当前位置:文档之家› 四辊可逆冷轧机调速系统课程设计

四辊可逆冷轧机调速系统课程设计

四辊可逆冷轧机调速系统课程设计
四辊可逆冷轧机调速系统课程设计

目录

前言............................................... 错误!未定义书签。第一章设计的介绍.. (3)

1.1 设计目的 (3)

1.2 设计内容 (3)

1.3 设计题目 (3)

1.3.1 生产工艺和机械性能 (3)

1.3.2 设计要求 (4)

1.3.3 直流电动机参数 (4)

第二章四辊可逆冷轧机的介绍 (5)

第三章系统各模块及其电路设计 (6)

3.1 主回路设计 (6)

3.2 控制回路设计 (6)

3.2.1 给定单元 (8)

3.2.2 转速调节器 (8)

3.2.4 反号器 (12)

3.2.5 触发电路 (12)

3.2.6 逻辑控制单元 (13)

3.2.7 零转矩检测单元和零电流检测单元 (14)

3.2.8 零封锁环节 (15)

3.2.9 电流反馈与过流保护 (16)

第四章系统参数设计与计算 (18)

4.1 整流变压器的选择 (18)

4.2 晶闸管的选择 (18)

4.3 晶闸管保护措施 (19)

4.4 电流互感器的选择 (19)

4.5 平波电抗器的计算 (20)

第五章双闭环的动态设计和校验 (22)

5.1 静特性分析和计算 (22)

5.2 系统动态结构参数设计 (22)

5.2.1 电流调节器的设计和校验 (23)

5.2.2 转速调节器的设计和校验 (25)

第六章系统调试和校正 (27)

6.1 系统各功能模块性能的调试与测试 (27)

6.1.1 系统的相位整定 (27)

6.1.2 触发器的整定 (27)

6.1.3 系统的开环运行及特性测试 (28)

6.1.4 速度反馈特性的测试 (29)

6.1.5 调节器的调试 (30)

6.1.6 电流调节器ACR的调试 (30)

6.1.7 反相器AR的调试 (30)

6.2 系统整体功能测试 (30)

6.3 系统小结 (31)

第七章总结 (32)

参考文献: (33)

附图 (33)

第一章设计的介绍

1.1设计目的

运动控制系统是自动化专业的主干专业课,具有很强的系统性、实践性和工程背景,运动控制系统课程设计的目的在于培养学生综合运用运动控制系统的知识和理论分析和解决运动控制系统设计问题,使学生建立正确的设计思想,掌握工程设计的一般程序、规范和方法,提高学生调查研究、查阅文献及正确使用技术资料、标准、手册等工具书的能力,理解分析、制定设计方案的能力,编写设计说明书的能力。

1.2设计内容

1、根据工艺要求,论证、分析、设计主电路和控制电路方案,绘出该系统的原理图(2号图纸)。

2、设计组成该电路的各单元,分析说明。

3、选择主电路的主要设备,计算其参数(含整流变压器的容量S,电抗器的电感量L,晶闸管的电流、电压定额,快熔的容量等),并说明保护元件的作用(必须有电流和电压保护)。

4、设计电流环和转速环(或张力环),确定ASR和ACR(或张力调节器ZL)的结构,并计算其参数。

5、结合实验,论述该系统设计的正确性。

1.3设计题目

四辊可逆冷轧机的卷取机直流调速系统设计

1.3.1生产工艺和机械性能

四辊可逆冷轧机是供冷轧紫铜及其合金成卷带材之用,为提高其生产效率,冷轧机要往、返轧制其金属材料。直到达到要求的厚度时才停止。因此要求冷轧机左右两边的两台卷取机在从左往右的正向轧制过程中,左边一台卷取机作开卷机用,其工作在发电状态,右边一台卷取机作卷机用,工作在电动状态。若逆向轧制(从右往左轧制),右边卷取机作开卷机,工作在发电状态,左边卷取机则作卷取机用,工作在电动状态。两台卷取机的电动机参数完全一样,机械参数如下:

带卷内径(卷筒直径):500mm

带卷外径:680~1100mm

带卷最大重量:2000kg

带卷最大张力:2000kg 卷取机传动比:i=1.87

左卷取机 轧机 右卷取机

图1-1 四辊可逆冷轧机原理图

1.3.2 设计要求

1、两台卷取机控制原理完全一样,仅设计其中一台;

2、技术指标:稳态无静差,电流超调量%5≤i σ,空载起动至额定转速时的转速超调量%10≤o σ能实现快速制动。

1.3.3 直流电动机参数

kw

P nom 150=,v U nom 230=,A I nom 765=,min /1400r n nom =,Ω=08.0a R ,电枢

回路总电阻Ω=18.0R ,电流过载倍数5.2=λ,22*5.121m N GD =。

张力

传感器

张力传感器

带材

第二章四辊可逆冷轧机的介绍

图2-1 四辊可逆冷轧机

四辊可逆冷轧机是生产冷轧板带典型的传统轧机。80年代末以来,随着世界小钢厂的发展,尤其是薄板柸连铸连轧技术发展及对热带深加工的需要,四辊可逆式冷轧机成为板带小钢厂热带深加工的主要生产设备。其装置技术水平不断发展提高。现代串列式冷轧机及全连续冷轧机上的现代化技术,也用于可逆式冷轧机上。并且,双机架四辊可逆冷轧机也得到发展。现代四辊可逆冷轧机的生产及装备技术水平远远超过传统的四辊可逆式冷轧机。

四辊可逆冷轧机生产特点:

1.提高生产力

2.扩大产品品种规格

3.提高产品质量

4.提高自动化装备水平

第三章系统各模块及其电路设计

3.1主回路设计

此系统是直流调速系统,为了获得较好的直流采用三相整流;由于生产工艺要求电机正反转,考虑到晶闸管的单向导电性,可用正反两组晶闸管反并联可逆控制系统。

其实现方式如下图:

图3-1 主回路设计原理图

可逆的调速系统能满足电动机既能正转,又能反转,而且常常还需要快速地起动和制动,即需要电力拖动系统具有四象限运行的特性的要求。

3.2控制回路设计

为了满足生产工艺对电流的电流超调量的要求,并且为了实现在允许条件下的最快起动,关键是要获得一段使电流保持为最大值Idm的恒流过程。必需采用电流闭环调节环ACR。

为了满足生产工艺对电流的转速超调量和转速无静差的要求。必需采用转速闭环调节环ASR。

因此为了实现转速和电流两种负反馈分别起作用,可在系统中设置两个调节

器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈。二者之间实行嵌套(或称串级)联接。

有环流系统中,虽然其具有反向快、过度平滑等优点,但设置几个环流电抗器终究是个累赘。因此,对于大容量的系统,从机器生产可靠性出发,常采用既没有直流平均环流又没有瞬间脉动环流的无环流可逆系统。而本系统的容量较大,工艺过程对系统正反转的平滑过渡特性要求不很,因而采用无环流控制可逆系统。即当一组晶闸管工作时,用逻辑电路(硬件)根据零转矩和零电流逻辑的去封锁另一组晶闸管的触发脉冲,使它完全处于阻断状态,以确保两组晶闸管不同时工作,从根本上切断环流的通路。因此需要增加一个控制正反组工作的逻辑控制单元DLC。

通过分析可以确定控制系统控制回路由以下几个模块组成:给定模块、转速调节器ASR、电流调节器ACR、电流反馈模块,转速反馈模块,逻辑控制单元DLC、零转矩和零电流检测单元DPT、DPZ和一个为避免元件温升和零点漂流的零速封锁单元DZS,反号器AR,电流反馈与过电流保护FBC+FA。

图3-2 控制系统框图

控制系统框图如上图所示。采用一个电流调节器和一个触发模块,并采用逻辑控制单元来协调正反组晶闸管工作。从而达到调压调速的目的。

3.2.1给定单元

有上图可知,给定单元由模拟电路组成,包含三级放大器,第一级为高倍放大器,U1都是饱和值,当给定过大时,要求限幅,由二极管控制,U1与Un*极性相同,第二级为积分器,经过RC积分输出电压变为斜坡信号,且为负相,与给定Un*方向相反,积分变化率可以用电位器RP来调节,可以调节RC来控制积分快慢。最后一级为反向器,将U2信号反向,使与Un*一致方向变化,并且Ugi 反馈回第一级输入端,为负反馈,以决定积分终止时刻,当Ugi>= Un*时,负反馈起作用,U1很快减小,积分终止,Ugi与U2保持恒值。

