当前位置:文档之家› 土壤标准样品标准值GSS1-16,17-22

土壤标准样品标准值GSS1-16,17-22

土壤标准样品标准值GSS1-16,17-22
土壤标准样品标准值GSS1-16,17-22

土壤成分分析标准物质标准值

土壤成分分析标准物质标准值(续)

土壤成分分析标准物质标准值

土壤成分分析标准物质标准值(续)

土壤样品采集技术规范

土壤样品采集技术规范 黄海农场农业服务中心 土壤样品的采集是土壤测试的一个重要环节,采集有代表性的样品,是如实反映客观情况,是测土配方施肥的先决条件。因此,应选择有代表性的地段和有代表性的土壤采样,并根据不同分析项目采用相关的采样和处理方法。为保证土壤样品的代表性,必须采取以下技术措施控制采样误差。 1、采样单元 采样前要详细了解采样地区的土壤类型、肥力等级和地形等因素,将测土配方施肥区域划分为若干个采样单元,每个采样单元的土壤要尽可能均匀一致。 由于我场地势平坦,肥力均匀,采样单元一般为200~300亩。采样单元应集中在典型地块,相对在中心部位。每个采样单元采一个混合样。为使采样更加方便快捷,对于土壤均一、地块形状规则的,亦可在采样单元内距地头100~200米面积为1~10亩的典型地段采一个混合样。 2、采样时间 在作物收获后或播种前采集(上茬作物已经基本完成生育进程,下茬作物还没有施肥),一般在秋收后。进行氮肥追肥推荐时,应在追肥前或作物生长的关键时期。 3、采样周期 同一采样单元,土壤有机质、全氮、碱解氮每季或每年采集1次,无机氮每个施肥时期前采集1次,土壤有效磷钾2~4年,微量元素3~5年,采集1次。植株样品每个主要生长期采集1次。 4、采样点数量 要保证足够的采样点,使之能代表采样单元的土壤特性。采样点的多少,取决于采样单元的大小、土壤肥力的一致性等,一般为7-20个点为宜。 5、采样路线 采样时应沿着一定的线路,按照“随机”、“等量”和“多点混合”的原则进行采样。一般采用S形布点采样,能够较好地克服耕作、施肥等所造成的误差。在地形较小、地力较均匀、采样单元面积较小的情况下,也可采用梅花形布点取样,要避开路边、田埂、沟边、肥堆等特殊部位。 6、采样点定位 有条件的可采用GPS定位,记录经纬度,精确到0.01″。无条件的可在地图上标明采样点位臵,并记录样点名称、田块名称、固定参照物的距离和方位。 7、采样深度 采样深度一般为0-20cm,土壤硝态氮或无机氮的测定,采样深度应根据不同作物、不同生育期的主要根系分布深度来确定。 8、采样方法

质量管理题(环境监测人员上岗考试)

第八章质量管理 一、填空题 1.国家环境标准包括国家环境质量标准、环境基础标准、标准、标准和标准。 答案:污染物排放(或控制) 环境监测方法(或环境监测分析方法) 环境标准样品 2.我国化学试剂分为四级,优级纯试剂用G.R表示,标签颜色为色,分析纯试剂用A.R表示,标签颜色为色,化学纯试剂用C.P表示,标签颜色为色。 答案:绿红蓝 3.生物样品采集中,应特别注意防止和样品的。 答案:沾污代表性 4.气体标准的传递是指将国家一级标准气体的传递到上的过程。标准传递的逆过程称为标准的溯源,当进行系统误差分析时,可逆向逐级检查各步骤对误差的贡献,追踪原因,从而保证监测数据质量。 答案:准确时值例行工作所用的标准气体 5.在空气和废气监测中,如果现场污染物浓度不清楚,采气量或采样时间应根据和来确定。 答案:标准规定的浓度分析方法的测定下限 6.在水污染物排放总量的实验室分析中,对有些斜率较为稳定的校准曲线,在实验条件没有改变的情况下,使用以前的校准曲线时,必须测定个标准点,测定结果与原曲线相应点的相对偏差均应小于%,否则应重新制各曲线。 答案:两 5 7.在水污染源在线监测中,运行维护人员每月应对每个站点所有自动分析仪至少进行1次质控样试验,采用国家认可的两种浓度的质控样进行试验,质控样品浓度一种应接近浓度,另一种应超过相应排放标准浓度,每种样品至少测定次,质控样测定的相对误差应不大于标准值的±%。 答案:废水实际 2 10 二、判断题 1.环境监测质量保证是整个环境监测过程的全面质量管理。( ) 答案:正确 2.进行水样分析时,应按向批测试的样品数,至少随机抽取10%~20%的样品进行平行双样测定。( ) 答案:正确 3.对拟修约的数字,在确定修约位数后必须连续修约到所确定的位数。( ) 答案:错误 正确答案为:对拟修约的数字,在确定修约位数后应该一次修约获得结果,而不得多次连续修约。 4.仪器校准、空白试验、标准物质对比分析和回收率测定,都是减少系统误差的方法。( ) 答案:正确 5.实验室内使用的化学试剂应有专人保管,定期检查使用及保管情况,但是少量酸碱试剂

