当前位置:文档之家› 气体状态参量及状态方程(三)

气体状态参量及状态方程(三)

气体状态参量及状态方程(三)

气体状态参量及状态方程(三)

理想气体状态方程

***********学院 2015 ~ 2016 学年度第一学期 教师课时授课教案(首页) 学科系:基础部授课教师:**** 专业:药学科目:物理课次: 年月日年月日

理想气体状态方程 (一)引入新课 在讲授本节课之前,让学生完成理想气体方程的实验。上课时,利用学生实验的一组数据进行分析,归纳总结出气体状态方程,再引入理想气体。 (二)引出课程内容 1.气体的状态参量 (1)体积V 由于气体分子可以自由移动,所以气体具有充满整个容器的性质。因而气体的体积由容器的容积决定。气体的体积就是盛装气体的容器的容积。 体积的单位:立方米,符号是m3 。体积的其他单位还有dm3(立方分米)和cm3(立方厘米)。日常生活和生产中还用1L(升)作单位。 各种体积单位的关系: 1 m3=103 L=103 dm3=106 cm3 (2)温度 温度是用来表示物体冷热程度的物理量。要定量地确定温度,必须给物体的温度以具体的数值,这个数值决定于温度零点的选择和分度的方法。温度数值的表示方法称为温标。 ①日常生活中常用的温标称为摄氏温标。它是把1.013×105Pa气压下水的冰点定为零度,沸点定为100度,中间分为100等分,每一等分代表1度。用这种温标表示的温度称为摄氏温度,用符号t表示。 摄氏温度单位:摄氏度,符号是℃。 温标:温度数值的表示方法称为温标。 ②在国际单位制中,以热力学温标(又称为绝对温标)作为基本温标。这种温标以 -273.15 ℃作为零度,称为绝对零度。用这种温标表示的温度,称为热力学温度或绝对温度,用符号T表示。 绝对温度单位:开尔文,简称开,符号是 K。 热力学温度和摄氏温度只是零点的选择不同,但它们的分度方法相同,即二者每一度的大小相同。 ③热力学温度和摄氏温度之间的数值关系: T t=+(为计算上的简化,可取绝对零度为-273℃) 273 例如气压为1.013×105 Pa时 冰的熔点t =0 ℃→T = 273 K 水的沸点t =100 ℃→T =(100+273)K 温度与物质分子的热运动关系:温度越高,分子热运动越剧烈。分子平均速率也越大(各

专题三:气体实验定律_理想气体的状态方程

专题三:气体实验定律 理想气体的状态方程 [基础回顾]: 一.气体的状态参量 1.温度:温度在宏观上表示物体的________;在微观上是________的标志. 温度有________和___________两种表示方法,它们之间的关系可以表示为:T = ________.而且ΔT =____(即两种单位制下每一度的间隔是相同的). 绝对零度为____0 C,即___K ,是低温的极限,它表示所有分子都停止了热运动.可以无限接近,但永远不能达到. 2.体积:气体的体积宏观上等于___________________________________,微观上则表示_______________________.1摩尔任何气体在标准状况下所占的体积均为_________. 3.压强:气体的压强在宏观上是___________;微观上则是_______________________产生的.压强的大小跟两个因素有关:①气体分子的__________,②分子的_________. 二.气体实验定律 1.玻意耳定律(等温变化) 一定质量的气体,在温度不变的情况下,它的压强跟体积成______;或者说,它的压强跟体积的________不变.其数学表达式为_______________或_____________. 2.查理定律(等容变化) (1)一定质量的气体,在体积不变的情况下,温度每升高(或降低)10 C ,增加(或减少)的压强等于它在___________.其数学表达式为_______________或_____________. (2)采用热力学温标时,可表述为:一定质量的气体,在体积不变的情况下,它的压强与热力学温度成______.其数学表达式为____________. (3)推论:一定质量的气体,从初状态(P ,T )开始,发生一等容变化过程,其压强的变化量△P 与温度变化量△T 的关系为_____________. 3.盖·吕萨克定律(等压变化) (1)一定质量的气体,在压强不变的情况下,温度每升高(或降低)10 C ,增加(或减少)的体积等于它在___________.其数学表达式为_______________或_____________. (2)采用热力学温标时,可表述为:一定质量的气体,在压强不变的情况下,它的体积与热力学温度成______.其数学表达式为____________. (3)推论:一定质量的气体,从初状态(V ,T )开始,发生一等压变化过程,其体积的变化量△V 与温度变化量△T 的关系为_____________. 三.理想气体状态方程 1.理想气体 能够严格遵守___________的气体叫做理想气体.从微观上看,分子的大小可忽略,除碰撞外分子间无___________,理想气体的内能由气体_____和_____决定,与气体_____无关.在___________、__________时,实际气体可看作理想气体. 2.一定质量的理想气体状态方程: 2 2 2111T V P T V P = 3.密度方程: 2 22111ρρT P T P = [重难点阐释]: 一.气体压强的计算

