当前位置:文档之家› β-内酰胺酶检测方法

β-内酰胺酶检测方法

β-内酰胺酶检测方法
β-内酰胺酶检测方法

-内酰胺酶来源分析

β-内酰胺酶来源分析 β-内酰胺酶(β-lactamase)的产生是细菌对(β内酰胺类)抗菌药物耐药最常见的机制,在各种耐药机制中占80%。β-内酰胺酶是由多种酶组成的酶家族,能水解β-内酰胺类抗生素,这些酶的基因存在于细菌的染色体或质粒中。至今β-内酰胺酶的数量已超过200种,其中超广谱β-内酰胺酶(extended spectrum β-lactamase,ESBL)已超过50种。 β-内酰胺酶是指能催化水解6-氨基青霉烷酸(6-APA)和7-氨基头孢烷酸(7-ACA)及其 N -酰基衍生物分子中β-内酰胺环酰胺键的灭活酶。细菌产生β-内酰胺酶是细菌对β-内酰胺类抗生素耐药的主要机制。β-内酰胺酶分为染色体介导酶和耐药质粒介导酶二大类,以其水解对象可分为青霉素酶、头孢菌素酶、广谱酶和超广谱酶四种。质粒是一种密闭环状双股螺旋结构的DNA,存在于胞浆内,也是具有遗传功能的基因成分,质粒带有各种基因,包括耐药基因,但不是细菌存活所不可缺少的组成物质。染色体基因决定细菌对抗生素固有耐药性,近代研究证明在院内感染病人中产生质粒介导酶的耐药菌,其产生耐药性大多是在接触抗生素后获得的,并通过耐药基因的转移而播散,也可由基因表达而传至下代。 β-内酰胺酶掺杂于饲料中或直接喂食的可能性:可操作性几乎为零。 1.成品饲料的保存条件下(温度和氧化),β-内酰胺酶会很快失活。 2.β-内酰胺酶直接喂食:β-内酰胺酶在进入动物胃肠道后,会在胃酸,及各种胃肠道内 的蛋白酶(如胃蛋白酶,胰蛋白酶,胆汁,糜蛋白酶等等)作用下水解失活,而不能进入血液循环。即便有微量β-内酰胺酶进入血液循环,其也会在肝脏解毒分解失活或经肾脏排出。 内源性β-内酰胺酶 —— 本身存在于动物体内的β-内酰胺酶:微乎其微 β - 内酰胺酶是由细菌产生的酶类,生成后存在于细菌内,通过水解或非水解方式破坏进入菌体内的β - 内酰胺环,导致β - 内酰胺类抗生素失活,这是大多数致病菌对β - 内酰胺类抗生素耐药性的主要机制。因此,产生β - 内酰胺酶的耐药菌在保持其本身结构完整时,是不会将其自身的β - 内酰胺酶释放至宿主(动物)体内的;而当产生β - 内酰胺酶的耐药菌被宿主细胞(如白细胞或淋巴细胞)吞噬破坏后,细菌内的β - 内酰胺酶会释放至动物体细胞内(如白细胞或淋巴细胞),而动物细胞内部的蛋白酶会自动识别作为异体蛋白的

DMFNN二甲基甲酰胺

公 司名称:赛默飞世尔科技(中国)有限公司黄金产品 联 系 电 话 : 800-810-5118 产品介绍:中文名称:N,N-二甲基甲酰胺 英文名称:N,N-DiMethylforMaMide , 99.8%, Extra Dry, AcroSeal CAS:68-12-2 纯度:99.8% 包装信息:100ML 备注:ACROS 0 公 司 名 称 : 麦卡希试剂黄金产品 联 系 电 话 : 产品介绍:中文名称:N,N-二甲基甲酰胺 英文名称:N,N-DiMethylforMaMide CAS:68-12-2 包装信息:5g,25g,100g,500g 备注:试剂级 公阿拉丁试剂(上海)有限公 N,N-二甲基甲酰胺 概述纯化与除水方法二甲基甲酰胺的用途万能溶剂--二甲基甲酰胺二甲基甲酰 胺的毒性应急处理MSDS用途与合成方法N,N-二甲基甲酰胺价格(试剂级)上下游产品信息新闻专题 中文名称: N,N-二甲基甲酰胺 中文同义 词: N,N-二甲基甲酰胺;N-甲酰二甲胺;二甲基甲酰胺;甲酰二甲胺;N.N-二甲 基甲酰胺;二甲替甲酰胺;二甲基甲醯胺098-01 [3];N,N-二甲基甲酰胺 (分析级) 英文名称: N,N-Dimethylformamide 英文同义 词: AKOS BBS-00004259;FORMIC ACID DIMETHYLAMIDE;FORMDIMETHYLAMIDE;FORMYLDIMETHYLAM INE;DIMETHYLFORMAMIDE;DMF;DMFA;N',N-DIMETHYLFORMAM IDE CAS号: 68-12-2 分子式: C3H7NO 分子量: 73.09 EINECS 号: 200-679-5 相关类别: Organics;LEDA HPLC;氮化合物;Dimethylformamide (DMF);PVC Coated Bottles;Analytical Reagents;Analytical/Chromatography;CHROMASOLV Plus;Chromatography Reagents &;HPLC &;HPLC Plus Grade Solvents (CHROMASOLV);HPLC/UHPLC Solvents (CHROMASOLV);Solvent Bottles;Solvent by Application;Solvent by Type;Solvent Packaging Options;Solvents;UHPLC Solvents (CHROMASOLV);Biotech;Biotech Solvents;Amber Glass Bottles;Products;Returnable Containers;Sure/Seal Bottles;NMR;Spectrophotometric Grade;Spectrophotometric Solvents;Spectroscopy Solvents (IR;UV/Vis);C2 to C7;Amides;Building Blocks;Carbonyl Compounds;Chemical Synthesis;Organic Building Blocks;Plastic Bottles;GC Headspace Solvents;GC Solvents;Solvents for GC applications;ACS and Reagent Grade Solvents;Carbon Steel Flex-Spout Cans;ReagentPlus;ReagentPlus Solvent Grade Products;Semi-Bulk Solvents;Biochemicals;Core Bioreagents;Life Science Reagents for Protein Expression and Purification;Life Science Reagents for Transfection;Molecular Biology;Molecular Biology Reagents;Research Essentials;ACS Grade;Analytical Reagents for General Use;C-D;Multi-Compendial;Puriss p.a.;Puriss p.a. ACS;ACS Grade Solvents;VerSA-Flow Products;分析标准品;气相顶空试剂;有机化合物