土壤样品采集技术规范

土壤样品采集技术规范 土壤样品的采集是土壤测试的一个重要环节,采集有代表性的样品,是如实反映客观情况,是测土配方施肥的先决条件。因此,应选择有代表性的地段和有代表性的土壤采样,并根据不同分析项目采用相关的采样和处理方法。为保证土壤样品的代表性,必须采取以下技术措施控制采样误差。 1、采样单元 采样前要详细了解采样地区的土壤类型、肥力等级和地形等因素,将测土配方施肥区域划分为若干个采样单元,每个采样单元的土壤要尽可能均匀一致。 由于我场地势平坦,肥力均匀,采样单元一般为200~300亩。采样单元应集中在典型地块,相对在中心部位。每个采样单元采一个混合样。为使采样更加方便快捷,对于土壤均一、地块形状规则的,亦可在采样单元内距地头100~200米面积为1~10亩的典型地段采一个混合样。 2、采样时间 在作物收获后或播种前采集(上茬作物已经基本完成生育进程,下茬作物还没有施肥),一般在秋收后。进行氮肥追肥推荐时,应在追肥前或作物生长的关键时期。 3、采样周期 同一采样单元,土壤有机质、全氮、碱解氮每季或每年采集1次,无机氮每个施肥时期前采集1次,土壤有效磷钾2~4年,微量元素3~5年,采集1次。植株样品每个主要生长期采集1次。 4、采样点数量 要保证足够的采样点,使之能代表采样单元的土壤特性。采样点的多少,取决于采样单元的大小、土壤肥力的一致性等,一般为7-20个点为宜。 5、采样路线 采样时应沿着一定的线路,按照“随机”、“等量”和“多点混合”的原则进行采样。一般采用S形布点采样,能够较好地克服耕作、施肥等所造成的误差。在地形较小、地力较均匀、采样单元面积较小的情况下,也可采用梅花形布点取样,要避开路边、田埂、沟边、肥堆等特殊部位。 6、采样点定位 有条件的可采用GPS定位,记录经纬度,精确到0.01″。无条件的可在地图上标明采样点位臵,并记录样点名称、田块名称、固定参照物的距离和方位。 7、采样深度 采样深度一般为0-20cm,土壤硝态氮或无机氮的测定,采样深度应根据不同作物、不同生育期的主要根系分布深度来确定。 8、采样方法

环境标准样品DOC

环境标准样品 标准样品是指具有足够均 匀的一种或多种特性量值经过 充分确定了的材料或物质,主要 用于评价测量方法、校准测量仪 器、或确定其他材料与物质的特 性量值。国家标准样品是经国家 权威部门认证的标准样品,其一 种或多种特性量值是通过建立 了溯源性的程序确定,并可溯源 到准确复现表示该特性量值的 计量单位,且每个标准值都附有 不确定度。环境标准样品是为了满足环境监测分析工作需要的一类标准样品。国家环境标准样品与国家环境监测分析方法标准一样,是国家环境标准体系的重要组成部分,作为全国环境监测分析的测量标准、量值传递的载体,是有效开展环境监测量值溯源的重要工具。国家环境标准样品一般由国家环境保护总局和全国标准样品技术委员会组织专家进行技术评审,由国家质量监督检验检疫总局批准、颁布并授权生产,以“GSB”进行编号,目前已有230余种,主要包括气体、水、土壤、生物和工业固体废弃物等环境标准样品以及各种环境监测分析用标准溶液。为了保证全国环境监测分析数据的可溯源性和准确可比性,国家环境保护总局一直非常重视国家环境标准样品的研究、制备、生产和应用工作,如专门发文“指定国家环境保护总局标准样品研究所负责环境标准样品的研

究、制备和生产工作”、并要求“在对各级环境监测分析实验室及分析人员进行质量控制考核;校准、检验分析仪器;制备标准溶液;进行分析方法验证以及其他环境监测工作活动中,都应使用国家环境标准样品”。我国国家环境标准样品现已广泛应用于全国环境保护系统及其他各行业的计量认证、实验室认可、质控考核、方法验证、技术仲裁等工作中。 环境标准样品目录 一、气体标准样品(1) 1.1、选用指南 1.2、气体标样 1.3、气瓶 1.4、气瓶更换相关服务 二、液体标准样品(2) 2.1、选用指南 2.2、水质标样 2.3、有机标样 2.4、大气标样 三、固体标准样品(7) 3.1、选用指南 3.2、固体标样 四、能力验证样品(8) 4.1、选用指南 4.2、能力验证样品

土壤检测标准

土壤检测标准 NY/T 1121-2006 土壤检测系列标准: NY/T 1121、1-2006 土壤检测第1部分:土壤样品得采集、处理与贮存NY/T 1121、2-2006 土壤检测第2部分:土壤pH得测定 NY/T 1121、3-2006 土壤检测第3部分:土壤机械组成得测定 NY/T 1121、4-2006 土壤检测第4部分:土壤容重得测定 NY/T 1121、5-2006 土壤检测第5部分:石灰性土壤阳离子交换量得测定NY/T 1121、6-2006 土壤检测第6部分:土壤有机质得测定 NY/T1121、7-2006土壤检测第7部分:酸性土壤有效磷得测定 NY/T1121、8-2006土壤检测第8部分:土壤有效硼得测定 NY/T1121、9-2006土壤检测第9部分:土壤有效钼得测定 NY/T 1121、10-2006 土壤检测第10部分:土壤总汞得测定 NY/T 1121、11-2006 土壤检测第11部分:土壤总砷得测定 NY/T 1121、12-2006 土壤检测第12部分:土壤总铬得测定 NY/T 1121、13-2006 土壤检测第13部分:土壤交换性钙与镁得测定 NY/T 1121、14-2006 土壤检测第14部分:土壤有效硫得测定 NY/T 1121、15-2006 土壤检测第15部分:土壤有效硅得测定 NY/T 1121、16-2006 土壤检测第16部分:土壤水溶性盐总量得测定 NY/T 1121、17-2006 土壤检测第17部分:土壤氯离子含量得测定 NY/T 1121、18-2006 土壤检测第18部分:土壤硫酸根离子含量得测定 NY/T 1119-2006 土壤监测规程 NY/T 52-1987 土壤水分测定法 NY/T 53-1987 土壤全氮测定法(半微量开氏法) NY/T 88-1988 土壤全磷测定法 NY/T 87-1988 土壤全钾测定法 NY/T 86-1988 土壤碳酸盐测定法 NY/T 1104-2006 土壤中全硒得测定 NY/T 296-1995 土壤全量钙、镁、钠得测定 NY/T 295-1995 中性土壤阳离子交换量与交换性盐基得测定 NY/T 889-2004 土壤速效钾与缓效钾