图3-3 给定单元电路图

3.2.2 转速调节器

1、转速调节器是调速系统的主导调节器,它使转速 n 很快地跟随给定电压变化,稳态时可减小转速误差,甚至实现转速无静差。

2、对负载变化起抗扰作用。

3、其输出限幅值决定电机允许的最大电流。

4、当电机过载甚至堵转时,限制电枢电流的最大值,起快速的自动保护作用。一旦故障消失,系统立即自动恢复正常。

考虑到ASR的上述作用和生产工艺要求系统队阶跃信号无静差,将ASR设计成PI调节器,通过有关书籍可知这样可以使系统构成一个二型系统,从而实现转速无静差。

图3-4为ASR的主体结构图.转速给定电压Un*和转速反馈电压Un经滤波后通过由放大器构成的PI调节器后生成电流给定电压Ui*输出给电流调节器。

图3-4 ASR的主体结构图

其实际的实现电路如下图示:

图3-5 ASR单元电路图

R1、R2、C1,R3、R4、C2 构成等效的阻容滤波去除转速给定和转速反馈的纹波。

电阻R7,C4通过放大器构成PI调节器为了避免运放长期工作产生的零点漂移,并联一个大电阻R6形成准PI调节器。

场效应管Q1做开关用,当零封输入信号(Uo)接高电平时场效应管导通将输出拉至0V,二极管D1避免由于零封信号波动而使Q1意外导通。

D2,D3,RP4,RP5构成正负限幅电路。以正向限幅为例:当运放的输出端电压经限流电阻R10后,如果电压值小于D2导通电压加RP4滑动端对地电压则线性输出否则输出D2导通将输出电压钳位在限幅值。

电容C5用于限制运放输出端电压变化过快。

3.2.3 电流调节器

1、作为内环的调节器,在外环转速的调节过程中,它的作用是使电流紧紧跟随其给定电压(即外环调节器的输出量)变化。

2、对电网电压的波动起及时抗扰的作用。

3、在转速动态过程中,保证获得电机允许的最大电流,从而加快动态过程。

4、当电机过载甚至堵转时,限制电枢电流的最大值,起快速的自动保护作用。一旦故障消失,系统立即自动恢复正常。这个作用对系统的可靠运行来说是十分重要的。

考虑到ACR的上述作用和生产工艺要求系统主回路电流超调量小,将ACR设计成PI调节器,通过有关书籍可知这样可以使电流环构成一个Ⅰ型结构。通过一阶最优使其动态性能达到要求。

图3-6和图3-7分别为的主体结构图和实际实现图,给定电压Ui*和电流反馈电压Ui经滤波后通过由放大器构成的PI调节器后生成触发电路的控制电压Ua输出给触发电路。

图3-6 ACR主体结构图

ACR主体结构实际电路与转速调节器ASR基本一致,但由于采用一个ACR控制正反两组晶闸管触发电路所以ACR的输入端分别有正反两组电流给定信号输入。ACR同一时间只能向一组发出控制信号,所以采用正反组电流给定信号交替输入的方式。实现方式是采用三极管构成电子开关用DZS的正反组工作的控制信号Ubir, Ubif分别控制正反组电子开关的导通和关断。从而达到正反组电流给定信号交替输入的目的。

在输出电路方面为了提高带负载能力采用了晶体管放大电路。也减少了负载电流对本环节的冲击。

图3-7 ACR单元电路图

3.2.4 反号器

电流反馈信号的级性总是为“+”,而且,此系统只采用了一个电流调节器,为保证电流环为电流负反馈环,实现负反馈控制,必须采用一只反号器AR ,为此,由逻辑DLC 的两个相反的F U 和R U 信号分别控制电流的给定信号,以实现电流反馈永远是负反馈。

图3-8 AR 单元电路图

3.2.5 触发电路

三相移相触发器由三片集成电路芯片KJ004(或KC04)等组成,通过KJ041而形成六路双窄脉冲,经脉冲放大和脉冲门MT ,去触发三相全控桥晶闸管。

三相移相触发器有两路输入信号,一路是三相交流同步电源,以保证主电路的交流电压和触发脉冲保持同步,去正确触发各相晶闸管。另一路是脉冲移动的控制信号ct U ,用它来控制触发器脉冲发出的时刻,从而达到控制晶闸管触发角的目的。

图3-9 触发器单元电路图

3.2.6 逻辑控制单元

为了从根本上消除系统的静态环流和脉冲环流,则必须在任何时刻只允许开放一组晶闸管脉冲,另一组晶闸管脉冲被严格封锁,为达到此目的,电路上设计了两个模拟电子开关脉冲门1MT 、2MT ,逻辑控制器根据系统的工作情况正确发出指令bif U 来接通一脉冲门而同时切断另一脉冲让。

结构上主要分为逻辑控制和延时控制,考虑换组运行的参考依据是转矩极性和电流是否为零,所以DLC 输入信号是转矩极性和电流的状态。

DLC 的逻辑如下:

正向运行:VF整流,开放VF,封锁VR;

反向制动:VF逆变,开放VF,封锁VR;

反向运行:VR整流,开放VR,封锁VF;

正向制动:VR逆变,开放VR,封锁VF。

图3-10 逻辑控制单元电路图

因此,DLC的输出有两种状态:

VF开放—Ublf = 1 VF封锁—Ublf=0

VR开放—Ublr = 1 VR封锁—Ublr=0

R32与C34,R34与C37构成延时环节为以下两个延时提供条件以保证两组晶闸管装置可靠切换。

t1延时——关断等待时间,以确认电流已经过零,而非因电流脉动引起的误信号;

t2延时——触发等待时间,以确保被关断的晶闸管已恢复阻断能力,防止其重新导通。

3.2.7零转矩检测单元和零电流检测单元

零转矩检测单元和零电流检测单元结构和实现电路完全相同,实际都是一个回滞比较器。但目的不同,零转矩检测单元是检测转矩正负极性,零电流检测单元检测电流是否为零。所以具体的参数不同,回滞曲线要求不同。

零转矩检测单元的输出要求:

电极正转:输出T

U为“1”态;

电极反转:输出T

U为“0”态。

其实现电路图如图3-11所示:

图3-11 零矩阵检测单元电路图

零电流检测器的输出要求:

主回路电流接近零时,输出

U为“1”态;

Z

主回路有电流时,输出

U为“0”态。

Z

其实现电路图如图3-12所示:

图3-12 零电流检测单元电路图

3.2.8零封锁环节

作用是:当给定信号为0时,电机不动,然而,各调节器的零点漂移将导致

电动机的爬行,为确保零位时电动机不会爬行,一定要将调节器锁零,即控制场效应管使调节器的输入和输出间短接。

图十二为零封锁电路的电路图。

图3-12 零封锁环节的电路图

3.2.9 电流反馈与过流保护

图3-13 电流反馈与过流保护

本单元有两个功能,一是检测主电源输出的电流反馈信号,二是当主电源输出电流超过某一设定值时发出过流信号切断电源

TA1,TA2,TA3为电流互感器的输出端,它的电压高低反映三相主电路输出的电流大小,面板上的三个园孔均为观测孔,不需再外部进行接线,只要将DJK04挂件的十芯电源线与插座相连接,那么TA1、TA2、TA3就与屏内的电流互感器输出端相连,当打开挂件电源开关,过流保护即处于工作状态。

(1)电流反馈与过流保护的输入端TA1、TA2、TA3,来自电流互感器的输出端,反映负载电流大小的电压信号经三相桥式整流电路整流后加至RP1、RP2、及R1、R2、VD7组成的3条支路上,其中:

①R2与VD7并联后再与R1串联,在其中点取零电流检测信号从1脚输出,供零电平检测用。当电流反馈的电压比较低的时候,“1”端的输出由R1、R2分压所得,VD7截止。当电流反馈的电压升高的时候,“1”端的输出也随着升高,当输出电压接接近0.6V左右时,VD7导通,使输出始终保持在0.6V左右。