β内酰胺类抗生素β内酰胺酶抑制剂合剂临床应用专家共识

β-内酰胺类抗生素/β-内酰胺酶抑制剂合剂临床应用专家共识 一、概述 革兰阴性菌是我国细菌感染性疾病最常见的病原体。近年来,革兰阴性菌对β-内酰胺类抗生素的耐药性不断增加,最重要的耐药机制是细菌产生各种β-内酰胺酶。β-内酰胺酶抑制剂能够抑制大部分β-内酰胺酶,恢复β-内酰胺类抗生素的抗菌活性。因此,β-内酰胺类抗生素/β-内酰胺酶抑制剂合剂在临床抗感染中的地位不断提升,已成为临床治疗多种耐药细菌感染的重要选择。目前我国临床使用的β-内酰胺类抗生素/β-内酰胺酶抑制剂合剂的种类和规格繁多,临床医师对该类合剂的特点了解不够,临床不合理使用问题较突出。为规范β-内酰胺类抗生素/β-内酰胺酶抑制剂合剂的临床应用,延缓其耐药性的发生和发展,特制定本共识。 二、主要β-内酰胺酶及β-内酰胺酶抑制剂 β-内酰胺酶是由细菌产生的能水解β-内酰胺类抗生素的一大类酶。β-内酰胺酶种类繁多,有多种分类方法,最主要的分类方法有根据β-内酰胺酶的底物、生化特性及是否被酶抑制剂所抑制的功能分类法(Bush分类法),将β-内酰胺酶分为青霉素酶、广谱酶、超广谱β-内酰胺酶、头孢菌素酶和碳青霉烯酶等;根据β-内酰胺酶末端的氨基酸序列特征的分子生物学分类法(Ambler分类法),将β-内酰胺酶分为丝氨酸酶和金属酶。目前引用较多的是基于上述2种方法建立的分类方法。见表1。 表1:β-内酰胺酶的分类和3种主要酶抑制剂的作用 功能分类分 子 分 型 主要底物 可被抑制 代表性酶 克 拉 维 酸 舒 巴 坦 他 唑 巴 坦 1 C 头孢菌素类- - - AmpC,ACT-1,CMY-2,FOX-1,MIR-1 2a A 青霉素类+ + + 青霉素酶 2b A 青霉素类,窄谱头孢菌素类+ + + TEM-1,TEM-2,SHV-1 2be A 青霉素类,超广谱头孢菌素类,单环酰胺类+ + + TEM-3,SHV-2,CTX-M-15,PER-1,VER-1 2br A 青霉素类- - - TEM-30,SHV-10,TRC-1

B内酰胺酶的检测方法

B-内酰胺酶的检测方法 牛乳中非法添加β-内酰胺酶检测方法 随着国家对食品安全问题的关注和部分乳制品企业2010年无抗奶目标的提出,抗生素残留问题成为影响乳制品安全的重要因素之一。目前,青霉素作为β- 内酰胺类药物是治疗牛乳腺炎的首选药物,是牛奶中最常见的残留抗生素。由于国内多数乳品企业对抗生素残留超标的牛乳采取降价收购的原则,出于经济利益的驱动,一些不法奶站为了谋求自己的经济利益,人为的使用一些生物制剂去降解牛乳中残留的抗生素,生产人造“无抗奶”。2005年至今,已有数家公司公开宣称出售分解牛乳中残留抗生素的解抗剂。迄今为止,还没有针对这种人造“无抗奶”的相应检测方法、检测标准,无法从源头上监测、把控原奶质量。 奶制品中三聚氰胺问题出现后,检科院按照国家局科技司的安排,对奶制品中可能的添加物进行了调查。经过前期的调研工作,初步判断市售解抗剂的主要成分是β-内酰胺酶,它是由革兰氏阳性细菌产生和分泌的,可选择性分解牛奶中残留的β- 内酰胺类抗生素。β-内酰胺酶为我国不允许使用的食品添加剂,该酶的使用掩盖了牛奶中实际含有的抗生素。β-内酰胺酶能够使青霉素内酰胺结构破坏而失去活性,导致青霉素、头孢菌素等抗生素类药物耐药性增高,从而大大降低了人们抵抗传染病的能力,给消费者的身体健康带来危害。 微生物方法和理化方法均利用β-内酰胺酶能够裂解青霉素的β-内酰胺环形成青霉噻唑酸的原理检测乳制品中是否添加解抗剂。 一、理化方法 (一)高效液相色谱法 1、间接法 方法原理:利用β-内酰胺酶能够酶解青霉素的原理,向牛奶中添加一定量的青霉素,如果牛奶中存在一定浓度的β-内酰胺酶,那么青霉素经β-内酰胺酶酶解后浓度会减少,从而判断牛奶中是否存在β-内酰胺酶。 实验步骤:称取20 g试样,在4℃、16000rpm条件下离心10 min。取下层清液10 g于50 mL塑料离心管,并将塑料离心管置于37℃水浴锅中振荡孵育30 min。向孵育后的离心管中加入无水乙醇15 mL。振荡提取30 min后离心,将上层清液过滤纸后收集于梨形瓶中。减压浓缩蒸发掉乙醇。向旋蒸后的梨形瓶中加入10 mL磷酸盐缓冲液(pH=8.5),涡旋1 min后调节pH为8.5。以1 mL/min的速度将提取液通过经过预处理的Oasis HLB固相萃取柱,用2 mL磷酸缓冲液(pH=8.5)淋洗萃取柱,再用2 mL水淋洗。最后用3 mL乙腈洗脱。将洗脱液在40℃下氮气吹干,用0.025 M磷酸盐缓冲液(pH=7.0)定容残渣至1 mL,待上机测定。 色谱条件:色谱柱Agilent Zorbax SB C18,4.6mm×150mm×5μm; 流动相甲醇/0.004 M磷酸二氢钾(pH=4.5)=40/60; 检测波长 268 nm 讨论:该方法只能给出定性结论即牛奶中是否含有β-内酰胺酶,而无法给出确切定量结果即牛奶中含有β-内酰胺酶的量(U/ml);前处理方法相对复杂、费时。

食品中丙烯酰胺的危害、暴露评估及检测方法

编号 食品毒理学(综述) 题目:食品中丙烯酰胺的危害、暴露评估及检测方法 食品学院营养与卫生学专业 班级食硕1005 学号s100109030 学生姓名张锦 二〇一一年二月