土壤环境监测技术规范方案

土壤环境监测技术规范 土壤环境监测技术规范包括土壤环境监测的布点采样、样品制备、分析方法、结果表征、资料统计和质量评价等技术内容。 一、准备工作 主要准备工具,器材,用具等。 二、布点采样 样品由随机采集的一些个体所组成,个体之间存在差异。为了达到采集的监测样品具有好的代表性,必须避免一切主观因素,使组成总体的个体有同样的机会被选入样品,即组成样品的个体应当是随机地取自总体。另一方面,在一组需要相互之间进行比较的样品应当有同样的个体组成,否则样本大的个体所组成的样品,其代表性会大于样本少的个体组成的样品。所以“随机”和“等量”是决定样品具有同等代表性的重要条件。 1.布点方法 1)简单随机 将监测单元分成网格,每个网格编上号码,决定采样点样品数后,随机抽取规定的样品数的样品,其样本号码对应的网格号,即为采样点。随机数 的获得可以利用掷骰子、抽签、查随机数表的方法。关于随机数骰子的使用 方法可见GB10111《利用随机数骰子进行随机抽样的办法》。简单随机布点 是一种完全不带主观限制条件的布点方法。 2)分块随机 根据收集的资料,如果监测区域内的土壤有明显的几种类型,则可将区域分成几块,每块内污染物较均匀,块间的差异较明显。将每块作为一个监 测单元,在每个监测单元内再随机布点。在正确分块的前提下,分块布点的 代表性比简单随机布点好,如果分块不正确,分块布点的效果可能会适得其 反。 3)系统随机 将监测区域分成面积相等的几部分(网格划分),每网格内布设一采样点,这种布点称为系统随机布点。如果区域内土壤污染物含量变化较大,系

统随机布点比简单随机布点所采样品的代表性要好。 2.基础样品数量 1)由均方差和绝对偏差计算样品数 用下列公式可计算所需的样品数: N=t2s2/D2 式中:N 为样品数; t 为选定置信水平(土壤环境监测一般选定为95%)一定自由度下的t 值(附录A); s2 为均方差,可从先前的其它研究或者从极差R(s2=(R/4)2)估计; D 为可接受的绝对偏差。 2)由变异系数和相对偏差计算样品数 N=t2s2/D2 可变为:N=t2CV2/m2 式中:N 为样品数; t 为选定置信水平(土壤环境监测一般选定为95%)一定自由度下的t 值(附录A); CV 为变异系数(%),可从先前的其它研究资料中估计; m 为可接受的相对偏差(%),土壤环境监测一般限定为20%~30% 。 没有历史资料的地区、土壤变异程度不太大的地区,一般CV 可用10%~30%粗略估计,有效磷和有效钾变异系数CV 可取50%。 3.布点数量 土壤监测的布点数量要满足样本容量的基本要求,即上述由均方差和绝对偏差、变异系数和相对偏差计算样品数是样品数的下限数值,实际工作中土壤布点数量还要根据调查目的、调查精度和调查区域环境状况等因素确定。 一般要求每个监测单元最少设3 个点。 区域土壤环境调查按调查的精度不同可从2.5km、5km、10km、20km、40km 中选择网距网格布点,区域内的网格结点数即为土壤采样点数量。

