当前位置:文档之家› 参数计算好了--四辊可逆冷轧机卷取机直流调速系统设计

参数计算好了--四辊可逆冷轧机卷取机直流调速系统设计

参数计算好了--四辊可逆冷轧机卷取机直流调速系统设计
参数计算好了--四辊可逆冷轧机卷取机直流调速系统设计

目录

第一章设计概述2

1.1 设计目的2

1.2 设计内容2

1.3 课题设计要求2

1.4 背景知识介绍3

第二章调速方案选择4

2.1 直流调速的一般原理4

2.2 开环直流调速系统5

2.3 转速负反馈直流调速系统6

2.4 带电流截止负反馈的直流调速系统8

2.5 双闭环直流调速系统9

第三章双闭环调速系统结构以及各功能模块概述14

3.1双闭环调速系统结构概述14

3.2速度调节器16

3.3电流调节器17

3.4锯齿波同步移相触发电路18

3.5电流反馈与过流保护19

3.6转速变换20

3.7零速封锁器21

3.8转矩极性鉴别(DPT)23

3.9零电平检测(DPZ)23

3.10逻辑控制(DLC)24

第四章双闭环调速系统设计及参数计算26

4.1设计准备26

4.1.1 晶闸管选型26

4.1.2电抗器设计27

4.1.3变压器容量计算28

4.1.4快速熔断器选择28

4.2电流调节器的设计29

4.3转速调节器的设计30

4.4系统设计小结33

第五章小结34

参考文献35

附录:运控实验35

6.1系统实验调试概述36

6.2触发器的整定37

6.3系统的开环运行及特性测试37

6.4系统单元调试39

第一章设计概述

1.1设计目的

运动控制系统是自动化专业的主干专业课,具有很强的系统性、实践性和工程背景,运动控制系统课程设计的目的在于培养学生综合运用运动控制系统的知识和理论分析和解决运动控制系统设计问题,使学生建立正确的设计思想,掌握工程设计的一般程序、规范和方法,提高学生调查研究,查阅文献及正确使用技术资料、标准、手册等工具书的能力,理解分析、制定设计方案的能力,设计计算和绘图能力,实验研究及系统调试能力,编写设计说明书的能力。

1.2设计内容

(1)根据工艺要求,论证、分析、设计主电路和控制电路方案,绘出该系统的原理图。(2)设计组成该系统的各单元,分析说明。(3)选择主电路的主要设备,计算其参数(含整流变压器的容量S,电抗器的电感量L,晶闸管的电流、电压定额,快熔的容量等),并说明保护元件的作用(必须有电流和电压保护)。(4)设计电流环和转速环(或张力环),确定ASR和ACR(或张力调节器ZL)的结构,并计算其参数。(5)结合实验,论述该系统设计的正确性。

1.3课题设计要求

(一)生产工艺和机械性能

四辊冷轧机是供冷轧紫铜及其合金成卷带材之用。为提高生产效率,要求往返均要轧制,其轧机工艺参数如下:

工作辊的最大和最小直径:156/136cm

支持辊的最大和最小直径:500/470cm

辊身长:400cm

轧制时扎件对轧辊的最大压力:60吨

压下时扎件对轧辊的最大压力:120吨

基速:7m/s

带材宽度:0.5~10m/s

轧制成品:8道次以上

带卷内径(卷筒直径):500mm

带卷外径:680~1100mm

带卷最大重量:2000Kg

带卷最大张力:2000Kg

卷取机传动比:i=1.87

轧机原理简图:

辊机原理简图

(二)设计要求:

两台卷取机控制原理完全一样,仅设计其中一台;

稳态无静差,电流超调量i σ≤5%;空载启动至额定转速时转速超调量n σ%≤10%,能实现快速制动。

(三)直流电动机参数

Pn=120Kw,Un=230V,In=780A,Nn=1400r/min,Ra=0.05Ω

电枢回程总电阻R=0.12Ω,电流过载位数λ=2.25,GD 2=87.5N.m 2

1.4背景知识介绍

冷轧机,是在“再结晶”温度(包括常温)下将一定厚度的板材轧成目标厚度的设备。传统的冷轧机都是用力矩电机和直流电机来控制的。冷轧机的设备一般由3部分组成,即开卷机、主机、卷取机(可逆轧机不分开卷和卷取)冷轧机主要用途:冷轧机用于轧制普碳、优特中炭钢、铝、铜、锌等金属带材。应用领域:冷轧机主要应用在钢铁行业、冶金行业等。随着电力电子技术、控制技术的发展,高性能矢量变频器的出现,变频器在冷轧机上的应用日益广泛。

四辊压延机是轮胎生产的大型关键设备之一。主要用于对帘布的连续贴胶或用于对帘帆布的不连续擦胶。由于作为轮胎胎体骨架材料的帘布质量对轮胎的内在质量、安全性起着至关重要的作用,而且控制帘布质量也是降低生产消耗的

重要手段,因此,生产过程中四辊压延机的稳定性和可靠性直接关系到整个轮胎生产企业的正常生产和经济效益,历来备受轮胎生产厂家、橡胶机械制造企业的关注。

我国自行研制生产的第一台S 型四辊压延机是大连橡胶塑料机械厂在1971年末研制出的XY-4S1800型四辊压延机组。它分为主机和辅机两部分。其中辅机由导开装置,接头硫化机,小牵引机,前、后储布装置,前四辊和后四辊牵引机,十二辊干燥机,冷却机,自动切割机,卷取装置和相应的定中心装置,张力传送架,同位素穿透式测厚装置组成。

第二章调速方案选择

在进行调速方案选择之前,先来简要介绍一下直流调速的一般原理。

2.1 直流调速的一般原理

理想化直流电动机,直流电动机转速方程可表示为:

φ

e K IR U n -= 式中n——转速(r/min );

U——电枢电压(V );

I——电枢电流(A );

R——电枢回路总电阻(Ω);

φ——励磁磁通(Wb );

e K ——由电机结构决定的电动势常数;

在上式中,

K是常数,电流I是由负载决定的,因此调节电动机的转速可以e

有三种方法:

1)调节电枢供电电压U;

2)减弱励磁磁通 ;

3)改变电枢回路电阻R。

对于要求在一定范围内无级平滑调速的系统来说,以调节电枢供电电压的方式为最好。改变电阻只能实现有级调速;减弱磁通虽然能够平滑调速,但是调速范围不大,往往只是配合调压方案,在基速(额定转速)以上小范围的弱磁升速。因此,自动控制的直流调速系统往往以变压调速为主。以下介绍在直流调速系统中比较常用的开环控制、转速负反馈控制、转速、电流双闭环控制等控制方法。

2.2 开环直流调速系统

开环直流调速系统原理图如下图2-2-1:

图2-2-1晶闸管——电动机调速系统(V——M系统)原理图

图2-2-1中VT是晶闸管可控整流器,通过调节触发装置GT的控制电压Uc 来移动触发脉冲的相位,即可改变整流电压Ud,从而实现平滑调速。

这里对晶闸管可控整流器的移相控制是关键。锯齿波同步移相触发电路将在第三章介绍。其整流原理为三相桥式全控整流,基本原理见下图2-2-2。通过改变触发角从而改变Ud以进行调速。

图2-2-2三相桥式全控整流电路

开环直流调速系统控制电路简单,有利于在实验室实现,并且能实现一定范围内的无级调速。如果负载的生产工艺对运行时的静差率要求不高,这样的开环调速系统是可以满住要求的。

然而,开环直流调速系统没有控制结果的反馈,控制精度不高,在需要调速的生产机械对静差率有一定的要求的场合往往不能满住要求。例如龙门刨床,由于毛坯表面粗糙不平,加工时负载大小常有波动,但是为了保证工件的加工精度和加工后的表面洁净度,加工过程中的速度却必须基本稳定,也就是说,静差率不能太大。这时就不能使用开环直流调速系统了。

2.3 转速负反馈直流调速系统

为了提高直流调速系统的动静态性能指标,通常采用闭环控制系统(包括单闭环系统和多闭环系统)。对调速指标要求不高的场合,采用单闭环系统,而对调速指标较高的则采用多闭环系统。按反馈的方式不同可分为转速反馈,电流反馈,电压反馈等。在单闭环系统中,转速单闭环使用较多。

转速单闭环系统原理图如下图2-3-1:

图2-3-1转速单闭环系统原理图

图2-3-2转速单闭环系统结构框图

可见转速单闭环系统实际上是开环直流调速系统的“闭环化”。转速单闭环系统将反映转速变化的电压信号作为反馈信号,经检测转化与给定信号相比较并经放大后,得到移相控制电压UCt,用作控制整流桥的“触发电路”,触发脉冲经功放后加到晶闸管的门极和阴极之间,以改变“三相全控整流”的输出电压,这就构成了速度负反馈闭环系统。电机的转速随给定电压变化,电机最高转速由速度调节器的输出限幅所决定,速度调节器采用P(比例)调节对阶跃输入有稳态误差,要想消除上述误差,则需将调节器换成PI(比例积分)调节。这时当“给定”恒定时,闭环系统对速度变化起到了抑制作用,当电机负载或电源电压波动时,电机的转速能稳定在一定的范围内变化。