食品中丙烯酰胺的危害、暴露评估及检测方法 摘要:丙烯酰胺(acrylamide,AA)是日常生活中常见的一种化合物,也是公共卫生、食品安全研究的热点毒性物质,近几年来对丙烯酰胺神经毒性、遗传毒性、生殖毒性等的研究方兴未艾。本文着重介绍丙烯酰胺的理化特性、代谢途径、遗传生殖毒性、生殖毒性等方面的状况,并简要介绍了其危害评估及检测方法。 关键词:丙烯酰胺;遗传毒性;生殖毒性;神经毒性 0 引言 丙烯酰胺(CH2=CH-CONH2,AA)是一种白色晶体物质,分子量为70.08,密度为11229/L,熔点为85℃,沸点为125℃,室温下稳定,可溶于水、乙醇、乙醚、丙酮和三氯甲烷,不溶于苯、庚烷等非极性溶剂。在酸中稳定性强,在碱中容易分解,对光线敏感。可生物降解,不会在环境中积累。丙烯酰胺是1950年以来广泛用于生产化工产品聚丙烯酰胺的前体物质。聚丙烯酰胺主要用于水的净化处理、纸浆的加工及管道的内涂层等[1]。在欧盟,丙烯酰胺年产量约为8-10万吨。2002年4月瑞典国家食品管理局和瑞典斯德哥尔摩大学的科学家经研究首次发现,在某些高温油炸和烧烤的淀粉类食品,如炸薯条、炸土豆片、谷物、面包等中发现含量很高的丙烯酰胺,其含量比世界卫生组织(WHO)规定的饮水中丙烯酰胺的含量(<1μg/d)高出500倍以上[2,3]。之后挪威、英国、瑞士和美国等国家也相继报道了类似结果。 1 丙烯酰胺的代谢 丙烯酰胺可通过多种途径被人体吸收,其中经消化道吸收最快,在体内各组织广泛分布,包括母乳,并且能透过血胎屏障[4]。经口给予大鼠0.1 mg/kg bw 的丙烯酰胺,其绝对生物利用率为23-48%。丙烯酰胺在人体和试验动物体内的主要代谢途径是相似的。进入人体内的丙烯酰胺约90%被代谢,仅少量以原型经尿液排出。另外一个主要途径是与谷胱苷肽(GSH)结合,通过谷胱苷肽—S—转移酶(GST)催化,产生的代谢物(N-乙酰-S-半胱氨酸)通过尿液大量排出[5]。丙烯酰胺进入体内后,在细胞色素P4502E1的作用下,生成活性环氧丙酰胺(glycidamide)[6]。该环氧丙酰胺比丙烯酰胺更容易与DNA上的鸟嘌呤结合形成加合物,导致遗传物质损伤和基因突变;因此,被认为是丙烯酰胺的主要致癌活性代谢产物。研究报道,给予大小鼠丙烯酰胺后,在小鼠肝、肺、睾丸、白细胞、肾和大鼠肝、甲状腺、睾丸、乳腺、骨髓、白细胞和脑等组织中均检出了环氧丙酰胺鸟嘌呤加合物。目前,尚未见人体丙烯酰胺暴露后形成DNA加合物的报道。 此外丙烯酰胺和环氧丙酰胺还可与血红蛋白形成加合物,在给予动物丙烯酰胺和摄入含有丙烯酰胺食品的人群体内均检出血红蛋白加合物,因此可用该血红

聚丙烯酰胺合成方法

聚丙烯酰胺合成工艺 (1)A原理:丙烯酰胺在自由基引发剂作用下经自由基聚合反应合成聚丙烯酰胺: C H O NH2 H2C 引发剂 CH2 H C C O NH2 n 丙烯酰胺在醇或吡啶溶液中,经强碱催化剂如烷氧钠的作用下,经阴离子聚合反应则生成聚β-丙酰胺。 C H O NH2 H2C 碱 阴离子聚合反应 CH2 CH2CONH n 工业生产中采用自由基聚合反应以生产聚丙烯酰胺,所用的自由基引发剂或引发剂来源种类甚多,包括过氧化物、过硫酸盐、氧化-还原体系、偶氮化合物、超声波、紫外线、离子气体、等离子体、高能辐射等。 工业生产中采用的聚合方法,主要是溶液聚合法和反相乳液聚合法,以前者应用最为广泛。此外也有采用γ-射线辐照引发固相聚合的报道。 B.丙烯酰胺水溶液聚合存在的问题:①聚合热为82.8 kJ/mol,相对来说放出的热量甚大,因此水溶液聚合法中如何及时导出聚合热成为生产中的重要技术问题之一。②是如何降低残余单体含量。因为丙烯酰胺单体毒性甚大,为了减少其危害性,特别是用于水质处理时对残余单体的含量要求低于0.1%。③是如何将聚合反应得到的高粘度流体或凝胶转变为固体物,即干燥脱水问题。④是如何自由控制产品分子量。 丙烯酰胺于25 o C, pH=1时链增长速率常数k p与链终止速率常数k t分别为(1.72±0.3)×104和(16.3±0.7)×106Lmol-1s-1,与动力学链长成正比的k p/k t1/2=4.2±0.2,此数值甚高,所以不存在链转移时,聚丙烯酰胺可获得平均分子量超过2

×107的产品。 丙烯酰胺在水溶液中进行自由基聚合时,可能产生交联生成不溶解的聚合物,当聚合反应温度过高时,此现象更为严重。理论解释认为歧化终止生成的聚合物端基具有双键,参与聚合反应或发生向聚合物进行链转移所致。此外引发剂过硫酸盐与聚丙烯酰胺加热时也会导致生成凝胶。 有人研究了工业产品聚丙烯酰胺的含氮量,发现含氮量低于理论值,认为这是由于分子内脱NH 3生成酰亚胺基团所致。 C C 22O O C C O O H NH 3 高纯度丙烯酰胺易聚合为超高分子量的聚丙烯酰胺,为了生产要求的分子量范围,须加有链转移剂,链转移常数如表所示。