土壤标准样品标准值GSS1-16-17-22

土壤标准样品标准值GSS1-16-17-22

土壤成分分析标准物质标准值 成分GBW07401 (GSS-1) GBW07402 (GSS-2) GBW07403 (GSS-3) GBW07404 (GSS-4) GBW07405 (GSS-5) GBW07406 (GSS-6) GBW07407 (GSS-7) GBW07408 (GSS-8) μg/g Ag0.35±0.050.054±0.0070.091±0.0070.070±0.011 4.4±0.40.20±0.020.057±0.0110.060±0.009 As34±413.7±1.2 4.4±0.658±6412±16220±14 4.8±1.312.7±1.1 Au(0.00055)(0.0017)(0.0055)0.260±0.007(0.009)(0.0008)(0.0014) B50±336±323±397±953±657±5(10)54±4 Ba590±32930±521210±65213± 20 296±26118±14180±27480±23 Be 2.5±0.3 1.8±0.2 1.4±0.2 1.85±0.34 2.0±0.4 4.4±0.7 2.8±0.6 1.9±0.2 Bi 1.2±0.10.38±0.040.17±0.03 1.04±0.1341±449±50.20±0.040.30±0.04 Br 2.9±0.6 4.5±0.7 4.3±0.8 4.0±0.7(1.5)8.0±0.7 5.1±0.5 2.5±0.5 Cd 4.3±0.40.071±0.0140.060±0.0090.35±0.060.45±0.060.13±0.030.08±0.020.13±0.02 Ce70±4402±1639±4136±1191±1066±698±1166±7 C170±962±1057±11(39)(76)95±7100±668±12 Co14.2±1.08.7±0.9 5.5±0.722±212±27.6±1.197±612.7±1.1 Cr62±447±432±4370±16118±775±6410±2368±6 Cs9.0±0.7 4.9±0.5 3.2±0.421.4±1.015±110.8±0.6 2.7±0.87.5±0.7 Cu2l±216.3±0.911.4±1.140±3144±6390±1497±624.3±1.2 Dy 4.6±0.3 4.4±0.3 2.6±0.2 6.6±0.6 3.7±0.5 3.3±0.3 6.6±0.6 4.8±0.4 Er 2.6±0.2 2.1±0.4 1.5±0.3 4.5±0.7 2.4±0.3 2.2±0.3 2.7±0.5 2.8±0.2 Eu 1.0±0.1 3.0±0.20.72±0.040.85±0.070.82±0.040.66±0.04 3.4±0.2 1.2±0.1 F506±322240±112246±26540±25603±28906±45321±29577±24 Ga19.3±1.112±113.7±0.931±332±430±339±514.8±1.1 Gd 4.6±0.37.8±0.6 2.9±0.4 4.7±0.5 3.5±0.3 3.4±0.39.6±0.9 5.4±0.5 Ge 1.34±0.20 1.2±0.2 1.16±0.13 1.9±0.3 2.6±0.4 3.2±0.4 1.6±0.3 1.27±0.20 Hf 6.8±0.8 5.8±0.9 6.8±0.814±28.1±1.77.5±0.87.7±0.57.0±0.8 Hg0.032±0.0040.015±0.0030.060±0.0040.59±0.050.29±0.030.072±0.0070.061±0.0060.017±0.003 Ho0.87±0.070.93±0.120.53±0.06 1.46±0.120.77±0.080.69±0.05 1.1±0.20.97±0.08 I 1.8±0.3 1.8±0.2 1.3±0.29.4±1.1 3.8±0.519.4±0.919±2 1.7±0.2 In0.08±0.020.09±0.030.031±0.0100.12±0.03 4.1±0.60.84±0.180.10±0.030.044±0.013 La34±2164±1121±253±436±430±246±536±3 Li35±122±118.4±0.855±256±236±119.5±0.935±2 Lu0.41±0.040.32±0.050.29±0.020.75±0.060.42±0.050.42±0.050.35±0.060.43±0.04 Mn1760±63510±16304±141420±751360±711450±821780±113650±23 Mo 1.4±0.10.98±0.110.31±0.06 2.6±0.3 4.6±0.418±2 2.9±0.3 1.16±0.10 N1870±67630±59640±501000±62610±31740±59660±62370±54 Nb16.6±1.427±29.3±1.538±323±327±264±715±2 Nd28±2210±1418.4±1.727±224±22l±245±232±2 Ni20.4±1.819.4±1.312±264±540±453±4276±1531.5±1.8 P735±28446±25320±18695±28390±34303±301150±39775±25 Pb98±620±326±358±5552±29314±1314±321±2 Pr7.5±0.557±6 4.8±0.48.4±1.77.0±1.2 5.8±0.611±18.3±0.8

土壤样品采集技术规范

土壤样品采集技术规范-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

土壤样品采集技术规范 土壤样品的采集是土壤测试的一个重要环节,采集有代表性的样品,是如实反映客观情况,是测土配方施肥的先决条件。因此,应选择有代表性的地段和有代表性的土壤采样,为保证土壤样品的代表性,必须采取以下技术措施控制采样误差。 1、采样单元(严格按照已经给定大家的GPS定位为准,如果该点已经有建筑非农田,可以就近取土壤类型、种植作物一致的露天大田非大棚土壤,如玉米小麦是山东典型作物。如果就近实在没有作物地块,可以标注上是蔬菜地,如白菜地。非原始点位的,需要文字说明点位漂移的大致方位距离等) 点位漂移的另选取典型代表地块,采样地块的土壤要尽可能均匀一致。选取地势平坦,肥力均匀,采样单元一般为100平方米地块。采样单元应集中在典型地块,相对在中心部位,采一个混合样。 3、采样路线 采样时应“等量”和“多点混合”的原则进行采样。一般采用S形(下图)布点采样,能够较好地克服耕作、施肥等所造成的误差。或者梅花采样即取四个角加中心点。田块选取要避开路边(有交通工具汽车尾气扬尘等污染影响结果的准确性)、田埂、沟边、肥堆等特殊部位。 3、采样点数量 一个样点至少采集6个点位的土壤,然后混匀。(要保证足够的点,使之能代表采样单元的土壤特性),混匀后,用四分法(见下图)将多余的土壤弃去。方法是将采集的土壤样品混匀后放在盘子里或塑料布上、蛇皮袋上,剔除落叶石块等杂物后弄碎、混匀,铺成四方形,划对角线将土样分成四份,把对角的两份分别合并成一份,保留一份,弃去一份。如果所得的样品依然很多,可再用四分法处理,直至所需数量为止。一个混和土样以取土1公斤左右为宜。 4、采样点定位(必须有,尤其是点位漂移的)