②将RP1的滑动抽头端输出作为电流反馈信号,从“2”端输出,电流反馈系数由RP1进行调节。

③RP2的滑动触头与过流保护电路相连,调节RP2可调节过流动作电流的大小。

(2)当电路开始工作时,由于电容C2的存在,V3先与V2导通,V3的集电极低电位,V4截止,同时通过R4、VD8将V2基极电位拉低,保证V2一直处于截止状态。

(3)当主电路电流超过某一数值后,RP2上取得的过流电压信号超过稳压管V1的稳压值,击穿稳压管,使三极管V2导通,从而V3截止,V4导通使继电器K动作,控制屏内的主继电器掉电,切断主电源,挂件面板上的声光报警器发出告警信号,提醒操作者实验装置已过流跳闸。调节RP2的抽头的位置,可得到不同的电流报警值。

(4)过流的同时,V3由导通变为截止,在集电极产生一个高电平信号从“3”端输出,作为推β信号供电流调节器使用。

(5)SB为解除过流记忆的复位按钮,当过流故障己经排除,则须按下SB以解除记忆,才能恢复正常工作。当过流动作后,电源通过SB、R4、VD8及C2维持V2导通,V3截止、V4导通、继电器保持吸合,持续告警。只有当按下SB后,V2基极失电进入截止状态,V3导通、V4截止,电路才恢复正常。

第四章 系统参数设计与计算

4.1 整流变压器的选择

由于整流线路采用三相桥整流,对于这样的可逆系统有:

M N (1.05~1.1)/3 1.05230/3139.43U v

V

U

φ=?=?=

又整流电流

0.816765A I v Iv

DN

A I I

φ=

=?=624.24

所以,副方变压器容量为:

233139.43624.24v v S U

I

φ

φ

==??=261.11KVA

因为交流变压器二次侧为交流不存在直流磁化的问题,则原边变压器容量为

1

2

S

S

=

=261.11KVA

变压器总容量为

()1

2

/2S S

S =

+

=261.11KVA

取变压器容量为300KVA

4.2 晶闸管的选择

晶闸管额定电压:

晶闸管实际承受的最大峰值电压TN U ,乘以(2~3)倍的安全裕量,参照标准电压等级,即可确定晶闸管的额定电压TN U ,即TN U =(2~3)m U 整流电路形式为三相全控桥,查表得26U U m =,则

()()()V

U U U m TN 8.881~9.58712063~263~23~22=??

===

取700=TN U V. 晶闸管额定电流:

选择晶闸管额定电流的原则是必须使管子允许通过的额定电流有效值TN I 大于实际流过管子电流最大有效值T I ,即

TN I =1.57)(AV T I >T I 或 )(AV T I >

57

.1T I =

57.1T I d

d

I I =d KI

考虑(1.5~2)倍的裕量

d

AV T I K I *)2~5.1()(=

式中K=T I /(1.57d I )--电流计算系数。

此外,还需注意以下几点:

①当周围环境温度超过+40℃时,应降低元件的额定电流值。 ②当元件的冷却条件低于标准要求时,也应降低元件的额定电流值。 ③关键、重大设备,电流裕量可适当选大些。 由表查得 K=0.367,考虑(1.5~2)倍的裕量

()

()d

AV

T KI

I 2~5.1=

()1.5~20.368765422.28~563.04A

=??=

取600T I A =。故选晶闸管的型号为KS800A

4.3 晶闸管保护措施

为了限制电压上升率du dt 和电流上升率di dt ,系统加入了桥臂电抗器,桥臂电抗器采用空心电抗,为了提高电感量,每个电抗器内安置有铁氧磁棒。 用快速熔断器作为过流保护,桥臂快熔的额定电流为:

(1 1.5) 1.3 1.3*2*3663K P T T d I I I I A ====

环流快熔的额定电流为:

(1 1.5) 1.3 1.3*765994.5KP N N I I I A

====

所以选择的桥臂快熔的型号为:3800/500RS A V ,

环流快熔的型号为:31000/750RS A V

4.4 电流互感器的选择

由于交流变压器副方电流为624.24A ,所选LMZ-0.5-1型,额定电流为800A ,做计量保护用。

4.5 平波电抗器的计算

为了使直流负载得到平滑的直流电流,通常在整流输出电路中串入带有气隙的铁心电抗器d L ,称平波电抗器。其主要参数有流过电抗器的电流一般是已知的,因此电抗器参数计算主要是电感量的计算。

(1)算出电流连续的临界电感量1L 可用下式计算,单位mH 。

min

21

1d I U K L =

式中1K 为与整流电路形式有关的系数,可由表查得;

min

d I 为最小负载电流,常取电动机额定电流的5%~10%计算。 根据本电路形式查得1K =0.695所以

1L =1200.6957655%

?

?=2.18mH

(2)限制输出电流脉动的临界电感量2L

由于晶闸管整流装置的输出电压是脉动的,因此输出电流波形也是脉动的。该脉动电流可以看成一个恒定直流分量和一个交流分量组成。通常负载需要的只是直流分量,对电动机负载来说,过大的交流分量会使电动机换向恶化和铁耗增加,引起过热。因此,应在直流侧串入平波电抗器,用来限制输出电流的脉动量。平波电抗器的临界电感量2L (单位为m H)可用下式计算

d

i I S U K L 22

2=

式中2K -系数,与整流电路形式有关,i S -电流最大允许脉动系数,通常三相电路i S ≤(5~10)%。 根据本电路形式查得2K =1.045, 所以

d

i I S U K L 22

2==1201.04510%765

?

?=1.64mH

(3)电动机电感量D L 和变压器漏电感量T L

电动机电感量D L (单位为mH )可按下式计算 3

102?=D

D d

D pnI

U K L

式中D D I U ,,n -直流电动机电压、电流和转速,常用额定值代入; P -电动机的磁极对数;D K -计算系数。一般无补偿电动机取8~12,快速无补偿电动机取6~8,有补偿电动机取5~6。本设计中取D K =8、D U =n U =230V 、

D I =n I =765A 、n=1400r/min 、p=1

最新四辊可逆冷轧机传动电控系统设计设计

四辊可逆冷轧机传动电控系统设计设计

摘要 轧制是各种变形手段中效率高、产量大、成本低、成型精确的加工方式。而轧机是实现金属轧制过程的设备,泛指完成轧材生产全过程的装备,包括有主要设备﹑辅助设备﹑起重运输设备和附属设备等。从炼钢厂出来的钢坯还仅仅是半成品,必须到轧钢厂去进行热轧与冷轧后,才能成为合格的产品。 论文通过吸收和借鉴校内实训中心的四辊可逆冷轧机的先进设计理念,提出了四辊可逆冷轧机的电控系统设计方案,并总结出了电气调试方案。完成了整个轧机电控系统的硬件方案设计以及相关器件的选型工作。在硬件设计中,提出了PLC+变频器+电机等的闭环控制系统,从而达到变频器控制电机转速的目的。 关键词:轧机电控系统四辊闭环

ABSTRACT Means all kinds of deformation in rolling, high efficiency, large output, low cost, precision molding processing methods. The mill is the equipment of metal rolling process, rolled the whole production process refers to the completion of equipment, including major Equipment, Auxiliary Equipment, lifting and other transport equipment and ancillary equipment. Out from the steel mill is just the semi-finished billets to be to go for hot and cold rolling mills, the products can become qualified. Articles by absorb and learn the four-campus training center roller cold rolling mill of the advanced design concept, put forward a four-high reversing cold rolling mill electrical control system design. Completion of the entire rolling mill electrical control system hardware design and selection of work-related devices. In the hardware design is proposed such as PLC + inverter + motor closed-loop control system, so as to achieve the purpose inverter control motor speed. Keywords:Rolling mill;Electronic Control System;Four roller;Closed loop

