. 证明 如图所示,∠A =∠D ∴R CD D a A a 2sin sin === 同理B b sin R 2=,C c sin R 2= ∴ A a sin = B b sin =C c sin =2R a b c O B C A D

例2 在C A a c B b ABC ,,1,60,30和求中,===? 解:∵213 60sin 1sin sin ,sin sin 0=?==∴=b B c C C c B b ,C B C B c b ,,60,0<∴=> 为锐角, 0090,30==∴B C ∴222=+=c b a 例3 C B b a A c ABC ,,2,45,60和求中,===? 解2 3245sin 6sin sin ,sin sin 0=?==∴=a A c C C c A a 0012060,sin 或=∴<

人教A版高中数学必修五讲义及题型归纳:正余弦定理

解三角形 模块一:正余弦定理 在△ABC 中的三个内角A ,B ,C 的对边,分别用a ,b ,c 表示. 1.正弦定理:在三角形中,各边的长和它所对的角的正弦的比相等,即a sin A =b sin B =c sin C =2R . ① a =2R sin A ,b =2R sin B ,c =2R sin C ; ② sin A =a 2R ,sin B =b 2R ,sin C =c 2R ; ③ a:b:c =sin A :sin B :sin C . ④ 面积公式:S =1 2 ab sin C =1 2 bc sin A =1 2 ac sin B . 2.正弦定理用于两类解三角形的问题: ① 已知三角形的任意两个角与一边,求其它两边和另一角; ② 已知三角形的两边与其中一边的对角,计算另一边的对角,进而计算出其它的边与角. 3.余弦定理:三角形任何一边的平方等于其它两边的平方和减去这两边与它们夹角的余弦的积的两倍,即:{c 2=a 2+b 2?2ab cos C ,b 2=a 2+c 2?2ac cos B ,a 2=b 2+c 2?2bc cos A. 变形式为:{ cos C =a 2+b 2?c 2 2ab , cos B =a 2+c 2?b 2 2ac ,cos A =b 2+c 2?a 22bc . 4.余弦定理及其变形常用来解决这样两类解三角形的问题: ① 已知两边和任意一个内角解三角形; ② 已知三角形的三边解三角形. 考点1:正弦定理 例1.(1)在ABC ?中,角A ,B ,C 所对应的边分别为a ,b ,c .若4 A π=,3 B π = ,a =, 则(b = ) A .1 B C .2 D .【解答】解:因为4 A π = ,3 B π = ,a =, 所以,由正弦定理 sin sin a b A B = ,可得:sin sin a B b A ===g

最新人教版高中数学必修五 正弦定理优质教案

1.1 正弦定理和余弦定理 1.1.1正弦定理 从容说课 本章内容是处理三角形中的边角关系,与初中学习的三角形的边与角的基本关系有密切的联系,与已知三角形的边和角相等判定三角形全等的知识也有着密切的联系.教科书在引入正弦定理内容时,让学生从已有的几何知识出发,提出探究性问题“在任意三角形中有大边对大角,小边对小角的边角关系.我们是否能得到这个边、角的关系准确量化的表示呢?”在引入余弦定理内容时,提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题”.这样,用联系的观点,从新的角度看过去的问题,使学生对于过去的知识有了新的认识, 同时使新知识建立在已有知识的坚实基础上,形成良好的知识结构. 教学重点1.正弦定理的概念; 2.正弦定理的证明及其基本应用. 教学难点1.正弦定理的探索和证明; 2.已知两边和其中一边的对角解三角形时判断解的个数. 教具准备直角三角板一个 三维目标 一、知识与技能 1.通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法; 2.会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题. 二、过程与方法 1.让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系;

2.引导学生通过观察、推导、比较,由特殊到一般归纳出正弦定理; 3.进行定理基本应用的实践操作. 三、情感态度与价值观 1.培养学生在方程思想指导下处理解三角形问题的运算能力; 2.培养学生探索数学规律的思维能力,通过三角函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一. 教学过程 导入新课 师如右图,固定△ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动. 师思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 生显然,边AB 的长度随着其对角∠C 的大小的增大而增大. 师能否用一个等式把这种关系精确地表示出来? 师在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系.如右图,在Rt △ABC 中,设BC =A ,AC =B ,AB =C ,根据锐角三角函数中正弦函数的定义,有c a =sin A ,c b =sin B ,又sin C =1= c c ,则 c simC c B b A a ===sin sin .从而在直角三角形AB C 中, simC c B b A a ==sin sin . 推进新课 [合作探究] 师那么对于任意的三角形,以上关系式是否仍然成立?(由学生讨论、分析)