理想气体状态方程式

第1章第零定律与物态方程 一、基本要点公式及其适用条件 1.系统的状态和状态函数及其性质 系统的状态—就是系统物理性质和化学性质的综合表现,它采用系统的宏观性质来描述系统的状态,系统的宏观性质,也称为系统的"状态函数"。 系统的宏观性质(状态函数)—就是由大量(摩尔级)的分子、原子、离子等微观粒子组成的宏观集合体所表现出的集团行为,简称"热力学性质"或“热力学函数”如p、V、T、U、H、S、A、G等。 Z=f(x,y)表示一定量、组成不变的均相系统,其任意宏观性质(Z)是另两个独立宏观性质(x,y)的函数。状态函数Z具有五个数学特征: (1),状态函数改变量只决定于始终态,与变化过程途径无关。 (2),状态函数循环积分为零,这是判断Z是否状态函数的准则之一。 (3),系Z的全微分表达式 (4),系Z的 Euler 规则,即微分次序不影响微分结果。 (5),系Z、x、y满足循环式,亦称循环规则。 2.热力学第零定律即热平衡定律: 当两个物态A和B分别与第三个物体C处于热平衡,则A和B之间也必定彼此处于热平衡。T=t+273.15,T是理想气体绝对温标,以"K"为单位。t是理想气体摄氏温标,以"℃"为单位。 绝对温标与摄氏温标在每一度大小是一样的,只是绝对温标的零度取在摄氏温标的 -273.15℃处,可以看出,有了绝对温标的概念后,只需确定一个固定参考点(pV)0p=0,依国际计量大会决定,这个参考点选取在纯水三相点,并人为规定其温度正好等于 273.16K。 3.理想气态方程及其衍生式为: ;式中p、V、T、n单位分别为 Pa、m3、K、mol;R=8.314J·mol-1·K-1,V m为气体摩尔体积,单位为 m3·mol-1,ρ为密度单位kg·m-3,M 为

气体状态方程

推导 宁业栋

摘要:气体状态方程是化学学习中的一个重要工具,在高中的学习中主要使用的是理想气体方程。然而在现实生活中更加实用的是实际气体方程,又被称为Van der waals方程。本文通过对理想气体方程和Van der waals方程的推导探究对于气体状态造成影响的因素。 关键词:气体状态方程影响因素推导历史

一、理想气体状态方程的历史

文艺复兴后期,科学界开始其启蒙运动。在化学方面,化学成为了一门独立的学科,而不是炼金术士和炼丹术士的工具。化学的“文艺复兴”主要以气体问题的研究为主。当时人们并不知道气体的微观构成,但对于气体的宏观行为的研究因此进行了几个世纪。1662年,英国物理学家Robert Boyle根据实验结果提出了Boyle定律*。18世纪,法国科学家Amontons Grillaume和Jacque Alexandre Cesar Charles 均先后发现:一定质量的气体,在保持压强不变的情况下,温度每升高(降低)1℃,增加(减小)的提及等于它在0℃时的体积的1/273。19世纪初,法国科学家Gay-Lussac经多种气体的实验,终于确定了这一关系,后人称为Gay定律。这个Gay总结了他和基友Boyle和Charles的成果,总结出了一个让高中生头疼的方程式,就是 PV=nRT 注释: *:Boyle定律为P1×V1=P2×V2

二、理想气体 假设有一种气体,同时它的分子只有位置而不占提及,是一个质点;且分子间没有互相的吸引力,不遵循万有引力定律,分子之间和容器之间发生的碰撞不会造成动能的损失。这种气体就被称为理想气体。 这种气体明显是不存在的,只是人为规定的一种气体模型。因为理想气体将气体状态问题简化了许多,所以在中学阶段我们使用理想气体模型进行气体状态的研究。 在研究中发现,在高温低压的情况下某些气体的性质可以接近理想气体。因为在高温低压的条件下,分子间的间距极大,一方面可以忽略气体分子自身的体积,另一方面也使分子间的作用力微乎其微。所以尽管理想气体是一种人为模型,不过在现实的研究中仍然有意义,尤其对于中学阶段的粗略研究。

高中物理选修3-3理想气体的状态方程教案

8.3、理想气体的状态方程 一、教学目标 1.在物理知识方面的要求: (1)初步理解“理想气体”的概念。 (2)掌握运用玻意耳定律和查理定律推导理想气体状态方程的过程,熟记理想气体状态方程的数学表达式,并能正确运用理想气体状态方程解答有关简单问题。 (3)熟记盖·吕萨克定律及数学表达式,并能正确用它来解答气体等压变化的有关问题。 2.通过推导理想气体状态方程及由理想气体状态方程推导盖·吕萨克定律的过程,培养学生严密的逻辑思维能力。 3.通过用实验验证盖·吕萨克定律的教学过程,使学生学会用实验来验证成正比关系的物理定律的一种方法,并对学生进行“实践是检验真理唯一的标准”的教育。 二、重点、难点分析 1.理想气体的状态方程是本节课的重点,因为它不仅是本节课的核心内容,还是中学阶段解答气体问题所遵循的最重要的规律之一。 2.对“理想气体”这一概念的理解是本节课的一个难点,因为这一概念对中学生来讲十分抽象,而且在本节只能从宏观现象对“理想气体”给出初步概念定义,只有到后两节从微观的气体分子动理论方面才能对“理想气体”给予进一步的论述。 另外在推导气体状态方程的过程中用状态参量来表示气体状态的变化也很抽象,学生理解上也有一定难度。 三、教具 1.气体定律实验器、烧杯、温度计等。 四、主要教学过程 (一)引入新课 前面我们学习的玻意耳定律是一定质量的气体在温度不变时,压强与体积变化所遵循的规律,而查理定律是一定质量的气体在体积不变时,压强与温度变化时所遵循的规律,即这两个定律都是一定质量的气体的体积、压强、温度三个状态参量中都有一个参量不变,而另外两个参量变化所遵循的规律,若三个状态参量都发生变化时,应遵循什么样的规律呢?这就是我们今天这节课要学习的主要问题。 (二)教学过程设计 1.关于“理想气体”概念的教学 设问: (1)玻意耳定律和查理定律是如何得出的?即它们是物理理论推导出来的还是由实验总结归纳得出来的?答案是:由实验总结归纳得出的。 (2)这两个定律是在什么条件下通过实验得到的?老师引导学生知道是在温度不太低(与常温比较)和压强不太大(与大气压强相比)的条件得出的。 老师讲解:在初中我们就学过使常温常压下呈气态的物质(如氧气、氢气等)液化的方法是降低温度和增大压强。这就是说,当温度足够低或压强足够大时,任何气体都被液化了,当然也不遵循反映气体状态变化的玻意耳定律和查理定律了。而且实验事实也证明:在较低温度或较大压强下,气体即使未被液化,它们的实验数据也与玻意耳定律或查理定律计算出的数据有较大的误差。 5

