当前位置:文档之家› 股价的几何布朗运动证明

股价的几何布朗运动证明

股价的几何布朗运动证明
股价的几何布朗运动证明

布朗运动和伊藤引理的运用

布朗运动与伊藤引理的运用 一、引言 1827年英国植物学家布朗发现液体中悬浮的花粉粒具有无规则的运动,这种运动就是布朗运动。1900年,法国数学家巴舍利耶()在其博士论文《投资理论》中,给出了布朗运动的数学描述,提出用算术布朗运动来模拟股票价格的变化。如果股票价格遵循算术布朗运动将意味着股票价格可能取负值,因此股票价格不遵循算术布朗运动,基于这个原因,萨缪尔森()提出股票的收益率服从算术布朗运动的假设,即股票价格服从算术布朗运动。在柯朗研究所着名数学家的帮助下,萨缪尔森得到了欧式看涨期权的显式定价公式,但是该公式包含了一些个体的主观因素。1973年,布莱克()和斯科尔斯()发表了一篇名为《期权和公司负债定价》的论文,推导出了着名的Black-Scholes公式,即标准的欧式期权价格显式解,这个公式中的变量全是客观变量。哈佛大学教授莫顿(Merton)在《期权的理性定价理论》一文中提出了与Black-Scholes类似的期权定价模型,并做了一些重要推广,从此开创了金融学研究一个新的领域。 二、相关概念和公式推导 1、布朗运动介绍 布朗运动(Brownian Motion)是指悬浮在流体中的微粒受到流体分子与粒子的碰撞而发生的不停息的随机运动。然而真正用于描述布朗运动随机过程的定义是维纳(Winener)给出的,因此布朗运动又称为维纳过程。 (1)、标准布朗运动 设t?代表一个小的时间间隔长度,z ?代表变量z在t?时间内的变化,遵循标准布朗运动的z ?具有的两种特征: 特征1:z ?和t?的关系满足下式: z?= 其中,ε代表从标准正态分布(即均值为0、标准差为的正态分布)中的一个随机值。 特征2:对于任何两个不同时间间隔t?,z ?的值相互独立。

布朗运动理论一百年

布朗运动理论一百年 郝柏林 由爱因斯坦、斯莫鲁霍夫斯基(M.Smoluchowski)等人在20世纪初开始的布朗运动理论,在一百年间发展出内容丰富的众多学科分支,现在正在成为分析生物细胞内分子机器运作原理的有力工具。爱因斯坦1905年发表的5篇论文中,关于布朗运动的文章可能人们知道得最少,而实际上它被引用的次数却超过了狭义相对论。 1 我们从布朗运动本身开始回顾 英国植物学家罗伯特·布朗在1828年和1829年的《哲学》杂志上发表了两篇文章,描述自己在1827年夏天在显微镜下观察到花粉颗粒在液体中的不停顿的运动。他最初曾经以为是看到了生命运动,但后来确认这种运动对细小的有机和无机颗粒都存在,因而不是生命现象所致。布朗认为运动的原因在于这些颗粒包含着“活性分子”(active molecules),而与所处液体没有关系。 事实上,布朗并不是观察到这类运动的第一人。他在上述两篇文章里就曾提到了约十位前人,包括做过大量观察的制作显微镜的巧手列文胡克(Antonnie von Leeuwenhock)。 2 爱因斯坦的扩散长度公式 爱因斯坦在1901—1905年期间致力于博士论文研究。他1905年发表的头一篇文章——“分子大小的新测定”就基于其博士论文。爱因斯坦考察了液体中悬浮粒子对渗透压的贡献,把流体力学方法和扩散理论结合起来,建议了测量分子尺寸和阿佛伽德罗常数的新办法。这样的研究同布朗运动发生关系是很自然的。然而,他1905年5月撰写的第二篇论文的题目并没有提及布朗运动。这篇题为《热的分子运动论所要求的静止液体中悬浮小粒子的运动》的文章,一开始就说:“可能,这里所讨论