必修五正弦定理和余弦定理

必修五第一讲 正弦定理 知识梳理 1.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即a sin A =b sin B =c sin C . 2.解三角形:一般地,把三角形的三个角A 、B 、C 和它们的对边a 、b 、c 叫做三角形的元素,已知三角形的几个元素求其他元素的过程叫做解三角形. 题型分析 [例1] 在△ABC 中,已知a [解] A =180°-(B +C )=180°-(60°+75°)=45°.由 b sin B =a sin A 得,b =a sin B sin A =8×sin 60°sin 45°=46,由a sin A = c sin C 得, c =a sin C sin A =8×sin 75°sin 45°=8×2+642 2=4(3+1).∴A =45°,b =46,c =4(3+1). [变式训练]在△ABC 中,已知c =10,A =45°,C =30°,解这个三角形. 解:∵A =45°,C =30°,∴B =180°-(A +C )=105°.由 a sin A =c sin C 得a =c sin A sin C =10×sin 45°sin 30°=10 2. 由 b sin B = c sin C 得b =c sin B sin C =10×sin 105°sin 30°=20sin 75°,∵sin 75°=sin (30°+45°)=sin 30°cos 45°+cos 30°sin 45° =2+64,∴b =20×2+64 =52+5 6. [例2] 在△ABC [解] ∵a sin A =c sin C ,∴sin C =c sin A a =6×sin 45°2=32,∴C =60°或C =120°. 当C =60°时,B =75°,b =c sin B sin C =6sin 75°sin 60°=3+1; 当C =120°时,B =15°,b = c sin B sin C =6sin 15°sin 120°=3-1. ∴b =3+1,B =75°,C =60°或b =3-1,B =15°,C =120°. [变式训练]在△ABC 中,若c =6,C =π3 ,a =2,求A ,B ,b . 解:由a sin A =c sin C ,得sin A =a sin C c =22.∴A =π4或A =34π.又∵c >a ,∴C >A ,∴只能取A =π4 , ∴B =π-π3-π4=5π12,b =c sin B sin C =6·sin 5π12sin π3=3+1.

高中数学必修五 第一章教案

高中数学必修五第一章教案 1.1.1 正弦定理 1.1.2 余弦定理 1.角度问题 1.三角形中的几何计算 1.正弦定理和余弦定理-章末归纳提升 1.2应用举例距离和高度问题 1.1.1 正弦定理 高一年级数学备课组(总第课时)主备人:时间:年月日

【问题导思】 正弦定理 1.如图在Rt △ABC 中,C =90°,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,∠A 、∠B 与∠C 的正弦值有怎样的关系? 【提示】 ∵sin A =a c ,sin B =b c , ∴ a sin A =b sin B =c . 又∵sin C =sin 90°=1,∴a sin A =b sin B =c sin C . 2.对于锐角三角形中,问题1中的关系是否成立? 【提示】 成立. 3.钝角三角形中呢? 【提示】 成立. 1.正弦定理 在一个三角形中,各边和它所对角的正弦的比相等.即: a sin A = b sin B =c sin C . 2.三角形中的元素与解三角形 (1)三角形的元素 把三角形的三个角A ,B ,C 和它们的对边a ,b ,c 叫做三角形的元素. (2)解三角形 已知三角形的几个元素求其他元素的过程叫做解三角形.(对应学生用书第3页)知识运用 已知两角及一边解三角形 例1在△ABC 中,A =60°,sin B =1 2 ,a =3,求三角形中其他边与角的大小. 【思路探究】 (1)由sin B =1 2能解出∠B 的大小吗?∠B 唯一吗? (2)能用正弦定理求出边b 吗? (3)怎样求其他边与角的大小? 【自主解答】 ∵sin B =1 2, ∴B =30°或150°,