与开换系统相比,转速单闭环直流调速系统性能更为稳定。根据转速单闭环系统原理图作如下分析:

转速负反馈闭环直流调速系统的静特性方程式

n=Kp*Ks*U1/Ce(1+K)-Id*R/Ce(1+K)

式中:Kp—放大器的电压放大系数;

Ks—电力电子变换器的电压放大系数;

α—转速反馈系数

U1—给定电压

设K= Kp* Ks*α/ Ce

闭环系统的转速降

ΔNcl=R*Id/(Ce(1+K))

闭环系统的静差率

Scl=ΔNcl/Nn

调速范围

Dcl=Nn*s/( ΔNcl*(1-s))

可见经过适当调节Kp、Ks,可以使系统的特性更硬,调速范围更宽。

2.4 带电流截止负反馈的直流调速系统

直流电动机全电压起动时,如果没有限流措施,会产生很大的冲击电流,这不仅对电动机换向不利,对过载能力低的电力电子器件来说,更是不能允许的。采用转速负反馈的闭环调速系统突然加上给定电压时,由于惯性,转速不可能立即建立起来,反馈电压仍为零,相当于偏差电压△Un= Un*,差不多是其稳态工作值的1+K倍。这时,由于放大器和变换器的惯性都很小,电枢电压Ud一下子就达到它的最高值,对电动机来说,相当于全压起动,当然是不允许的。

另外,有些生产机械的电动机可能会遇到堵转的情况,例如,由于故障使机械轴被卡住,或挖土机运行时碰到坚硬的石块等等。由于闭环系统的静特性很硬,若无限流环节,硬干下去,电流将远远超过允许值。如果只依靠过流继电器或熔断器保护,一过载就跳闸,也会给正常工作带来不便。

为了解决反馈闭环调速系统起动和堵转时电流过大的问题,引入电流截止负反馈,简称截流反馈,保持电流基本不变,使它不超过允许值。

带电流截止负反馈的闭环直流调速系统的稳态结构框图如下图2-4-1所示。

图2-4-1 环直流调速系统稳态结构框图

这种电流负反馈作用只应在起动和堵转时存在,在正常运行时又得取消,让电流自由地随着负载增减。它的静特性分为两段,当dcr d I I ≤时,电流截止负反

馈环节不起作用,静特性与只有转速负反馈系统的相同。当

dcr d I I >后,引入了电流截止负反馈,静特性变为:

)1()()1()()1()()1()1(**K C I R K K R K C U U K K K C RI U I R K C K K K C U K K n e d s s p e com n s p e d com d s e s

p e n s p ++-++=+--+-+=

2.5 双闭环直流调速系统

采用转速负反馈和PI 调节器的单闭环直流调速系统可以在保证系统稳定的前提下实现转速无静差。但是,如果对系统的动态性能要求较高,例如龙门刨床、可逆轧钢机等要求快速起制动,突加负载动态速降小的场合,尽量缩短起、制动过程的时间是提高生产率的重要因素。这时单闭环系统就难以满足需要。这主要是因为单闭环系统不能随心所欲地控制电流和转矩的动态过程。于是产生了通过转速、电流双闭环来控制电流和转矩的双闭环控制直流调速系统。

在单闭环直流调速系统中,电流截止负反馈环节是专门用来控制电流的,但它只能在超过临界电流值以后,靠强烈的负反馈作用限制电流的冲击,并不能很理想地控制电流的动态波形。带电流截止负反馈的单闭环直流调速系统起动电流和转速波形如图2-5-1所示

图2-5-1单闭环直流调速系统起动电流和转速波形图

起动电流突破Idcr以后,受电流负反馈的作用,电流只能再升高一点,经过某一最大值Idm后,就降低下来,电机的电磁转矩也随之减小,因而加速过程必然拖长。

为此,在电机最大允许电流和转矩受限制的条件下,应该充分利用电机的过载能力,最好是在过渡过程中始终保持电流转矩为允许的最大值,使电力拖动系统以最大的加速度起动,到达稳态转速时,立即让电流降下来,使转矩马上与负载相平衡,从而转入稳态运行。这样的理想起动过程波形示如图2-5-2:

图2-5-2系统理想起动过程波形

这时,起动电流呈方形波,转速按线性增长。这是在最大电流转矩)受限制时调速系统所能获得的最快的起动过程。

为了实现转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈。二者之间实行嵌套(或称串级)联接,如图所示2-5-3。

图2-5-3 转速、电流双闭环直流调速系统

ASR ——转速调节器 ACR ——电流调节器 TG ——测速发电机 TA ——电流互感器 UPE ——电力电子变换器

把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE 。从闭环结构上看,电流环在里面,称作内环;转速环在外边,称作外环。这就形成了转速、电流双闭环调速系统。以下分别对双闭环调速系统的静态特性、动态特性以及抗扰性能进行分析。

为分析静特性我们参考如下的系统稳态结构框图:

图2-5-4 双闭环调速系统的稳态结构图

α——转速反馈系数β——电流反馈系数

在正常运行时,电流调节器是不会达到饱和的。因此,对于静特性来说,只有转速调节器饱和与不饱和两种情况。①转速调节器不饱和:CA 段静特性从理想空载状态的d I =0一直延续到dm d I I =,而dm

I 一般都是大于额定电流dN I 的。这就是静特性的运行段。②转速调节器ASR 饱和:这时ASR 输出达到限幅值*im U ,

转速外环呈开环状态,转速的变化对系统不再产生影响。双闭环系统变成一个电

流无静差的单闭环调节系统。其静特性如下图2-5-5:

图2-5-5 单闭环调节系统静特性图

为分析动态特性以及抗扰性能参考双闭环直流调速系统的动态结构图如下图:

图2-5-6 双闭环直流调速系统的动态结构框图

双闭环直流调速系统的起动过程有以下三个特点:

(1)饱和非线性控制:根据ASR的饱和与不饱和,整个系统处于完全不同的两种状态:当ASR饱和时,转速环开环,系统表现为恒值电流调节的单闭环系统;当ASR不饱和时,转速环闭环,整个系统是一个无静差调速系统,而电流内环表现为电流随动系统。

(2)转速超调:由于ASR采用了饱和非线性控制,起动过程结束进入转速调节阶段后,必须使转速超调, ASR 的输入偏差电压△Un 为负值,才能使ASR退出饱和。这样,采用PI调节器的双闭环调速系统的转速响应必然有超调。

(3)准时间最优控制:起动过程中的主要阶段是第II阶段的恒流升速,它的特征是电流保持恒定。一般选择为电动机允许的最大电流,以便充分发挥电动机的过载能力,使起动过程尽可能最快。这阶段属于有限制条件的最短时间控制。因此,整个起动过程可看作为是一个准时间最优控制。

对于调速系统,最重要的动态性能是抗扰性能,主要是负载扰动和抗电网电

压扰动的性能。对于负载扰动,由动态结构图中可以看出,负载扰动作用在电流环之后,因此只能靠转速调节器ASR来产生抗负载扰动的作用。在设计ASR时,应要求有较好的抗扰性能指标。对于电网电压扰动,双闭环系统中,由于增设了电流内环,电压波动可以通过电流反馈得到比较及时的调节,不必等它影响到转速以后才能反馈回来,抗扰性能大有改善。

由以上分析可以得出,要使该系统具有良好的动态性能和静态特性,双闭环直流调速系统是最佳选择。

第三章双闭环调速系统结构以及各功能模块概述

3.1双闭环调速系统结构概述

对于要求在一定范围内无级平滑调速的系统来说,以调节电枢供电电压的方式为最好。改变电阻只能有级调速;减弱磁通虽然能够平滑调速,但调速范围不大,往往只是配合调压方案,在基速(即电机额定转速)以上作小范围的弱磁升速。因此,自动控制的直流调速系统往往以调压调速为主。调压调速是直流调速系统的主要方法,而调节电枢电压需要有专门向电动机供电的可控直流电源。常用的可控支流电源有以下三种:

1)旋转变流机组(G-M系统)——用交流电动机和直流发电机组成机组,以获得可调的直流电压。但该系统需要旋转变流机组,至少包含两台与调速电动机容量相当的旋转电机,还要一台励磁发电机,因此设备多,体积大,费用高,效率低,安装须打地基,维护不方便。

2)静止式可控整流器(V-M系统)——用静止式的可控整流器,以获得可调的直流电压。放大倍数高,快速性好,虽然晶闸管对过电压、过电流和过高的d V/d t与d i/d t 都十分敏感,现代的饿晶闸管应用技术已经成熟,只要器件质量过关,装置设计合理,保护电路齐全,晶闸管装置的运行是十分可靠的。

