当前位置:文档之家› 基于Flex的遥感影像管理系统设计与实现

基于Flex的遥感影像管理系统设计与实现

基于Flex的遥感影像管理系统设计与实现
基于Flex的遥感影像管理系统设计与实现

管理信息系统设计说明

管理信息系统综合练习报告题目:学生宿舍管理系统 2010年12月1日

引言 随着电脑的普及与应用,现在的管理也需要提升一个档次。即从原来的手工记录管理模式转变为电脑一体化管理。这样会给公寓的管理人员带来很多好处,让他们管理的效率更高、效果更好,管理起来更方便。由此而产生了本管理软件――学生公寓管理软件。 学生公寓管理软件是用Microsoft Visual Basic 编写完成。由于Visual Basic率先采用了可视化(VISUAL)的程序设计方法。所以利用系统提供的大量可视化控件,可以方便的以可视化方式直接绘制用户图形界面,并可直观,动态的调整界面的风格和样式,直到满意为止,从而克服了以前必须用大量代码去描述界面元素的外观和位置的传统编程模式。做起来方便,使用起来更为快捷。 作为一个学生公寓的管理软件,要十分全面的贴近以及适合大学公寓的管理方法。本软件的参考资料主要有两种来源:一是参考本学校公寓的管理结构,管理方法。如各个公寓的分布特色,以及公寓的各种管理制度。这些资料是本软件的主要依据,也可以说这些资料来源于普通的生活,比较真实一些。二是来源于网络上的各种同类软件,通过这些软件可以看出一个公寓最低需要哪些管理与设置,在这些软件中,有些软件功能比较齐全,但是在管理上显的非常的不方便,使用起来十分麻烦、繁琐,有些虽然简单,但是功能上又不是十分完善,对这些软件首先要进行取其精华,弃其糟粕,从而进行编写。 本系统主要包括以下方面:信息查询,学生管理,公寓管理。 学生公寓管理软件目前版本为1.0.1,为一个测试版本。它目前在功能上,以及操作的简便上有很大的改进。但是还是存在一些不足,在有些功能的实现上还不是十分的理想,这也是本人在时间和精力上留下的遗憾。但是相信这些会在以后的版本中得到完善,使这个软件成为一个功能上最全,使用上最简捷方便的管理软件

遥感影像元数据管理服务系统

3.6.3遥感影像元数据管理服务系统 遥感影像元数据管理系统在定位为在国家监管中心实现遥感影像元数据管理和对外服务的 基础设施,建成一套持续化、业务化运行系统。该系统的建设目标是:一方面满足海量持续增加的遥感影像数据有序管理的问题,同时面向海洋监测应用部门提供强大的影像服务功能。在保证数据安全的前提下,提供高效快捷的遥感影像网络服务支撑保障和数据持续有效集成能力。 主要工作及系统功能包括: (1)遥感影像元数据库规范 遥感影像元数据库是存放遥感影像数据元数据的空间数据库,以方便用户或者其他程序查询和使用特定的影像数据。遥感影像元数据库规范包括两个部分,一是空间数据模型规范,即如何根据遥感影像数据涉及的数据类型创建空间数据模型;一是元数据信息组织规范,即如何依据影像数据的元数据规范将影像数据的元数据信息有效组织到数据库中,利用ArcSDE 空间数据库进行一体化管理。 (2)影像数据管理子系统 系统采用C/S模式,面向业务人员。提供的具体功能包括:1)批量自动化灵活直接入库和快速浏览影像库支持的各类数据及其元数据;2)高效多条件检索影像库管理的数据并显示;3)直接读取影像库外多种格式影像并自动叠加显示、便捷注册和发布影像与地图服务等;4)管理员可以对不同类型用户和影像数据进行授权和分级管理。 影像数据管理子系统主要功能指标详细如下: *支持常用国外卫星影像数据:WorldView 1/2/3, GeoEye-1/2, RapidEye, IKONOS, QuickBird, Spot5, Spot6, Landsat-5 TM, Landsat-7 ETM+和Landsat-8 ALI等和国内主要卫星影像数据:HJ-A/B CCD, ZY-02-C, ZY-3、CBERS-3/4、天绘系列、高分系列、资源系列等; 影像实时动态镶嵌(自动计算金字塔、覆盖区域和显示比例以及处理分辨率); 影像元数据自动识别和解析,交互式元数据灵活更新和扩展; 读取和叠加GeoTIFF, ERDAS Image, eYaImage, ECW和JPEG等格式影像; 影像服务和地图服务的编辑,发布,和管理。 (3)影像共享服务子系统 基于B/S结构,面向管理和业务用户提供影像数据服务,包括影像数据检索服务、数据下载服务、影像展示服务等。系统包含以下四个功能模块:几何查询、属性条件过滤、查询结果浏览、对外影像和地图服务等。 系统结构为四层结构,客户浏览层、Web服务层、GIS中间件层以及影像数据存储层。其中,Web服务层基于SOA架构,为客户端提供业务服务;客户浏览器层则基于ArcGIS API for Flex;GIS中间件层提供遵循OGC规范的GIS服务,将遥感影像地理信息库和文件存储库中的数据提供给Web服务层 (4)影像动态处理和镶嵌融合模块 该模块是利用服务器端发布的Image Service服务,为用户提供影像数据进动态镶嵌融合处

遥感影像图像处理流程

遥感影像图像处理(processing of remote sensing image data)是对遥感图像进行辐射校正和几何纠正、图像整饰、投影变换、镶嵌、特征提取、分类以及各种专题处理等一系列操作,以求达到预期目的的技术。 一.预处理 1.降噪处理 由于传感器的因素,一些获取的遥感图像中,会出现周期性的噪声,我们必须对其进行消除或减弱方可使用。 (1)除周期性噪声和尖锐性噪声 周期性噪声一般重叠在原图像上,成为周期性的干涉图形,具有不同的幅度、频率、和相位。它形成一系列的尖峰或者亮斑,代表在某些空间频率位置最为突出。一般可以用带通或者槽形滤波的方法来消除。