长安大学交流调速课程设计

长安大学交流调速课程设计

一.摘要 变频调速是一种新兴的技术,将变频调速技术用于供水控制系统中,具有高效节能、水压恒定等优点。随着社会经济的发展,绿色、节能、环保已成为社会建设的主题。对于一个城市的建设,供水系统的建设是其中重要的一部分,供水的可靠性、稳定性、经济性直接影响到居民的生活质量。近年来,随着自动化技术、控制技术的发展,以及这些技术在供水系统的应用,高性能、高节能的变频恒压控制的供水系统已成为现在城市供水管理的必然趋势。本次课程设计采用CPM1A PLC控制器结合富士变频器控制两台水泵的各种转换,实现变频恒压供水系统的功能,并且实现故障转换与报警等保护功能,使得系统控制可靠,操作方便。 二.设计要求 一楼宇供水系统,正常供水量为30m3/小时,最大供水量40m3/小时,扬程24米。采用变频调速技术组成一闭环调节系统,控制水泵的运行,保证用户水压恒定。当用水量增大或减小时,水泵电动机速度发生变化,改变流量,以保证水压恒定。 要求设计实现: ⑴设二台水泵。一台工作,一台备用。正常工作时,始终由一台水 泵供水。当工作泵出现故障时,备用泵自投。 ⑵二台泵可以互换。 ⑶给定压力可调。压力控制点设在水泵出口处。

⑷具有自动、手动工作方式,各种保护、报警装置。采用OMRON CPM1A PLC、富士变频器完成设计。 三.方案的论证分析 传统的小区供水方式有: ⑴恒速泵加压供水方式 该方式无法对供水管网的压力做出及时的反应,水泵的增减都依赖人工进行手工操作,自动化程度低,而且为保证供水,机组常处于满负荷运行,不但效率低、耗电量大,而且在用水量较少时,管网长期处于超压运行状态,爆损现象严重,电机硬起动易产生水锤效应,目前较少采用。 ⑵气压罐供水方式 气压罐供水具有体积小、技术简单、不受高度限制等特点,但此方式调节量小、水泵电机为硬起动且起动频繁,对电器设备要求较高、系统维护工作量大,而且为减少水泵起动次数,停泵压力往往比较高,致使水泵在低效段工作,也使浪费加大,从而限制了其发展。 ⑶水塔高位水箱供水方式 水塔高位水箱供水具有控制方式简单、运行经济合理、短时间维修或停电可不停水等优点,但存在基建投资大,占地面积大,维护不方便,水泵电机为硬起动,启动电流大等缺点,频繁起动易损坏联轴器,目前主要应用于高层建筑。 综上所述,传统的供水方式普遍不同程度的存在浪费水力、

基于单片机控制的交流调速系统设计 (1)

基于单片机转差频率控制的交流调速系统设计 摘要 单片机控制的变频调速系统设计思想是用转差频率进行控制。通过改变程序来达到控制转速的目的。由于设计中电动机功率不大,所以整流器采用不可控电路,电容器滤波;逆变器采用电力晶体管三相逆变器。系统的总体结构主要由主回路,驱动电路,光电隔离电路,SA8282大规模集成电路,保护电路,AT89C51单片机, 8255可编程接口芯片,I/O接口芯片,测速发电机等组成。回路中有了检测保护电路就可以使整个系统运行的可靠性有了保障。 关键词:AT89C51单片机;SA8282;转差频率;交流调速;三相异步电动机

目录 前言 (1) 第1章交流调速系统的概述 (4) 1.1交流调速的基本原理 (4) 1.2 交流调速的特点 (5) 第2章交流调速系统的硬件设计 (7) 2. 1 转差频率控制原理: (7) 2. 2 系统设计的参数 (7) 2.3 用单片机控制的电机交流调速系统设计 (7) 2.3.1调速系统总体方案设计 (7) 2.3.2 元器件的选用 (9) 2.3.3 系统主回路的设计以及参数计算 (12) 2.3.4 SPWM控制信号的产生 (15) 2.3.5 光电隔离及驱动电路设计 (17) 2.3.6 故障检测及保护电路设计 (18) 2.3.7 模拟量输入通道的设计 (18) 第3章系统软件的设计 (19) 3.1 主程序的设计 (19) 3.2 转速调节程序 (19) 3.3 增量式PI运算子程序 (20) 3.4故障处理程序 (21) 3.5 部分子程序 (22) 3.5.1 AD0809的编程 (22) 3.5.2 8255的编程 (23) 结论 (23) 参考文献 (23)

650四辊可逆轧机性能

650全液压四辊可逆轧机技术协议1 设备主要工艺参数 1.1 原料:经酸洗后的热轧卷板、热轧中宽带钢 材质:优质碳素钢、低合金钢 厚度:δ≤4.5 mm 最大强度极限:бb=610 N/mm2 最大屈服极限:бs=360 N/ mm2 宽度:≤650 mm 卷径:Φ508/Φ900~Φ1650 mm 最大卷重:8 T 1.2 成品 成品厚度:≥0.2 mm 带钢宽度:≤520 mm 卷径:Φ508/Φ900~Φ1650 mm 最大卷重:8T 成品厚度公差:0.01~0.02 mm(去掉头尾各8米) 1.3 主要技术参数: 最大轧制力:5000 KN 最大轧制力矩:35 KN . M 最大轧制速度:8 m/s 穿带速度:0.3 m/s 开卷最高速度:3.3 m/s 卷取最高速度:8.2 m/s 卷取张力:0~60 KN 工作辊规格:Φ220/Φ190×650 mm 支撑辊规格:Φ650/Φ680×600 mm 开卷机卷筒直径:Φ480~Φ520 mm 卷取机卷筒直径:Φ488~Φ508 mm

轧制线标高:+1000 mm 最大弯辊力:400 KN 冷却液类型:乳化液 工艺润滑系统流量:1000 L/min 稀油润滑系统流量:250 L/min 稀油润滑系统压力:0.4 Mpa 稀油润滑系统介质:中负荷No20 机组进料方向: 液压系统压力:压下、弯辊液压系统:3~25Mpa 一般液压系统:0~10Mpa 设备总重量:约140 T 传动方式:工作辊传动 年产量: 传动电机: 主机电机Z560-2A 440V 600KW n=600~1400rpm 1台 卷取电机Z4-355-11 440V 180KW n=500~1500rpm 2台 开卷电机Z4-250-41 440V 75 KW n=500~1500rpm 1台 2 设备组成 2.1 机械设备 2.1.1 开卷机1台 悬臂机构,由传动装置和卷筒组成,传动装置为二级减速箱,卷筒为四棱锥结构,主要参数为: 卷筒工作直径:Φ500 mm 卷筒涨缩范围:Φ452~Φ544 mm 开卷速度:≤3.3 m/s 开卷张力:4~30 KN 对中移动范围:±50 mm 对中横移缸:缸径Φ125 mm,

《交直流调速系统系统课程设计》

《交直流调速系统》课程设计 一、性质和目的 自动化专业、电气工程及其自动化专业的专业课,在学完本课程理论部分之后,通过课程设计使学生巩固本课程所学的理论知识,提高学生的综合运用所学知识,获取工程设计技能的能力;综合计算及编写报告的能力。 二、设计内容 1.根据指导教师所下达的《课程设计任务书》课程设计。 2.主要内容包括: (1)根据任务书要求确定总体设计方案 (2)主电路设计:主电路结构设计(结构选择、器件选型、考虑器件的保护)、变压器的选型设计; (3)控制回路设计:控制方案的选择、控制器设计 (4)保护电路的选择和设计 (5)调速系统的设计原理图,调速性能分析、调速特点 3.编写详细的课程设计说明书一份。 三、设计内容与要求 1.熟练掌握主电路结构选择方法、主电路元器件的选型计算方法。 2.熟练掌握保护方式的配置及其整定计算。 3.掌握触发控制电路的设计选型方法。。 4.掌握速度调节器、电流调节器的典型设计方法。 5.掌握绘制系统电路图绘制方法。 6.掌握说明书的书写方法。 四、对设计成品的要求 1.图纸的要求: 1)图纸要符合国家电气工程制图标准; 2)图纸大小规格化(例如:1#图,2#图); 3)布局合理、美观。 2.对设计说明书的要求 1)说明书中应包括如下内容