3)直流斩波器或脉宽调制变换器(PWM)——用恒定直流电源或不控整流电源供电,利用电力电子开关器件斩波或进行脉宽调制,以产生可变的平均电压。尽管与V-M系统相比较,它有很大的优越性,特别是在中小容量的高动态性能已经完全取代了V-M系统,但在大容量的的调速系统中用V-M系统还是比较多。

纵上三种可控电源的比较,我们选择V-M系统来实现本设计。

根据设计要求所有直流电机允许电枢可逆,而我们采用的晶闸管是单向导电的,不允许电流反向,因此我们选择合适的可逆直流调速系统,而可逆直流调速系统常见的有以下两种:

1)有环流控制的可逆晶闸管-电动机系统采用αβ

=配合控制来消除直流平均电流,采用4个环流电抗器来抑制瞬时脉动环流,,正转只动和反转起动能够完全衔接起来,没有间断死区,适用于快速正、反转的系统,其缺点是需添置换流电抗器,而且晶闸管都要负担负载电流加上环流电抗器。对有大容量的系统,设置几个环流电抗器始终是个累赘,这些缺点比较明显。

2)无环流控制的可逆晶闸管-电动机系统,当工艺过程对系统的正反转过渡特性要求不很高时,特别是对于大容量的系统,常采用没有直流平均环流又没有瞬时脉动环流的无环流控制可逆系统。主要有两大类:逻辑控制无环流系统和错位控制无环流系统。而目前错位无环流实际应用已经很少。逻辑控制无环流当一组晶闸管工作时,逻辑电路封锁另一组晶闸管的触发脉冲,使它完全处于阻断状态,以确保两组晶闸管不同时工作,从根本上切断了环流的通路。

通过两种系统的比较,我们选用逻辑控制无环流调速系统。

主电路的稳定安全运行直接影响整个系统的性能,为了保证可逆冷轧机的卷取机系统具有稳定的正反运行特性,则需要设计可逆的调速系统,采用六个晶闸管构成三相桥式整流电路的反并联装置可以解决电动机的正反转运行和回馈制动的问题。其实现方式如图3-1-1所示。

图3-1-1主电路框图

对于系统的供电,可将无穷大电网电压经三相变压器变为220V,再通过一系列熔断器等保护措施,输入给桥式整流电路,进而给直流电机和其他装置供电。变压器绕组采用△/Y接法,具体方法见主电路变压器的参数计算。主电路的保护措施尤为重要,设计多重保护电路成为必要。

在起动开关电路里面设置自锁回路和,在控制电路中发现电流过大,这可使主电路常闭开关KM跳开而保护整个系统,当KM跳开失败后,由于电流过大,一段时间后快速熔断器受热而熔化使电路跳开,从而避免烧坏电机等设备。上框图中起动开关KM部分电路图如图3-1-2所示。

图3-1-2起动开关电路图

3.2速度调节器

速度调节器由运算放大器、输入与反馈环节及二极管限幅环节组成,对给定和反馈两个输入量进行加法、减法、比例、积分和微分等运算。其原理如图3-2-1所示:

图3-2-1速度调节器

在图中“1、2、3”端为信号输入端,二极管VD1和VD2起运放输入限幅,保护运放的作用。二极管VD3、VD4和电位器RP1、RP2组成正负限幅可调的限幅电路。由C1、R3组成微分反馈校正环节,有助于抑制振荡,减少超调。R7、C5组成速度环串联校正环节。改变R7的阻值改变了系统的放大倍数,改变C5的电容值改变了系统的响应时间。RP3为调零电位器。

3.3电流调节器

电流调节器由运算放大器、限幅电路、互补输出、输入阻抗网络及反馈阻抗网络等环节组成,工作原理基本上与速度调节器相同,其原理图如图3-2-2所示。

图3-3-1电流调节器

电流调节器与速度调节器相比,增加了几个输入端,其中“3”端接推β信

号,当主电路输出过流时,电流反馈与过流保护的“3”端输出一个推β信号(高

电平)信号,击穿稳压管,正电压信号输入运放的反向输入端,使调节器的输出

电压下降,使α角向180度方向移动,使晶闸管从整流区移至逆变区,降低输出

电压,保护主电路。“5、7”端接逻辑控制器的相应输出端,当有高电平输入时,

击穿稳压管,三极管V4、V5导通,将相应的输入信号对地短接。在逻辑无环流

实验中“4、6”端同为输入端,其输入的值正好相反,如果两路输入都有效的话,

两个值正好抵消为零,这时就需要通过“5、7”端的电压输入来控制。在同一时

刻,只有一路信号输入起作用,另一路信号接地不起作用。

3.4锯齿波同步移相触发电路

图3-4-1锯齿波同步移相触发电路

锯齿波同步移相触发电路由同步检测、锯齿波形成、移相控制、脉冲形成、脉冲放大等环节组成。由V3、VD1、VD2、C1等元件组成同步检测环节,其作用是利用同步电压UT来控制锯齿波产生的时刻及锯齿波的宽度。由V1、V2等元件组成的恒流源电路,当V3截止时,恒流源对C2充电形成锯齿波;当V3导通时,电容C2通过R4、V3放电。调节电位器RP1可以调节恒流源的电流大小,从而改变了锯齿波的斜率。控制电压Uct、偏移电压Ub和锯齿波电压在V5基极综合叠加,从而构成移相控制环节,RP2、RP3分别调节控制电压Uct和偏移电压Ub的大小。V6、V7构成脉冲形成放大环节,C5为强触发电容改善脉冲的前沿,由脉冲变压器输出触发脉冲。

3.5电流反馈与过流保护

图3-5-1电流反馈与过流保护原理图

本单元有两个功能,一是检测主电源输出的电流反馈信号,二是当主电源输出电流超过某一设定值时发出过流信号切断电源

TA1,TA2,TA3为电流互感器的输出端,它的电压高低反映三相主电路输出的电流大小,面板上的三个园孔均为观测孔,不需再外部进行接线,只要将DJK04挂件的十芯电源线与插座相连接,那么TA1、TA2、TA3就与屏内的电流互感器输出端相连,当打开挂件电源开关,过流保护即处于工作状态。

(1)电流反馈与过流保护的输入端TA1、TA2、TA3,来自电流互感器的输出端,反映负载电流大小的电压信号经三相桥式整流电路整流后加至RP1、RP2、及R1、R2、VD7组成的3条支路上,其中:

①R2与VD7并联后再与R1串联,在其中点取零电流检测信号从1脚输出,供零电平检测用。当电流反馈的电压比较低的时候,“1”端的输出由R1、R2分压所得,VD7截止。当电流反馈的电压升高的时候,“1”端的输出也随着升高,当输出电压接接近0.6V左右时,VD7导通,使输出始终保持在0.6V左右。

②将RP1的滑动抽头端输出作为电流反馈信号,从“2”端输出,电流反馈系数由RP1进行调节。

③RP2的滑动触头与过流保护电路相连,调节RP2可调节过流动作电流的大小。

(2)当电路开始工作时,由于电容C2的存在,V3先与V2导通,V3的集电极低电位,V4截止,同时通过R4、VD8将V2基极电位拉低,保证V2一直处于截止状态。

(3)当主电路电流超过某一数值后,RP2上取得的过流电压信号超过稳压管V1的稳压值,击穿稳压管,使三极管V2导通,从而V3截止,V4导通使继电器K动作,控制屏内的主继电器掉电,切断主电源,挂件面板上的声光报警器发出告警信号,提醒操作者实验装置已过流跳闸。调节RP2的抽头的位置,可得到不同的电流报警值。

(4)过流的同时,V3由导通变为截止,在集电极产生一个高电平信号从“3”端输出,作为推β信号供电流调节器使用。

(5)SB为解除过流记忆的复位按钮,当过流故障己经排除,则须按下SB以解除记忆,才能恢复正常工作。当过流动作后,电源通过SB、R4、VD8及C2维持V2导通,V3截止、V4导通、继电器保持吸合,持续告警。只有当按下SB后,V2基极失电进入截止状态,V3导通、V4截止,电路才恢复正常。