土样采集技术规范

土样采集技术规范 郑州市宇来科贸有限公司测土施肥事业部 土壤样品的采集是土壤测试的一个重要环节,采集有代表性的样品,是如实反映客观情况的先决条件。因此,应选择有代表性的地段和有代表性的土壤采样,并根据不同分析项目采用相关的采样和处理方法。为保证土壤样品的代表性,必须采取以下技术措施控制采样误差。 所需工具:土钻(或土铲)、量尺、蛇皮袋。 土壤样品的采集原则: 采样点的选择:采集的土样要真实反映土地养分状况,才能够保证测土配肥的科学准确。因此要严格遵循以下原则: ①单位田块土壤状况应基本相同。土壤比较均匀时,面积可适当大些,均匀性较差的,面积要小一些。大田作物一般在5亩至50亩之间,也可以更大。经济作物在1亩至10亩间比较合适。 ②每个田块要选择5-20个取样点,样点分布要均匀,切忌在田边、路边、沟边、粪堆旁或堆放化肥的地方取样。 ③多点混合取样采集土样要规范,各采集点土样采集方法要统一,量要一致。取样的方法可采用对角线取样法、五点取样法、蛇形取样法、棋盘取样法等。一般每块地至少取五个样点。将各点所取土样置蛇

皮袋上,压碎,充分混合均匀,依四分法(将所取土样全部集中混合均匀,平堆成正方形,依对角线分成四份,任意保留其中对角两份)弃去多余部分,拣去枯枝败叶、石砾等杂质,保留约半公斤,作为化验分析的待测样品。根据土地情况,大致可分为旱田、水田、果园三种状况,采用不同取样方式:旱田:取样深度以0-20cm为准。 1、采样单元 采样前要详细了解采样地区的土壤类型、肥力等级和地形等因素,将测土配方施肥区域划分为若干个采样单元,每个采样单元的土壤要尽可能均匀一致。平均采样单元为100亩 (平原区、大田作物每100~500亩采一个混合样,丘陵区、园艺作物每30~80亩采一个混合样)。为便于田间示范追踪和施肥分区需要,采样集中在典型农户,采样单元相对在中心部位,以一个面积为1-10亩的典型地块为主 2、采样时间 粮食作物及蔬菜在收获后或播种前采集(上茬作物已经基本完成生育进程,下茬作物还没有施肥),一般在秋后。进行氮肥追肥推荐时,应在追肥前或作物生长的关键时期。 3、采样周期

关于环境标准样品在环境监测中的应用问题探讨

关于环境标准样品在环境监测中的应用问题探讨 发表时间:2019-06-25T09:52:29.180Z 来源:《基层建设》2019年第7期作者:杨丹云 [导读] 摘要:我国作为世界的能源和制造大国,自改革开放以来一直是以第二产业为主,在经济快速发展的同时也就带来了严重的环境污染问题,近年来以北方城市为主的雾霾天气已经给人们的生活造成了极严重的负面影响。 郑州德析检测技术有限公司河南郑州 450000 摘要:我国作为世界的能源和制造大国,自改革开放以来一直是以第二产业为主,在经济快速发展的同时也就带来了严重的环境污染问题,近年来以北方城市为主的雾霾天气已经给人们的生活造成了极严重的负面影响。现如今我国乃至全世界都对环境保护提高了重视程度,并且逐渐建立了愈发完善的环境质量监测体系,在我国主要是通过监测环境质量对环境进行实时管理与控制,并得到了大范围的应用,在具体的环境监测过程中对环境标准样品有极高的要求,因为其可以有效确保监测结果的权威性和准确度,但是以目前我国对环境样品的应用,还是很难达到监测环境的高要求。本文将结合自身的工作经验提出环境标准样品在环境监测中所出现的问题,并进行具体分析给予解决措施,望能有效地解决实际环境监测工作中所遇到的问题,推动我国环保力度大幅提高。 关键词:标准样品;环境监测;应用问题;探讨 随着我国近年来城市的快速发展,人们生活水平也随之提高,但与之伴随的却是环境愈发恶劣,为了有效保证我国人们的生活水平,我国已经以环境监测为主要手段大力开展了环境保护的工作。但是,在实际的监测过程中标准样品总会出现各种问题,直接影响了监测数据的真实性,使得工作人员容易对环境管理与控制做出错误的指示,因此严格控制样品标准成为环境监测工作中的重中之重,本文将对环境监测中所遇到的情况具体问题具体分析,有力推动样品达到环境监测标准的要求。 1 环境监测的概述 通俗一点来讲环境监测即工作人员通过对有效数据进行专业的分析,找出影响环境质量的主要因素,有利于在之后环境改善的过程中抓住重点。 1.1 环境监测的主要内容 当前社会发展较快,因此环境监测的内容也逐渐呈现出多元化,首先通过多种手段取得信息,然后采集监测样品,最后将被测试的数据与该样品进行比对,能够科学地分析出影响环境质量的因素及主要污染成分。 1.2 环境监测的发展历程 在环境监测的发展过程中,其主要一直处于被动地位,是由政府部门作为主要单位进行监测的,而随着社会的不断进步人们环保意识增强,日常关注着环境质量,主要体现为手机、电脑中时刻有显示环境污染问题,环境监测已经发展成为当前生活中不可或缺的一部分,其监测结果是否准确直接影响了人们的生活。 2 标准样品在环境监测中所起的作用 2.1 标准样品的含义 标准样品在使用过程中要让工作人员快速确认是哪种材料,且必须要对标准样品进行研究和合理使用,使得在环境监测过程中对测量仪器与方法做出有效评价。 2.2 通过标准样品提高环境监测的质量 标准样品是作为一个参照物存在的。首先,在环境监测过程中工作人员不了解待测样品的质量,则通过将待测样品应用标准样品进行测试;其次,工作人员对测试结果进行专业的分析,以了解待测样品的质量,若测试结果相差较大则待测样品存在较大的质量问题,若测试结果相差较小则待测样品的质量较好。由此可以看来标准样品直接决定了环境监测,要加大力度提高标准样品的质量。 2.3 通过标准样品校正监测仪器分析 仪器分析在当前的监测中是最为常见的设备了,发挥着十分重要的作用。在环境监测过程使用PH计,如果PH计不准确则会导致整个监测出现重大失误,而标准的样品用仪器测试时,PH值一旦出现有误差就会立马发现,可以及时进行仪器校正。 3 标准样品在环境监测应用中存在的几个问题及对策 3.1 存在问题 3.1.1 由于监测标准不统一,导致监测结果有出入 标准样品和监测方法在不同的领域、国家等都存在有差异。首先,在具体的工作中由于不同的要求就会使得标准样品、监测方法和仪器有了不同的标准;其次,在目前的环境监测中由于各个国家环境质量不一,致使各国的标准样品差异较大,但随着全球化发展进度加快,各国之间的关系十分密切,在很多问题上需要各国一同交流探讨,标准样品的差异就会阻碍到交流结果的有效性。由以上可看,目前全世界缺乏一套完善的、有系统的、国际化的标准体系,减少由于标准样品的差异而引发监测结果发生失误,运用统一的标准样品及监测体系,使得各个领域和国家在环境监测方面更加专业与规范,这一举措将会有力促进全世界在环境监测方面得到共同发展。 3.1.2 在环境监测工作中,待测样品存在着系统误差 在环境监测过程中,造成待测样品存在系统误差有多种原因。一、以水环境监测为例,其选择的标准样品没有达到标准体系规定的要求,或待测样品在存储的过程中受到了污染,使得收集到的数据不准确,这些问题都会增大水环境监测发生失误的几率。二、在同一个实验室当中由于人事的变动也会促使待测样品在环境监测中出现失误,除了工作人员对实验有不同的理解外,工作人员对于实验分析和设备也有不同的分析方法,这样待测样品比较容易出现误差。但是,由人事变动造成的误差是可以通过预测检查出来的,只要严格按照国家标准化管理委员会或是国家质检总局规定的标准样品,在误差预测出来之后可以及时提出补救措施并解决问题。 3.1.3 标准样品的特性值及不确定因素 与普通样品相比,标准样品比较专业、权威,但是在具体的环境监测当中有些客户就忽略了标准样品的不确定因素,由于其标准样品的数据有失误,就会使得标准样品在环境监测中没有发挥出有效的作用。 3.2 解决措施 3.2.1 对标准样品的使用要有选择性 在环境监测的过程中标准样品主要是起控制质量的作用,但实际标准样品存在有一定的局限,不是适用于所有的环境监测,且能够控