①目录 ②课题设计任务书; ③调速方案的论证分析(至少有两种方案,从经济性能和技术性能方面进行分析论证)和选择; ④所要完成的设计内容 ⑤变压器的接线方式确定和选型; ⑥主电路元器件的选型计算过程及结果; ⑦控制电路、保护电路的选型和设计; ⑧调速系统的总结线图 系统电路设计及结果。 2)说明书的书写要求 ①文字简明扼要,理论正确,程序功能完备,框图清楚明了。 ②字迹工整;书写整齐,使用统一规定的说明书用纸。 ③图和表格不能徒手绘制。 ④附参考资料说明。

1100HC六辊可逆式冷轧机的设计-文献综述

附录2 文献综述 一、课题的国内外现状 HC 轧机全名为HITACHI HIGH CROWNCONT ROLMILL,即日立中心高性能轧辊凸度控制轧机。该机型是日立公司于1972 年研究开发的轧机,两年后正式投入工业化应用。它具有普通四辊冷轧机不能达到的性能和优点,首先在日本得到推广使用,继而受到全世界的瞩目,广泛用于热轧和冷轧生产中的单机可逆轧机、连轧机和平整机。其主要结构特点是:在支撑辊和工作辊之间加入一对能够沿着轧辊轴向相对移动的中间辊,通过中间辊的相对移动来改变轧制压力在带钢方向上的分布,加上工作辊的正负弯辊作用,对改善带钢板形起到了明显的效果。 在国外,除日本各大钢铁公司普遍采用HC轧机机型外,美国、德国、加拿大、瑞典、巴西、墨西哥、韩国等国家均从日本引进了该轧机。 在国内,武汉钢铁公司为生产镀锡板基板,1987年首先引进1250HC六辊轧机,之后上海宝钢、辽宁鞍钢等国内各大钢铁公司先后引进了这种轧机机型。在引进设备的同时,国内相关单位也开始跟踪并开发国产的HC六辊轧机。国产大型六辊轧机已成功地用于工业生产,而且主要的技术水平和功能已达到国外同类设备水平。但是,六辊轧机种工作辊弯辊、中间辊横移、中间辊弯辊三种方式与带材板型的检测、控制相结合,实施有效的闭环控制,目前国内虽然在这方面也取得了不少成绩,但在精确度和稳定性方面仍然需要花大力气研究。 二、现有的主要研究成果 随着科学技术的不断进步,日本最近几年又在HC轧机的结构上进行了改进,推出了一些新型的HC轧机。例如,HCMW 轧机是综合HC轧机和HCM轧机的优点,其特点是中间辊和工作辊都能轴向移动。 在国内,HC轧机方面的研究也取得了很多可喜的成绩:降低轧辊表面缺陷的措施,预防轧辊剥落的措施,预防轧辊断裂的措施。近几年来,随着控制理论的发展,人们不断把一些新型控制方法引入板形自动控制系统中,以弥补PID控制中很难满足高精度控制要求的不足,比如基于动态负荷分配的板形控制方法。在日本,成品机架或成品道次采用软刚度的方法

交流异步电动机变频调速系统设计样本

中南大学 《工程训练》 ——设计报告 设计题目:异步电机变频调速 指引教师:黎群辉 设计人:冯露 学号: 专业班级:自动化0906班 设计日期:9月

交流异步电动机变频调速系统设计 摘要 近年来,交流电机变频调速及其有关技术研究己成为当代电气传动领域一种重要课题,并且随着新电力电子器件和微解决器推出以及交流电机控制理论发展,交流变频调速技术还将会获得巨大进步。 本文对变频调速理论,逆变技术,SPWM产生原理进行了研究,在此基本上设计了一种新型数字化三相SPWM变频调速系统,以8051控制专用集成芯片 SA4828为控制核心,采用IGBT作为主功率器件,同步采用EXB840构成IGBT驱动电路,整流电路采用二极管,可使功率因数接近1,并且只用一级可控功率环节,电路构造比较简朴。 V控制,同步,软件程序使得参数输入和变频器运营方式变本文在控制上采用恒 f 化极为以便,新型集成元件采用也使得它开发周期短。 此外,本文对SA4828三相SPWM波发生器使用和编程进行了详细简介,完毕了整个系统控制某些软硬件设计。 V控制,SA4828波形发生器 核心字:变频调速,正弦脉宽调制, f

目录 摘要................................................ 错误!未定义书签。 1.1 研究目与意义 (1) 1.2本次设计方案简介 (2) 1.2.1 变频器主电路方案选定 (2) 1.2.2 系统原理框图及各某些简介 (3) 1.2.3 选用电动机原始参数 (4) 2交流异步电动机变频调速原理及办法 (5) 2.1 异步电机变频调速原理 (5) 2.2 变频调速控制方式及选定 (6) V比恒定控制 (6) 2.2.1 f 2.2.2 其他控制方式................................ 错误!未定义书签。3变频器主电路设计. (13) 3.1 主电路工作原理 (13) 3.2 主电路各某些设计 (13) 3.3. 采用EXB840IGBT驱动电路 (15) 4控制回路设计 (16) 4.1 驱动电路设计 (16) 4.2 保护电路......................................... 错误!未定义书签。 4.2.1 过、欠压保护电路设计........................ 错误!未定义书签。 4.2.2 过流保护设计................................ 错误!未定义书签。 4.3 控制系统实现 (19) 5变频器软件设计....................................... 错误!未定义书签。 5.1 流程图 (22)

四辊冷轧机设计之轧辊系统设计说明书(1)剖析

毕业设计(论文)任务书

摘要 ???小型四辊冷轧机,其特点是工作稳定、操作简单、轧制本轧机为190/500450 板形好。本设计主要是针对此轧机的轧辊系统,考虑到产品的稳定性、结构布局、使用寿命,进行轧辊的尺寸计算、刚强度校核、弯曲变形校核、轧辊轴承的选择和使用寿命校核。同时采用了工作辊传动,这种形式对轧制过程比较有利。 设计中运用斯通公式计算轧制力,由于轴承座的固定性,轴承座要承受偏负荷,轴承磨损严重不但减小使用寿命而且影响轧辊的外形进而对轧制板形产生极大的影响,轧制力大时影响更明显。因此轧辊的尺寸设计、材料选择很重要而且必须对轧辊和轴承进行必要的校核。 关键词:四辊冷轧机、轧辊、轧辊轴承、轧制力

Abstract ???small four-high cold rolling mill, characterized by The mill is 190/500450 stability、simple in operation and good shape by rolling. This design main for the mill’s roller system, take the mill’s stability、configuration and the service life, it’s necessary to checkout the intensity、barely and distortion by bending of the rollers and the service life of the bearing besides calculate the sizes of the rollers and choosing the bearings. At the same time, drive work roll is the main drive mode for this mill, which form is more favorable for the rolling process. It’s well-off during the design. In the design I have found that due to the fixity of the bearing chock, the biased load will appear in the bearing chock, and the bearings will fray badly, which leads to the short service life of the bearings and influences the rollers’ shape , and then influence of the sizes of the rolling steels, the infection will be strictness under the heavy roll force. Therefore, it’s important to design the rollers’ size and choose of the material, it is must to checkout the rollers and the bearings. Keywords:4-high cold rolling mill、roller、roller bearing、roll force

中南大学 四辊可逆冷轧机的卷宗取机直流调速系统设计

第一章总的设计概述 1.1 设计目的 运动控制系统是自动化专业的主干专业课,具有很强的系统性、实践性和工程背景,运动控制系统课程设计的目的在于培养学生综合运用运动控制系统的知识和理论分析个解决运动控制系统设计问题,使学生建立正确的设计思想,掌握工程设计的一般程序、规范和方法,提高学生调查研究、查阅文献及正确使用技术资料、标准、手册等工具书的能力,理解分析、制定设计方案的能力,设计计算和绘图能力,实验研究及系统调试能力,编写设计说明书的能力。 1.2 设计内容 (1)根据工艺要求,论证、分析、设计主电路和控制电路方案,绘出该系统的原理图。 (2)设计组成该系统的各单元,分析说明。 (3)选择主电路的主要设备,计算其参数(含整流变压器的容量S,电抗器的电感量L,晶闸管的电流、电压定额,快熔的容量等),并说明保护元件的作用(必须有电流和电压保护)。 (4)设计电流环和转速环(或张力环),确定ASR和ACR(或张力调节器ZL)的结构,并计算其参数。 (5)结合实验,论述该系统设计的正确性。 1.3 课题设计要求 四辊可逆冷轧机的卷宗取机直流调速系统设计 (1)生产工艺和机械性能 四辊可逆冷轧机是供冷轧紫铜及其合金成卷带材之用,为提高其生产效率,冷轧机要往、返轧制其金属材料。直到达到要求的厚度时才停止。因为要求冷轧机左右两边的两台卷取机在从左往右的正向轧制过程中,左边一台卷取机用,其