3.6转速变换

转速变换用于有转速反馈的调速系统中,它将反映转速变化并与转速成正比的电压信号变换成适用于控制单元的电压信号。

图3-6-1速度变换图

使用时,将电压输出端接至转速变换的输入端“1”和“2”。输入电压经R1和RP1分压,调节电位器RP1可改变转速反馈系数。

最新四辊可逆冷轧机传动电控系统设计设计

四辊可逆冷轧机传动电控系统设计设计

摘要 轧制是各种变形手段中效率高、产量大、成本低、成型精确的加工方式。而轧机是实现金属轧制过程的设备,泛指完成轧材生产全过程的装备,包括有主要设备﹑辅助设备﹑起重运输设备和附属设备等。从炼钢厂出来的钢坯还仅仅是半成品,必须到轧钢厂去进行热轧与冷轧后,才能成为合格的产品。 论文通过吸收和借鉴校内实训中心的四辊可逆冷轧机的先进设计理念,提出了四辊可逆冷轧机的电控系统设计方案,并总结出了电气调试方案。完成了整个轧机电控系统的硬件方案设计以及相关器件的选型工作。在硬件设计中,提出了PLC+变频器+电机等的闭环控制系统,从而达到变频器控制电机转速的目的。 关键词:轧机电控系统四辊闭环

ABSTRACT Means all kinds of deformation in rolling, high efficiency, large output, low cost, precision molding processing methods. The mill is the equipment of metal rolling process, rolled the whole production process refers to the completion of equipment, including major Equipment, Auxiliary Equipment, lifting and other transport equipment and ancillary equipment. Out from the steel mill is just the semi-finished billets to be to go for hot and cold rolling mills, the products can become qualified. Articles by absorb and learn the four-campus training center roller cold rolling mill of the advanced design concept, put forward a four-high reversing cold rolling mill electrical control system design. Completion of the entire rolling mill electrical control system hardware design and selection of work-related devices. In the hardware design is proposed such as PLC + inverter + motor closed-loop control system, so as to achieve the purpose inverter control motor speed. Keywords:Rolling mill;Electronic Control System;Four roller;Closed loop

650四辊可逆轧机性能

650全液压四辊可逆轧机技术协议1 设备主要工艺参数 1.1 原料:经酸洗后的热轧卷板、热轧中宽带钢 材质:优质碳素钢、低合金钢 厚度:δ≤4.5 mm 最大强度极限:бb=610 N/mm2 最大屈服极限:бs=360 N/ mm2 宽度:≤650 mm 卷径:Φ508/Φ900~Φ1650 mm 最大卷重:8 T 1.2 成品 成品厚度:≥0.2 mm 带钢宽度:≤520 mm 卷径:Φ508/Φ900~Φ1650 mm 最大卷重:8T 成品厚度公差:0.01~0.02 mm(去掉头尾各8米) 1.3 主要技术参数: 最大轧制力:5000 KN 最大轧制力矩:35 KN . M 最大轧制速度:8 m/s 穿带速度:0.3 m/s 开卷最高速度:3.3 m/s 卷取最高速度:8.2 m/s 卷取张力:0~60 KN 工作辊规格:Φ220/Φ190×650 mm 支撑辊规格:Φ650/Φ680×600 mm 开卷机卷筒直径:Φ480~Φ520 mm 卷取机卷筒直径:Φ488~Φ508 mm

轧制线标高:+1000 mm 最大弯辊力:400 KN 冷却液类型:乳化液 工艺润滑系统流量:1000 L/min 稀油润滑系统流量:250 L/min 稀油润滑系统压力:0.4 Mpa 稀油润滑系统介质:中负荷No20 机组进料方向: 液压系统压力:压下、弯辊液压系统:3~25Mpa 一般液压系统:0~10Mpa 设备总重量:约140 T 传动方式:工作辊传动 年产量: 传动电机: 主机电机Z560-2A 440V 600KW n=600~1400rpm 1台 卷取电机Z4-355-11 440V 180KW n=500~1500rpm 2台 开卷电机Z4-250-41 440V 75 KW n=500~1500rpm 1台 2 设备组成 2.1 机械设备 2.1.1 开卷机1台 悬臂机构,由传动装置和卷筒组成,传动装置为二级减速箱,卷筒为四棱锥结构,主要参数为: 卷筒工作直径:Φ500 mm 卷筒涨缩范围:Φ452~Φ544 mm 开卷速度:≤3.3 m/s 开卷张力:4~30 KN 对中移动范围:±50 mm 对中横移缸:缸径Φ125 mm,

小型轧钢机的设计方案

小型轧钢机的设计 1 绪论 1.1轧钢机的定义 轧钢机也称为轧钢机械,一般把将被加工的材料在旋转的轧辊间受压力产生的塑性变形即轧制加工机器称为轧钢机,这是简单定义。大多数情况下,轧制生产过程要经过几个轧制过成,还要完成一系列的的辅助工序,如将原材料由仓库运出加热,轧件送往轧辊,轧制、翻转、剪切、打印,轧件收集、卷取成卷等。 一个轧件的全过程由多种机械按工艺顺序而成机组来完成,这种机组或机器体系叫轧钢机械或称轧钢机。第一种情况轧钢机由一个或几个工作机座(执行机构)传动机构(齿轮传动、连轴器)和使轧辊转动的电动机组,后一情况轧钢机是由若干台工做机组成,这些机组数目与加工轧材工艺过成生产率相适应,因此,轧钢机按顺序排列并且用辊道或其他运输装置连成一条工艺流水线机器组成机组。 轧钢机是机械中使金属在旋转的轧辊中产生变形的那部分设备。主要使设备排列成一定形式的工作线称为轧钢机的主机列。用以完成其他工序的机械设备称为辅助机械。 1.2轧钢机的标称 轧钢机的类别与规格与轧钢机的断面尺寸有关,因此轧钢机的初轧和型钢的类是以轧钢的名义直径。也就是说轧钢机的大小是常用与轧件有关的尺寸参数来标称。 初轧机和型钢轧机的主要性能参数是轧辊名义直径,因为轧辊的名义直径的大小与其能够轧制的最大断面有关,因此,初轧机和型钢轧机是以轧辊的名义直径标称的。 小型轧钢机的名义直径为:180——450mm. 1.3轧钢机的用途 轧钢机形式有两种:冷轧与热轧,热轧主要用于开坯,兼生产一部形钢,这这种轧机的型号有630-650型轧机,500-550型轧机、650中型轧机与2300中板轧机等,冷轧主要用于

终级轧制,轧带钢的产品很多,具有代表性的冷轧板带钢产品金属镀层薄板(包括镀锡板、镀锌板等)、深冲板(以汽车钢板最多)、电工硅钢板、不锈钢和涂层钢板。现也促使冷轧机的装备技术和控制技术向更高的方向发展。型号有1400mmNKW、1250mmHC单辊可逆式轧机. 1150mm二十辊冷轧机,。 设计的轧钢机为300×3轧钢机,轧辊的直径为300 mm.,轧钢机主要用来为轧制小型线材。25—50毫米的圆钢,20—40毫米的方钢;螺纹钢等。 其结构的特点为: (1)采用三辊式工作机座,主电机不可逆转,中上辊与中下辊交替过钢,实现多道次的轧制。 (2)由于轧辊的转向和转速不可逆转,可采用造价较底的高速交流主电机在传动装置中装有减速机和齿轮机座。考虑到第一机座轧件较短,轧制次数较多,负荷很不均匀,为了均衡电机负荷,减少电机的容量,在减速机和电动机之间加有飞轮。 (3)多数300型钢轧机要求既开坯又轧件,具有一机多能的特性,因此,轧机急需要较强的能力,又需要较强的刚度,而且由于经常需要更换品种,在轧机结构上需考虑换辊方便。 (4)为了便于换辊,三个机座的轧辊都采用梅花接轴连接。 1.4小型轧钢机的主机列 轧钢机的主要设备是由一个或数个主机列组成的。轧钢机的主机列是由原动机,传动装置和执行机构三个基本部分组成的。 (1)工作机座:工作机座为轧钢机的执行机构,它由轧辊及其轴承轧辊的调整机构和上轧辊的平衡机构,引导轧件的轧件进入轧辊用的导装置,工座机座的机架及支撑机座并把机座固定在地基上用的轨零、部件的和机构组成。 (2)传动装置:联轴器:联轴器包括电机联轴器和主联轴器,电机联轴器用来连接电动机与减速器的主动齿轮轴;而主联轴器则用来连接减速器与机轮机座的传动轴,既自减速器将