β内酰胺酶抑制剂对比

β-内酰胺类抗生素:联合酶抑制剂,提升抗菌能力 文张永信(复旦大学附属华山医院传染科教授) 基层医院2013年5月20日D11版 【问】氨曲南属于窄谱抗生素,有哪些药理特点?其临床适应证是什么? 【答】氨曲南是单环类β-内酰胺抗生素,主要针对革兰阴性(G-)菌。对肠杆菌和铜绿假单胞菌有效,但对不动杆菌、产碱杆菌以及革兰阳性(G+)菌和厌氧菌无效。该药化学结构特殊,对β-内酰胺酶稳定,毒性低;对青霉素和头孢菌素过敏的患者仍可选用该药。临床适用于敏感菌引起的脑膜炎、严重感染、院内感染、免疫缺陷者感染,以及不能使用青霉素和头孢菌素的患者。如合并有G+菌感染,应加用林可霉素或克林霉素。 【问】头霉素与二代头孢菌素,氧头孢烯类与三代头孢菌素的抗菌谱有什么不同?对临床适应证有何影响? 【答】头霉素与二代头孢菌素、氧头孢烯类与三代头孢菌素抗菌谱上的不同在于:头霉素、氧头孢烯类对各种厌氧菌(包括脆弱类杆菌)有良好的抗菌活性。由于头霉素和氧头孢烯类对需氧菌和厌氧菌均有良好的抗菌作用,常适用于需氧菌和厌氧菌的混合感染。 【问】β-内酰胺酶抑制剂与β-内酰胺类抗生素联用,有什么作用?舒巴坦、克拉维酸和三唑巴坦(他唑巴坦)在透过血脑屏障方面有何差异? 【答】β-内酰胺酶抑制剂可以保护β-内酰胺类抗生素免受细菌产生的β-内酰胺酶破坏,两者联合应用具有协同作用,能增强β-内酰胺类抗生素的抗菌效果。而且扩大了β-内酰胺类抗生素的抗菌谱。如原来对产酶葡萄球菌无效的药物,在联用后对产酶葡萄球菌有效。β-内酰胺类抗生素对脆弱类杆菌等厌氧菌的抗菌活性较弱,但联用后的复合制剂对厌氧菌具有良好的抗菌活性。 舒巴坦、克拉维酸和三唑巴坦对β-内酰胺酶都有抑制作用,但以三唑巴坦最强,其次为克拉维酸,舒巴坦最弱。在血脑屏障穿透力方面,舒巴坦比三唑巴坦更易透过,而克拉维酸基本不能透过。所以克拉维酸的复合制剂不宜用于中枢神经系统感染。 【问】氨苄西林/舒巴坦、阿莫西林/克拉维酸、替卡西林/克拉维酸、头孢哌酮/舒巴坦、哌拉西林/三唑巴坦这5种复合制剂在抗菌谱、临床适应证及不良反应方面有何异同? 【答】在抗菌谱方面,对厌氧菌的差别不大,对需氧菌有所不同。氨苄西林/舒巴坦、阿莫西林/克拉维酸对肠杆菌科细菌有良好的抗菌作用,但对铜绿假单胞菌和沙雷菌等没有抗菌作用;其他3种药物不仅对肠杆菌科细菌有良好抗菌作用,且优于前两者,对铜绿假单胞菌和沙雷菌、不动杆菌等葡萄糖不发酵菌也有良好的抗菌活性。 由于抗菌谱不同,临床适应证也就不同。氨苄西林/舒巴坦、阿莫西林/克拉维酸主要应用于肠杆菌科或肠杆菌科与厌氧菌的混合感染;由于克拉维酸的抑酶作用优于舒巴坦,阿莫

β-内酰胺类抗生素β内酰胺酶抑制剂复方制剂临床应用专家共识(2020年版)

β-内酰胺类抗生素β内酰胺酶抑制剂复方制剂临床应用 专家共识(2020年版) 一、概述 革兰阴性菌及少数革兰阳性菌对β-内酰胺类抗生素耐药的最重要机制是产生各种β-内酰胺酶。β-内酰胺酶抑制剂能够抑制部分β-内酰胺酶,避免β-内酰胺类抗生素被水解而失活。因此,β-内酰胺类抗生素/β-内酰胺酶抑制剂复方制剂(简称β-内酰胺酶抑制剂复方制剂)是临床治疗产β-内酰胺酶细菌感染的重要选择。我国临床使用的β-内酰胺酶抑制剂复方制剂的种类和规格繁多,临床工作者对该类制剂的特点了解参差不齐,临床不合理使用问题比较突出。 二、主要β-内酰胺酶及产酶菌流行情况 β-内酰胺酶是由细菌产生的,能水解β-内酰胺类抗生素的一大类酶。β-内酰胺酶种类繁多,有多种分类方法,最主要的分类方法有两种: 一、是根据β-内酰胺酶的底物、生化特性及是否被酶抑制剂所抑制的功能分类法(Bush分类法),其将β-内酰胺酶分为青霉素酶、广谱酶、超广谱β-内酰胺酶(ESBLs)、头孢菌素酶(AmpC酶)和碳青霉烯酶等; 二、是根据β-内酰胺酶末端的氨基酸序列特征的分子生物学分类法(Ambler分类法),将β-内酰胺酶分为丝氨酸酶(包括A类、C类酶和D 类酶)及金属酶(B类酶)。目前引用较多的是1995年Bush等基于上述二种方法建立的分类方法,2019年Bush等又将该分类表进一步完善和细化(表1)。其中临床意义最大的是下列三类β-内酰胺酶: 表1 常见β-内酰胺酶分类及特点,常见酶抑制剂抑酶活性

1、ESBLs主要属2be\2br\2ber类酶,是由质粒介导的能水解青霉素类、头孢菌素及单环酰胺类等β-内酰胺类抗生素的β-内酰胺酶,其对碳青霉烯类和头霉素类水解能力弱。ESBLs主要由肠杆菌科细菌产生,以肺炎克雷伯菌、大肠埃希菌、变形杆菌最为常见。根据编码基因的同源性,ESBLs可分为TEM型、SHV型、CTX-M 型、OXA型和其他型共5大类型。 2、AmpC酶属C类酶,通常由染色体介导,可以被β-内酰胺类抗生素诱导。部分由质粒介导,常呈持续高水平表达。其对第一、二、三代头孢菌素水解能力强,但对碳青霉烯类抗生素和第四代头孢菌素的水解能力弱。该酶主要存在于肠杆菌属、柠檬酸杆菌属、普鲁菲登菌属、黏质沙雷菌属和摩根菌属等细菌,非发酵菌中主要见于铜绿假单胞菌。质粒介导的β-内酰胺酶可分为CMY-2组、CMY-1组、MIR-1/ACT-1组、DHA-1组和ACC-1组等。 3、碳青霉烯酶是指能水解碳青霉烯类抗生素的一大类β-内酰胺酶,分别属于Ambler分子分类中的A类、B类和D类酶。A类、D类为丝氨酸酶,B类为金属酶,以锌离子为活性中心。A类碳青霉烯酶可由染色体介导,也可由质粒介导。前者包括SME、NMC和IMI酶等,后者包括KPC和GES酶等。KPC酶是近年来肠杆菌科细菌尤其是肺炎克雷伯菌对包括碳青霉烯类抗生素在内的几乎所有β-内酰胺类抗生素耐药的最主要机制,我国最常见的是KPC-2,其对头孢吡肟和头孢他啶的水解能力相对较弱。