消除尖峰噪声,特别是与扫描方向不平行的,一般用傅立叶变换进行滤波处理的方法比较方便。 (2)除坏线和条带 去除遥感图像中的坏线。遥感图像中通常会出现与扫描方向平行的条带,还有一些与辐射信号无关的条带噪声,一般称为坏线。一般采用傅里叶变换和低通滤波进行消除或减弱。

2.薄云处理 由于天气原因,对于有些遥感图形中出现的薄云可以进行减弱处理。 3.阴影处理 由于太阳高度角的原因,有些图像会出现山体阴影,可以采用比值法对其进行消除。二.几何纠正

通常我们获取的遥感影像一般都是Level2级产品,为使其定位准确,我们在使用遥感图像前,必须对其进行几何精纠正,在地形起伏较大地区,还必须对其进行正射纠正。特殊情况下还须对遥感图像进行大气纠正,此处不做阐述。 1.图像配准 为同一地区的两种数据源能在同一个地理坐标系中进行叠加显示和数学运算,必须先将其中一种数据源的地理坐标配准到另一种数据源的地理坐标上,这个过程叫做配准。 (1)影像对栅格图像的配准 将一幅遥感影像配准到相同地区另一幅影像或栅格地图中,使其在空间位置能重合叠加显示。 (2)影像对矢量图形的配准 将一幅遥感影像配准到相同地区一幅矢量图形中,使其在空间位置上能进行重合叠加显示。2.几何粗纠正

PIE华迪遥感影像处理软件白皮书V1.5

华迪遥感影像处理软件白皮书北京华迪宏图信息技术有限公司

目录 (44) 1.PIE概述............................................................................................................................................... 2.产品架构 (5) 3.产品关键技术 (6) 4.产品特点和优势 (6) 5.产品功能 (7) 5.1.文件输入/输出 (8) 5.1.1.栅格图像格式 (8) 5.1.2.矢量图像格式 (8) 5.2.影像显示 (8) 5.2.1.放大/缩小/适合窗口/1:1 (8) 5.2.2.漫游/鹰眼 (8) 5.2.3.矢量/字符叠加 (8) 5.2.4.坐标关联 (8) 5.2.5.卷帘 (8) 5.2.6.属性查看 (8) 5.3.影像处理 (9) 5.3.1.大气校正 (9) 5.3.2.几何校正 (9) 5.3.3.影像拼接 (10) 5.3.4.影像裁切 (10) 5.3.5.影像融合 (10) 5.3.6.多波段合成 (11) 5.4.影像增强 (11) 5.4.1.亮度对比度 (11) 5.4.2.色彩调节 (11) 5.4.3.直方图拉伸 (11) 5.5.影像分类 (12) 5.5.1.非监督分类算法 (12) 5.5.2.监督分类算法 (12) 5.5.3.分类后处理 (12) 5.6.影像特性统计与分析 (13) 5.6.1.主成份分析(PCA) (13) 5.6.2.直方图统计 (13) 5.6.3.多波段影像相关性分析 (13) 5.6.4.最佳波段组合分析 (13) 5.7.感兴趣区 (13) 5.7.1.感兴趣区绘制 (13) 5.7.2.感兴趣区管理 (14) 5.7.3.感兴趣区统计 (14) 5.8.矢量功能 (15) 5.8.1.地图叠加 (15) 5.8.2.矢量数据编辑 (15) 5.8.3.属性查询、显示、编辑 (15) 5.9.波段运算 (15)

遥感影像处理步骤

3.2.3 遥感影像数据的获取 目前世界上用于民用的卫星很多,最常用于作物长势监测的是美国发射的一系列陆地卫星。本文使用的是2013年2月11日,NASA发射的Landsat 8卫星数据,Landsat 8上携带有两个主要载荷:OLI(陆地成像仪)和TIRS(热红外传感器)。OLI包括9个波段,空间分辨率为30米,其中包括一个15米的全色波段,成像宽幅为185×185 km。OLI包括了ETM+传感器所有的波段,为了避免大气吸收特征,OLI对波段进行了重新调整,比较大的调整是OLI Band5(0.845–0.885 μm),排除了0.825 μm处水汽吸收特征;OLI全色波段Band8波段范围较窄,这种方式可以在全色图像上更好区分植被和无植被特征;此外,还有两个新增的波段:蓝色波段(band1:0.433–0.453 μm)主要应用海岸带观测,短波红外波段(band9:1.360–1.390 μm) 包括水汽强吸收特征可用于云检测;近红外band5和短波红外band9与MODIS对应的波段接近。 表3-2 Landsat8各波段的名称与用途 Table 3-2 The name and purpose of each band of Landsat8 (引自:张玉君,国土资源遥感,2013) 波段No 波段名称波长范围/nm 数据用途GSD地面 采样距离 /nm 辐射率/ (W·m-2sr-1u m-1)典型 SNR (典型) 1 NewDeep Blue 433-453 海岸区气溶胶30 40 130 2 Blue 450-515 基色/散射/海岸30 40 130 3 Green 525-600 基色/海岸30 30 100 4 Red 630-680 基色/海岸30 22 90 5 NIR 845-885 植物/海岸30 14 90 6 SWIR2 1560-1660 植物30 4.0 100 7 SWIR3 2100-2300 矿物/干草/无散射30 1.7 100 8 PAN 500-680 图像锐化15 23 80 9 SWIR 1360-1390 卷云测定30 6.0 130 10 TIR 10300-11300 地表温度100 11 TIR 11500-12500 地表温度100 本实验获取条带号和行编号为143/029,选取棉花蕾期、花铃期、吐絮期内无云、质量较好的影像数据,过境时间分别为2013年6月25日,8月5日,8月29日。 3.2.4 卫星影像处理 地面目标是个复杂的多维模型,具有一定的空间位置、形状、大小和相互关