工作在发电机状态,右边一台卷取机作卷取机用,工作在电动状态。若逆向轧制(从左往右轧制),右边卷取机作开卷机,工作在发电机状态,左边卷取机则作卷取机用,工作在电动状态。 两台卷取机的电动机参数完全一样,机械参数如下: 带卷内径(卷筒直径):500mm 带卷外径:680~1100mm 带卷最大重量:2000kg 带卷最大张力:2000kg 卷取机传动比:i=1.87 图一 设备结构简图 (2)设计要求 1、两台卷取机控制原理完全一样,仅设计其中一台; 2、技术指标:稳态无静差,电流超调量% 5≤σi ,空载启动至额定转速 时的转速超调量% 10≤σ n 能实现快速制动。 (3)直流电动机参数: 150n P k w =、 230n U V =、 165n I A =、 1400m in n n r =、 0.08a R =Ω 电枢回路电阻0.18R =Ω 、电流过载倍数 2.5λ=、2 2 121.5.G D N M =。

交流调速系统 与变频器应用(课程设计)

河南机电高等专科学校课程设计报告书 课程名称:《交流调速系统与变频器应用》课题名称:造纸机同步控制系统设计 系部名称:自动控制系 专业班级: 姓名: 学号: 1 2014年12月25日

目录 一、造纸机同步控制系统的设计目的 (1) 二、系统的设计要求 (1) 三、造纸机同步控制系统的系统图 (1) 四、控制系统电气原理图 (3) 五、软件设计 (4) 六、程序调试 (5) 七、力控组态及调试 (7) 八、心得与体会 (8) 附录一参考文献 (9) 附录二程序清单 (10)

一、造纸机同步控制系统的设计目的 设计四台电机构成的变频调速同步控制系统:四台电机速度可以同步升降,也可以微调,1#电机微调其他电机同步微调,2#电机微调1#不同步微调,其他电机须同步微调,3#电机微调1#和2#不同步微调,4#电机同步微调,4#电机微调,其他电机均不同步微调。 二、系统的设计要求 1、采用西门子S7-200PLC和MM440变频器。 2、设有启动/停止按钮和速度同步升/降旋钮。 3、每台电机设有选择开关和升/降微调旋钮。 4、采用力控组态软件进行远程控制 三、造纸机同步控制系统的系统图

单相AC 220V 图一、造纸机同步控制系统图 1)就地控制:即外部端子控制,把200PLC程序下载到PLC中,通过外部端子来实现电机的启停,同步增减和微调增减。 2)远程控制:即组态控制,把PLC与力控通过PPI电缆连接,通过组态界面上设置的按钮,开关,速度仪表实现速度的调节。

四、控制系统电气原理图 1)原理图 2)I/O分配图

五、软件设计 控制系统的软件设计基于以下原则: 1)程序模块化、结构化设计、其中负荷分配、速度增减、初始化、紧纸、速比计算、校验、数据发送、接收等功能由子程序完成,这样结构程序较为简洁。2)程序采用循环扫描的方式对传动点进行处理,简化程序,提高程序执行效率。3)采用中断子程序进行数据的发送、接收;确保数据准确快速的传输。 4)必要的软件保护措施,以免造成重大机械损害。该程序通用性强,可移植性好,使用不同的变频器时,只需要进行相应协议的格式定义,即对数据发送、接收、校验程序作相应修改即可满足纸机运行的需要。

单机架六辊可逆冷轧机电气自动化技术方案(精)

1200六辊可逆冷轧机电气自动化系统控制方案

1概述 根据《1200六辊可逆冷轧机技术规格电气招标书》所提供的工艺设备和技术要求,并参考了同类型的单机架六辊可逆冷轧机的工艺技术,编写了本电气传动及基础自动化控制的技术方案。 2 供电 2.1 电气设备运行条件 1)电气设备运行环境要求 环境温度 现场:0~40?C 电气室:10~35?C 操作室:25±5?C 空气湿度:相对湿度≤95%且无凝露; 污染等级:III级,无火灾爆炸危险、无导电性尘埃、不腐蚀金属物及不破坏绝缘介质的环境。 2)电气设备运输及储存环境要求 环境温度-20~65?C ; 空气湿度及污染等级要求与运行时相同。 3)电气设备使用的电压等级及技术条件 本机组所使用电气设备电压等级符合我国国家标准,主要用电设备的电压等级为: ◆供电电压及频率:10±5%kV,50±1Hz ◆低压供电电压:AC380/220V ◆交流电动机电压:AC380V ◆直流电动机电压:DC440~660V ◆电磁阀:DC24V

◆电磁抱闸:AC220V ◆控制电压:AC220V,DC24V ◆保护地:接地电阻<4Ω ◆系统地:接地电阻<4Ω 2.2低压供配电 辅传动供电系统 (1)辅传动供电系统单线图见MCC单线图。 (2)MCC设备(见附表) 由于本机组负荷较小,因此不设负荷中心。本机组负荷MCC(即马达控制中心)将采用GGD3柜,包含MCC的受电、馈出回路、UPS 系统、比例、伺服阀控制回路和照明开关柜,开关柜额定短路短时承受能>80kA/s。 额定短路分断能力与电网短路电流相适应,Icu >50kA 根据需要配置必要的电流、电压表计,端子板采用Phoenix端子。 单机架可逆冷轧机组设一套MCC,不同容量不同控制类型的回路至少有一个备用回路。 注①:主传动电动机均配置有空间加热器,这些加热器是在长期停机时防止电机绕组受潮而设置的。由本MCC供电。 注②:为了保证乳化液站的检修供电,需要检修电源或者备用一路供电回路。 (3) UPS电源 为保证控制系统运行的可靠性,机组设置一套容量为10kV A的UPS 电源为机组控制系统(PLC、AGC控制器、HMI设备等)提供可靠稳定电源。电池和逆变器选用进口产品。 容量:10kV A,30min;进线:220V AC

负荷平衡控制在1200mm四辊可逆式冷轧机中的应用

负荷平衡控制在1200mm四辊可逆式冷轧机中的应用 文章介紹了负荷平衡控制在1200mm四辊可逆式冷轧机中的应用,避免了上辊和下辊之间由于负荷不平衡出现的电机过载、以至于功率组件损坏的情况,使得上辊和下辊的运行速度得到最佳匹配,对消除钛及钛合金板材在轧制过程中出现的上翘及下扣等不良板形问题取得良好效果。 标签:四辊可逆冷轧机;负荷平衡;直流调速系统;钛及钛合金板材;板形前言 我厂于上世纪六十年代中期引进的日本设备1200mm四辊可逆式冷轧机,已运行了近半个世纪,在生产过程中,经常出现上辊和下辊之间负荷分配不均、造成电机负荷剧烈波动及过载的情况,并且在钛及钛合金板材轧制过程中频频出现上翘和下扣之类的板形问题,制约了产品质量的提高,大大降低了生产效率以及成品率,也影响了该机组潜力的发挥,不能满足产品质量和精度日益提高的市场需求,直接影响了该机组的经济效益。 分析影响钛板上翘和下扣的原因,主要有两点:上下辊的传动系统动态特性和上下辊的辊径。所以,要改善和消除不良板型,大步提高生产效率及成品率,关键要从电气传动系统入手。该轧机传动系统采用的是旋转变流机组,不仅能耗大效率低,而且电气控制系统操作条件比较多,设备维护工作量比较大,系统可靠性也相对较低。运行了近半个世纪,元器件的老化造成系统故障频繁,调速性能变差,精度降低。因此对其电气控制系统进行了技术改造升级。 1 系统构成 该轧机是由两台1500kW直流电动机分别驱动上辊和下辊。在改造方案中,采用了SIEMENS数字式直流调速装置代替旋转变流机组,分别用两套独立的直流调速装置作为其原有的直流电动机的传动控制。为了改善和消除上翘和下扣之类的不良钛板板形,需保证上下辊电机出力平衡,使上下辊的速度得到最佳匹配,因此在两台驱动装置间引入了负荷平衡控制。 2 负荷平衡控制 2.1 负荷平衡的分类 两台电机组成的传动系统中的负荷平衡控制,一般有两种方法实现:一类由一套转速调节器为两套电机控制系统公用,该转速调节器的输出作为两套转矩控制环转矩的共同给定。此类负荷平衡控制系统响应快,动态平衡效果比较好,但是有可能会产生扭振,即两台电机负荷有可能会来回波动,可能会出现电流激磁震荡,甚至严重时引起系统过流跳闸。此种方法适用于两台电机之间通过“刚性”联系的情况,比如两台电机的串轴控制系统。第二类负荷平衡控制是两套电机传