β-内酰胺酶及其活力测定法

β-内酰胺酶及其活力测定法 培养基胨15g甘油50g氯化钠4g0.1%硫酸亚铁(FeSO4·7H2O)溶液0.5ml枸橼酸钠5.88g20%硫酸镁(MgSO4·7H2O)溶液1ml磷酸氢二钾4g肉浸液1000ml 混合上述成分,调节pH值使灭菌后为7.0~7.2,分装于500ml锥形瓶内,每瓶80ml,在115℃灭菌30分钟。 酶溶液的制备 取蜡样芽孢杆菌[Bacillus cereus CMCC(B)63301]的斜面培养物,接种至上述一瓶培养基内,在25℃摇床培养18小时后,取此培养物接种至其余各瓶培养基内,每瓶接种10ml,同时每瓶加入无菌青霉素4500单位,在25℃摇床培养24小时,再加无菌青霉素2万单位,继续培养24小时,再加无菌青霉素2万单位,继续培养24小时,离心沉淀菌体,调pH值至约8.5,用滤柱滤过除菌,滤液用无菌操作调pH值至近中性后,分装于适宜容器内,在10℃以下贮存,备用。 酶活力测定法 青霉素溶液 称取青霉素钠(钾)适量,用磷酸盐缓冲液(pH7.0)溶解成每1ml中含青霉素1万单位的溶液。 青霉素酶稀释液 取青霉素酶溶液,按估计单位用磷酸盐缓冲液(pH7.0) 稀释成每1ml中约含青霉素酶8000~12 000单位的溶液,在37℃预热。 测定法 精密量取青霉素溶液50ml,置100ml量瓶中,预热至37℃后,精密加入已预热的青霉素酶稀释液25ml,迅速混匀,在37℃准确放置1小时,精密量取3ml,立即加至已精密量取的碘滴定液(0.01mol/L)[精密量取碘滴定液(0.1mol/L)10ml,置100ml量瓶中,用醋酸钠缓冲液(pH4.5)稀释至刻度]25ml中,在室温暗处放置15分钟,用硫代硫酸钠滴定液(0.01mol/L) 滴定,至近终点时,加淀粉指示液,继续滴定至蓝色消失。 空白试验 取已预热的青霉素溶液2ml,在37℃放置1小时,精密加入上述碘滴定液(0.01mol/L)25ml,然后精密加青霉素酶稀释液1ml,在室温暗处放置15分钟,用硫代硫酸钠滴定液(0.01mol/L)滴定。 按下式计算: E=(B-A)×M×F×D×100 式中 E为青霉素酶活力,(单位/ml)/小时; B为空白滴定所消耗的上述硫代硫酸钠滴定液的容量,ml; A为样品滴定所消耗的上述硫代硫酸钠滴定液的容量,ml; M为硫代硫酸钠滴定液的浓度,mol/L; F为在相同条件下,每1ml的上述碘滴定液(0.01mol/L)相当于青霉素的单位数; D为青霉素酶溶液的稀释倍数。 [附注] 磷酸盐缓冲液(pH7.0) 取磷酸氢二钾7.36g与磷酸二氢钾3.14g,加水使成1000ml。 醋酸钠缓冲液(pH4.5) 取冰醋酸13.86ml,加水使成250ml;另取结晶醋酸钠27.30g,加水使成200ml,两液混合均匀

《水质丙烯酰胺的测定高效液相色谱-质谱质谱法》

《水质丙烯酰胺的测定固相萃取-高效液相色谱-质谱/质谱法》 编制说明 (送审稿) 《水质丙烯酰胺的测定高效液相色谱-质谱/质谱法》 标准编制组 2012年10月

目次 1 项目背景 (1) 1.1 任务来源 (1) 1.2 工作过程 (1) 2 标准制订的必要性分析 (1) 2.1 丙烯酰胺的环境危害.......................... .. (1) 2.2 相关环保标准和环保工作的需要 (2) 2.3 新建标准方法的优势 (2) 3 国内外相关分析方法实施情况与存在问题 (2) 4 标准制订的基本原则和技术路线 (3) 4.1 标准制订的基本原则 (3) 4.2 标准的适应范围和主要技术内容 (3) 4.3 标准制订的技术路线 (3) 5 方法研究报告 (5) 5.1 方法研究的目的 (5) 5.2 方法原理 (5) 5.3 试剂和材料 (5) 5.4 仪器和设备 (6) 5.5 样品 (6) 5.6 分析步骤............................. (7) 5.7 结果计算与表述 (9) 5.8检出限、精密度和准确度 (10) 5.9 质量保证和质量控制 (12) 6 方法验证 (12) 6.1 方法验证方案 (13) 6.2 方法验证过程 (13) 7 标准主要技术内容的解释 (13) 8 对实施本标准的建议 (14) 9 质量保证和质量控制 (14)

9.2 空白 (14) 9.2 加标 (14) 9.3 平行样 (14) 9.4 校准标准点 (14) 10 参考文献 (14)