管理信息系统设计说明书

公司人员资料管理系统 系统设计说明书 时间: 2013.4.25———2013.5.10

湖南工业大学科技学院 目录 摘要……………………………………………………………………………… 第一章绪论…………………………………………………………………… 第二章需求分析…..………………………………………………………… 1.1 功能模块的分析………………………………………………… 1.2 模块的设计…………………………………………………… 1.3 系统的数据模型……………………………………………… 第三章系统的配置…………………………………………………………… 3.1 Microsoft Access 2000的安装……………………………… 3.2 Visual Basic 6.0的安装……………………………………… 第四章数据库的设计………………………………………………………… 4.1 数据表的设计……………………………………………………… 4.2 关系的设计………………………………………………………… 第五章详细设计………………………………………………………………… 5.1 建立窗体…………………………………………………………… 5.1.1建立主窗体……………………………………………………… 5.1.2建立详细资料窗体……………………………………………..… 5.1.3建立部门信息窗体……………………………………………… 5.1.4建立系统管理窗体………………………………………….…… 5.1.5建立登录窗体……………………………………………….……. 5.1.6建立增加新用户窗体……………………………………….…… 5.2 创建工程模块………………………………………………….… 5.3 VB窗体与数据库的连接………………………………….……. 第六章系统的编译与发布…………………………………………………….. 第七章设计总结………………………………………………………………. 致谢……………………………………………………………………………..

高分辨率遥感影像数据一体化测图系统PixelGrid

高分辨率遥感影像数据一体化测图系统PixelGrid 北京四维空间数码科技有限公司 一、概况介绍 高分辨率遥感影像数据一体化测图系统PixelGrid(以下简称“PixelGrid”)是由中国测绘科学研究院自主研发的“十一五”重大科技成果,获得2009年度国家测绘科技进步一等奖。 为将这一重大科技成果实现产业化,2008年开始,由中国测绘科学研究院参股单位北京四维空间数码科技有限公司进行成果转化和产品化,并开展销售。 该软件是我国西部1:5万地形图空白区测图工程以及第二次全国土地调查工程的主力软件, 被誉为国产的“像素工厂”。 PixelGrid以其先进的摄影测量算法、集群分布式并行处理技术、强大的自动化业务化处理能力、高效可靠的作业调度管理方法、友好灵活的用户界面和操作方式,全面实现了对卫星影像数据、航空影像数据以及低空无人机影像数据的快速自动处理,可以完成遥感影像从空中三角测量到各种比例尺的DEM/DSM、DOM等测绘产品的生产任务。 PixelGrid软件主界面。 二、主要特点 PixelGrid系统以现代摄影测量与遥感科学技术理论为基础,融合计算机技术和网络通讯技术,采用基于RFM通用成像模型的大范围遥感影像稀少或无控制区域网平差、基于旋转/缩放不变性特征多影像匹配的高精度航空影像自动空三、基于多基线/多重特征的高精度DEM/DSM自动提取、等高线数据半自动采集及网络分布式编辑、基于地理信息数据库等多源控制信息的高效影像地图制作、基于松散耦合并行服务中间件的集群分布式并行计算等一系列核心关键技术,是中国测绘科学研究院研制的一款类似“像素工厂”(ISTAR PixelFactoryTM)的新一代多源航空航 天遥感数据一体化高效能处理系统。

遥感卫星图像处理方法

北京揽宇方圆信息技术有限公司 遥感卫星图像处理方法 随着遥感技术的快速发展,获得了大量的遥感影像数据,如何从这些影像中提取人们感兴趣的对象已成为人们越来越关注的问题。但是传统的方法不能满足人们已有获取手段的需要,另外GIS的快速发展为人们提供了强大的地理数据管理平台,GIS数据库包括了大量空间数据和属性数据,以及未被人们发现的存在于这些数据中的知识。将GIS技术引入遥感图像的分类过程,用来辅助进行遥感图像分类,可进一步提高了图像处理的精度和效率。如何从GIS数据库中挖掘这些数据并加以充分利用是人们最关心的问题。GIS支持下的遥感图像分析特别强调RS和GIS的集成,引进空间数据挖掘和知识发现(SDM&KDD)技术,支持遥感影像的分类,达到较好的结果,专家系统表明了该方法是高效的手段。 遥感图像的边缘特征提取观察一幅图像首先感受到的是图像的总体边缘特征,它是构成图像形状的基本要素,是图像性质的重要表现形式之一,是图像特征的重要组成部分。提取和检测边缘特征是图像特征提取的重要一环,也是解决图像处理中许多复杂问题的一条重要的途径。遥感图像的边缘特征提取是对遥感图像上的明显地物边缘特征进行提取与识别的处理过程。目前解决图像特征检测/定位问题的技术还不是很完善,从图像结构的观点来看,主要是要解决三个问题:①要找出重要的图像灰度特征;②要抑制不必要的细节和噪声;③要保证定位精度图。遥感图像的边缘特征提取的算子很多,最常用的算子如Sobel算子、Log算子、Canny算子等。 1)图像精校正 由于卫星成像时受采样角度、成像高度及卫星姿态等客观因素的影响,造成原始图像非线性变形,必须经过几何精校正,才能满足工作精度要求一般采用几何模型配合常规控制点法对进行几何校正。 在校正时利用地面控制点(GCP),通过坐标转换函数,把各控制点从地理空间投影到图像空间上去。几何校正的精度直接取决于地面控制点选取的精度、分布和数量。因此,地面控制点的选择必须满足一定的条件,即:地面控制点应当均匀地分布在图像内;地面控制点应当在图像上有明显的、精确的定位识别标志,如公路、铁路交叉点、河流叉口、农田界线等,以保证空间配准的精度;地面控制点要有一定的数量保证。地面控制点选好后,再选择不同的校正算子和插值法进行计算,同时,还对地面控制点(GCPS)进行误差分析,使得其精度满足要求为止。最后将校正好的图像与地形图进行对比,考察校正效果。 2)波段组合及融合 对卫星数据的全色及多光谱波段进行融合。包括选取最佳波段,从多种分辨率融合方法中选取最佳方法进行全色波段和多光谱波段融合,使得图像既有高的空间分辨率和纹理特性,又有丰富的光谱信息,从而达到影像地图信息丰富、视觉效果好、质量高的目的。 3)图像镶嵌