苏教版数学必修五:1.1正弦定理(二)【教师版】

课题:§1.1 正弦定理(二) 总第____课时 班级_______________ 姓名_______________ 【学习目标】 掌握正弦定理的内容及其等价形式;会运用正弦定理、内角和定理与三角形的面积公式解决一些与测量和几何计算与证明有关的实际问题. 【重点难点】 学习重点:正弦定理的等价形式及其基本应用. 学习难点:已知两边和其中一边的对角解三角形时判断解的个数. 【学习过程】 一、自主学习与交流反馈: 问题1:对于任意的三角形若已知两边及夹角怎样求三角形的面积? 问题2:正弦定理还有哪些等价的变形形式? 二、知识建构与应用: 例1 在ΔABC 中,已知 C c B b A a cos cos cos ==,试判断ΔABC 的形状. 例2 在ΔABC 中,AD 是∠BAC 的平分线,如图,用正弦定理证明: DC BD AC AB =. 例 3 某登山队在山脚处测得山顶的仰角为,沿倾斜角为的斜坡前进A B 35?20?1000180?-βαβαD C B A

米后到达处,又测得山顶的仰角为,求山的高度. 例4 判断下列三角形解的情况: (1)已知; (2)已知; (3)已知. 四、巩固练习 D 65?060,12,11 ===B c b 0 110,3,7===A b a 045,9,6===B c b

1.在ΔABC 中,已知,150,3,2o ===C b a 则=?ABC S . 2.在中,_________,sin 23==B A b a 则. 3.在中,若,60,3?==A a 那么的外接圆的周长为____ ____. 4.在中,若,则 . 5. 在中, ______,cos cos 的形状为则ABC B C b c ?=. ABC ?ABC ?ABC ?ABC ?3,600==a A _______sin sin sin =++++C B A c b a ABC ?

高中数学必修五《正弦定理》说课稿92898

高中数学必修五《正弦定理》说课稿大家好,今天我向大家说课的题目是《正弦定理》。下面我将从以下几个方面介绍我这堂课的教学设计。 一教材分析 本节知识是必修五第一章《解三角形》的第一节内容,与初中学习的三角形的边和角的基本关系有密切的联系与判定三角形的全等也有密切联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。因此,正弦定理和余弦定理的知识非常重要。 根据上述教材内容分析,考虑到学生已有的认知结构心理特征及原有知识水 平,制定如下教学目标: 认知目标:在创设的问题情境中,引导学生发现正弦定理的内容,推证正弦定理及简单运用正弦定理与三角形的内角和定理解斜三角形的两类问题。 能力目标:引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理, 培养学生的创新意识和观察与逻辑思维能力,能体会用向量作为数形结合的工 具,将几何问题转化为代数问题。 情感目标:面向全体学生,创造平等的教学氛围,通过学生之间、师生之间 的交流、合作和评价,调动学生的主动性和积极性,给学生成功的体验,激发学 生学习的兴趣。 教学重点:正弦定理的内容,正弦定理的证明及基本应用。 教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时判断 解的个数。 二教法 根据教材的内容和编排的特点,为是更有效地突出重点,空破难点,以学业生的发展为本,遵照学生的认识规律,本讲遵照以教师为主导,以学生为主体,训练为主线的指导思想,采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以生活实际为参照对象,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化。突破重点的手段:抓住学生情感的兴奋点,激发他们的兴趣,鼓励学生大胆猜想,积极探索,以及及时地鼓励,使他们知难而进。另外,抓知识选择的切入点,从学生原有的认知水平和所需的知识特点入手,教师在学生主体下给以适当的提示和指导。突破难点的方法:抓住学生的能力线联系方法与技能使学生较易证明正弦定理,另外通过例题和练习来突破难点 三学法: 指导学生掌握“观察——猜想——证明——应用”这一思维方法,采取个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的探究。让学生在问题情景中学习,观察,类比,思考,探究,概括,动手尝试相结合,体现学生的主体地位,增强学生由特殊到一般的数学思维能力,形成了实事求是的科学态度,增强了锲而不舍的求学精神。