1100HC六辊可逆式冷轧机的设计-文献综述

附录2 文献综述 一、课题的国内外现状 HC 轧机全名为HITACHI HIGH CROWNCONT ROLMILL,即日立中心高性能轧辊凸度控制轧机。该机型是日立公司于1972 年研究开发的轧机,两年后正式投入工业化应用。它具有普通四辊冷轧机不能达到的性能和优点,首先在日本得到推广使用,继而受到全世界的瞩目,广泛用于热轧和冷轧生产中的单机可逆轧机、连轧机和平整机。其主要结构特点是:在支撑辊和工作辊之间加入一对能够沿着轧辊轴向相对移动的中间辊,通过中间辊的相对移动来改变轧制压力在带钢方向上的分布,加上工作辊的正负弯辊作用,对改善带钢板形起到了明显的效果。 在国外,除日本各大钢铁公司普遍采用HC轧机机型外,美国、德国、加拿大、瑞典、巴西、墨西哥、韩国等国家均从日本引进了该轧机。 在国内,武汉钢铁公司为生产镀锡板基板,1987年首先引进1250HC六辊轧机,之后上海宝钢、辽宁鞍钢等国内各大钢铁公司先后引进了这种轧机机型。在引进设备的同时,国内相关单位也开始跟踪并开发国产的HC六辊轧机。国产大型六辊轧机已成功地用于工业生产,而且主要的技术水平和功能已达到国外同类设备水平。但是,六辊轧机种工作辊弯辊、中间辊横移、中间辊弯辊三种方式与带材板型的检测、控制相结合,实施有效的闭环控制,目前国内虽然在这方面也取得了不少成绩,但在精确度和稳定性方面仍然需要花大力气研究。 二、现有的主要研究成果 随着科学技术的不断进步,日本最近几年又在HC轧机的结构上进行了改进,推出了一些新型的HC轧机。例如,HCMW 轧机是综合HC轧机和HCM轧机的优点,其特点是中间辊和工作辊都能轴向移动。 在国内,HC轧机方面的研究也取得了很多可喜的成绩:降低轧辊表面缺陷的措施,预防轧辊剥落的措施,预防轧辊断裂的措施。近几年来,随着控制理论的发展,人们不断把一些新型控制方法引入板形自动控制系统中,以弥补PID控制中很难满足高精度控制要求的不足,比如基于动态负荷分配的板形控制方法。在日本,成品机架或成品道次采用软刚度的方法

四辊冷轧机设计之轧辊系统设计说明书(1)剖析

毕业设计(论文)任务书

摘要 ???小型四辊冷轧机,其特点是工作稳定、操作简单、轧制本轧机为190/500450 板形好。本设计主要是针对此轧机的轧辊系统,考虑到产品的稳定性、结构布局、使用寿命,进行轧辊的尺寸计算、刚强度校核、弯曲变形校核、轧辊轴承的选择和使用寿命校核。同时采用了工作辊传动,这种形式对轧制过程比较有利。 设计中运用斯通公式计算轧制力,由于轴承座的固定性,轴承座要承受偏负荷,轴承磨损严重不但减小使用寿命而且影响轧辊的外形进而对轧制板形产生极大的影响,轧制力大时影响更明显。因此轧辊的尺寸设计、材料选择很重要而且必须对轧辊和轴承进行必要的校核。 关键词:四辊冷轧机、轧辊、轧辊轴承、轧制力

Abstract ???small four-high cold rolling mill, characterized by The mill is 190/500450 stability、simple in operation and good shape by rolling. This design main for the mill’s roller system, take the mill’s stability、configuration and the service life, it’s necessary to checkout the intensity、barely and distortion by bending of the rollers and the service life of the bearing besides calculate the sizes of the rollers and choosing the bearings. At the same time, drive work roll is the main drive mode for this mill, which form is more favorable for the rolling process. It’s well-off during the design. In the design I have found that due to the fixity of the bearing chock, the biased load will appear in the bearing chock, and the bearings will fray badly, which leads to the short service life of the bearings and influences the rollers’ shape , and then influence of the sizes of the rolling steels, the infection will be strictness under the heavy roll force. Therefore, it’s important to design the rollers’ size and choose of the material, it is must to checkout the rollers and the bearings. Keywords:4-high cold rolling mill、roller、roller bearing、roll force

中南大学 四辊可逆冷轧机的卷宗取机直流调速系统设计

第一章总的设计概述 1.1 设计目的 运动控制系统是自动化专业的主干专业课,具有很强的系统性、实践性和工程背景,运动控制系统课程设计的目的在于培养学生综合运用运动控制系统的知识和理论分析个解决运动控制系统设计问题,使学生建立正确的设计思想,掌握工程设计的一般程序、规范和方法,提高学生调查研究、查阅文献及正确使用技术资料、标准、手册等工具书的能力,理解分析、制定设计方案的能力,设计计算和绘图能力,实验研究及系统调试能力,编写设计说明书的能力。 1.2 设计内容 (1)根据工艺要求,论证、分析、设计主电路和控制电路方案,绘出该系统的原理图。 (2)设计组成该系统的各单元,分析说明。 (3)选择主电路的主要设备,计算其参数(含整流变压器的容量S,电抗器的电感量L,晶闸管的电流、电压定额,快熔的容量等),并说明保护元件的作用(必须有电流和电压保护)。 (4)设计电流环和转速环(或张力环),确定ASR和ACR(或张力调节器ZL)的结构,并计算其参数。 (5)结合实验,论述该系统设计的正确性。 1.3 课题设计要求 四辊可逆冷轧机的卷宗取机直流调速系统设计 (1)生产工艺和机械性能 四辊可逆冷轧机是供冷轧紫铜及其合金成卷带材之用,为提高其生产效率,冷轧机要往、返轧制其金属材料。直到达到要求的厚度时才停止。因为要求冷轧机左右两边的两台卷取机在从左往右的正向轧制过程中,左边一台卷取机用,其

工作在发电机状态,右边一台卷取机作卷取机用,工作在电动状态。若逆向轧制(从左往右轧制),右边卷取机作开卷机,工作在发电机状态,左边卷取机则作卷取机用,工作在电动状态。 两台卷取机的电动机参数完全一样,机械参数如下: 带卷内径(卷筒直径):500mm 带卷外径:680~1100mm 带卷最大重量:2000kg 带卷最大张力:2000kg 卷取机传动比:i=1.87 图一 设备结构简图 (2)设计要求 1、两台卷取机控制原理完全一样,仅设计其中一台; 2、技术指标:稳态无静差,电流超调量% 5≤σi ,空载启动至额定转速 时的转速超调量% 10≤σ n 能实现快速制动。 (3)直流电动机参数: 150n P k w =、 230n U V =、 165n I A =、 1400m in n n r =、 0.08a R =Ω 电枢回路电阻0.18R =Ω 、电流过载倍数 2.5λ=、2 2 121.5.G D N M =。

单机架六辊可逆冷轧机电气自动化技术方案(精)

1200六辊可逆冷轧机电气自动化系统控制方案

1概述 根据《1200六辊可逆冷轧机技术规格电气招标书》所提供的工艺设备和技术要求,并参考了同类型的单机架六辊可逆冷轧机的工艺技术,编写了本电气传动及基础自动化控制的技术方案。 2 供电 2.1 电气设备运行条件 1)电气设备运行环境要求 环境温度 现场:0~40?C 电气室:10~35?C 操作室:25±5?C 空气湿度:相对湿度≤95%且无凝露; 污染等级:III级,无火灾爆炸危险、无导电性尘埃、不腐蚀金属物及不破坏绝缘介质的环境。 2)电气设备运输及储存环境要求 环境温度-20~65?C ; 空气湿度及污染等级要求与运行时相同。 3)电气设备使用的电压等级及技术条件 本机组所使用电气设备电压等级符合我国国家标准,主要用电设备的电压等级为: ◆供电电压及频率:10±5%kV,50±1Hz ◆低压供电电压:AC380/220V ◆交流电动机电压:AC380V ◆直流电动机电压:DC440~660V ◆电磁阀:DC24V

◆电磁抱闸:AC220V ◆控制电压:AC220V,DC24V ◆保护地:接地电阻<4Ω ◆系统地:接地电阻<4Ω 2.2低压供配电 辅传动供电系统 (1)辅传动供电系统单线图见MCC单线图。 (2)MCC设备(见附表) 由于本机组负荷较小,因此不设负荷中心。本机组负荷MCC(即马达控制中心)将采用GGD3柜,包含MCC的受电、馈出回路、UPS 系统、比例、伺服阀控制回路和照明开关柜,开关柜额定短路短时承受能>80kA/s。 额定短路分断能力与电网短路电流相适应,Icu >50kA 根据需要配置必要的电流、电压表计,端子板采用Phoenix端子。 单机架可逆冷轧机组设一套MCC,不同容量不同控制类型的回路至少有一个备用回路。 注①:主传动电动机均配置有空间加热器,这些加热器是在长期停机时防止电机绕组受潮而设置的。由本MCC供电。 注②:为了保证乳化液站的检修供电,需要检修电源或者备用一路供电回路。 (3) UPS电源 为保证控制系统运行的可靠性,机组设置一套容量为10kV A的UPS 电源为机组控制系统(PLC、AGC控制器、HMI设备等)提供可靠稳定电源。电池和逆变器选用进口产品。 容量:10kV A,30min;进线:220V AC