农田土壤环境质量监测技术规范

农田土壤环境质量监测技术规范 范围 本标准规定了农田土壤环境监测的布点采样、分析方法、质控措施、数理统计、成果表达与资料整编等技术内容。 本标准适用于农田土壤环境监测。 2 引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为 有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 GB8170—1987 数值修约规 则 GB /T14550—1993 土壤质量 六六六和滴滴涕的测定 气相色谱法 GB15618—1995 土壤环境质量标准 GB /T17134,—1997 土壤质量 总砷的测定 二乙基二硫代氨基甲酸银分光光度法 GB /T17135—1997 土壤质量 总砷的测定 硼氢化钾—硝酸银分光光度法 GB /T17136—1997 土壤质量 总汞的测定 冷原子吸收分光光度法 GB /T17137—1997 土壤质量 总铬的测定 火焰原子吸收分光光度法 GB /T17138—1997 土壤质量 铜、锌的测定 火焰原子吸收分光光度法 GB /T17139—1997 土壤质量 镍的测定火焰原子吸收分光光度法 GB /T17140—1997 土壤质量 铅、镉的测定 KI —MIBK 萃取火焰原子吸收分光光度法 GB /T17141—1997 土壤质量 铅、镉的测定 石墨炉原子吸收分光光度法 NY /T52—1987 土壤水分测定法(原GB7172—1987) NY /T53—1987 土壤全氮测定法(半微量开氏法)(原GB7173—1987) NY /T85—1988 土壤有机质测定法(原GB9834— 1988) NY /T88—1988 土壤全磷测定法(原GB9837—1988) NY /T148—1990 土壤有效硼测定方法(原GB12298—1990) NY /T149,一1990 石灰性土壤有效磷测定 方法 (原GB12297一1990) 3 定义 本标准采用下列定义。 3 .1农田土壤 用于种植各种粮食作物、蔬菜、水果、纤维和糖料作物、油料作物及农区森林、花卉、药材、草料等 作物的农业用地土壤。 3 .2区域土壤背景点 在调查区域内或附近, 相对未受污染,而母质、土壤类型及农作历史与调查区域土壤相似的±壤样点。 3 ,3 农田土壤监测点 人类活动产生的污染物进入土壤并累积到一定程度引起或怀疑引起土壤环境质量恶化的±壤样点。 3 .4 农田土壤剖面样品 按土壤发生学的主要特征,担整个剖面划分成不同的层次,在各层中部位多点取样,等量混均后的A 、B 、C 层或A 、C 等层的土壤样品。 3 .5农田土壤混合样 在耕作层采样点的周围采集若干点的耕层土壤、经均匀混合后的土壤样品,组成混合样的分点数要在 5~20个。 4 农田土壤环境质量监测采样技术 4 .1采样前现场调查与资料收集 4 .1.1区域自然环境特征:水文、气象、地形地貌、植被、自然灾害等。 4 .1.2农业生产土地利用状况:农作物种类、布局、面积、产量、耕作制度等。 4.1.3区域土壤地力状况:成土母质、土壤类型、层次特点、质地、pH 、Eh 、代换量、盐基饱和度、±壤肥力等。 4 .1.4土壤环境污染状况:工业污染源种类及分布、污染物种类及排放途径和排放量、农灌水污染 状况、大气污染状况、农业固体废弃物投入、农业化学物质投入情况、自然污染源情况等。 4.1.5土壤生态环境状况:水土流失现状、土壤侵蚀类型、分布面积、侵蚀模数、沼泽化、潜育化、盐渍化、酸化等。