理想气体状态方程四种情况

理想气体状态方程 1、如图所示,U形管右管横截面积为左管2倍,管内水银在左管内封闭了一段长为26cm、温度为 280K的空气柱,左右两管水银面高度差为36cm,大气压为76cm Hg.现向右管缓慢补充水银. ①若保持左管内气体的温度不变,当左管空气柱长度变为20cm时,左管内气体的压强为多大? ②在①条件下,停止补充水银,若给左管的气体加热,使管内气柱长度恢复到26cm,则左管 内气体的温度为多少? 2、如图所示,两端开口、粗细均匀的足够长的玻璃管插在水银槽中,管的上部有一定长度的 水银,两段空气柱被封闭在左右两侧的竖直管中。开启上部连通左右水银的阀门A,当温度为 300 K平衡时水银的位置如图(h1=h2=5 cm,L1=50 cm),大气压为75 cmHg。求: (1)右管内空气柱的长度L2; (2)关闭阀门A,当温度升至405 K时,左侧竖直管内气柱的长度L3。 3、如图所示,截面均匀的U形玻璃细管两端都开口,玻璃管足够长,管内有两段水银柱封闭着一段空气柱,若气柱温度是270C时,空气柱在U形管的左侧,A、B两点之间封闭着的空气柱长为15cm,U形管底边长CD=10cm,AC高为5cm。已知此时的大气压强为75cmHg。 (1)若保持气体的温度不变,从U形管左侧管口处缓慢地再注入25cm长的水银柱,则管内空 气柱长度为多少?某同学是这样解的: 对AB部分气体,初态p1=100cmHg,V1=15S cm3,末态p2=125cmHg,V2=LS cm3, 则由玻意耳定律p1V1=p2V2解得管内空气柱长度L=12cm。 以上解法是否正确,请作出判断并说明理由, 如不正确则还须求出此时管内空气柱的实际长度为多少? (2)为了使这段空气柱长度恢复到15cm,且回到A、B两点之间,可以向U形管中再注入一些水银,且改变气体的温度。问:应从哪一侧管口注入多长的水银柱?气体的温度变为多少? 4、一圆柱形气缸,质量M为10 kg,总长度L为40 cm,内有一厚度不计的活塞,质量m为5 kg,截 面积S为50 cm2,活塞与气缸壁间摩擦不计,但不漏气,当外界大气压强p0为1′105Pa,温度t0为7° C时,如果用绳子系住活塞将气缸悬挂起来,如图所示,气缸内气体柱的高L1为35 cm,g取 10 m/s2.求:①此时气缸内气体的压强;②当温度升高到多少摄氏度时,活塞与气缸将分离. 5、如图所示,两个绝热、光滑、不漏气的活塞A和B将气缸内的理想气体分隔成甲、乙两部分, 气缸的横截面积为S = 500 cm2。开始时,甲、乙两部分气体的压强均为1 atm(标准大气压)、 温度均为27 ℃,甲的体积为V1 = 20 L,乙的体积为V2 = 10 L。现保持甲气体温度不变而使 乙气体升温到127 ℃,若要使活塞B仍停在原位置,则活塞A应向右推多大距离? 6、如图所示,一导热性能良好、内壁光滑的气缸竖直放置,在距气缸底部l=36cm处有一与气缸固定 连接的卡环,活塞与气缸底部之间封闭了一定质量的气体.当气体的温度T0=300K、大气压强p0=1.0 ×105Pa时,活塞与气缸底部之间的距离l0=30cm,不计活塞的质量和厚度.现对气缸加热,使活塞缓 慢上升,求: ①活塞刚到卡环处时封闭气体的温度T1.②封闭气体温度升高到T2=540K时的压强p2. 7、使一定质量的理想气体的状态按图中箭头所示的顺序变化,图线 BC是一段以纵轴和横轴为渐近线的双曲线。 (1)已知气体在状态A的温度T A=300K,问气体在状态B、C和D的温度 各是多大?

高中物理人教版选修3-3教案 《理想气体的状态方程》(2篇)