的运动就是所谓的布朗分子运动;可是,关于后者我所能得到唯一的资料是如此的不准确,以致在这个问题上我无法形成判断。” 爱因斯坦确实建立了布朗运动的分子理论,并且开启了借助随机过程描述自然现象的数理科学发展方向。 我们不在此重复爱因斯坦当年对扩散系数D的推导,直接从熟知的(一维)扩散方程出发: 假定在t?=0时刻粒子位于x=0处,即ρ(x,0)=δ(x),扩散方程的解是: 即粒子的密度遵从高斯分布。对于固定的时刻t,x和x2的平均值分别是: 〈x〉=0,〈x2〉=2Dt 于是得到扩散长度的公式: 这里出现了著名的爱因斯坦的1/2指数。

高中数学 数学归纳法

13.4 数学归纳法 一、填空题 1.用数学归纳法证明1+12+13…+1 2n -1<n (n ∈N ,且n >1),第一步要证的不 等式是________. 解析 n =2时,左边=1+12+122-1=1+12+1 3,右边=2. 答案 1+12+1 3<2 2.用数学归纳法证明: 121×3+223×5+…+n 2(2n -1)(2n +1)=n(n +1)2(2n +1);当推证当n =k +1等式也成立时,用上归纳假设后需要证明的等式是 . 解析 当n =k +1时,121×3+223×5+…+k 2(2k -1)(2k +1)+(k +1)2(2k +1)(2k +3) =k(k +1)2(2k +1)+(k +1)2 (2k +1)(2k +3) 故只需证明k(k +1)2(2k +1)+(k +1)2(2k +1)(2k +3)=(k +1)(k +2) 2(2k +3)即可. 答案 k(k +1)2(2k +1)+(k +1)2(2k +1)(2k +3)=(k +1)(k +2) 2(2k +3) 3.若f (n )=12+22+32+…+(2n )2,则f (k +1)与f (k )的递推关系式是________. 解析 ∵f (k )=12+22+…+(2k )2, ∴f (k +1)=12+22+…+(2k )2+(2k +1)2+(2k +2)2; ∴f (k +1)=f (k )+(2k +1)2+(2k +2)2. 答案 f (k +1)=f (k )+(2k +1)2+(2k +2)23.若存在正整数m ,使得f (n )= (2n -7)3n +9(n ∈N *)能被m 整除,则m =________. 解析 f (1)=-6,f (2)=-18,f (3)=-18,猜想:m =-6. 答案 6 4.用数学归纳法证明“n 3+(n +1)3+(n +2)3(n ∈N *)能被9整除”,要利用归纳

关于布朗运动的理论(爱因斯坦)

关于布朗运动的理论 爱因斯坦 1905年12月 在我的论文《热的分子[运动]论所要求的[静]液体中悬浮粒子的运动》发表后不久,(耶那的)西登托普夫(Siedentopf)告诉我:他和别的一些物理学家——首先是(里昂的)古伊(Gouy )教授先生一一通过直接的观测而得到这样的信念,认为所谓布朗运动是由液体分子的不规则的热运动所引起的。不仅是布朗运动的性质,而且粒子所经历路程的数量级,也都完全符合这个理论的结果。我不想在这里把那些可供我使用的稀少的实验资料去同这个理论的结果进行比较,而把这种比较让给那些丛实验方面掌握这个问题的人去做。 下面的论文是要对我的上述论文中某些论点作些补充。对悬浮粒子是球形的这种最简单的特殊情况,我们在这里不仅要推导出悬浮粒子的平移运动,而且还要推导出它们的旋转运动。我们还要进一步指明,要使那篇论文中所给出的结果保持正确,观测时间最短能短到怎样程度。 要推导这些结果,我们在这里要用一种此较一般的方法,这部分地是为了要说明布朗运动同热的分子[运动]论的基础有怎样的关系,部分地是为了能够通过统一的研究展开平动公式和转动公式。因此,假设α是一个处于温度平衡的物理体系的一个可量度的参数,并且假定这个体系对于α的每一个(可能的)值都是处在所谓随遇平衡中。,