环境监测答案

第一章 1.环境监测的主要任务是什么? ①对环境中各项要素进行经常性监测,掌握和评价环境质量状况及发展趋势; ②对各个有关单位排放污染物的情况进行监视性监测; ③为政府部门执行各项环境法规、标准,全面展开环境监测技术的发展的监测数据和资料; ④开展环境监测技术研究,促进环境监测技术的发展。 2、根据环境污染的特点说明对近代环境监测提出哪些要求? ①三高(灵敏度、准确度、分辨率高) ②三化(自动化、标准化、计算机化) ③多学科、边缘性、综合性、社会性 3、环境监测有何特点? ①环境监测的技术特点:生产性,综合性,连续性,追踪性 ②环境监测的政府行为属性:依法强制性,行为公正性,社会服务性 ③环境监测与环境管理 4、是分析环境监测的地位与作用 环境检测是科学管理和环境执法监督的基础,是环境保护必不可少的基础性工作;环境监测在正确认识环境质量,解决现存或潜在的环境问题,改善生活环境和生态环境,协调人类和环境的关系,最终实现人类的可持续发展中起着举足轻重的作用。 5、简述环境监测的目的与类型? 目的:①评价环境质量 ②为监督管理控制污染服务 ③预测预报环境质量 ④制定环境法规标准规划 类型:安环境对象分为水质监测、空气监测、土壤监测、固体废物检测、生物监测与生物污染监测、生态监测、物理污染监测;按监测目的分为政府授权的公益型环境监测和非政府组织的公共事务环境监测;按监测区域分为厂区监测和区域监测;按专业部门分为气象监测、卫生监测、资源监测等。 6、试分析我国环境标准体系的特点 三级:国家环境标准、国家环境行业标准、地方环境标准 六类:环境质量标准、污染物排放标准、环境基础标准、环境方法标准、环境标准物质标准、环保仪器设备标准 7、制定环境标准的原则是什么?是否标准越严越好? 原则:①以人为本 ②科学性、政策性 ③以环境基准为基础,与国家的技术水平、社会经济承受能力相适应 ④综合效益分析,实用性、可行

土壤环境监测技术规范范本

土壤环境监测技术规范 本规范适用于全国区域土壤背景、农田土壤环境、建设项目土壤环境评价、土壤污染事故等类型的监测。 根据该技术规范的要求可大致归纳出土壤环境监测所要具备的要点:采样准备——布点与样品数容量——样品采集——样品流转——样品制备——样品保存——土壤分析测定——分析记录与监测报告——土壤环境质量评价——质量保证和质量控制。 1采样准备 1.1组织准备 由具有野外调查经验且掌握土壤采样技术规程的专业技术人员组成采样组,采样前组织学习有关技术文件,了解监测技术规范。 1.2资料收集 收集包括监测区域的交通图、土壤图、地质图、大比例尺地形图等资料,供制作采样工作图和标注采样点位用。 收集包括监测区域土类、成土母质等土壤信息资料。 收集工程建设或生产过程对土壤造成影响的环境研究资料。 收集造成土壤污染事故的主要污染物的毒性、稳定性以及如何消除等资料。 收集土壤历史资料和相应的法律(法规)。 收集监测区域工农业生产及排污、污灌、化肥农药施用情况资料。 收集监测区域气候资料(温度、降水量和蒸发量)、水文资料。 收集监测区域遥感与土壤利用及其演变过程方面的资料等。 1.3现场调查 现场踏勘,将调查得到的信息进行整理和利用,丰富采样工作图的内容。 1.4采样器具准备 1.1.1工具类:铁锹、铁铲、圆状取土钻、螺旋取土钻、竹片以及适合特殊采样要求的工具等。 1.1.2器材类:GPS、罗盘、照相机、胶卷、卷尺、铝盒、样品袋、样品箱等。 1.1.3文具类:样品标签、采样记录表、铅笔、资料夹等。 1.1.4安全防护用品:工作服、工作鞋、安全帽、药品箱等。 1.1.5采样用车辆 1.5监测项目与频次 监测项目分常规项目、特定项目和选测项目;监测频次与其相应。 常规项目:原则上为GB 15618《土壤环境质量标准》中所要求控制的污染物。 特定项目:GB 15618《土壤环境质量标准》中未要求控制的污染物,但根据当地环境污染状况,确认在土壤中积累较多、对环境危害较大、影响范围广、毒性较强的污染物,或者污染 事故对土壤环境造成严重不良影响的物质,具体项目由各地自行确定。 选测项目:一般包括新纳入的在土壤中积累较少的污染物、由于环境污染导致土壤性状发生改变的土壤性状指标以及生态环境指标等,由各地自行选择测定。 2布点与样品数容量 2.1“随机”和“等量”原则 样品是由总体中随机采集的一些个体所组成,个体之间存在变异,因此样品与总体之间,既存在同质的“亲缘”关系,样品可作为总体的代表,但同时也存在着一定程度的异质性的,差异愈小,样品的代表性愈好;反之亦然。为了达到采集的监测样品具有好的代表性,必须避