理想气体的状态方程 一、教学目标 1.在物理知识方面的要求: (1)初步理解“理想气体”的概念。 (2)掌握运用玻意耳定律和查理定律推导理想气体状态方程的过程,熟记理想气体状态方程的数学表达式,并能正确运用理想气体状态方程解答有关简单问题。 (3)熟记盖·吕萨克定律及数学表达式,并能正确用它来解答气体等压变化的有关问题。 2.通过推导理想气体状态方程及由理想气体状态方程推导盖·吕萨克定律的过程,培养学生严密的逻辑思维能力。 3.通过用实验验证盖·吕萨克定律的教学过程,使学生学会用实验来验证成正比关系的物理定律的一种方法,并对学生进行“实践是检验真理唯一的标准”的教育。 二、重点、难点分析 1.理想气体的状态方程是本节课的重点,因为它不仅是本节课的核心内容,还是中学阶段解答气体问题所遵循的最重要的规律之一。 2.对“理想气体”这一概念的理解是本节课的一个难点,因为这一概念对中学生来讲十分抽象,而且在本节只能从宏观现象对“理想气体”给出初步概念定义,只有到后两节从微观的气体分子动理论方面才能对“理想气体”给予进一步的论述。另外在推导气体状态方程的过程中用状态参量来表示气体状态的变化也很抽象,学生理解上也有一定难度。 三、教具 1.气体定律实验器、烧杯、温度计等。 四、主要教学过程 (一)引入新课 前面我们学习的玻意耳定律是一定质量的气体在温度不变时,压强与体积变化所遵循的规律,而查理定律是一定质量的气体在体积不变时,压强与温度变化时所遵循的规律,即这两个定律都是一定质量的气体的体积、压强、温度三个状态参量中都有一个参量不变,而另外两个参量变化所遵循的规律,若三个状态参量都发生变化时,应遵循什么样的规律呢?这就是我们今天这节课要学习的主要问题。 (二)教学过程设计 1.关于“理想气体”概念的教学 设问: (1)玻意耳定律和查理定律是如何得出的?即它们是物理理论推导出来的还是由实验总结归纳得出来的?答案是:由实验总结归纳得出的。 (2)这两个定律是在什么条件下通过实验得到的?老师引导学生知道是在温度不太低(与常温比较)和压强不太大(与大气压强相比)的条件得出的。 老师讲解:在初中我们就学过使常温常压下呈气态的物质(如氧气、氢气等)液化的方法是降低温度和增大压强。这就是说,当温度足够低或压强足够大时,任何气体都被液化了,当然也不遵循反映气体状态变化的玻意耳定律和查理定律了。而且实验事实也证明:在较低温度或较大压强下,气体即使未被液化,它们的实验数据也与玻意耳定律或查理定律计算出的数据有较大的误差。 P (×1.013×105Pa) pV值(×1.013×105PaL) H 2 N 2 O 2 空 气 1 1 .000 1 .000 1 .000 1 .000 100 1 .0690 .9941 .9265 .9730 200 1 .1380 1 .0483 .9140 1 .0100 500 1 .3565 1 .3900 1 .1560 1 .3400 1000 1211

8.3《理想气体的状态方程》(2016学案)解析

8.3《理想气体的状态方程》导学案 1在任何温度、任何压强下都遵从 ____________________■勺气体叫做理想气体?事实上,玻意耳 定律、查理定律、盖一吕萨克定律等气体实验定律,都是在压强 _______________ 、温度 ____________ ■勺条件下总结出来的?当压强 _________、温度__________ 寸,由上述定律计 算的结果与实验测量结果有很大的差别?实际气体在温度 __、压强__________ 时,可近似看做理想气体. 2. _____________________________________________ —定质量的理想气体发生状态变化时, 它的 _______________________________________________ 跟 _______ 的乘积与 _______________ 的比值保持不变,这种关系称为理想气体的状态方程. 用p 、V 、T 分别表示气体某状态的压强、体积和温度,理想气 体状态方程的表达式为: 用p i 、V i 、T i 分别表示初态压强、体积和热力学温度, P 2、、V 、T 2 分别表示末态压强、体积和热力学温度,则理想气体状态方程表 达式为: 3. 关于理想气体,下列说法正确的是( ) A. 理想气体也不能严格地遵守气体实验定律 B. 实际气体在温度不太高、压强不太小的情况下,可看成理想气体 C. 实际气体在温度不太低、压强不太大的情况下,可看成理想气体 D. 所有的实际气体在任何情况下,都可以看成理想气体 4. 对于一定质量的理想气体,下列状态变化中可能的是 ( ) A. 使气体体积增加而同时温度降低 B .使气体温度升高,体积不变、压强减小 C.使气体温度不变,而压强、体积同时增大 D .使气体温度升高,压强减小,体积减小 6 .下列叙述正确的是( ) A. 一定质量的某种气体,当温度和体积都保持不变时,它的压强一定不会发生变化 B. 一定质量的某种气体,当其体积增大时,压强不可能增大 C. 一定质量的某种气体,当其温度升高时,体积一定增大 D. 一定质量的某种气体的压强增大,温度降低,这种气体的密度一定增大 【概念规律练】 知识点一理想气体的状态方程 1 . 一定质量的理想气体,在某一平衡状态下的压强、体积和温度分别为 p i 、V 、T i ,在另 平衡状态下的压强、体积和温度分别为 P 2、V 2、T 2,下列关系中正确的是( ) A. p i = P 2, V i = 2V 2, T i = 2丁 2 B C. p i = 2p 2, V = 2V ;,T i = 2T 2 D . p i = 2p 2, V i = V 2, T i = 2T 2 2 .对一定质量的理想气体( ) A. 若保持气体的温度不变,则当气体的压强减小时,气体的体积一定会增大 B. 若保持气体的压强不变,则当气体的温度减小时,气体的体积一定会增大 C. 若保持气体的体积不变,则当气体的温度减小时,气体的压强一定会增大 D. 若保持气体的温度和压强都不变,则气体的体积一定不变 知识点二理想气体状态变化图象 i P i = P 2,M = 2仏,T i =