按照把热同别种能量在原则上区别开的古典热力学,α不能自动改变;按照热的分子〔运动]论,却不然。下面我们要研究,按照后一理论所发生的这种改变必须遵循怎么样的定律。然后我们必须把这些定律用于下列特殊情况:—— 1、 α是(不受重力的作用的)均匀液体中一个球形悬浮粒子的重心的 X 坐标。 2、α是确定一个球形粒子位置的旋转角,这个粒子是悬浮在液体中的,可绕直径转动。 §1、热力学平衡的一个情况 假设有一物理体系放在绝对温度为 T 的环境里,这个体系同周围环境有热交换,并且处干温度平衡状态中。这个体系因而也具有绝对温度T ,而且依据热的分子[运动]论,它可由状态变数p p n 1完全地确定下来。在所考查的这个特殊情况中,构成这一特殊体系的所有原子的坐标和速度分量可以被选来作为状态变数p p n 1。 对于状态变数p p n 1在偶然选定的一个时刻处于一个 n 重的 无限小区域(p p n d d 1)中的几率,下列方程成立—— (1) p p e n E RT N d d C dw 1-= 次处C 是一个常数,R 是气体方程的普适常数,N 是一个克分子中实际分子的数目,而E 是能量。假设α是这个体系的可以量度的参数,并且假设每一组值p p n 1都对应一个确定的α值,我们要用 αAd 来表示在偶然选定的一个时刻参数α的值处在α和ααd +之间的几率。于是

数学归纳法证明例题

例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n . 请读者分析下面的证法: 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k . 那么当n =k+1时,有: ()()()()32121121217 51531311++++-++?+?+?k k k k ????????? ??+-++??? ??+--++??? ??-+??? ??-+??? ? ?-=3211211211217151513131121k k k k 322221321121++?=??? ??+-= k k k ()1 121321+++=++=k k k k 这就是说,当n =k +1时,等式亦成立. 由①、②可知,对一切自然数n 等式成立. 评述:上面用数学归纳法进行证明的方法是错误的,这是一种假证,假就假在没有利用归纳假设n=k 这一步,当n=k +1时,而是用拆项法推出来的,这样归纳假设起到作用,不符合数学归纳法的要求. 正确方法是:当n =k+1时. ()()()()32121121217 51531311++++-++?+?+?k k k k ()() 3212112++++=k k k k

()()()()()() 321211232121322++++=++++=k k k k k k k k ()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 例2.是否存在一个等差数列{a n},使得对任何自然数n ,等式: a 1+2a 2+3a 3+…+n an =n(n +1)(n +2) 都成立,并证明你的结论. 分析:采用由特殊到一般的思维方法,先令n=1,2,3时找出来{a n },然后再证明一般性. 解:将n=1,2,3分别代入等式得方程组. ?????=++=+=603224 26321 211a a a a a a , 解得a 1=6,a 2=9,a 3=12,则d =3. 故存在一个等差数列a n =3n +3,当n =1,2,3时,已知等式成立. 下面用数学归纳法证明存在一个等差数列a n =3n +3,对大于3的自然数,等式 a1+2a 2+3a3+…+na n =n (n +1)(n +2)都成立. 因为起始值已证,可证第二步骤. 假设n =k时,等式成立,即 a 1+2a 2+3a 3+…+ka k =k (k+1)(k +2) 那么当n=k +1时, a1+2a 2+3a 3+…+ka k +(k+1)ak +1 = k(k +1)(k +2)+ (k +1)[3(k+1)+3] =(k +1)(k 2+2k +3k +6) =(k +1)(k +2)(k +3) =(k +1)[(k +1)+1][(k +1)+2] 这就是说,当n=k +1时,也存在一个等差数列an =3n +3使a 1+2a 2+3a 3+…+n an=n (n +1)(n+2)成立. 综合上述,可知存在一个等差数列an =3n +3,对任何自然数n ,等式a 1+2a 2+3a 3+…+na n=n(n+1)(n +2)都成立.