《水质丙烯酰胺的测定高效液相色谱-质谱/质谱法》 编制说明 1. 项目背景 1.1 任务来源 《水质丙烯酰胺的测定高效液相色谱-质谱/质谱法》标准的制定工作,是按照陕西省质量技术监督局陕质监标【2011】第6号文《关于下达2011年第一批地方标准修制订计划的通知》规定起草的,由陕西省环境监测中心站负责制定,项目计划编号为25号。 1.2 工作过程 标准制定任务下达后,陕西省环境监测中心站立即成立了标准编制组。编制组在查阅国内外相关文献、标准的基础上,制定实施方案,进行开题论证。按照方案,进行了方法的条件优化实验,确定方法蓝本,然后在实验室内和实验室间进行方法的验证实验,最后,根据验证结果,完成标准(征求意见稿)的编制。 2. 标准制订的必要性分析 2.1 丙烯酰胺的环境危害 丙烯酰胺,分子式:C 3H 5 NO,分子量为71.08,为白色结晶固体,无气味, 熔点:84.5℃,饱和蒸汽压:0.21Kpa(84.5℃)。溶于水、乙醇、乙醚、丙酮等,但不溶于苯。丙烯酰胺是聚丙烯酰胺的单体,聚丙烯酰胺是一种水溶性高分子聚合物,主要应用于水的净化处理方面。 据统计,在发达国家水处理应用方面,美国占聚丙烯酰胺总用量的36%、西欧占35%、日本占49%;近年来,聚丙烯酰胺在我国水处理方面应用也越来越广泛,虽然聚丙烯酰胺被认为是无毒的,但其单体的毒性却是被肯定的;丙烯酰胺已被国家癌症中心(IARC)列为Ⅳ类致癌物,急性毒性实验证明丙烯酰胺有神经毒性、生殖、发育毒性,动物实验证明丙烯酰胺可导致遗传物质的改变和癌症的发生。在饮用水和地表水中,丙烯酰胺主要来源于使用有丙烯酰胺单体残留的聚丙烯酰胺絮凝剂。所以水中丙烯酰胺的分析是环境分析中的一项重要内容。

聚丙烯酰胺合成技术与应用

聚丙烯酰胺合成技术与应用介绍 聚丙烯酰胺(PAM)是丙烯酰胺(AM)均聚或1其他单体共聚而成的质量分数为50%以上的线型水溶性高分子化学品的总称。由十其结构单儿中含有酰胺基,易形成氢键,所以具有良好的水溶性,广泛应用于石油、金属及化学矿山开采、水处理、纺织、造纸等行业。PAM 系列产品可分为非离子型(NPAM)、阳离子型(CPAM)、阴离子型(APAM)和两性4大类。相对分子质量大小是PAM主要性能指标之一。 1 PAM的合成方法 PAM一般由自由基引发聚合合成,主要有本体法、水溶液法、乳液法和悬浮法等合成方法。根据聚合是否加入其他单体,又可分为均聚和共聚2种,PAM产品形态有水溶液、乳剂和粉剂等。 1. 1水溶液聚合法 水溶液聚合法是将单体AM和引发剂溶解在水中的聚合反应,是目前应用较广泛和成熟的技术。所得PAM产品有胶状和粉状2种,其胶体采用质量分数为8%-10%或20%-30% AM的水溶液在引发剂作用下直接聚合而得,产物经脱水干燥后可得粉状产品。产物相对分子质量为7万-700万。该法优点为安全、工艺设备简单、环境污染小,缺点是产物固含量低,仅为8%-15%,且易发生酰亚胺化反应,生成凝胶。 在PAM的水溶液聚合中,引发剂在很大程度上决定了聚合反应后得到产物的相对分子质量、产率,因而新型引发体系的开发是AM 水溶液聚合研究的关键。蔡开勇等人研究了过硫酸钾一胺体系、过硫

酸钾连二硫酸钠体系、有机过氧化物、浪酸盐或氯酸盐、金属离子等五类氧化还原引发体系对合成PAM相对分子质量的影响,发现过硫酸钾一连二硫酸钠体系是合成高相对分子质量PAM的有效引发体系。吴挡兰等人采用复合氧化还原引发体系,得到相对分子质量为3. 05 X 106的PAM。穆志坚采用过硫酸钾一氮三丙酰胺引发体系,在最佳土艺条件下,得到相对分子质量为6.2X105的PAM,转化率为98. 94%。张宝军等人开发出一种新型氧化还原引发体系,以AM和丙烯酸钠为单体,进行水溶液自由基共聚合反应,合成了相对分子质量高达1.8X107,过滤比为1. 24的超高相对分子质量PAM。 双官能度引发聚合是自由基聚合中一个很活跃的研究领域,它直接影响聚合速率和聚合物性能,包括端基性能、相对分子质量大小、结构等。Shah和8me、首次提出自由基“逐步聚合”概念,指出双官能度引发齐」能够用十自由基均聚制备超高相对分子质量聚合物。日木江畸厚等人使用双官能度过氧化物Luperox-2, 5-2, 5与NaHS03及Fev组成的氧化还原引发体系引发AM溶液聚合,制备了高相对分子质量的PAM}I-7。黄利铭等人以双官能度氧化还原引发体系为主,配合偶氮化合物引发剂组成新型复合引发体系,在低温下采用均相水溶液聚合法引发AM均聚,制备相对分子质量高达2 000万的PAM。 西南石油学院的胡星琪研究小组开发了一种新型的基十后过渡金属和业硫酸氢钠的AM水溶液聚合用引发体系,该体系的特点是不需要氮气保护,在常温不搅拌的情况下即可引发AM的水溶液聚合反应,日反应过程平稳可控,不易发生爆聚,可得到相对分子质量在