高中数学必修五第一章知识点总结

高中数学必修五第一章知识点总结 一.正弦定理(重点) 1.正弦定理 (1)在一个三角形中,各边和它所对角的正弦的比相等,即 ==sin sin sin a b c A B C =2R(其中R是该三角形外接圆的半径) (2)正弦定理的变形公式: ①2sin a R =A ,2sin b R =B ,2sin c R C =; ②sin 2a R A =,sin 2b R B =,sin 2c C R =; ③::sin :sin :sin a b c C =A B ; ④sin sin sin sin sin sin a b c a b c C C ++===A +B +A B . 2.正弦定理的应用(重难点) (1)已知任意两角与一边:有三角形的内角和定理,先算出第三个角,再有正弦定理计算出另两边 (2)已知任意两边与其中一边的对角:先应用正弦定理计算出另一边的对角的正弦值,进而确定这个角和三角形其他的边与角(注意:这种情况可能出现解的个数的判断问题,一解,两解,或无解) (3)面积公式 111s i n s i n s i n 222C S b c a b C a c ?A B =A ==B 二余弦定理(重点) 1.余弦定理 三角形中任何一边的平方等于其它两边的平方和减去这两边与它们的夹角的余弦的积的两倍.即 222 2cos a b c bc =+-A , 2222cos b a c ac =+-B , 2222cos c a b ab C =+-. 应用:已知三角形的两边及其夹角可以求出第三边 2.推论 222 cos 2b c a bc +-A =, 222 cos 2a c b ac +-B =, 222 cos 2a b c C ab +-=

苏教版高中数学必修五正弦定理教案

第 1 课时: §1.1 正弦定理(1) 【三维目标】: 一、知识与技能 1.通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容和推导过程; 2.能解决一些简单的三角形度量问题(会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题);能够运用正弦定理解决一些与测量和几何计算有关的实际问题; 3.通过三角函数、正弦定理、向量数量积等多处知识间联系来体现事物之间的普遍联系与辩证统一. 4.在问题解决中,培养学生的自主学习和自主探索能力. 二、过程与方法 让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。 三、情感、态度与价值观 1.培养学生在方程思想指导下处理解三角形问题的运算能力; 2.培养学生合情推理探索数学规律的数学思想能力,通过三角函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。 【教学重点与难点】: 重点:正弦定理的探索和证明及其基本应用。 难点:已知两边和其中一边的对角解三角形时判断解的个数。 【学法与教学用具】: 1. 学法:引导学生首先从直角三角形中揭示边角关系: sin sin sin a b c A B C == ,接着就一般斜三角形进行探索,发现也有这一关系;分别利用传统证法和向量证法对正弦定理进行推导,让学生发现向量知识的简捷,新颖。 2. 教学用具:多媒体、实物投影仪、直尺、计算器 【授课类型】:新授课 【课时安排】:1课时 【教学思路】: 一、创设情景,揭示课题 1.在直角三角形中的边角关系是怎样的? 2.这种关系在任意三角形中也成立吗? 3.介绍其它的证明方法 二、研探新知 1.正弦定理的推导 (1)在直角三角形中:c a A = sin ,1sin ,sin ==C C B B , 即 =c A a sin ,=c B b sin ,=c C c sin ∴A a sin =B b sin =C c sin 能否推广到斜三角形? (2)斜三角形中 证明一:(等积法,利用三角形的面积转换)在任意斜△ABC 中,先作出三边上的高AD 、BE 、CF ,则sin AD c B =,sin BE a C =,sin CF b A =.所以111 sin sin sin 222 ABC S ab C ac B bc A ?= ==,每项

(完整版)必修五正余弦定理习题练习

必修五正余弦定理习题练习 一.选择题(共5小题) 1.(2015?秦安县一模)△ABC的内角A、B、C的对边分别为a、b、c,若a、b、c成等比数列,且c=2a,则cosB=() A.B.C.D. 2.(2016?太原校级二模)在锐角△ABC中,角A,B,C所对的边分别为a,b,c,若,a=2,,则b的值为() A.B.C. D. 3.(2016?大连一模)在△ABC中,a,b,c分别是角A,B,C的对边,且满足acosA=bcosB,那么△ABC的形状一定是() A.等腰三角形B.直角三角形 C.等腰或直角三角形 D.等腰直角三角形 4.(2016?宝鸡一模)在△ABC,a=,b=,B=,则A等于()A.B.C. D.或 5.(2014?新课标II)钝角三角形ABC的面积是,AB=1,BC=,则AC=()A.5 B.C.2 D.1 二.填空题(共6小题) 6.(2015?天津)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知△ABC的面积为3,b﹣c=2,cosA=﹣,则a的值为______. 7.(2015?重庆)设△ABC的内角A,B,C的对边分别为a,b,c,且a=2,cosC=﹣,3sinA=2sinB,则c=______. 8.(2015?广东)设△ABC的内角A,B,C的对边分别为a,b,c.若a=,sinB=,C=,则b=______. 9.(2015?北京)在△ABC中,a=3,b=,∠A=,则∠B=______.10.(2015?安徽)在△ABC中,AB=,∠A=75°,∠B=45°,则AC=______.11.(2013?福建)如图,在△ABC中,已知点D在BC边上,AD⊥AC,sin∠BAC=,AB=3,AD=3,则BD的长为______.