布朗运动理论

布朗运动理论一百年1 布朗运动理论一百年 郝柏林 由爱因斯坦、斯莫鲁霍夫斯基(M.Smoluchowski)等人在20世纪初开始的布朗运动理论,在一百年间发展出内容丰富的众多学科分支,现在正在成为分析生物细胞内分子机器运作原理的有力工具。爱因斯坦1905年发表的5篇论文中,关于布朗运动的文章可能人们知道得最少,而实际上它被引用的次数却超过了狭义相对论。 1 我们从布朗运动本身开始回顾 英国植物学家罗伯特·布朗在1828年和1829年的《哲学》杂志上发表了两篇文章,描述自己在1927年夏天在显微镜下观察到花粉颗粒在液体中的不停顿的运动。他最初曾经以为是看到了生命运动,但后来确认这种运动对细小的有机和无机颗粒都存在,因而不是生命现象所致。布朗认为运动的原因在于这些颗粒包含着“活性分子”(active molecules),而与所处液体没有关系。 事实上,布朗并不是观察到这类运动的第一人。他在上述两篇文章里就曾提到了约十位前人,包括做过大量观察的制作显微镜的巧手列文胡克(Antonnie von Leeuwenhock)。

2 科学前沿与未来 2 爱因斯坦的扩散长度公式 爱因斯坦在1901—1905年期间致力于博士论文研究。他1905年发表的头一篇文章——“分子大小的新测定”就基于其博士论文。爱因斯坦考察了液体中悬浮粒子对渗透压的贡献,把流体力学方法和扩散理论结合起来,建议了测量分子尺寸和阿佛伽德罗常数的新办法。这样的研究同布朗运动发生关系是很自然的。然而,他1905年5月撰写的第二篇论文的题目并没有提及布朗运动。这篇题为《热的分子运动论所要求的静止液体中悬浮小粒子的运动》的文章,一开始就说:“可能,这里所讨论的运动就是所谓的布朗分子运动;可是,关于后者我所能得到唯一的资料是如此的不准确,以致在这个问题上我无法形成判断。” 爱因斯坦确实建立了布朗运动的分子理论,并且开启了借助随机过程描述自然现象的数理科学发展方向。 我们不在此重复爱因斯坦当年对扩散系数D 的推导,直接从熟知的(一维)扩散方程出发: 22D t x ρρ??=?? 假定在t =0时刻粒子位于x =0处,即ρ(x ,0)=δ(x ),扩散方程的解是: ()241,4πx Dt x t e Dt ρ-= 即粒子的密度遵从高斯分布。对于固定的时刻t ,x 和x 2的平均值分别是: 〈x 〉=0,〈x 2〉=2Dt 于是得到扩散长度的公式: 这里出现了著名的爱因斯坦的1/2指数。

用数学归纳法证明不等式

人教版选修4—5不等式选讲 课题:用数学归纳法证明不等式 教学目标: 1、牢固掌握数学归纳法的证明步骤,熟练表达数学归纳法证明的过程。 2、通过事例,学生掌握运用数学归纳法,证明不等式的思想方法。 3、培养学生的逻辑思维能力,运算能力和分析问题,解决问题的能力。 重点、难点: 1、巩固对数学归纳法意义和有效性的理解,并能正确表达解题过程,以及掌握用数学归纳法证明不等式的基本思路。 2、应用数学归纳法证明的不同方法的选择和解题技巧。 教学过程: 一、复习导入: 1、上节课学习了数学归纳法及运用数学归纳法解题的步骤,请同学们回顾,说出数学归纳法的步骤? (1)数学归纳法是用于证明某些与自然数有关的命题的一种方法。 (2)步骤:1)归纳奠基; 2)归纳递推。 2、作业讲评:(出示小黑板) 习题:用数学归纳法证明:2+4+6+8+……+2n=n(n+1) 如采用下面的证法,对吗? 证明:①当n=1时,左边=2=右边,则等式成立。 ②假设n=k时,(k∈N,k≥1)等式成立, 即2+4+6+8+……+2k=k(k+1) 当n=k+1时, 2+4+6+8+……+2k+2(k+1) ∴ n=k+1时,等式成立。 由①②可知,对于任意自然数n,原等式都成立。 (1)学生思考讨论。