人教版3-3 第8章 3 理想气体的状态方程 作业

第八章 3 理想气体的状态方程 基础达标 1.一定质量的理想气体,经历了如图所示的状态变化过程,则三个状态的温度之比是( ) A .1∶3∶5 B .3∶6∶5 C .3∶2∶1 D .5∶6∶3 【答案】B 解析:由状态方程知 p 1V 1T 1=p 2V 2T 2=p 3V 3 T 3 ,代入数据可以得出,T 1∶T 2∶T 3=3∶6∶5. 2.(2018徐州名校质检)一定质量的理想气体,状态变化由a 到b 到c ,其p -t 图中直线ab 平行p 坐标轴(t 为摄氏温标),直线bc 通过坐标原点,三状态的体积分别为V a 、V b 、 V c ,则根据图象可以判定( ) A .V a >V b B .V a =V b C .V b >V c D .V b =V c 【答案】C 解析:根据理想气体的状态方程有pV T =C ,其中a →b 温度不变,压强减少,即体积增大,故V a V c ,故C 正确. 3.(2019韶关名校月考)如图所示,表示一定质量的气体的状态由A 经B 到C 回到A 的图象,其中AB 延长线通过坐标原点.BC 和AC 分别与T 轴和V 轴平行.则下列描述正确的是( )

A .A → B 过程气体压强增加 B .B → C 过程气体压强不变 C .C →A 过程气体分子密度减小 D .A →B 过程气体分子平均动能增加 【答案】D 解析:过各点的等压线如图,从状态A 到状态B ,同一条斜线上,压强相等,故A 错误;从状态B 到状态C ,斜率变大,则压强变小,故B 错误;从状态C 到状态A ,温度不变,体积减小,则单位体积内的分子数增大,故C 错误;从状态A 到状态B ,温度升高,则分子平均动能增大,故D 正确. 4.(2019梧州名校检测)如图所示,三支粗细相同的玻璃管,中间都用一段水银柱封住温度相同的空气柱,且V 1=V 2>V 3,h 1V 3,ΔT 相同,故ΔV 1=ΔV 2>ΔV 3,即甲管与乙管中水银柱上升最多.故B 正确,A 、C 、D 错误. 5.(多选)一定质量的理想气体,初始状态为p 、V 、T 经过一系列状态变化后,压强仍为p ,则下列过程中可以实现的是( ) A .先等温膨胀,再等容降温 B .先等温压缩,再等容降温 C .先等容升温,再等温压缩 D .先等容降温,再等温压缩 【答案】BD 解析:根据理想气体状态方程pV T =C ,若经过等温膨胀,则T 不变,V 增加,p 减小,再

理想气体状态方程

理想气体状态方程 一、知识点击: 1.理想气体: 理想气体是一个理论模型,从分子动理论的观点来看,这个理论模型主要有如下三点:(1)分子本身的大小比起分子之间的平均距离来可以忽略不计。 (2)气体分子在做无规则运动过程中,除发生碰撞的瞬间外,分子相互之间以及分子与容器器壁之间,都没有相互作用力。 (3)分子之间以及分子与器壁之间的碰撞是完全弹性的,即气体分子的总动能不因碰撞而损失。 由于不计分子之间的相互作用力,因而也就不计分子的势能,理想气体的内能就是所有分子的动能的总和。一定质量的理想气体内能的多少就只取决于温度,而与体积无关。在温度不太低,压强不太大的条件下,真实气体可看作为理想气体。

3.理想气体状态方程:一定质量的理想气体,其压强、体积和热力学温度在开始时分别为P 1、V 1、T 1,经过某一变化过程到终了时分别变成P 2、V 2、T 2,则应有C T pV T V p T V p ==或222111。这就是理想气体的状态方程。 理想气体的状态方程是根据三条气体实验定律中的任意两条(例如玻意耳定律和查理定律)推导而得的。 证明:如右图所示,a →b 为等容变化,根据查理 定律有P 1/T 1= P c /T 2,b →c 为等温变化,根据波意耳定 律有P c ·V 1=P 2·V 2,两式联立起来,得到P c =P 1/T 1·T 2 =P 2·V 2/ V 1,变形得到2 22111T V p T V p =。 二、能力激活: 题型一:图像的物理意义: 示例1:如图所示是a 、b 两部分气体的V -t 图像,由图像可知:当t =0℃时,气体a 的体积为 m 3;当t =273℃时,气体a 的体积比气体b 的体积大 m 3。 [分析]如图所示的V -t 图像描述的是等压过程,由 )273 1(0t V V t +=,可知t =273℃时,气体的体积是0℃时气体体积的两倍,则气体a 的体积为0.6m 3,气体b 的体积为0.2m 3。 [解析]气体a 的体积比气体b 的体积大0.6-0.2=0.4m 3。 题型二:应用气体的P -V 图、P -T (或P -t )图解题: 示例2:有两个容积相等的容器,里面盛有同种气体,用一段水平 玻璃管把它们连接起来。在玻璃管的正中央有一段水银柱,当一个容器中气体的温度是0℃,另一个容器中气体的温度是20℃时,水银柱保持静止。如果使两容器中气体的温度都升高10℃,管中的水银柱会不会移动?如果移动的话,向哪个方向移动? [分析]一般解法是,选假定两边密闭容器中的气体体积暂不改变,根据查理定律,分别计算出两边气体各升温10℃后的压强,再比较两方压强的大小,就能判断水银柱会不会移动和向哪个方向移动。即 。,℃的气体来说,对原来温度为;,℃的气体来说,对原来温度为0011 222121 001122212129310129330320273 1012732830P P P T T P T T P P P P P T T P T T P P ========''''''' ' ∴P 2>P 2',因此水银柱应向原来温度高的那一侧移动。 这种解法如改用P -T (或P -t )图像来表述,将会更直观、鲜明。解题思路跟上面的一样,即先假定两边密闭容器中的气体体积暂不改变,分别根据查理定律P -T 图上画出各自的等容线。如图所示。其中在分别为273K 和293K 的初温时气体压强相等即P 0 。再标出温