人教版高中数学必修五教案1

第一章解三角形 1.1正弦定理和余弦定理 1.1.1正弦定理 知识结构梳理 几何法证明 正弦定理的证明 向量法证明 已知两角和任意一边 正弦定理正弦定理 正弦定理的两种应用 已知两边和其中一角的对角 解三角形 知识点1 正弦定理及其证明 1正弦定理: 2.正弦定理的证明: (1)向量法证明 (2)平面几何法证明 3.正弦定理的变形 知识点2 正弦定理的应用 1.利用正弦定理可以解决以下两类有关三角形的问题: (1)已知两角和任意一边,求其他两边和另一角; (2)已知两边和其中一边的对角,求另一边的对角,从而进一步求出其他的边和角。 2.应用正弦定理要注意以下三点: (1) (2) (3) 知识点3 解三角形

1.1.2余弦定理 知识点1 余弦定理 1. 余弦定理的概念 2. 余弦定理的推论 3. 余弦定理能解决的一些问题: 4. 理解应用余弦定理应注意以下四点: (1) (2) (3) (4) 知识点2 余弦定理的的证明 证法1: 证法2: 知识点3 余弦定理的简单应用 利用余弦定理可以解决以下两类解三角的问题: (1)已知三边求三角; (2)已知两边和它们的夹角,可以求第三边,进而求出其他角。 例1(山东高考)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,tanC=73. (1) 求C cos ; (2) 若 =2 5 ,且a+b=9,求c.

1.2应用举例 知识点1 有关名词、术语 (1)仰角和俯角: (2)方位角: 知识点2 解三角形应用题的一般思路 (1)读懂题意,理解问题的实际背景,明确已知和所求,准确理解应用题中的有关术语、名称,如仰角、俯角、视角、方位角等,理清量与量之间的关系; (2)根据题意画出示意图,将实际问题抽象成解三角形模型; (3)合理选择正弦定理和余弦定理求解; (4)将三角形的解还原为实际问题,注意实际问题中的单位、结果要求近似等。 1.3实习作业 实习作业的方法步骤 (1)首先要准备皮尺、测角仪器,然后选定测量的现场(或模拟现场),再收集测量数据,最后解决问题,完成实习报告。要注意测量的数据应尽量做到准确,为此可多测量几次,取平均值。要有创新意识,创造性地设计实施方案,用不同的方法收集数据,整理信息。 (2)实习作业中的选取问题,一般有:○1距离问题,如从一个可到达点到一个不可到达点之间的距离,或两个不可到达点之间的距离;②高度问题,如求有关底部不可到达的建筑物的高度问题。一般的解决方法就是运用正弦定理、余弦定理解三角形。

高中数学必修五第一章解三角形知识点归纳与测试卷.doc

第十二讲 解三角形 1 、三角形三角关系: A+B+C=180 °; C=180 °— (A+B) ; 3 、三角形中的基本关系: sin( A B) sin C , cos( A B) cosC , tan(A B) tanC , sin A B cos C ,cos A B sin C , tan A B cot C 2 2 2 2 2 2 4 、正弦定理:在 C 中, a 、 b 、 c 分别为角 、 、 C 的对边, R 为 C 的外接圆的半 径,则有 a b c 2R . sin sin C sin 5 、正弦定理的变形公式: ①化角为边: a 2Rsin , b 2Rsin , c 2R sin C ; ②化边为角: sin a , sin b c ; , sin C 2R 2R 2R ③ a : b: c sin :sin :sin C ;④ a b c a b c . sin sin sin C sin sin sin C 7 、余弦定理:在 C 中,有 a 2 2 c 2 2bc cos 等,变形: cos b 2 c 2 a 2 b 等, 2bc 8 、余弦定理主要解决的问题:①已知两边和夹角,求其余的量。②已知三边求角) 9 、三角形面积公式: 1 1 1 S C bc sin ab sin Cac sin . 2 2 2 10 、如何判断三角形的形状:判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形 式或角的形式设 a 、 b 、 c 是 C 的角 、 、 C 的对边,则: ①若 a 2 b 2 c 2 ,则 C 90o ;②若 a 2 b 2 c 2 ,则 C 90o ;③若 a 2 b 2 c 2 ,则 C 90o . 11 、三角形的四心: 垂心——三角形的三边上的高相交于一点