遥感数据预处理

遥感讲座——遥感影像预处理 据预处理是遥感应用的第一步,也是非常重要的一步。目前的技术也非常成熟,大多数的商业化软件都具备这方面的功能。预处理的大致流程在各个行业中有点差异,而且注重点也各有不同。下面是预处理中比较常见的流程。 1、数据预处理一般流程 数据预处理的过程包括几何精校正、配准、图像镶嵌与裁剪、去云及阴影处理和光谱归一化几个环节,具体流程图如图所示。 各个行业应用会有所不同,比如在精细农业方面,在大气校正方面要求会高点,因为它需要反演;在测绘方面,对几何校正的精度要求会很高。 2、数据预处理的各个流程介绍 (一)几何精校正与影像配准 引起影像几何变形一般分为两大类:系统性和非系统性。系统性一般有传感器本身引起的,有规律可循和可预测性,可以用传感器模型来校正;非系统性几何变形是不规律的,它可以是传感器平台本身的高度、姿态等不稳定,也可以是地球曲率及空气折射的变化以及地形的变化等。 在做几何校正前,先要知道几个概念: 地理编码:把图像矫正到一种统一标准的坐标系。 地理参照:借助一组控制点,对一幅图像进行地理坐标的校正。 图像配准:同一区域里一幅图像(基准图像)对另一幅图像校准

影像几何精校正,一般步骤如下, (1)GCP(地面控制点)的选取 这是几何校正中最重要的一步。可以从地形图(DRG)为参考进行控制选点,也可以野外GPS测量获得,或者从校正好的影像中获取。选取得控制点有以下特征: 1、GCP在图像上有明显的、清晰的点位标志,如道路交叉点、河流交叉点等; 2、地面控制点上的地物不随时间而变化。 GCP均匀分布在整幅影像内,且要有一定的数量保证,不同纠正模型对控制点个数的需求不相同。卫星提供的辅助数据可建立严密的物理模型,该模型只需9个控制点即可;对于有理多项式模型,一般每景要求不少于30个控制点,困难地区适当增加点位;几何多项式模型将根据地形情况确定,它要求控制点个数多于上述几种模型,通常每景要求在30-50个左右,尤其对于山区应适当增加控制点。 (2)建立几何校正模型 地面点确定之后,要在图像与图像或地图上分别读出各个控制点在图像上的像元坐标(x,y)及其参考图像或地图上的坐标(X,Y),这叫需要选择一个合理的坐标变换函数式(即数据校正模型),然后用公式计算每个地面控制点的均方根误差(RMS)根据公式计算出每个控制点几何校正的精度,计算出累积的总体均方差误差,也叫残余误差,一般控制在一个像元之内,即RMS<1。 (3)图像重采样 重新定位后的像元在原图像中分布是不均匀的,即输出图像像元点在输入图像中的行列号不是或不全是正数关系。因此需要根据输出图像上的各像元在输入图像中的位置,对原始图像按一定规则重新采样,进行亮度值的插值计算,建立新的图像矩阵。常用的内插方法包括: 1、最邻近法是将最邻近的像元值赋予新像元。该方法的优点是输出图像仍然保持原来的像元值,简单,处理速度快。但这种方法最大可产生半个像元的位置偏移,可能造成输出图像中某些地物的不连贯。 2、双线性内插法是使用邻近4个点的像元值,按照其距内插点的距离赋予不同的权重,进行线性内插。该方法具有平均化的滤波效果,边缘受到平滑作用,而产生一个比较连贯的输出图像,其缺点是破坏了原来的像元值。 3、三次卷积内插法较为复杂,它使用内插点周围的16个像元值,用三次卷积函数进行内插。这种方法对边缘有所增强,并具有均衡化和清晰化的效果,当它仍然破坏了原来的像元值,且计算量大。 一般认为最邻近法有利于保持原始图像中的灰级,但对图像中的几何结构损坏较大。后两种方法虽然对像元值有所近似,但也在很大程度上保留图像原有的几何结构,如道路网、水系、地物边界等。

(完整版)卫星图像处理流程

卫星图像处理流程 一.图像预处理 1.降噪处理 由于传感器的因素,一些获取的遥感图像中,会出现周期性的噪声,我们必须对其进行消除或减弱方可使用。 (1)除周期性噪声和尖锐性噪声 周期性噪声一般重叠在原图像上,成为周期性的干涉图形,具有不同的幅度、频率、和相位。它形成一系列的尖峰或者亮斑,代表在某些空间频率位置最为突出。一般可以用带通或者槽形滤波的方法来消除。 消除尖峰噪声,特别是与扫描方向不平行的,一般用傅立叶变换进行滤波处理的方法比较方便。 图1 消除噪声前

图2 消除噪声后 (2)除坏线和条带 去除遥感图像中的坏线。遥感图像中通常会出现与扫描方向平行的条带,还有一些与辐射信号无关的条带噪声,一般称为坏线。一般采用傅里叶变换和低通滤波进行消除或减弱。 图3 去条纹前