理想气体状态方程

理想气体状态方程 理想气体状态方程(ideal gas,equation of state of),也称理想气体定律或克拉佩龙方程,描述理想气体状态变化规律的方程。质量为m,,摩尔质量为M的理想气体,其状态参量压强p、体积V和绝对温度T之间的函数关系为pV=mRT/M=nRT 式中ρ和n分别是理想气体的摩尔质量和物质的量;R是气体常量。对于混合理想气体,其压强p是各组成部分的分压强p1、p2、……之和,故 pV=(p1+p2+……)V=(n1+n2+……)RT,式中n1、n2、……是各组成部分的摩尔数。 以上两式是理想气体和混合理想气体的状态方程,可由理想气体严格遵循的气体实验定律得出,也可根据理想气体的微观模型,由气体动理论导出。在压强为几个大气压以下时,各种实际气体近似遵循理想气体状态方程,压强越低,符合越好,在压强趋于零的极限下,严格遵循。 pV=nRT(克拉伯龙方程[1]) p为气体压强,单位Pa。V为气体体积,单位m3。n为气体的物质的量,单位mol,T为体系温度,单位K。 R为比例系数,数值不同状况下有所不同,单位是J/(mol·K) 在摩尔表示的状态方程中,R为比例常数,对任意理想气体而言,R是一定的,约为8.31441±0.00026J/(mol·K)。 如果采用质量表示状态方程,pV=mrT,此时r是和气体种类有关系的,r=R/M,M为此气体的平均分子量. 经验定律 (1)玻意耳定律(玻—马定律) 当n,T一定时V,p成反比,即V∝(1/p)① (2)查理定律 当n,V一定时p,T成正比,即p∝T ② (3)盖-吕萨克定律 当n,p一定时V,T成正比,即V∝T ③ (4)阿伏伽德罗定律 当T,p一定时V,n成正比,即V∝n ④ 由①②③④得 V∝(nT/p)⑤ 将⑤加上比例系数R得 V=(nRT)/p 即pV=nRT 实际气体中的问题当理想气体状态方程运用于实际气体时会有所偏差,因为理想气体的基本假设在实际气体中并不成立。如实验测定 1 mol乙炔在20℃、101kPa 时,体积为24.1 dm,,而同样在20℃时,在842 kPa下,体积为0.114 dm,,它们相差很多,这是因为,它不是理想气体所致。 一般来说,沸点低的气体在较高的温度和较低的压力时,更接近理想气体,如氧气的沸点为-183℃、氢气沸点为-253℃,它们在常温常压下摩尔体积与理想值仅相差

(完整版)理想气体状态方程专题训练

理想气体状态方程专题训练 一、封闭气体压强计算 1.在图中,各装置均静止,已知大气压强为P0 ,液体密度为ρ,求被封闭气体的压强p 2.如图所示,一个横截面积为S的圆筒形容器竖直放置.金属圆板A的 上表面是水平的,下表面是倾斜的,下表面与水平面的夹角为θ,圆板 的质量为M.不计圆板与容器内壁之间的摩擦.若大气压强为p0,则求 被圆板封闭在容器中的气体的压强p. 3.如图所示,光滑水平面上放有一质量为M的汽缸,汽缸内放有一质量为m、可在气缸内无摩擦滑动的活塞,活塞面积为S,现用水平恒力F向右推汽缸,最后汽缸和活塞达到相对静止状态,求此时缸内封闭气体的压强P。(已知外界大气压为P0)

二、理想气体状态方程的基础应用 4.一定质量的理想气体由状态A经过状态B变为状态C,其有关数据如p-T图象甲所示.若气体在状态A的温度为-73.15℃,在状态C的体积为0.6m3.求: (1)状态A的热力学温度; (2)说出A至C过程中气体的变化情形,并根据图象提供的信息,计算图中V A的值;(3)在图乙坐标系中,作出由状态A经过状态B变为状态C的V-T图象,并在图线相应位置上标出字母A、B、C.如果需要计算才能确定坐标值,请写出计算过程. 三、单一封闭气体问题 5.一足够长的粗细均匀的玻璃管开口向上竖直放置,管内由15cm长的水银柱 封闭着50cm长的空气柱.若将管口向下竖直放置,空气柱长变为多少cm? (设外界大气压强为75cmHg,环境温度不变) 6.在如图所示的气缸中封闭着温度为400K的空气,一重物用绳索经 滑轮与缸中活塞相连接,重物和活塞均处于平衡状态,这时活塞离 缸底的高度为10cm,如果缸内空气变为300K,问: (1)重物是上升还是下降? (2)这时重物将从原处移动多少厘米?(设活塞与气缸壁间无摩擦)