土壤标准样品标准值GSS

土壤成分分析标准物质标准值 成分GBW07401 (GSS-1) GBW07402 (GSS-2) GBW07403 (GSS-3) GBW07404 (GSS-4) GBW07405 (GSS-5) GBW07406 (GSS-6) GBW07407 (GSS-7) GBW07408 (GSS-8) μg/g Ag 0.35±0.05 0.054±0.00 0.091±0.00 0.070±0.01 4.4 ±0.4 0.20±0.02 0.057±0.01 0.060±0.00 7 7 1 1 9 As 34±413.7±1.2 4.4 ±0.6 58±6412±16 220±14 4.8 ±1.3 12.7±1.1 Au (0.00055) (0.0017) (0.0055) 0.260±0.00 7 (0.009) (0.0008) (0.0014) B 50±336±323±397±953±657±5(10) 54±4 Ba 590±32 930±52 1210±65 213±296±26 118±14 180±27 480±23 20 Be 2.5 ±0.3 1.8 ±0.2 1.4 ±0.2 1.85±0.34 2.0 ±0.4 4.4 ±0.7 2.8 ±0.6 1.9 ±0.2 Bi 1.2 ±0.1 0.38±0.04 0.17±0.03 1.04±0.13 41±449±50.20±0.04 0.30±0.04 Br 2.9 ±0.6 4.5 ±0.7 4.3 ±0.8 4.0 ±0.7 (1.5) 8.0 ±0.7 5.1 ±0.5 2.5 ±0.5 Cd 4.3 ±0.4 0.071±0.01 0.060±0.00 0.35±0.06 0.45±0.06 0.13±0.03 0.08±0.02 0.13±0.02 Ce 70±44 402±16 9 39±4136±11 91±10 66±698±11 66±7 C1 70±962±10 57±11 (39) (76) 95±7100±668±12 Co 14.2±1.0 8.7 ±0.9 5.5 ±0.7 22±212±27.6±1.1 97±612.7±1.1 Cr 62±447±432±4370±16 118±775±6410±23 68±6 Cs 9.0 ±0.7 4.9 ±0.5 3.2 ±0.4 21.4±1.0 15±110.8±0.6 2.7 ±0.8 7.5 ±0.7 Cu 2l ±216.3±0.9 11.4±1.1 40±3144±6390±14 97±624.3±1.2 Dy 4.6 ±0.3 4.4 ±0.3 2.6 ±0.2 6.6 ±0.6 3.7 ±0.5 3.3 ±0.3 6.6 ±0.6 4.8 ±0.4 Er 2.6 ±0.2 2.1 ±0.4 1.5 ±0.3 4.5 ±0.7 2.4 ±0.3 2.2 ±0.3 2.7 ±0.5 2.8 ±0.2 Eu 1.0 ±0.1 3.0 ±0.2 0.72±0.04 0.85±0.07 0.82±0.04 0.66±0.04 3.4 ±0.2 1.2 ±0.1 F 506±32 2240±112 246±26 540±25 603±28 906±45 321±29 577±24 Ga 19.3±1.1 12±113.7±0.9 31±332±430±339±514.8±1.1 Gd 4.6 ±0.3 7.8 ±0.6 2.9 ±0.4 4.7 ±0.5 3.5 ±0.3 3.4 ±0.3 9.6 ±0.9 5.4 ±0.5 Ge 1.34±0.20 1.2 ±0.2 1.16±0.13 1.9 ±0.3 2.6 ±0.4 3.2 ±0.4 1.6 ±0.3 1.27±0.20 Hf 6.8 ±0.8 5.8 ±0.9 6.8 ±0.8 14±28.1 ±1.7 7.5 ±0.8 7.7 ±0.5 7.0 ±0.8 Hg 0.032±0.00 0.015±0.00 0.060±0.00 0.59±0.05 0.29±0.03 0.072±0.00 0.061 ±0.00 0.017±0.00 4 3 4 7 6 3 Ho 0.87±0.07 0.93±0.12 0.53±0.06 1.46±0.12 0.77±0.08 0.69±0.05 1.1 ±0.2 0.97±0.08 I 1.8 ±0.3 1.8 ±0.2 1.3 ±0.2 9.4 ±1.1 3.8 ±0.5 19.4±0.9 19±2 1.7 ±0.2 In 0.08±0.02 0.09±0.03 0.031±0.01 0.12±0.03 4.1 ±0.6 0.84±0.18 0.10±0.03 0.044±0.01 La 34±2164±11 0 21±253±436±430±246±5 3 36±3 Li 35±122±118.4±0.8 55±256±236±119.5±0.9 35±2 Lu 0.41±0.04 0.32±0.05 0.29±0.02 0.75±0.06 0.42±0.05 0.42±0.05 0.35±0.06 0.43±0.04 Mn 1760±63 510±16 304±14 1420±75 1360±71 1450±82 1780±113 650±23 Mo 1.4 ±0.1 0.98±0.11 0.31±0.06 2.6 ±0.3 4.6 ±0.4 18±2 2.9 ±0.3 1.16±0.10 N 1870±67 630±59 640±50 1000±62 610±31 740±59 660±62 370±54 Nb 16.6±1.4 27±29.3 ±1.5 38±323±327±264±715±2

相关主题
文本预览
相关文档 最新文档