负荷平衡控制在1200mm四辊可逆式冷轧机中的应用

负荷平衡控制在1200mm四辊可逆式冷轧机中的应用 文章介紹了负荷平衡控制在1200mm四辊可逆式冷轧机中的应用,避免了上辊和下辊之间由于负荷不平衡出现的电机过载、以至于功率组件损坏的情况,使得上辊和下辊的运行速度得到最佳匹配,对消除钛及钛合金板材在轧制过程中出现的上翘及下扣等不良板形问题取得良好效果。 标签:四辊可逆冷轧机;负荷平衡;直流调速系统;钛及钛合金板材;板形前言 我厂于上世纪六十年代中期引进的日本设备1200mm四辊可逆式冷轧机,已运行了近半个世纪,在生产过程中,经常出现上辊和下辊之间负荷分配不均、造成电机负荷剧烈波动及过载的情况,并且在钛及钛合金板材轧制过程中频频出现上翘和下扣之类的板形问题,制约了产品质量的提高,大大降低了生产效率以及成品率,也影响了该机组潜力的发挥,不能满足产品质量和精度日益提高的市场需求,直接影响了该机组的经济效益。 分析影响钛板上翘和下扣的原因,主要有两点:上下辊的传动系统动态特性和上下辊的辊径。所以,要改善和消除不良板型,大步提高生产效率及成品率,关键要从电气传动系统入手。该轧机传动系统采用的是旋转变流机组,不仅能耗大效率低,而且电气控制系统操作条件比较多,设备维护工作量比较大,系统可靠性也相对较低。运行了近半个世纪,元器件的老化造成系统故障频繁,调速性能变差,精度降低。因此对其电气控制系统进行了技术改造升级。 1 系统构成 该轧机是由两台1500kW直流电动机分别驱动上辊和下辊。在改造方案中,采用了SIEMENS数字式直流调速装置代替旋转变流机组,分别用两套独立的直流调速装置作为其原有的直流电动机的传动控制。为了改善和消除上翘和下扣之类的不良钛板板形,需保证上下辊电机出力平衡,使上下辊的速度得到最佳匹配,因此在两台驱动装置间引入了负荷平衡控制。 2 负荷平衡控制 2.1 负荷平衡的分类 两台电机组成的传动系统中的负荷平衡控制,一般有两种方法实现:一类由一套转速调节器为两套电机控制系统公用,该转速调节器的输出作为两套转矩控制环转矩的共同给定。此类负荷平衡控制系统响应快,动态平衡效果比较好,但是有可能会产生扭振,即两台电机负荷有可能会来回波动,可能会出现电流激磁震荡,甚至严重时引起系统过流跳闸。此种方法适用于两台电机之间通过“刚性”联系的情况,比如两台电机的串轴控制系统。第二类负荷平衡控制是两套电机传

四辊与六辊轧机的比较

比较四辊和六辊轧制技术在冷轧机上的应用 Dr.mont.Dipl.Ing.Gerhard Finstermann,冷轧部和带钢加工厂的首席经理; Dipl.Ing.Alois Seilinger,轧制技术的仿真的首席专家;Dipl.Ing.Gregor Nopp,冷轧部门经理;Dipl.Ing.Gerlinde Djumlija,澳大利亚,林茨,西门子奥钢联冶金技术冷 轧的部门经理 摘要:通过西门子奥钢联模拟冷轧过程,得出四辊轧制技术和六辊轧制技术在冷连轧应用上关键轧制参数的不同。这涉及到研究不同的轧机的性能。 本文全面讨论了Smart Crown 系统,在连轧控制下通过条形过渡区的平直度表现,轧机的刚度,厚度方面及边降控制对平直度的影响。 制造出平直度完美,厚度不变的板带是每一个轧制工作者的追求。这就要求轧制设备不仅能制造出在质量和尺寸精度方面满足市场需求的带钢,而且也要满足轧制工作者对产品的灵活和产品 组合的广泛性的要求。近年来,一些 新的冷连 轧生产线已经使用了可靠的四辊和 六辊轧制技术(图一)。然而,我们 并不知道到底是四辊轧机还是六辊 轧机能够满足市场对厚度公差和平 直度公差的进一步要求,甚至要求更 宽的产品组合。 板带的强度等级越高,冷轧就越 困难。新的连续冷连轧机应该能够轧制抗拉强度达1300MPa 的钢材,因为将来需要这些设备去轧制范围更加宽广的钢种并且很大一部分是先进的高强钢包括汽车用的多相特种钢和高硅钢片。同时板带的表面质量(对所有的产品尤其是用于汽车工业的产品是一个关键的特征)和保持板带的边降在允许的公差带范围内是至关重要的。边降对于晶粒取向的电工用钢尤为重要。 为了能够更好的比较四辊和六辊轧机的性能,采用了五台相同混合型轧机,其中一号和二号轧机采用六辊配置,三到五号轧机采用四辊配置,并且要求得到以下结果:厚度变化的范围,平直度的控制和边降控制的能力。 图 1

1050六辊可逆冷轧机组工艺流程、技术参数及装机水平

附件1 机组工艺流程、技术参数及装机水平 1.1工艺流程描述 1.1.1 经酸洗处理后的热轧带卷由天车吊放到开卷机操作侧的受卷台上(此受卷台可以同时存放两个带卷)。上卷小车鞍座在受卷台下上升使带卷内孔对准开卷机卷筒中心后,小车继续向前运动将带卷套在开卷机卷筒上并使带卷在宽度方向上与机组中心线对中。开卷机卷筒涨径撑起带卷。上卷小车鞍座下降至下极限后小车退回到受卷台第二个带卷下面等候上第二卷。压辊压住带卷,人工将捆带剪断、拉走。开头机刮板抬起对准带卷头部,同时开卷机活动支承闭合,开卷机以穿带速度转动,使带头沿着刮板进入开头机,上夹送辊、上矫直辊压下夹送、矫直,进入切头剪,切下不合格的带头。如此反复数次,直到将不合格的带材头部全部剪下为止。机组继续以穿带速度将带材向前推进,先后经过导板、机前转向辊、机前张力装置、激光测速仪、测厚仪台架(此时测厚仪处于机组轧线以外)、机前辊式吹扫除油装置、可开合的对中导卫装置,六辊冷轧机、机后辊式吹扫除油装置、测厚仪台架、圆盘剪(此时测厚仪、圆盘剪均处于机组轧线以外)、激光测速仪、机后张力装置、机后转向辊、最后进入机后卷取机(此时卷取机卷筒处于缩径状态)。 1.1.2当带材进入机后卷取机钳口后,机前导卫装置合上,对中带材。机后卷取机卷筒涨径同时钳口动作夹住带头,卷取机压辊压上卷筒,卷取机活动支承闭合,卷筒启动开始卷取带材。卷取带材2~3圈后,AGC液压缸压上,建张,同时卷取机压辊、开头机上夹送辊、上矫直辊抬起,机前、机后激光测速仪、测张装置、测厚仪投入,机前导卫装置打开,工艺润滑乳化液自动从带材入口喷向轧辊,机组升速轧制。轧制到带尾时,机组减速轧制,开卷机压辊压住带卷,当带尾过机前转向辊进入轧辊前机组停止轧制,乳化液自动停喷,打开辊缝,卸张,

冷轧车间设计

1综述 1.1冷轧薄板简介 金属在再结晶温度以下进行轧制变形叫做冷轧,一般指薄板不经加热而在室温直接进行轧制加工。冷轧后的带钢可能烫手,但还是叫冷轧[1]。 钢的冷轧是在19世纪中叶始于德国,当时只能生产宽度20~25mm的冷轧薄板。美国1859年建立了25mm冷轧机,1887年生产出宽度为l50mm的低碳钢板。1880年以后冷轧钢板生产在美国、德国发展很快,产品宽度不断扩大,并逐步建立了附属设备,如剪切、矫直,平整和热处理设备等,产品质量也有了提高。 宽的冷轧薄板(韧带)是在热轧成卷带钢的基础上发展起来的。首先是美国早在1920年第一次成功地轧制出宽带钢,并很快由单机不可逆轧制而跨入单机可逆式轧制。1926年阿姆柯公司巴持勒工厂建成四机架冷连轧机。 我国冷轧宽带钢的生产开始于1960年,首先建立了1700mm单机可逆式冷轧机,以后陆续投产了1200mm单机可道式冷轧机,Mxw1400mm偏八辊轧机、1150mm二十辊冷轧机和1250mmHC单机可逆式冷轧机等,70年代投产了我国第一套1700mm连续式五机架冷轧机,1988年建成了2030mm五机架全连续冷轧机。近年来我国冷轧薄板生产能力增加了20多倍,生产装备技术水平已由只能生产低碳薄板而发展到能生产高碳钢、合金钢、高合金钢、不锈耐热冷轧薄板、镀锌板、涂层钢板、塑料复合薄板和硅钢片等。但随着四化建设的发展,无论在数量和品种质量上都远远满足不了四化建设发展的需要,为此我们必须增建新轮机,改造现有冷轧机,大力发展冷轧生产。 冷轧生产可提供大量高精确度和性能优良的钢板和带材,其最主要的特点是加工温度低,同热轧生产相比,它有以下优点: 1.冷轧带钢产品尺寸精确,厚度均匀,带钢厚度差一般不超过0.01~0.03mm或更小,完全可以符合高精度公差的要求。 2.可获得热轧无法生产的极薄带材(最薄可达0.001mm以下)。 3.冷轧产品表面质量优越,不存在热轧带钢常常出现的麻点、压入氧化铁皮等缺陷,并且可根据用户的要求,生产出不同表面粗糙度的带钢(光泽面或麻糙面等),以利于下