实际气体状态方程

实际气体状态方程式 1.范德瓦尔方程式 2.R-K方程(*) 3.维里方程(*) …范德瓦尔方程式 按照理想气体状态方程式,定质量气体等温变化时p V=常数(或pv=常数),但实际气体 仅在压力较低,温度较高的情况下近似满足此关系。试验证明,气体的压力愈高、温度愈低,这一偏差愈大。因此需要适用于实际气体的状态方程式来描述气体p-v-T之间的关系。 最早的实际气体状态方程式是1873年范德瓦尔(Van der Wals)提出的方程式。他针对理想气体的两个基本假设,对理想气体状态方程式进行了修正,提出了实际气体的范德瓦尔方程式: (2-17) 式中的常数a和b叫做范德瓦尔常数,与分子的大小和相互作用力有关,随物质不同而异, 可由实验方法确定。是考虑到分子之间吸引力的修正值,b是考虑到分子本身所占有体积的修正值, V m为比摩尔体积,即1mol气体的体积。 范德瓦尔方程式是从理论分析得出的。如果把式(2-17)与理想气体状态方程式 作一比较即可看出,比摩尔体积V m愈大,则两者之间的差别就愈小。随着压力的降低与温度的升高,气体比体积增大。因此,当压力愈低,温度愈高时,实际气体的性质愈接近于理想气体。 范德瓦尔方程式比理想气体状态方程式有了显著的进步,对于离液态颇远的气体,即使压力很高,也能得到较准确的结果,但对于较易液化的气体就显得不很准确,对于接近液态的气体,例如水蒸汽,即使在不怎么高的压力下已可见到很显著的误差。范德瓦尔方程式仍不能在量上正确反映实际气体状态参数间的关系,不宜作为工程计算的依据。范德瓦尔方程式的价值在于能近似地反映实际气体性质方面的特征,并为实际气体状态方程式的研究开拓了道路。 百多年来,有不少的学者,通过长期的理论分析和实验研究,提出了多种不同的状态方程式。如R-K方程、BWR方程、M-H方程、维里型方程,等等。这些状态方程式可归结为理论型、半经验型和通用型三类,但由于各种不同气体存在着不同的分子间聚集态,分子间力的变化又是错综复杂的,故很难用既合理又简单的方程适合所有物质和不同聚集态。所以,每一个方程式都有其一定的应用范围。 工程上为了求得未经详细研究的工质的热力学性质,目前常运用对应态原理,通过少量实验数据,进行估算,在一定程度上可以得到相当满意的近似结果。

实际气体状态方程

5.3 实际气体状态方程 研究实际气体性质首先要求得出精确的状态方程式。对实际气体状态方程己作了百余年的研究,导得了许多不同形式的方程,至今仍在不断地发展和改进。得出状态方程有两种方法。一是直接利用由实验得到的各种热系数数据,按热力学关系组成状态方程。这种方法己在4-4节作过简单的介绍;二是从理论分析出发,考虑气体分子运动的行为而对理想气体状态方程引入一些常数加以修正,得出方程的形式,引入常数的值则根据实验数据确定。这一节着重介绍这一种方法。 5.3.1 范德瓦尔斯状态方程 1873年范德瓦尔斯针对理想气体模型的两个假定(分子自身不占有体积;分子之间不存在相互作用力),考虑了分子自身占有的体积和分子间的相互作用力,对理想气体状态方程进行了修正。分子自身占有的体积使其自由活动空间减小,在相同温度下分子撞击容器壁的频率增加,因而压力相应增大。 如果用表示每摩尔气体分子自由活动的空间,参照理想气体状态方程,气体压力应为。另一方面,分子间的相互吸引力使分子撞击容器壁面的力量减弱,从而使气体压力减小。压力减小量与一定体积内撞击器壁的分子数成正比,又与吸引它们的分子数成正比,这两个分子数都

与气体的密度成正比。因此,压力减小量应与密度的平方成正比,也就是与摩尔体积的平方成反比,用表示。这样考虑上述两种作用后,气体的压力为 或写成 (5-24) 这就是范德瓦尔斯导出的状态方程式,称为范德瓦尔斯状态方程式。它在理想气体状态方程的基础上又引入两个常数:; 做范德瓦尔斯常数,其值可由实验测定的数据确定。 范德瓦尔斯方程的引出,是从理论分析出发导出气体状态方程的一个典型例子。范德瓦尔斯方程只不过是用两个常数很粗略地考虑了气体内分子运 动的行为,所以还不能精确地表述气体的关系。但是,它为用理论方法研究状态方程开拓了道路。特别是它在定性上能反映出物质气—液相

气体状态方程的发展及应用

气体状态方程的发展及应用 (方源成楚旸陈其伟张少斐北京大学化学与分子工程学院100871) 摘要:气体状态方程是描述宏观气体p-v-t行为的解析式方程,在科学研究及工业生产方面发挥着重要的作用。本文通过对气体状态方程历史的回顾与各种气体状态方程的分析和评价,给出了判断气体方程如何应用之标准,并对气体状态方程的研究应用方向作出了判断。 关键词:气体状态方程历史应用判断标准 1.气体状态方程的历史 文艺复兴后期,科学界开始其启蒙思想运动。化学方面,这一运动以气体问题研究为主。当时的人们并不清楚气体的微观构成,但对于气体宏观行为的研究从此进行了几个世纪。1 662年,英物理学家Robert Boyle根据实验结果提出Boyle定律。18世纪,法国物理学家A montons Grillaume和Jacques Alexandre Cesar Charles均先后发现:一定质量的气体,在保持压强不变的情况下,温度每升高(或降低)1℃,增加(或减小)的体积等于它在0℃时 体积的1/273 。1800年左右,法国另一位化学家Gay-Lussac经多种气体的实验,最终确立 了这一关系,后世称之为Gay-Lussac定律。19世纪中期,法国科学家Clapeyron综合Boyl e定律与Charles- Gay-Lussac定律,把描述气体状态的三个参量归并于一个方程,即PV/T= C(恒量)。后于1874年经Менделе?ев推广,人们开始普遍使用现行理想气体状态方程: PV = nRT 为了解释这些从实验里总结出的经验规律,Boyle曾提出两种微粒模型:第一种模型认为气体粒子相互挤在一起,他们每一个都具有弹性;第二种模型认为气体粒子并非挤在一起,而是处于剧烈运动之中。Daniel Bernoulli于1738年给上述第二种模型一个更精确的说明,并由此提出了气体压强的碰撞理论,很好地解释了Boyle定律。但这一理论在当时并未获得应有的重视。约100年后,一位英国杂志编辑赫拉派斯独立地提出Bernoulli曾提出过的气 体理论。1848年,Joule在赫拉派斯的工作基础上,测量了许多气体的分子速度,在他的推动下,这一理论获得了越来越多人的关注,是为气体分子运动论之先驱。此后不久,Rudol f Clausius引入统计概念,精确解释了Boyle定律与Gay-Lussac定律。伴随着众多气体定律与气体模型的提出,人们对气体的研究进一步发展,分子运动论越来越成熟。它基于从分子微观运动出发,运用统计力学研究气体的方法。根据这个理论理想,气体状态方程得到了很好的解释。 此外,人们根据这一理论的研究方法,开始尝试对实际气体进行描述。于是,众多的实际气体状态方程被提出。其中最早的为1873年提出的范德瓦尔斯方程式(Van der Waals Eq uation of State)。二十世纪上半叶,量子力学与统计力学的飞速发展又为纯理论性的气体状态方程——维里方程的产生与成熟提供了可能。与此同时,为提高状态方程结果的精确度,人们不断引入经验参数,最著名参数方程的是1928年提出的Beattie-Bridge man方程式与1