图4 去条纹后 图5 去条带前

图6 去条带后 2.薄云处理 由于天气原因,对于有些遥感图形中出现的薄云可以进行减弱处理。 3.阴影处理 由于太阳高度角的原因,有些图像会出现山体阴影,可以采用比值法对其进行消除。二.几何纠正 通常我们获取的遥感影像一般都是Level2级产品,为使其定位准确,我们在使用遥感图像前,必须对其进行几何精纠正,在地形起伏较大地区,还必须对其进行正射纠正。特殊情况下还须对遥感图像进行大气纠正,此处不做阐述。 1.图像配准 为同一地区的两种数据源能在同一个地理坐标系中进行叠加显示和数学运算,必须先将其中一种数据源的地理坐标配准到另一种数据源的地理坐标上,这个过程叫做配准。(1)影像对栅格图像的配准 将一幅遥感影像配准到相同地区另一幅影像或栅格地图中,使其在空间位置能重合叠加显示。

餐饮管理系统设计说明书

餐饮管理系统之 ——系统设计说明书一.总体设计 1.处理流程(略) 图总体处理流程图 2.总体结构和模块外部设计 模块是软件结构的基础,软件结构的好坏完全由模块的属性体现出来,把软件模块化的目的是为了降低软件复杂性,使软件设计,测试,调试,维护等工作变得简易,但随着模块数目的增加,通过接口连接这些模块的工作量也随之增加。从这些特性可得出如图九的一条总的成本(或工作量)曲线,在考虑模块化时,应尽量使模块数接近于图中的M,它使得研制成本最小,而且应尽量避免不足的模块化或超量。 总体结构:

总体模块说明 项目容:此系统使用了三层架构实现了管理人员登陆模块,菜单管理模块,餐厅人员管理模块,点菜功能模块,消费结账模块,查询统计 功能模块。 系统登录退出模块:本模块是被用于用户登录,注销和退出。模块根据用户的不同类型赋予用户不同的管理权限。等低级的用户不可访问高等级用户的个别功能,而高等级用户可以使用低等级用户的所有系统功能。 菜单管理模块:本模块将餐厅的菜单信息通过标准化的管理操作加以整合,使得菜品的价格、配料、功效和图片可以完全呈现在客户面前,使得客户可以便地选择自己想要的食物。本模块的分权限设计将限制普通员工对菜单信息加以修改,以防止菜单价格被恶意修改,以此保证餐厅正常可靠的运营。管理人员可以添加到菜谱到系统中,并能进行日常维护(包括修改菜的价格等),系统可以对整个菜单分类管理,可区分凉菜、热菜、汤类、酒水、消费品和主食、 餐饮管理 信息系统 后台管理 前台服务 桌台 仓库 员工 顾客 员工 供货商 材料 信息 系统登录退出 系统登录退出 图1 餐饮管理系统总体功能模块图

AGRS遥感影像数据管理系统的设计与实现

AGRS遥感影像数据管理系统的设计与 实现

AGRS遥感影像数据管理系统的设计与实现 摘要:遥感影像数据的特点是其数据量庞大,种类繁多,结构复杂。利用成熟的关系数据库和 GIS 平台,搭建一个方便实用的遥感影像数据库是提高影像管理效率的有效手段。文章介绍了AGRS遥感影像数据库系统的设计与实现,详细描述了系统结构、影像数据元数据、影像数据安全策略、以及影像数据库管理系统和网络查询服务系统的功能实现。 关键词:影像数据库;元数据;网络查询服务 1 引言 中国国土资源航空物探遥感中心在利用遥感技术进行地质找矿及其它相关领域的应用研究已有二十多年历史。先后完成数百个涉及地质找矿、地质灾害、环境监测、土地利用、城市规划等方面的项目,积累了大量的 MSS、TM、Spot、RadarSat、中巴资源卫星、Quickbird、Ikonos 等航天数据及其成果图像,同时完成了全国约数百万平方公里的不同比例尺、不同片种的航空摄影。这些成果大多以硬拷贝或数字光盘形式存储,数据量达到近100TB,而且在逐年增加。如此庞大的数据采用人工管理存在着效率低、安全性差的缺点。引入信息化管理手段,建立一个航天、

航空遥感图像的数据库管理系统,将大大提高各类遥感影像的管理和使用效率。 2遥感影像数据库系统的结构 遥感影像数据库依托海量存储设备和高性能的服务器共同组建光纤存储局域网。系统管理员使用工作站经过局域网对系统进行维护管理,遥感影像元数据和图形索引信息经过广域网进行发布。 图 1 遥感影像数据库系统实体结构图 遥感影像数据库系统由影像数据库管理系统、网络检索服务系统、影像数据库、遥感影像元数据库、影像空间索引数据组成。