四辊可逆冷轧机的卷取机直流调速系统设计

前言 直流电机在现代工业中是一种很重要的电机.它可以作电动机使用,也可以作发电机使用,此外还有其它特殊的用途。 直流电动机具有良好的起、制动性能,宜于在大范围内平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。近年来,在电力电子变换器中以晶闸管为主的可控器件已经基本被功率开关器件所取代,因而变换技术也由相位控制转变成脉宽调制(PWM);交流可调拖动系统正逐步取代直流拖动系统。然而,直流拖动控制毕竟在理论上和实践上都比较成熟,而且我国早期的许多工业生产机械都是采用直流拖动控制系统,所以它在工业生产中还占有相当大的比重,短时间内不可能完全被交流拖动系统所取代。 从生产机械要求控制的物理量来看,电力拖动自动控制系统有调速系统、位置随动系统(伺服系统)、张力控制系统、多电机同步控制系统等多种类型,各种系统往往都是通过控制转速来实现的,因此调速系统是最基本的电力拖动控制系统。 调速系统按照不同的标准又可分为不同的控制系统。但是,从一定角度上来说,可以把调速系统笼统的分为开环调速系统和闭环调速系统。开环调速系统结构简单、容易实现、维护方便,但是它的静态和动态性能往往不能满足生产和控制要求。而闭环控制系统可以很好的解决这些问题,因此在实际生产中得到了广泛的应用。其中,转速、电流双闭环控制直流系统是性能最好、应用最广的直流调速系统。 本文为直流调速系统的设计,包括系统设计方案选择,各单元的组成,元件的参数与选择等内容!通过本系统的设计,了解运动控制在工业上的应用!

目录 前言 0 第一章设计的介绍 (3) 1.1 设计目的 (3) 1.2 设计内容 (3) 1.3 设计题目 (3) 1.3.1 生产工艺和机械性能 (3) 1.3.2 设计要求 (4) 1.3.3 直流电动机参数 (4) 第二章四辊可逆冷轧机的介绍 (5) 第三章系统各模块及其电路设计 (6) 3.1 主回路设计 (6) 3.2 控制回路设计 (6) 3.2.1 给定单元 (8) 3.2.2 转速调节器 (8) 3.2.4 反号器 (12) 3.2.5 触发电路 (12) 3.2.6 逻辑控制单元 (13) 3.2.7 零转矩检测单元和零电流检测单元 (14) 3.2.8 零封锁环节 (15) 3.2.9 电流反馈与过流保护 (16) 第四章系统参数设计与计算 (18) 4.1 整流变压器的选择 (18) 4.2 晶闸管的选择 (18) 4.3 晶闸管保护措施 (19) 4.4 电流互感器的选择 (19) 4.5 平波电抗器的计算 (20) 第五章双闭环的动态设计和校验 (22) 5.1 静特性分析和计算 (22) 5.2 系统动态结构参数设计 (22) 5.2.1 电流调节器的设计和校验 (23) 5.2.2 转速调节器的设计和校验 (25) 第六章系统调试和校正 (27) 6.1 系统各功能模块性能的调试与测试 (27) 6.1.1 系统的相位整定 (27) 6.1.2 触发器的整定 (27) 6.1.3 系统的开环运行及特性测试 (28) 6.1.4 速度反馈特性的测试 (29) 6.1.5 调节器的调试 (30) 6.1.6 电流调节器ACR的调试 (30) 6.1.7 反相器AR的调试 (30) 6.2 系统整体功能测试 (30)

森吉米尔二十辊冷轧机介绍

森吉米尔二十辊冷轧机介绍 森吉米尔冷轧机与四辊轧机或其他类型轧机的本质区别是轧制力的传递方向不同。森吉米尔冷轧机轧制力从工作辊通过中间辊传到支撑辊装置,并最终传到坚固的整体机架上。这种设计保证了工作辊在整个长度方向的支撑。这样辊系变形极小,可以在轧制的整个宽度方向获得非常精确的厚度偏差。 森吉米尔轧机在结构性能上有如下主要特点: (1)具有整体铸造(或锻造)的机架,刚度大,并且轧制力呈放射状作用在机架的各个断面上。 (2)工作辊径小,道次压下率大,最大达60%。有些材料不需中间退火,就可以轧成很薄的带材。 (3)具有轴向、径向辊形调整,辊径尺寸补偿,轧制线调整等机构,并采用液压压下及液压AGC系统,因此产品板形好,尺寸精度高。 (4)设备质量轻,轧机质量仅为同规格的四辊轧机的三分之一。轧机外形尺寸小,所需基建投资少。 森吉米尔冷轧机基本上是单机架可逆式布置,灵活性大,产品范围广。但是亦有极个别呈连续布置的森吉米尔轧机,如日本森吉米尔公司1969年为日本日新制钢公司周南厂设计制造的一套1270mm四机架全连续式二十辊森吉米尔轧机。该轧机第一架为ZR22-50"型轧机,其余三架均为,ZR21-50"型轧机,轧制规格为O.3mm×1270mm不锈钢,卷重22t,轧制速度600m/min。 森吉米尔冷轧机的形式及命名法介绍如下: 最常用的森吉米尔冷轧机形式是1-2-3-4型二十辊轧机。例如ZR33-18″,“Z"是波兰语Zimna的第一个字母,意思是“冷”;“R”表示“可逆的”;“33”表示轧机的型号;“18″”是轧制带材宽度的英寸数。森吉米尔冷轧机还有1-2-3型十二辊轧机,但是1-2-3型森吉米尔冷轧机在1964年以后就不再生产制造了。 森吉米尔冷轧机1-2型六辊轧机,由2个传动的工作辊和4个背衬轴承辊装置组成, 如ZS06型,“S”表示“板材”,用来轧制宽的板材,但是它同样可以轧制带材,并且有一些还用在连续加工线上。 森吉米尔“ZR”型冷轧机有10个基本型号,其中1-2-3-4二十辊轧机7个;1-2-3.型十二辊轧机3个;“ZS”1-2型六辊轧机只有2个基本型号。 各型号轧机的背衬轴承外径、工作辊名义直径如下: 轧机型号背衬轴承直径/mm 工作辊名义直径/mm 1-2-3-4型: ZR32 47.6 6.35 ZR34 76.2 10.00

四辊可逆式冷轧机辊系设计

太原科技大学 毕业设计(论文)设计(论文)题目:四辊可逆式冷轧机的辊系设计 姓名 学院(系) 专业 _ 年级 _08级 指导教师 2011年 6月10日

太原科技大学毕业设计(论文)任务书 学院(直属系):时间:2011 年 6 月10 日 说明:一式两份,一份装订入学生毕业设计(论文)内,一份交学院(直属系)。

目录 摘要................................................................... II A BSTRACT................................................................... III 第1章绪论. (1) 1.1冷轧机的发展概况 (1) 1.2四辊可逆式冷轧机的发展 (1) 1.3冷轧带钢生产发展与新技术 (2) 1.3.1冷轧带钢生产技术设备的发展 (2) 1.3.2冷轧窄带钢轧机的技术特点 (3) 第2章轧辊 (5) 2.1冷轧轧辊的组成 (5) 2.2轧辊材质的选择 (5) 2.3辊系尺寸的确定 (6) 2.4轧辊力能参数计算 (7) 2.4.1基本参数 (7) 2.4.2艾克隆德方法计算轧制时的平均单位压力 (8) 2.4.3轧辊传动力矩 (11) 2.5轧辊的强度校核 (12) 第3章轧辊轴承 (16) 3.1轴承的选择 (16) 3.2轴承寿命计算 (16) 3.3轧辊轴承润滑 (17) 参考文献 (18) 致谢 (19) 附录1英文原稿 (20) 附录2英文翻译 (24)

四辊可逆式冷轧机的辊系设计 摘要 这篇文章主要讲述了冷轧机生产与发展概述,通过运用已知参数,如钢板的厚度、宽度、轧制速度和压下速度等,对工作辊、支撑辊及相关尺寸进行了计算和校核,然后选择合适的轧辊材质和轴承,并对轴承寿命进行计算和校核。 四辊可逆式冷轧机,衔接连铸后的技术工艺,减少工艺,可实现往返可逆轧制。四辊轧机还能提供较大的轧制压力,提高软件的可轧硬度范围,实现产品规格多样化。 关键词:四辊可逆式;冷连轧;工作辊