理想气体状态方程练习题.doc

选修3-3理想气体状态方程练习题 学号班级姓名 1.关于理想气体,下列说法正确的是( ) A.理想气体能严格遵守气体实验定律 B.实际气体在温度不太高、压强不太大的情况下,可看成理想气体 C.实际气体在温度不太低、压强不太大的情况下,可看成理想气体 D.所有的实际气体任何情况下,都可以看成理想气体 2.一定质量的理想气体,在某一平衡状态下的压强、体积和温度分别为p1、V1、T1,在另一平衡状态下的压强、体积和温度分别为p2、V2、T2,下列关系正确的是( ) A.p1=p2,V1=2V2,T1=1 2 T2 B.p1=p2,V1= 1 2 V2,T1=2T2 C.p1=2p2,V1=2V2,T1=2T2 D.p1=2p2,V1=V2,T1=2T2 3.一定质量的理想气体,经历一膨胀过程,这一过程可以用下图上 的直线ABC来表示,在A、B、C三个状态上,气体的温度T A、T B、T C相比 较,大小关系为( ) A.T B=T A=T C B.T A>T B>T C C.T B>T A=T C D.T B

5 有两个容积相等的容器,里面盛有同种气体,用一段水平玻璃管把它们连接起来。在玻璃管的正中央有一段水银柱,当一个容器中气体的温度是0℃,另一个容器中气体的温度是20℃时,水银柱保持静止。如果使两容器中气体的温度都升高10℃,管中的水银柱会不会移动?如果移动的话,向哪个方向移动? 6一艘位于水面下200m 深处的潜水艇,艇上有一个容积为3 2m 的贮气筒,筒内贮有压缩空气,将筒内一部分空气压入水箱(水箱有排水孔和海水相连),排出海水3 10m ,此时筒内剩余气体的压强是95atm 。设在排水过程中温度不变,求贮气钢筒里原来压缩空气的压强。(计算时 可取Pa atm 5 101=,海水密度2 3 3 /10,/10s m g m kg ==ρ)

物理3-3理想气体状态方程_试题及答案

物理3-3 理想气体状态方程 试题及答案 一、单选题 1.一定质量的理想气体,在某一平衡状态下的压强、体积和温度分别为p 1、V 1、T 1,在另一平衡状态下的压强、体积和温度分别为p 2、V 2、T 2,下列关系正确的是 A .p 1 =p 2,V 1=2V 2,T 1= 2 1T 2 B .p 1 =p 2,V 1=21 V 2,T 1= 2T 2 C .p 1 =2p 2,V 1=2V 2,T 1= 2T 2 D .p 1 =2p 2,V 1=V 2,T 1= 2T 2 2.已知理想气体的内能与温度成正比。如图所示的实线为汽缸内一定 质量 的理想气体由状态1到状态2的变化曲线,则在整个过程中汽缸内气体的 内能 A.先增大后减小 B.先减小后增大 C.单调变化 D.保持不变 3.地面附近有一正在上升的空气团,它与外界的热交热忽略不计.已知大气压强随高度增加而降低,则该气团在此上升过程中(不计气团内分子间的势能) A.体积减小,温度降低 B.体积减小,温度不变 C.体积增大,温度降低 D.体积增大,温度不变 4.下列说法正确的是 A. 气体对器壁的压强就是大量气体分子作用在器壁单位面积上的平均作用力 B. 气体对器壁的压强就是大量气体分子单位时间作用在器壁上的平均冲量 C. 气体分子热运动的平均动能减少,气体的压强一定减小 D. 单位面积的气体分子数增加,气体的压强一定增大 5.气体内能是所有气体分子热运动动能和势能的总和,其大小与气体的状态有关,分子热运动的平均动能与分子间势能分别取决于气体的 A .温度和体积 B .体积和压强 C .温度和压强 D .压强和温度 6.带有活塞的汽缸内封闭一定量的理想气体。气体开始处于状态a ,然后经过过程 ab 到达状态b 或进过过程ac 到状态c ,b 、c 状态温度相同,如V-T 图所示。设 气体在状态b 和状态c 的压强分别为Pb 、和PC ,在过程ab 和ac 中吸收的热量 分别为Qab 和Qac ,则 A. Pb >Pc ,Qab>Qac B. Pb >Pc ,QabQac D. Pb

相关主题
文本预览
相关文档 最新文档