流行的遥感图像处理软件比较

遥感软件 PCI遥感图像处理软件简介 PCI GEOMATICA是PCI公司将其旗下的四个主要产品系列,也就是PCI EASI/PACE、(PCI SPANS,PAMAPS)、ACE、ORTHOENGINE,集成到一个具有同一界面、同一使用规则、同一代码库、同一开发环境的一个新产品系列,该产品系列被称之为 PCI GEOMATICA。对于20多年来一直致力于向地学界提供全方位解决方案的PCI公司来说,始终坚持领先一步的原则,地理咨讯永远在变迁,而地理咨讯软件更处于变迁的前沿。在今天,随着用户需求广度与深度的不断拓宽与加深,越来越多的人希望软件是一个可以满足用户所有需求的良好的工具。由于对这一点的正确把握,经过4年努力,PCI公司将原有的四个产品系列整合在一起,产生了一个使用简单、灵巧的工作平台----PCI GEOMAITCA。该系列产品在每一级深度层次上,尽可能多的满足该层次用户对遥感影像处理、摄影测量、GIS空间分析、专业制图功能的需要,而且使用户可以方便地在同一个应用界面下,完成他们的工作。在这之前,用户需用多个软件来实现,并且需要面对多个软件经销商、多个软件技术支持、多次的培训、对多个软件的维护,以及不得不投入相当大的精力来在多种数据格式间,进行数据转换。产品模块功能介绍 PCI Geomatica FreeView ( PCI地理咨讯通用视窗) FreeView是PCI公司为用户提供的一个免费的影像浏览工具,用户可以从PCI的网址上直接下载。用于浏览、显示各种数据,如矢量、位图、卫星影像(如LANDSAT, SPOT, RADARSAT, ERS-1/2, NOAA A VHRR等)、航片以及与GIS矢量数据叠加显示、进行属性查询等。FreeView 还具有影像增强,任意漫游、缩放、影像灰度值矩阵显示等功能 PCI Geomatica GeoGateway (PCI通用数据转换工具)PCI Geomatica GeoGateway包含PCI Geomatica FreeView的所有功能。 PCI Geomatica Fundamentals (PCI 地理咨讯基础版) PCI Geomatica Fundamentals包含PCI Geomatica GeoGateway的所有功能。主要包括以下部件: Focus 浏览环境 OrthoEngine FLY!(演示模式)软件许可管理器 PCI Geomatica Prime (PCI地理咨讯专业版) PCI Geomatica Prime包含PCI Geomatica Fundamentals(见上一节)的所有功能。此外,增加了PCI Modeler、EASI、FLY!、算法库等模块。 Geomatica Prime 是强大的、低成本解决方案,提供的工具可用于影像几何校正、数据可视化与分析以及专业标准地图生产。 PCI Productivity Tools (PCI地理咨讯生产工具)该软件是PCI公司为了提高PCI软件的生产能力和效率而专门设计的,其主要功能是为用户提供一系列自动或批处理操作的导向功能。该软件是PCI GEOMATICA PRIME或FUNDAMENTALS功能的扩展。主要提供影像自动镶嵌功能及针对ORTHOENGINE 系列产品的航片,光学卫星影像,雷达卫星的自动同名点收集功能。同时提供影像控制点库及库管理功能。 PCI AIRPHOTO MODEL (PCI地理咨讯系统航空正射影像处理器)是一个与PCI Geomatica Fundamentals或Geomatica Prime模块一起使用的功能强大的航空照片正射校正工具。该模块运用了特殊的算法模型将已经扫描的或由数字摄像机得到的照片制作成精确的正射影像图。所生成的图像可以转化为多种文件形式,作为许多GIS/CAD/MAP软件的数据源。同时用户可选择附加的DEM自动提取、3DVIEW 和三维特征提取模块(OrthoEngine Airphoto DEM)来构造自己的数字摄影测量软件包。该软件具有如下功能:项目工程文件建立(含

校园管理系统设计说明书

校园管理系统设计说明书 1 引言 1.1编写目的 概要设计的主要任务是设计程序的体系结构,也就是确定程序有哪些模块组成以及模块计的关系。概要设计过程首先寻找实现目标系统的各种不同的方案,需求分析阶段得到的数据流图是设想各种可能方案的基础。然后分析员从这些供选择的方案中选取若干个合理的方案,为每个合理的方案都准备一份系统流程图,列出组成系统的所有物理元素,进行成本/效益分析,并且制定实现这个方案的进度计划。分析员应该综合分析比较这些合理的方案,从中选出一个最佳方案向用户和使用部门负责人推荐。如果用户和使用部门的负责人接受了推荐的方案,分析员应该进一步为这个最佳方案设计软结构,通常,进行必要的数据库设计,确定测试要求并且是定测试计划。 1.3术语定义 实体—联系图(E-R图):包含实体(即数据对象)、关系和属性。作为用户与分析员之间有效交流的工具。 流程图:由一些特定意义的图形、流程线及简要的文字说明构成,能清晰明确地表示程序的运行过程 盒图:又称为N-S图呀CHAPIN图,它把整个程序写在一个大框图,大框图由若干个小的基本框图构成 1.4参考资料 《软件工程导论》 ---------海藩编著清华大学 《深入浅出面向对象分析和设计》 《数据为原理及应用》------绍原主编科学 2 概述 1.目标 该阶段目的在于明确系统的数据结构和软件结构,此外总体设计还将给出部软件和外部系统部件之间的接口定义,各个软件模块的功能说明,数据结构的细节以及具体的装配要求。 2.运行环境

软件基本运行环境为Windows环境。 3.需求概述 本系统要达到以下目标: 1、用户的存款与消费 2、用户挂失处理 3、管理员的新建与注销 4、用户的查询 4.条件与限制 为了评价该设计阶段的设计表示的“优劣程度”,必须遵循以下几个准则: 1.软件设计应当表现出层次结构,它应巧妙地利用各个软件部件之间的控制关系。 2.设计应当是模块化的,即该软件应当从逻辑上被划分成多个部件,分别实现各种特定功能和子功能。 3.设计最终应当给出具体的模块(例如子程序或过程),这些模块就具有独立的功能特性。 4.应当应用在软件需求分析期间得到的信息,采取循环反复的方法来获得设计。 3 系统分析 系统模型:

遥感卫星影像数据制图技术流程

北京揽宇方圆信息技术有限公司 遥感卫星影像数据制图技术流程 1.数据准备 1.1地形图 地形图是进行遥感影像几何精纠正的坐标参照系,也是重要的基础数据,包含多种层面的非遥感信息数据。 目前常用的地形数据多为数字地图。对于尚未有数据地图的工作区域,通常收集纸质地图,经过数据扫描,转换为数据地图。扫描分辨率通常设置为200-400dpi。扫描图通常存在变形,需要利用GIS软件进行几何校正,已达到制图精度要求。 对于早期或常规方法获得的成果图件,在建立数据库及系统分析前,通常也采用图形扫面方法,经系统处理,将纸质图形转换为数字图形。 1.2遥感数据源的选择 遥感数据源的选择是整个遥感制图工作中最基本和重要的工作。遥感数据源的选择一般包括遥感图像的空间分辨力、时相及波段的选择。另外在具体的工作中,数据源的选择还要综合其它非图像数据内容本身的因素来考虑,如成果图形的比例要求、精度要求、经费支持强度及遥感图像获取的难易程度等。 1.2.1遥感图像空间分辨力的选择

遥感影像空间分辨力是遥感数据源的一个重要指标,决定了遥感制图所获得的成果数据的精度和准确度。一般各主要成图比例尺对应遥感影像空间分辨力如下: 经过几十年的发展,遥感技术在社会各个领域得到广泛的应用与发展。目前遥感卫星可以提供从小于1米到公里级的影像空间分辨率,可以满足1:2000/3000的比例尺遥感制图精度要求,制图精度能够满足我国现行的制图精度要求。航空遥感影像可以提供厘米级的空间分辨率,可以满足大比例尺制图要求。 目前,国内遥感制图应用比较广泛的是土地利用/土地覆盖(1:1万——1:10万),生态环境监测、城市信息化、大型工程环境监测、灾害监测、遥感找矿…… 如:利用QuickBird/IKONOS进行违章用地监测、城市绿地与城市用地监测 利用eTM/SPOT进行土地利用遥感制图…… 1.2.2遥感信息的时相选择 地表由一个非常复杂的系统组成、时刻处于动态的变化过程。如地表的温度、水份、天气状况、人类活动等影响使得不同时间地表信息反映在遥感影像上也有明显的差异。遥感时相的选择其目的就是依据用户的需求,能够获取高质量的遥感影像。 1.2.3遥感图像的波段选择 一般遥感影像的各个波段都有不同的适用范围,而不同波段的组合则可以充分利用图像的多波段信息。波段组合总的原则是要最大反映信息量,要能从中有效地识别各种专题信息。如利用陆地资源卫星LandSat-TM图像数据进行土地资源调查时,一般采用4、3、2三个波段进行假彩色合成;MODIS 影像数据提供数十个波段数据,可以依据用户需求选择不同的波段组合方式。 2.图像处理

遥感实习2卫星数据的预处理流程

数据预处理的一般过程包括几何校正、图像镶嵌与裁剪、辐射定标与大气校正等环节。

图1 数据预处理一般流程 通常我们直接从数据提供商获取未定标的DN 图像,然后定标为辐射亮度图像,对辐射率亮度图像进行大气校正得到地表反射率图像。 一、辐射定标与大气校正 1、辐射定标Radiometric calibration :将记录的原始DN 值转换为大气外层表面反射率(或称为辐射亮度值)。 目的:消除传感器本身的误差,确定传感器入口处的准确辐射值 方法:实验室定标、机上/星上定标、场地定标 不同的传感器,其辐射定标公式不同。L=gain*DN+Bias 在ENVI 中,定标模块:Basic Tools>Preprocessing>Calibration Utilities>模块 2、大气校正Atmospheric correction :将辐射亮度或者表面反射率转换为地表实际反射率 目的:消除大气散射、吸收、反射引起的误差。 分类:统计型和物理型 目前遥感图像的大气校正方法按照校正后的结果可以分为2种: 1) 绝对大气校正方法:将遥感图像的DN(Digital Number)值转换为地表反射率、地表辐射率、地表温度等的方法。包括:基于辐射传输模型、基于简化辐射传输模型的黑暗像元法、基于统计学模型的反射率反演 2) 相对大气校正方法:校正后得到的图像,相同的DN 值表示相同的地物反射率,其结果不考虑地物的实际反射率。包括:基于统计的不变目标法、直方图匹配法等。 方法的选择问题,一般而言: 1) 如果是精细定量研究,那么选择基于辐射传输模型的大气校正方法。 2) 如果是做动态监测,那么可选择相对大气校正或者较简单的方法。 3) 如果参数缺少,没办法了只能选择较简单的方法了。 在ENVI 中,Basic tools>preprocessing>calibration utilities>FLAASH 二、数字图像镶嵌与裁剪 1、镶嵌 当研究区超出单幅遥感图像所覆盖的范围时,通常需要将两幅或多幅图像拼接起来形成一幅或一系列覆盖全区的较大的图像。 在进行图像的镶嵌时,需要确定一幅参考影像,参考图像将作为输出镶嵌图像的基准,决定镶嵌图像的对比度匹配、以及输出图像的像元大小和数据类型等。镶嵌得两幅或多幅图像选择相同或相近的成像时间,使得图像的色调保持一致。但接边色调相差太大时,可以利 Digital Numbers Radiance TOA Reflectance Geometric correction Step 1 Step 2 Surface Reflectance Step 3 Step 4 Analysis