四辊与六辊轧机的比较

比较四辊和六辊轧制技术在冷轧机上的应用 Dr.mont.Dipl.Ing.Gerhard Finstermann,冷轧部和带钢加工厂的首席经理; Dipl.Ing.Alois Seilinger,轧制技术的仿真的首席专家;Dipl.Ing.Gregor Nopp,冷轧部门经理;Dipl.Ing.Gerlinde Djumlija,澳大利亚,林茨,西门子奥钢联冶金技术冷 轧的部门经理 摘要:通过西门子奥钢联模拟冷轧过程,得出四辊轧制技术和六辊轧制技术在冷连轧应用上关键轧制参数的不同。这涉及到研究不同的轧机的性能。 本文全面讨论了Smart Crown 系统,在连轧控制下通过条形过渡区的平直度表现,轧机的刚度,厚度方面及边降控制对平直度的影响。 制造出平直度完美,厚度不变的板带是每一个轧制工作者的追求。这就要求轧制设备不仅能制造出在质量和尺寸精度方面满足市场需求的带钢,而且也要满足轧制工作者对产品的灵活和产品 组合的广泛性的要求。近年来,一些 新的冷连 轧生产线已经使用了可靠的四辊和 六辊轧制技术(图一)。然而,我们 并不知道到底是四辊轧机还是六辊 轧机能够满足市场对厚度公差和平 直度公差的进一步要求,甚至要求更 宽的产品组合。 板带的强度等级越高,冷轧就越 困难。新的连续冷连轧机应该能够轧制抗拉强度达1300MPa 的钢材,因为将来需要这些设备去轧制范围更加宽广的钢种并且很大一部分是先进的高强钢包括汽车用的多相特种钢和高硅钢片。同时板带的表面质量(对所有的产品尤其是用于汽车工业的产品是一个关键的特征)和保持板带的边降在允许的公差带范围内是至关重要的。边降对于晶粒取向的电工用钢尤为重要。 为了能够更好的比较四辊和六辊轧机的性能,采用了五台相同混合型轧机,其中一号和二号轧机采用六辊配置,三到五号轧机采用四辊配置,并且要求得到以下结果:厚度变化的范围,平直度的控制和边降控制的能力。 图 1

双闭环交流调速系统课程设计

皖西学院 课程设计任务书 系别:机电学院 专业:10电气 课程设计题目:双闭环串级交流调速控制系统设计学生姓名:诚学号:2010010694 起迄日期: 6 月17日~ 6 月28日课程设计地点:电机与拖动控制实验室 指导教师:世林 下达任务书日期: 6 月17日

摘要 本设计介绍了交流调速系统的基本概况及其研究意义,同时提出了本设计所要研究解决的问题,接着对系统各部分所需元器件进行比较选择并进行总体设计,最后采用工程设计方法对双闭环交流调速系统进行辅助设计,进行参数计算和近似校验。 在调节器选择方面,本设计选择的PI调节器,使得线路大为简化,且性能优良、调试方便、运行可靠、成本降低。触发电路则采用一种新型高性能集成移相触发器(MC787)设计的触发电路,它克服了分立元件缺点,抗干扰性优良,具有输入阻抗高、移相围宽、装调简便、使用可靠、只需一片MC787就可以完成三相相移功能,使用效果较好。 目录

1 绪论 (3) 1.1研究交流调速系统的意义 (3) 1.2本设计所做的主要工作 (3) 2 交流调速系统 (3) 2.1交流电机常用的调速方案及其性能比较 (3) 2.2三相交流调压调速的工作原理 (4) 2.3双闭环控制的交流调速系统 (5) 2.3.1转速电流双闭环调速系统的组成 (6) 2.3.2 稳态结构图和静特性 (6) 3 电路参数计算 (9) 3.1系统主电路的参数计算....................................................... .9 3.2根据系统方块图进行动态计算 (9) 3.3调节器的设计参数计算 .................................................. . (11) 3.3.1 电流调节器的参数计算 ................................................ .12 3.3.2 转速调节器的参数计算................................................ .14 4 控制系统硬件电路设计..................................................... .16 4.1调节器的选择和调整 . (16) 4.2触发电路的设计 (16) 4.3串级调速系统设计 (18) 4. 4双闭环系统设计........................ (19) 5 仿真........................................ .. (21) 6设计体会 (22)

1050六辊可逆冷轧机组工艺流程、技术参数及装机水平

附件1 机组工艺流程、技术参数及装机水平 1.1工艺流程描述 1.1.1 经酸洗处理后的热轧带卷由天车吊放到开卷机操作侧的受卷台上(此受卷台可以同时存放两个带卷)。上卷小车鞍座在受卷台下上升使带卷内孔对准开卷机卷筒中心后,小车继续向前运动将带卷套在开卷机卷筒上并使带卷在宽度方向上与机组中心线对中。开卷机卷筒涨径撑起带卷。上卷小车鞍座下降至下极限后小车退回到受卷台第二个带卷下面等候上第二卷。压辊压住带卷,人工将捆带剪断、拉走。开头机刮板抬起对准带卷头部,同时开卷机活动支承闭合,开卷机以穿带速度转动,使带头沿着刮板进入开头机,上夹送辊、上矫直辊压下夹送、矫直,进入切头剪,切下不合格的带头。如此反复数次,直到将不合格的带材头部全部剪下为止。机组继续以穿带速度将带材向前推进,先后经过导板、机前转向辊、机前张力装置、激光测速仪、测厚仪台架(此时测厚仪处于机组轧线以外)、机前辊式吹扫除油装置、可开合的对中导卫装置,六辊冷轧机、机后辊式吹扫除油装置、测厚仪台架、圆盘剪(此时测厚仪、圆盘剪均处于机组轧线以外)、激光测速仪、机后张力装置、机后转向辊、最后进入机后卷取机(此时卷取机卷筒处于缩径状态)。 1.1.2当带材进入机后卷取机钳口后,机前导卫装置合上,对中带材。机后卷取机卷筒涨径同时钳口动作夹住带头,卷取机压辊压上卷筒,卷取机活动支承闭合,卷筒启动开始卷取带材。卷取带材2~3圈后,AGC液压缸压上,建张,同时卷取机压辊、开头机上夹送辊、上矫直辊抬起,机前、机后激光测速仪、测张装置、测厚仪投入,机前导卫装置打开,工艺润滑乳化液自动从带材入口喷向轧辊,机组升速轧制。轧制到带尾时,机组减速轧制,开卷机压辊压住带卷,当带尾过机前转向辊进入轧辊前机组停止轧制,乳化液自动停喷,打开辊缝,卸张,