必修五正余弦定理公式1

B 1.1 正弦、余弦定理 一、知识点 1.正弦定理: 2sin sin sin a b c R A B C ===外(R 为外接圆的半径) (1)C R c B R b A R a sin 2,sin 2,sin 2=== C B A c b a sin :sin :sin ::= 注意:利用正弦定理,可以解决以下两类问题:(1)已知两角和任一边,求其他两边和一角; (2)已知两边和其中一边的对角,求另一边的对角; 有三种情况:bsinA

b8版高中数学必修5正弦定理2

本文为自本人珍藏 版权所有 仅供参考 正弦定理 教学目标 (1)要求学生掌握正弦定理及其证明; (2)会初步应用正弦定理解斜三角形,培养数学应用意识; (3)在问题解决中,培养学生的自主学习和自主探索能力. 教学重点,难点 正弦定理的推导及其证明过程. 教学过程 一.问题情境 在直角三角形中,由三角形内角和定理、勾股定理、锐角三角函数,可以由已知的边和角求出未知的边和角.那么斜三角形怎么办?我们能不能发现在三角形中还蕴涵着其他的边与角关系呢? 探索1 我们前面学习过直角三角形中的边角关系,在R t A B C ?中,设90C =?,则 sin a A c = , sin b B c = , sin 1C =, 即:sin a c A = , sin b c B = , sin c c C = , sin sin sin a b c A B C = = . 探索2 对于任意三角形,这个结论还成立吗? 二.学生活动 学生通过画三角形、测量边长及角度,再进行计算,初步得出该结论对于锐角三角形和钝角三角形成立.教师再通过几何画板进行验证.引出课题——正弦定理. 三.建构数学 探索3 这个结论对于任意三角形可以证明是成立的.不妨设C 为最大角,若C 为直角,我们已经证得结论成立,如何证明C 为锐角、钝角时结论也成立? 证法 1 若C 为锐角(图(1)),过点A 作A D B C ⊥于D ,此时有 sin A D B c = , sin A D C b = ,所以sin sin c B b C =,即sin sin b c B C = .同理可得sin sin a c A C = ,

(完整版)必修五;正弦定理与余弦定理

必修五:正弦定理和余弦定理 一:正弦定理 1:定理内容:在一个三角形中,各边的长和它所对角的正弦的比相等,即 R C c B b A a 2sin sin sin ===(R 是三角形外接圆半径) 2:公式变形 (1)R A a C B A c b a 2sin sin sin sin ==++++ (2)?? ???C R c B R b A R a sin 2sin 2sin 2===或R c C R b B R a A 2sin ,2sin ,2sin === (3)?? ???B c C b A c C a A b B a sin sin sin sin sin sin === (4)R abc A bc B ac C ab S ABC 4sin 21sin 21sin 21====? 以下是ABC ?内的边角关系:熟记 (5)B A B A b a >?>?>sin sin (大边对大角) (6)B A B A cos cos (7)?? ???+=+=+=)sin(sin )sin(sin )sin(sin B A C C A B C B A 思考A cos 与)cos(C B +的关系 (8)2 cos 2sin C B A += (9)若AD 是ABC ?的角平分线,则 AC DC AB DB = 思考题: 1:若B A sin sin =,则B A ,有什么关系? 2:若B A 2sin 2sin =,则B A ,有什么关系? 3:若B A cos cos =,则B A ,有什么关系? 4:若2 1sin > A ,则角A 的范围是什么?