遥感图像管理组织软件

一、Titan Image V7.0简介 泰坦遥感图像处理软件(Titan Image)是在充分吸收了国内外优秀遥感软件优点的基础上,由北京东方泰坦科技股份有限公司研发的完全自主知识产权的新一代优秀的国产遥感图像处理软件平台,是“国家863商用遥感数据处理专题”的重大科技成果的结晶。Titan Image目前已达到了和国际知名遥感图像处理软件同等技术水平,具有架构先进、全中文交互式操作界面,功能强大、性能稳定、二次开发方便简单等特点。该软件由集成环境、影像工具箱、几何配准、影像镶嵌、影像对象分类、雷达数据处理、高光谱数据处理、三维可视化、流程化定制九大功能模块组成。 Titan Image能够面向测绘、国土、规划、农业、林业、水利、环保、气象、海洋、石油、交通、地震、国防、教育等行业提供涵盖影像处理、信息提取、信息分析、制图输出等一系列功能的遥感信息工程完整解决方案。 经过几年来用户的广泛使用及市场检验,Titan Image已获得广大用户的一致认可,并且已经被很多行业用户选定为本行业的底层支撑软件平台。基于Titan Image软件的优良表现,该软件被国家多部门多次表彰,并被指定为“国家级重点新产品”。 二、Titan Image V7.0特点 1、强大的数据支持能力 1)能够直接操作PCI PIX、TIF、GEOTIFF、BMP、JPEG、RAW主流遥感影像数据格式,并支持Titan GIS 、ArcView SHP、MapInfo MIF、DXF几十种数据格式的读取、转换。 2)采用了独创的海量影像段页式动态存取技术,支持大数据量遥感影像的快无限制级显示、访问处理,同时与Titan影像库实现高效协同工作。 3)支持众多卫星传感器数据,并紧密跟踪最新卫星数据源,快速增加新数据源支持能力。 2、丰富而稳定的图像处理功能 1)具备丰富、稳定、专业的遥感图像处理功能,提供影像增强、滤波、分类、融合、几何校正、镶嵌等常用处理功能,并提供雷达图像处理、面向对象分类、三维等高级功能模块。 2)提供一系列特有图像处理功能,包括:支持6S模型的大气校正以及周期噪声去除;快速、可靠的自动影像匹配,以及基于Delauny三角网小面元微分精确几何校正;支持Ikonos、Cerbers2B、北京小卫星等国内外高分辨遥感数据正射校正;支持PanSharp高分辨率光学遥感数据融合,以及光学数据与雷达数据小波融合;自动、快速的影像镶嵌功能,以及方便的镶嵌线选取、影像匀色等功能;基于专家规则库、面向对象的影像专题信息提取功能。 3、方便、友好的操作方式 1)基于国内用户使用习惯的深入调研和理解,提供贴合用户操作的习惯全中文界面和操作流程,界面友好,操作方便,易学易用; 2)提供流程化处理模块,用户在可视化环境下通过简单点击操作即可创建复杂的处理流程;

遥感影像的分类处理

摘要 在面向对象的影像分类方法中,首先需要将遥感影像分割成有意义的影像对象集合,进而在影像对象的基础上进行特征提取和分类。本文针对面向对象影像分类思想的关键环节展开讨论和研究,(1) 采用基于改进分水岭变换的多尺度分割算法对高分辨率遥感影像进行分割。构建了基于高斯尺度金字塔的多尺度视觉单词,并且通过实验证明其表达能力优于经典的词包表示。最后,在词包表示的基础上,利用概率潜在语义分析方法对同义词和多义词较强的鉴别能力对影像对象进行分析,找出其最可能属于的主题或类别,进而完成影像的分类。 近些年来,随着航空航天平台与传感器技术的高速发展,获取的遥感影像的分辨率越来越高。高分辨率遥感影像在各行业部门的应用也越来越广泛,除了传统的国土资源、地质调查和测绘测量等部门,还涉及到城市规划、交通旅游和环境生态等领域,极大地拓展了遥感影像的应用范围。因此,对高分辨率遥感影像的处理分析成为备受关注的领域之一。高分辨率遥感影像包括以下三种形式:高空间分辨率(获取影像的空间分辨率从以前的几十米提高到1 至5 米,甚至更高);高光谱分辨率(电磁波谱被不断细分,获取遥感数据的波段数从几十个到数百个);高时间分辨率(遥感卫星的回访周期不断缩短,在部分区域甚至可以连续观测)。本文所要研究的高分辨率遥感影像均是指“高空间分辨率”影像。 相对于中低分辨率的遥感数据,高空间分辨率遥感影像具有更加丰富的空间结构、几何纹理及拓扑关系等信息,对认知地物目标的属性特征更加方便,如光谱、形状、纹理、结构和层次等。另外,高分辨率遥感影像有效减弱了混合像元的影响,并且能够在较小的空间尺度下反映地物特征的细节变化,为实现更高精度的地物识别和分类提供了可能。 然而,传统的遥感影像分析方法主要基于“像元”进行,它处于图像工程中的“图像处理”阶段(见图1-1),已然不能满足当今遥感数据发展的需求。基于“像元”的高分辨率遥感影像分类更多地依赖光谱特征,而忽视影像的纹理、形状、上下文和结构等重要的空间特征,因此,分类结果会产生很严重的“椒盐(salt and pepper)现象”,从而影响到分类的精度。虽然国内外的很多研究人员针对以上缺陷提出了很多新的方法,如支持向量机(Support Vector Machine,SVM) 、纹理聚类、分层聚类(Hierarchical Clustering) 、神经网络(Neural Network, NN)等,但仅依靠光谱特征的基于像元的方法很难取得更好的分类结果。基于“像元”的传统分类方法还有着另一个局限:无法很好的描述和应用地物目标的尺度特征,而多尺度特征正是遥感信息的基本属性之一。由于在不同的空间尺度上,同样的地表空间格局与过程会表现出明显的差异,因此,在单一尺度下对遥感影像进行分析和识别是不全面的。为了得到更好的分类结果,需要充分考虑多尺度特征。 针对以上问题,面向对象的处理方法应运而生,并且逐渐成为高空间分辨率遥感影像分析和识别的新途径。所谓“面向对象”,即影像分析的最小单元不再是传统的单个像元,而是由特定像元组成的有意义的同质区域,也即“对象”;因此,在对影像分析和识别的过程

相关主题
文本预览
相关文档 最新文档