金属β-内酰胺酶综述

金属类β-内酰胺酶 β-内酰胺酶是革兰阴性杆菌对内酰胺类抗生素耐药的主要机制,细菌产生的β-内酰胺酶大部分系活性部位带丝氨酸残基的酶类,也有一小部分是活性部位为金属离子的酶类,称为金属β-内酰胺酶(metallo-β-lactamase,MBL),简称为金属酶。金属β-内酰胺酶,属Bush分类3群,Ambler分类B类,该群酶最大特点是可以水解碳青霉烯类等抗生素,而对哌拉西林和氨曲南影响较小。酶活性中心需金属锌离子的参与而发挥催化活性,故称为金属β-内酰胺酶。底物为包括碳青霉烯类在内的一大类β-内酰胺抗生素,其活性不被常见的β-内酰胺酶酶抑制剂如克拉维酸等所抑制,但可被离子鳌合剂乙二胺四乙酸(EDTA)、菲咯啉或硫基化合物抑制所抑制。金属β-内酰胺酶可由染色体和质粒介导,可在铜绿假单胞菌、嗜麦芽窄食单胞菌、粘质沙雷菌、肠杆菌属菌、肺炎克雷伯菌、嗜水气单胞菌和不动杆菌、脆弱类杆菌属、等细菌中检出此类酶。 一、发现和分布 第一个报道的金属酶是从蜡样芽孢杆菌( Bacill us cereus) 中发现的,该酶为锌依赖酶。20 世纪80 年代初期日本从嗜麦芽窄食单胞菌中鉴定出第二种锌依赖青霉素酶L1 型酶,随后又从嗜水气单胞菌和脆弱拟杆菌中鉴定出多种能水解亚胺培南的金属酶。这些酶都由染色体基因编码。该类金属酶分布在蜡样芽孢杆菌、嗜麦芽窄食单胞菌、脆弱拟杆菌、气单胞菌属和戈氏军团菌中,除嗜麦芽窄食单胞菌外,在临床上都极为罕见,而且都是单株散发的。1991年日本学者在铜绿假单胞菌中发现了第一种质粒介导的金属酶( IMP21) ,不久又从脆弱拟杆菌中发现了一种可转移金属酶,这两个酶的发现意味着金属酶已经从单株散发向随机分布过渡。现在已报道了10多种可转移金属酶: IMP21~8 和VIM21~3,分布在铜绿假单胞菌、不动杆菌和肠杆菌科细菌中,地域分布上已经不再局限于日本,现已分布至亚洲、欧洲和美洲的多个国家(见表1)。 二、生化分类和生化性质 1995 年Bush 等将金属酶全部归入功能类型3群,主要分类依据为:能被金属螯合剂螯合,不被β-内酰胺酶抑制剂克拉维酸、舒巴坦和三唑巴坦抑制。当时没有再作进一步分类。随着金属酶报道的增多,1997 年Rasmussen 和Bush 将金属酶按功能分成三个亚群:3a、3b 和3c 。 1) 3a 亚群绝大多数金属酶属于3a 亚群。其特点是底物谱宽,水解青霉素的速度与水解亚胺培南的速度相近或更快,还能有效水解头孢菌素,因此,3a亚群金属酶是β-内酰胺酶中最危险的单一酶种。许多3a 亚群酶需添加Zn2+才能达到最大活性或被激活,提示该亚群与Zn2+的亲和力低。 2) 3b 亚群分布于气单胞菌中,包括亲水气单胞、杀蛙气单胞、温和气单胞和简达气单胞菌。特点是底物特异性高,优先水解碳青霉烯,弱水解青霉素(A2h 除外) 和头孢菌素,不水解nitrocefin ,因此不能用nitrocefin 纸片法检出。等电聚焦电泳和凝胶柱层析时必须用亚胺培南作底物才能检测到。能被EDTA抑制,加EDTA 后,再加Z2+又可恢复酶活性。高浓度Zn2+可增加酶活性而在低浓度时酶活性受抑制。当Zn2+在15μmol 或更低时,至少有3 种3b 酶的活性受抑制。

详解β-内酰胺类抗生素和β-内酰胺酶抑制剂

详解β-内酰胺类抗生素和β-内酰胺酶抑制剂 详解β-内酰胺类抗生素和β-内酰胺酶抑制剂 一、概述 革兰阴性菌是我国细菌感染性疾病最常见的病原体。近年来,革兰阴性菌对β-内酰胺类抗生素的耐药性不断增加,最重要的耐药机制是细菌产生各种β-内酰胺酶。β-内酰胺酶抑制剂能够抑制大部分β-内酰胺酶,恢复β-内酰胺类抗生素的抗菌活性。因此,β-内酰胺类抗生素/β-内酰胺酶抑制剂合剂在临床抗感染中的地位不断提升,已成为临床治疗多种耐药细菌感染的重要选择。目前我国临床使用的β-内酰胺类抗生素/β-内酰胺酶抑制剂合剂的种类和规格繁多,临床医师对该类合剂的特点了解不够,临床不合理使用问题较突出。为规范β-内酰胺类抗生素/β-内酰胺酶抑制剂合剂的临床应用,延缓其耐药性的发生和发展,特制定本共识。 二、主要β-内酰胺酶及β-内酰胺酶抑制剂 β-内酰胺酶是由细菌产生的能水解β-内酰胺类抗生素的一大类酶。β-内酰胺酶种类繁多,有多种分类方法,最主要的分类方法有根据β-内酰胺酶的底物、生化特性及是否被酶抑制剂所抑制的功能分类法(Bush分类法),将β-内酰胺酶分为青霉素酶、广谱酶、超广谱β-内酰胺酶、头孢菌素酶和碳青霉烯酶等;根据β-内酰胺酶末端的氨基酸序列特征的分子生物学分类法(Ambler分类法),将β-内酰胺酶分为丝氨酸酶和金属酶。目前引用较多的是基于上述2种

方法建立的分类方法。 超广谱β-内酰胺酶(ESBLs)是由质粒介导的能水解青霉素类、头孢菌素及单环酰胺类等β-内酰胺类抗生素的β-内酰胺酶,其对碳青霉烯类和头霉素类水解能力弱。这类酶可被β-内酰胺酶抑制剂如克拉维酸、舒巴坦及他唑巴坦等抑制。ESBLs主要由肠杆菌科细菌产生,以肺炎克雷伯菌、大肠埃希菌、变形杆菌最为常见。到目前为止,全世界共发现了200余种ESBLs。根据编码基因的同源性,ESBLs可分为TEM型、SHV型、CTX-M型、OXA型和其他型共5大类型。 头孢菌素酶(AmpC酶)通常是由染色体介导,对第一、二、三代头孢菌素水解能力强,但其对碳青酶烯类抗生素和第四代头孢菌素的水解能力弱,克拉维酸钾不能抑制其活性,他唑巴坦和舒巴坦有部分抑酶作用,氯唑西林抑制头孢菌素酶作用强。该酶主要存在于肠杆菌属、柠檬酸杆菌属、普鲁菲登菌属、粘质沙雷菌属和摩根菌属等细菌。染色体介导的头孢菌素酶可以被β-内酰胺类抗生素诱导和选择。近年来,质粒介导的头孢菌素酶陆续被报道,主要出现于肺炎克雷伯菌、大肠埃希菌及沙门菌属细菌中,常呈持续高水平表达,可通过质粒广泛传播。根据其与染色体介导的头孢菌素酶的同源性,可分为CMY-2组、CMY-1组、MIR-1/ACT-1组、DHA-1组和ACC-1组等。 碳青霉烯酶是指能水解碳青霉烯类抗生素的一大类β-内酰胺酶,分别属于Ambler分子分类中的A类、B类和D类酶。A类、D类为丝氨酸酶,B类为金属酶,以锌离子为活性中心。 A类碳青霉烯酶可以由染色体介导,也可由质粒介导,前者包括