三相异步电动机变频调速系统设计及仿真

天津职业技术师范大学 课程设计说明书题目:三相异步电动机变频调速系统设计及仿真 指导老师: 班级:机检1112班 组员

天津工程师范学院 课程设计任务书 机械工程学院机检1112 班学生 课程设计课题: 三相异步电动机变频调速系统设计及仿真 一、课程设计工作日自 2015 年 1 月 12 日至 2015 年 1 月 23 日 二、同组学生: 三、课程设计任务要求(包括课题来源、类型、目的和意义、基本要求、完成时 间、主要参考资料等): 1、目的和意义 交流调速是一门重要的专业必修课,它具有很强的实践性。为了加深对所学课程(模拟电子技术、数字电子技术、电机与拖动、电力电子变流技术等)的理解以及灵活应用所学知识去解决实际问题,培养学生设计实际系统的能力,特开设为期一周的课程设计。 2、具体内容 写出设计说明书,内容包括: (1)各主要环节的工作原理; (2)整个系统的工作原理(包括启动、制动以及逻辑切换过程); (3)调节器参数的计算过程。 2.画出一张详细的电气原理图; 3.采用Matlab中的Simulink软件对整个调速系统进行仿真研究,对计算得到的调节 器参数进行校正,验证设计结果的正确性。将Simulink仿真模型,以及启动过程中的电流、转速波形图附在设计说明书中。 4、考核方式 1.周五采用口试方式进行考核(以小组为单位),成绩按百分制评定。其中小组分数占60%,个人成绩占40%(包括口试情况和上交材料内容); 2.每天上午8:30--11:30在综合楼226房间答疑。 五、参考文献 1、陈伯时.电力拖动自动控制系统----运动控制系统(第3版).机械工业出版社,2003 指导教师签字:教研室主任签字:

冷轧车间设计

1综述 1.1冷轧薄板简介 金属在再结晶温度以下进行轧制变形叫做冷轧,一般指薄板不经加热而在室温直接进行轧制加工。冷轧后的带钢可能烫手,但还是叫冷轧[1]。 钢的冷轧是在19世纪中叶始于德国,当时只能生产宽度20~25mm的冷轧薄板。美国1859年建立了25mm冷轧机,1887年生产出宽度为l50mm的低碳钢板。1880年以后冷轧钢板生产在美国、德国发展很快,产品宽度不断扩大,并逐步建立了附属设备,如剪切、矫直,平整和热处理设备等,产品质量也有了提高。 宽的冷轧薄板(韧带)是在热轧成卷带钢的基础上发展起来的。首先是美国早在1920年第一次成功地轧制出宽带钢,并很快由单机不可逆轧制而跨入单机可逆式轧制。1926年阿姆柯公司巴持勒工厂建成四机架冷连轧机。 我国冷轧宽带钢的生产开始于1960年,首先建立了1700mm单机可逆式冷轧机,以后陆续投产了1200mm单机可道式冷轧机,Mxw1400mm偏八辊轧机、1150mm二十辊冷轧机和1250mmHC单机可逆式冷轧机等,70年代投产了我国第一套1700mm连续式五机架冷轧机,1988年建成了2030mm五机架全连续冷轧机。近年来我国冷轧薄板生产能力增加了20多倍,生产装备技术水平已由只能生产低碳薄板而发展到能生产高碳钢、合金钢、高合金钢、不锈耐热冷轧薄板、镀锌板、涂层钢板、塑料复合薄板和硅钢片等。但随着四化建设的发展,无论在数量和品种质量上都远远满足不了四化建设发展的需要,为此我们必须增建新轮机,改造现有冷轧机,大力发展冷轧生产。 冷轧生产可提供大量高精确度和性能优良的钢板和带材,其最主要的特点是加工温度低,同热轧生产相比,它有以下优点: 1.冷轧带钢产品尺寸精确,厚度均匀,带钢厚度差一般不超过0.01~0.03mm或更小,完全可以符合高精度公差的要求。 2.可获得热轧无法生产的极薄带材(最薄可达0.001mm以下)。 3.冷轧产品表面质量优越,不存在热轧带钢常常出现的麻点、压入氧化铁皮等缺陷,并且可根据用户的要求,生产出不同表面粗糙度的带钢(光泽面或麻糙面等),以利于下

基于PLC的变频调速系统设计课程设计之令狐文艳创作

《电气控制与PLC》课程设计说明书 令狐文艳 基于PLC的变频调速系统设计 The variable frequency speed regulation system based on PLC design 学生姓名 学生学号 学院名称 专业名称电气工程及其自动化 指导教师 2013年12月1日

摘要 本文主要介绍了研究和设计的基于可编程控制器的变频调速系统的成果,在本次的设计中,我的设计系统主要由PLC、变频器、电动机等几部分组成。经过本次设计和研究,使我对所有器件有了新的认识,尤其对PLC有了更多的了解:PLC是能进行行逻辑运算,顺序运算,计时,计数,和算术运算等操作指令,并能通过数字式或模拟式的输入输出,控制各种类型的机械或生产过程的工业计算机。首先我们查阅各个器件的资料,先对其有个明确的认识,然后通过老师的指点明白了整个系统的大概工作原理框图后,通过学习资料与老师指点将硬件设备连接成功。本文综合应用电子学与机械学知识去解决基于可编程控制器的变频调速系统,本次设计选用三相异步交流电机,而 PLC和交流电机无论在工业还是生活中都是应用最广,因此本次设计具有相当的实用价值。 关键词PLC;变频器;电动机;调速

目录 1 引言1 1.1 概述1 1.2设计内容1 2 系统的功能设计分析和总体思路2 2.1 系统功能设计分析2 2.2 系统设计的总体思路2 3 PLC和变频器的选择3 3.1PLC的概述3 3.1.1 PLC的基本结构3 3.1.2 PLC的工作原理5 3.1.3PLC的型号选择6 3.2变频器的选择和参数设置6 3.2.1 变频器的选择6 3.2.2 变频调速原理7 3.2.3 变频器的工作原理8 3.2.4 变频器的快速设置8 4 开环控制设计及PLC编程9 4.1 硬件设计9 4.2 PLC软件编程10 4.2.1设计步骤10 4.2.2系统流程框图10 4.2.3 程序的主体11 4.2.4 控制程序T形图11 5 PLC系统的抗干扰设计17 5.1 变频器的干扰源17 5.2 干扰信号的传播方式17 5.3 主要抗干扰措施18 5.3.1 电源抗干扰措施18 5.3.2 硬件滤波及软件抗干扰措施18 5.3.3 接地抗干扰措施18 结论与心得19 参考文献20 附录21

用单片机控制的电机交流调速系统设计

用单片机控制的电机交流调速系统设计 文摘单片机控制的变频调速系统设计思想是用转差频率进行控制。通过改变程序来达到控制转速的目的。由于设计中电动机功率不大,所以整流器采用不可控电路,电容器滤波;逆变器采用电力晶体管三相逆变器。系统的总体结构主要由主回路,驱动电路,光电隔离电路,HEF4752大规模集成电路,保护电路,Intel系列单片机,Intel8253定时/记数器,Intel8255可编程接口芯片,Intel8279通用键盘/显示器,I/O接口芯片,CD4527比例分频器和测速发电机等组成。回路中有了检测保护电路就可以使整个系统运行的可靠性有了保障。 关键词MCS-51单片机;HEF4752;8253定时器;晶闸管;整流器;三相异步电动机

Exchange the speed of adjusting to design systematically with the electrical machinery that the one-chip computer controls Zhoumingqiang information and Electrical Engineering School, panzhihua university, Panzhihua 617000 Abstract Frequency conversion that one-chip computer control transfer speed systematic design philosophy with transfer to difference frequency control. Achieve the goal of controlling rotational speed through changing the procedure . Because the motor is not big in power in the design, the rectifier can not adopt controlledly the circuit, the condenser strains waves; Going against the becoming device adopts three phases of the electric transistor to go against the becoming device. The systematic ensemble architecture is by the main return circuit mainly, drive the circuit, the photo electricity isolates the circuit, HEF4752 large scale integrated circuit, protects the circuit, the Intel series one-chip computer, Intel8253 timing /count device of,Intel8255 programmable interface chip,Intel8279 keyboard not in common use / display, I/O interface chip, CD4527 proportion frequency division device and tests the speed such composition as the generator ,etc.. Have the dependability that can make the whole system operate of measuring and protecting the circuit to have guarantee in the return circuit [keywords] MCS-51;HEF4752;time/counter of l8253;selenium;rectifier;three phase eletromotor of asynchronism

相关主题
文本预览
相关文档 最新文档