四辊可逆轧机机架辊故障分析及改造参考文本

四辊可逆轧机机架辊故障分析及改造参考文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

四辊可逆轧机机架辊故障分析及改造参 考文本 使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 针对3000mm中板四辊可逆轧机机架辊生产过程中易 出现的各类设备故障:轴承寿命短、传动易失效等具体问 题,结合现场生产条件,经过多次摸索、试制对机架辊结 构进行了改造优化,收到了实际成效,实现了三钢中板轧 机机架辊的使用寿命由4~6个月延长至10~12个月。 轧机机架辊简介 三钢中板四辊轧机机架辊位于轧辊两侧,是将板坯顺 利送入轧机辊缝并接受轧出的轧件的设备,通过斜垫、导 板、楔块卡紧在牌坊予设的凸台及卡槽内。每个辊子的传 动端辊颈内嵌入鼓形齿内齿套,与带鼓形齿的传动轴、电 机相接而传动。

机架辊故障分析 机架辊在轧制过程中,由于处于轧制坯料热幅射、轧辊冷却水及除鳞高压水的冷热工况下,且频繁受到轧件下扣的巨大撞击,导致了轧机机架辊使用寿命普遍较短。现通过结合现场轧制条件及原机架辊设计结构,分析出三钢中板轧机机架辊寿命较短的主要原因,并通过改造优化各零部件结构,以提高机架辊使用寿命。机架辊故障主要因素总结如下: 2.1.机架辊轴承易损坏 原设计机架辊传动侧轴承座是通过轴承座与牌坊之间的O圈挤压变形,通过变形量以防止冷却水及氧化铁皮进入机架辊轴承座。机架辊在生产过程中,O圈易受板坯温度、氧化铁皮及机架辊与牌坊相互振动挤压而变形失效,致轧辊冷却水及氧化铁皮沿轴承座与牌坊配合面,并透过透盖内侧与定距环、内齿套之间的间隙渗入到轴承座内

四辊可逆式冷轧机设计计算书

四辊轧机设计计算书 3.1 冷轧轧辊的组成 冷轧辊是冷轧机的主要部件。轧辊由辊身、辊颈和轴头三部分组成。辊颈安装在轴承中,并通过轴承座和压下装置把轧制力传给机架。轴头和连接轴相连,传递轧制力矩。工作辊和支撑辊的结构如图所示。 工作辊结构 支撑辊结构

3.2、 冷轧辊系尺寸的选择 冷轧过程中,轧辊表面承受很大的挤压应力和强烈的磨损,因此,冷轧工作辊应具有极高而均匀的硬度,一定深度的硬化层,以及良好的耐磨性与抗烈性。降低轧辊硬度,虽然改善抗烈性,但耐磨性降低,因此,必须正确选择轧辊表面硬度。 冷轧辊用钢均多为高碳合金钢,如29r C 、o r M C 29等,我们这里选工作辊的材质为o r M C 29。 轧件对冷轧工作辊巨大的轧制压力,大部分传递给支撑辊上。支撑辊既要能承受很大的弯曲应力,还要具有很大的刚性来限制工作辊的弹性变形,以保证钢板厚度均匀。 轧机支撑辊的表面肖氏硬度一般为HS45左右。目前为提高板厚精度与延长轧辊的寿命,支撑辊硬度有提高的趋势。 支撑辊常用钢号为o r M C 29、V C r 9、及o n r M M C 60,我们这里选支撑辊材质为 o r M C 29。 3.3、 辊系尺寸的确定 1) 辊身长度L 及直径D 的确定。 辊身长度L 应大于所轧钢板的最大宽度m ax b ,即 []2max a b L += (3.1) 当m ax b =400—1200 mm 时,a=50—100 mm ,现m ax b =500mm ,取a=50mm 所以 mm a b L 55050500max =+=+= 四辊轧机的辊身L 确定以后,根据经验数据: 8.18.02 -=D L 来确定支撑辊直径2D ,取 7.12 =D L 所以 mm L D 3207 .12== 对于支撑辊传动的四辊轧机,一般选 4312-=D D ,现取2.31 2=D D

六辊可逆冷轧机组轧辊常见缺陷分析及改善2

六辊可逆冷轧机组轧辊常见缺陷分析及改善2

六辊可逆冷轧机组轧辊表面剥落原因分析及改善 摘要:以六辊可逆冷轧机组为研究对象,介绍常见轧辊的缺陷,主要是轧辊的表面剥落缺陷。从轧辊的使用、磨削、检测等方面,提出了相应的预防措施和消除措施. 关键词:轧辊、剥落、措施 THE ANALYSIS AND IMPROVEMENT FOR THE CAUSATION OF ROLLER SURFACE PEELING OFF OF THE SIX-ROLL REVERSING COLD ROLLING MILL Abstract :This thesis takes the Six-roll Reversing cold rolling Mill group as its object of study, it introduces the common defect of the roller, mainly for the defect of peeling off from the suface of the roller. On the other hand, it proposes the provention and elimination methods accordingly from several aspects such as the roller usage, grinding inspection and etc.

key words: roller, peel off, method 前言:轧辊是轧机的重要部件,轧辊的质量好坏直接影响轧机的运行,影响产品的产量质量和成本,冷轧过程中,轧辊表面承受着很大的挤压应力和强烈的磨损,高速轧制时,卡钢、过烧等会出现一些质量问题和质量缺陷,会造成辊面裂纹,因此,冷轧工作辊应具有极高而均匀的硬度,一定深度的硬化层,以及良好的耐磨性与抗裂性。以保证轧辊的使用要求和质量要求。所以分析轧辊缺陷产生的原因以及如何控制轧辊质量显得非常重要,本文将从轧辊的合理使用,合理磨削,改善轧制条件加强检测等方面研究控制轧辊质量,并对轧辊的常见缺陷提出相应的预防和纠正措施。 1、使用情况 广东华美集团有一台1450六辊可逆冷轧机组,2006年5月份安装并试运行,在试生产过程中,由于轧辊使用不当及轧制工艺条件不成熟,造成了轧辊事故率多,消耗高,另一方面因换辊的频繁,降低了轧机有效作业率,影响了小时产量和产品质量。

森吉米尔冷轧机简介

森吉米尔冷轧机简介 森吉米尔轧机在结构性能上有如下主要特点:(1)具有整体铸造(或锻造)的机架,刚度大,并且轧制力呈放射状作用在机架的各个断面上。(2)工作辊径小,道次压下率大,最大达86%。有些材料不需中间退火,就可以轧成很薄的带材。(3)具有轴向、径向辊形调整,辊径尺寸补偿,轧制线调整等机构,并采用液压压下及液压AGC系统,因此产品板形好,尺寸精度高。(4)设备质量轻,轧机质量仅为同规格的四辊轧机的三分之一。轧机外形尺寸小,所需基建投资少。森吉米尔冷轧机基本上是单机架可逆式布置,灵活性大,产品范围广。但是亦有极个别呈连续布置的森吉米尔轧机,如日本森吉米尔公司1969年为日本日新制钢公司周南厂设计制造的一套1270mm四机架全连续式二辊森吉米尔轧机。该轧机第一架为ZR22-50"型轧机,其余三架均为,ZR21-50"型轧机,轧制规格为O、3mm1270mm不锈钢,卷重22t,轧制速度600m /min。森吉米尔冷轧机的形式及命名法介绍如下:最常用的森吉米尔冷轧机形式是1-2-3-4型二辊轧机。例如ZR33-18″,“Z"是波兰语Zimna的第一个字母,意思是“冷”;“R”表示“可逆的”;“33”表示轧机的型号;“18″”是轧制带材宽度的英寸数。森吉米尔冷轧机还有1-2-3型二辊轧机,但是1-2-3型森吉米尔冷轧机在1964年以后就不再生产制造了。森吉米尔冷轧机1-2型六辊轧机,由2个传动的工作辊和4个背衬轴承辊装置组成,

如ZS06型,“S”表示“板材”,用来轧制宽的板材,但是它同样可以轧制带材,并且有一些还用在连续加工线上。森吉米尔“ZR”型冷轧机有10个基本型号,其中1-2-3-4二辊轧机7个;1-2-3.型二辊轧机3个;“ZS”1-2型六辊轧机只有2个基本型号。各型号轧机的背衬轴承外径、工作辊名义直径如下:轧机型号背衬轴承直径/mm工作辊名义直径/mm1-2-3-4型:ZR32 47、 66、35ZR34 76、2 10、00ZR241 20、0 21、50ZR331 60、0 28、50ZR232 25、0 40、00ZR22300、0 54、00ZR21406、4 80、001-2-3型:ZR15 75、0 12、00ZRl61 20、0 20、30ZRl92

相关主题
文本预览
相关文档 最新文档