解三角形:已知三角形的几个元素,求其他元素的过程叫做解三角形. 例1:已知ABC ?,根据下列条件,解三角形. (1)10,45,60=?=∠?=∠a B A . (2)?=∠==120,4,3A b a . (3)?=∠==30,4,6A b a . (4)?=∠==30,16,8A b a . (5)?=∠==30,4,3A b a . 思考:在已知“边边角”的情况下,如何判断三角形多解的情况 判断方法:(1)用正弦定理:比较正弦值与1的关系 (2)作图法:用已知角所对的高与已知角所对的边长比较. 练习:(1)若?=∠==45,12,6A b a ,则符合条件的ABC ?有几个? (2)若?=∠==30,12,6A b a ,则符合条件的ABC ?有几个? (3)若?=∠==45,12,9A b a ,则符合条件的ABC ?有几个? 例2:根据下列条件,判断三角形形状. (1)C B A 2 22sin sin sin =+. (2)C B A cos sin 2sin = (3)B b A a cos cos = (4)A b B a tan tan 22=

必修五解三角形正弦定理和余弦定理

学案正弦定理和余弦定理 导学目标: 1.利用正弦定理、余弦定理进行边角转化,进而进行恒等变换解决问题.2.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题. 自主梳理 1.三角形的有关性质 (1)在△ABC中,A+B+C=________; (2)a+b____c,a-bb?sin A____sin B?A____B; (4)三角形面积公式:S△ABC=1 2ah= 1 2ab sin C= 1 2ac sin B=_________________; (5)在三角形中有:sin 2A=sin 2B?A=B或________________?三角形为等腰或直角三角形; sin(A+B)=sin C,sin A+B 2=cos C 2. 自我检测 1.(2010·上海)若△ABC的三个内角满足sin A∶sin B∶sin C=5∶11∶13,则△ABC() A.一定是锐角三角形 B.一定是直角三角形 C.一定是钝角三角形 D.可能是锐角三角形,也可能是钝角三角形 2.(2010·天津)在△ABC中,内角A,B,C的对边分别是a,b,c,若a2-b2=3bc,sin C=23sin B,则A等于() A.30°B.60°C.120°D.150° 3.(2011·烟台模拟)在△ABC中,A=60°,b=1,△ABC的面积为3,则边a的值为() A.27 B.21 C.13 D.3

4.(2010·山东)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =2,b =2, sin B +cos B =2,则角A 的大小为________. 5.(2010·北京)在△ABC 中,若b =1,c =3,C =2π3 ,则a =________. 探究点一 正弦定理的应用 例1 (1)在△ABC 中,a =3,b =2,B =45°,求角A 、C 和边c ; (2)在△ABC 中,a =8,B =60°,C =75°,求边b 和c . 变式迁移1 (1)在△ABC 中,若tan A =13 ,C =150°,BC =1,则AB =________; (2)在△ABC 中,若a =50,b =256,A =45°,则B =________. 探究点二 余弦定理的应用 例2 (2011·咸宁月考)已知a 、b 、c 分别是△ABC 中角A 、B 、C 的对边,且a 2+c 2- b 2=a c . (1)求角B 的大小; (2)若c =3a ,求tan A 的值. 变式迁移2 在△ABC 中,a 、b 、c 分别为A 、B 、C 的对边,B =2π3 ,b =13,a +c =4,求a . 探究点三 正、余弦定理的综合应用 例3 在△ABC 中,a 、b 、c 分别表示三个内角A 、B 、C 的对边,如果(a 2+b 2)sin(A -B )=(a 2-b 2)sin(A +B ),试判断该三角形的形状. 变式迁移3 (2010·天津)在△ABC 中,AC AB =cos B cos C . (1)证明:B =C ; (2)若cos A =-13 ,求sin ????4B +π3的值. 1.解斜三角形可以看成是三角变换的延续和应用,用到三角变换的基本方法,同时它 是对正、余弦定理,三角形面积公式等的综合应用. 2.在利用正弦定理解已知三角形的两边和其中一边的对角,求另一边的对角,进而求

最新【数学】高二数学第一章解三角形单元测试题及答案(1)(人教版必修5)