β-内酰胺酶的检测方法

外源性β-内酰胺酶是我国不允许在食品中使用的化学物质。违法使用的目的,是为了掩盖违规使用大环内脂类等抗生素治疗奶牛疾病的行为。但是,内源性β-内酰胺酶的产生机理也是科学研究基本确认的事实。近几十年来,国际国内畜牧业养殖奶牛过程中无限制使用大环内脂类抗生素治疗动物、家禽等食用动物各种炎症、败血症、水肿病等病症,造成革兰氏阳性细菌对抗生素耐药,细菌对β-内酰胺类抗生素产生耐药性一般通过4种途径。(1)产生β-内酰胺酶使β-内酰胺类抗生素开环失活,这是产生耐药的主要原因。目前发现的β-内酰胺酶已超过300种,它通过与β-内酰胺环上的羰基共价结合,水解酰胺键从而使β-内酰胺类抗生素开环而失活。(2)改变抗生素与青霉素结合蛋白(penicillin binding proteins,PBPs)的亲和力。当β-内酰胺类抗生素与PBP结合后,PBP就会失去酶活性,使细菌细胞壁的形成部位破损而引起溶菌,反之,则成为耐药菌。PBP基因的变异,使β-内酰胺类抗生素无法与之结合或结合能力降低,这是形成耐药的根本原因。(3)细胞膜和细胞壁的结构发生改变,使药物难以进入细菌内。如生物膜的形成。(4)细菌体内的能力依赖性主动转运机制,将已进入细菌内的抗生素泵出体外,也可导致耐药性。由于细菌耐药产生的内源性β-内酰胺酶有300多种,同外源性β-内酰胺酶的分别鉴定检测技术尚未见报道。而目前各检测机构正在研究的乳制品中β-内酰胺酶的检测方法无论是化学仪器分析高效液相色谱法还是微生物法,其检测原理都是:测出的β-内酰胺酶无法判定是人为添加的或是耐药细菌产生的。奶制品中检出的β-内酰胺酶有可能是非法添加的,也有可能是细菌产生的。耐药性产生的机理很复杂,细菌耐药基因的转移、共生菌协同以及基因交叉耐受,等影响都要考虑。另外,根据现有的国际食源性抗生素耐药微生物的风险管理原则,建议加强畜牧业奶业生产全过程,而终产品的β-内酰胺酶检测始终是一个辅助手段,凭检测结果很难处理。化学家们要尽快建立内源性和外源性β-内酰胺酶的分离鉴定技术,当然这种技术要求是非常高的 1.常规方法(1).微生物法:[原理] 以一种对青霉素高度敏感的细菌-枯草芽孢杆菌作为指示剂,试验时如果被测细菌株产生青霉素酶,破坏了青霉素,则此高度敏感菌株即可生长,否则,指示剂则被抑制。[方法] 以枯草芽孢杆菌为指示菌,用棉拭子将枯草芽孢杆菌接种于琼脂培养基上,或倾注方法将枯草芽孢杆菌混于琼脂平板内。然后将被测菌与产青霉素酶阳性及阴性对照菌株,按下图接种划线,在琼脂培养基中央放置一含青霉素G(1单位)纸片。放置35℃培养24小时后观察结果。[结果判断] 如被检菌产生青霉素酶,则沿着被测菌处的枯草芽孢杆菌抑菌环出现凹痕(2).碘量法[3] [原理] β-内酰胺酶能裂解青霉素的β-内酰胺环形成青霉噻唑酸,它与淀粉竞争游离碘,破坏了碘和淀粉的兰色复合物,使兰色变为无色。[方法] ①将0.25克青霉素溶于41.7mlPH6.0的磷酸盐缓冲液中,使其浓度成6000ug/ml。取0.1ml

聚丙烯酰胺-残留丙烯酰胺含量的测定-气相色谱法

FCLHCSL0065 聚丙烯酰胺 残留丙烯酰胺含量的测定 气相色谱法 F_CL_HC_SL0065 聚丙烯酰胺-残留丙烯酰胺含量的测定-气相色谱法 1 范围 本方法适用于粉状及胶状非离子型聚丙烯酰胺和阴离子型聚丙烯酰胺中残留丙烯酰胺含量的测定。 本方法适用于丙烯酰胺含量高于0.01%,特别是高于0.05%的试样的测定。 2 方法提要 用规定体积和浓度的甲醇-水溶液浸取聚丙烯酰胺至平衡,用气相色谱法测定浸取液中丙烯酰胺色谱峰面积,并将其与丙烯酰胺标准样品的工作曲线比较,即可得到聚丙烯酰胺中残留丙烯酰胺的含量。 3 试剂和材料 3.1 甲醇。 3.2 甲醇-水溶液:体积比为8:2。 3.3 氮气:纯度99.99%。 3.4 载体:Chromosorb W-HP 型,粒度60目~80目。 3.5 固定液:聚乙二醇,分子量20 000。 3.6 丙烯酰胺标准样品:纯度大于99%。工业品或化学纯的固体丙烯酰胺经二次重结晶处理,可得99%以上的丙烯酰胺标准样品。 4 仪器 4.1 气相色谱仪:具有氢火焰离子化检测器,敏感度小于或等于1×10-10g/s 。 4.2 进样器:2μL 或5μL 微量注射器。 4.3 色谱柱:长2m ,内径3mm 的不锈钢柱,装填表面涂有与其重量比为20%聚乙二醇固定液的Chromosorb W-HP 载体。使用前该色谱柱需在175℃~180℃,以20mL/min 的氮气留老化处理12h 以上。 4.4 记录器:满标量程5mV 。 4.5 分析天平:感量0.0001g 。 4.6 康氏振荡器或电磁搅拌器。 5 试样溶液的制备 5.1 粉状聚丙烯酰胺试样 5.1.1 在已经干燥好的100mL 磨口具塞锥形瓶中称量2.8g ~3.1g 试样,准确至0.0001g ,用移液管移取30mL 甲醇-水溶液,盖好瓶塞。 5.1.2 摇动锥形瓶,使试样分散均匀,在室温下放置20h 。 5.1.3 将锥形瓶妥善地固定在康氏振荡器或电磁搅拌器上,勿使瓶塞松动,于室温下振荡4h 。 5.1.4 静置后取上层清液作为试样溶液。 5.2 胶状聚丙烯酰胺试样 5.2.1 在已干燥的250mL 磨口具塞锥形瓶中称量试样,准确至0.0001g 。 5.2.2 加入相当于试样含水体积4倍的甲醇。 中国分析网

相关主题
文本预览
相关文档 最新文档