高中数学(必修5)第一章:解三角形测试(一) 班级: 姓名 成绩:__________ 正弦定理与余弦定理: 1.正弦定理:2sin sin sin a b c R A B C ===或变形:::sin :sin :sin a b c A B C =. 2.余弦定理: 2222222222cos 2cos 2cos a b c bc A b a c ac B c b a ba C ?=+-?=+-??=+-? 或 222 222222 cos 2cos 2cos 2b c a A bc a c b B ac b a c C ab ?+-= ??+-?=???+-=?? . 3.(1)两类正弦定理解三角形的问题:1、已知两角和任意一边,求其他的两边及一角. 2、已知两角和其中一边的对角,求其他边角. (2)两类余弦定理解三角形的问题:1、已知三边求三角. 2、已知两边和他们的夹角,求第三边和其他两角. 4.判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式. 5.解题中利用ABC ?中A B C π++=,以及由此推得的一些基本关系式进行三角变换的运算,如:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=- sin cos ,cos sin ,tan cot A B C A B C A B C +++===.、

[基础训练A 组] 一、选择题 1.在ABC ?中,角::1:2:3A B C =,则边::a b c 等于( ). A .1:2:3 B .3:2:1 C .2 D .2 2.以4、5、6为边长的三角形一定是( ). A .锐角三角形 B .直角三角形 C .钝角三角形 D .锐角或钝角三角形 3.在ABC ?中,若B a b sin 2=,则角A 等于( ). A .3060,或 B .4560,或 C .12060,或 D .30150,或 4.边长为5,7,8的三角形的最大角与最小角的和是( ). A .90 B .120 C .135 D .150 5.在ABC ?中,若()()3a b c b c a bc +++-=,则角A 等于( ). A .30 B .60 C .90 D .120 6.在ABC ?中,若1413 cos ,8,7===C b a ,则最大角的余弦是( ). A .51 - B .61 - C .71 - D .81 - 7.在ABC ?中,若角B A 2=,则边a 等于( ). A .A b sin 2 B .A b cos 2 C .B b sin 2 D .B b cos 2 8.在ABC ?中,)13(:6:2sin :sin :sin +=C B A ,则三角形最小的内角是( ). A .60° B .45° C .30° D .以上都错 9.在ABC ?中,若90C =,则三边的比c b a +等于( ). A .2cos 2B A + B .2cos 2B A - C .2sin 2B A + D .2sin 2B A - 10.在ABC ?中,若():():()5:6:7b c c a a b +++=,则cos B 的值为( ). A .1116 B .11 14 C .9 11 D .7 8 11.在ABC ?中,若2a b c ===,则角A 的大小为( ). A .030 B .060 C .090 D .0120 12.在△ABC 中,60A =,45C =,2b =,则此三角形的最小边长为( ).

人教A版高中数学必修五正弦定理(一)

高中数学学习材料 金戈铁骑整理制作 正弦定理(一) ●作业导航 掌握正弦定理,会利用正弦定理求已知两角和任意一边或两边和一边对角的三角形问题. 一、选择题(本大题共5小题,每小题3分,共15分) 1.已知△ABC 中,a =4,b =43,∠A =30°,则∠B 等于( ) A .30° B .30°或150° C .60° D .60°或120° 2.已知△ABC 中,AB =6,∠A =30°,∠B =120°,则△ABC 的面积为( ) A .9 B .18 C .93 D .18 3 3.已知△ABC 中,a ∶b ∶c =1∶3∶2,则A ∶B ∶C 等于( ) A .1∶2∶3 B .2∶3∶1 C .1∶3∶2 D .3∶1∶2 4.已知△ABC 中,sin A ∶sin B ∶sin C =k ∶(k +1)∶2k (k≠0),则k 的取值范围为( ) A .(2,+∞) B .(-∞,0) C .(-2 1,0) D .(2 1,+∞) 5.在△ABC 中,sin A >sin B 是A >B 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 二、填空题(本大题共5小题,每小题3分,共15分) 1.在△ABC 中,若∠B =30°,AB =23,AC =2,则△ABC 的面积是________. 2.在△ABC 中,若b =2c sin B ,则∠C =________. 3.设△ABC 的外接圆半径为R ,且已知AB =4,∠C =45°,则R =________. 4.已知△ABC 的面积为2 3 ,且b =2,c = 3,则∠A =________. 5.在△ABC 中,∠B =45°,∠C =60°,a =2(3+1),那么△ABC 的面积为________. 三、解答题(本大题共5小题,每小题6分,共30分) 1.在△ABC 中,∠C =60°,BC =a ,AC =b ,a +b =16.

相关主题
文本预览
相关文档 最新文档