(2)师生总结:1)不正确 2)因为在证明n=k+1时,未用到归纳假设,直接用等差数列求和公式,违背了数学归纳法本质:递推性。 二、新知探究 明确了数学归纳法本质,我们共同讨论如何用数学归纳法证明不等式。 (出示小黑板) 例1 观察下面两个数列,从第几项起a n始终小于b n?证明你的结论。 {a n=n2}:1,4,9,16,25,36,49,64,81, …… {b n=2n}:2,4,8,16,32,64,128,256,512,…… (1)学生观察思考 (2)师生分析 (3)解:从第5项起,a n< b n,即 n2<2n,n∈N+(n≥5) 证明:(1)当 n=5时,有52<25,命题成立。 即k2<2k 当n=k+1时,因为 (k+1)2=k2+2k+1<k2+2k+k=k2+3k<k2+k2=2k2<2×2k=2k+1 所以,(k+1)2<2k+1 即n=k+1时,命题成立。 由(1)(2)可知n2<2n(n∈N+,n≥5) 学生思考、小组讨论:①放缩技巧:k2+2k+1<k2+2k+k;k2+3k<k2+k2 ②归纳假设:2k2<2×2k 例2证明不等式│Sin nθ│≤n│Sinθ│(n∈N+) 分析:这是一个涉及正整数n的三角函数问题,又与绝对值有关,在证明递推关系时,应注意利用三角函数的性质及绝对值不等式。 证明:(1)当 n=1时,上式左边=│Sinθ│=右边,不等式成立。 (2)假设当n=k(k≥1)时命题成立, 即有│Sin kθ│≤k│Sinθ│

(完整版)布朗运动以及维纳过程学习难点总结

1、引言 布朗运动的数学模型就是维纳过程。布朗运动就是指悬浮粒子受到碰撞一直在做着不规则的运动。我们现在用)(t W 来表示运动中一个微小粒子从时刻0=t 到时刻0>t 的位移的横坐标,并令0)0(=W 。根据Einstein 的理论,我们可以知道微粒之所以做这种运动,是因为在每一瞬间,粒子都会受到其他粒子对它的冲撞,而每次冲撞时粒子所受到的瞬时冲力的大小和方向都不同,又粒子的冲撞是永不停息的,所以粒子一直在做着无规则的运动。故粒子在时间段],(t s 上的位移,我们可把它看成是多个小位移的总和。我们根据中心极限定理,假设位移)()(s W t W -服从正态分布,那么在不相重叠的时间段内,粒子碰撞时受到的冲力的方向和大小都可认为是互不影响的,这就说明位移)(t W 具有独立的增量。此时微粒在某一个时段上位移的概率分布,我们便能认为其仅仅与这一时间段的区间长度有关,而与初始时刻没有关系,也就是说)(t W 具有平稳增量。 2.维纳过程 2.1独立增量过程 维纳过程是典型的随机过程,属于所谓的独立增量过程,在随机过程的理论和应用中起着很重要的作用。现在我们就来介绍独立增量过程。 定义:}0),({≥t t X 是二阶矩过程, 那么我们就称t s s X t X <≤-0),()(为随机过程在区间],(t s 上的增量。 若对任意的n )(+∈N n 和任意的n t t t <<<≤Λ100,n 个增量 )()(,),()(),()(11201----n n t X t X t X t X t X t X Λ 是相互独立的,那么我们就称}0),({≥t t X 为独立增量过程。 我们可以证明出在0)0(=X 的条件下,独立增量过程的有限维分布函数族可由增量)0(),()(t s s X t X <≤-的分布所确定。 如果对R h ∈和)()(,0h s X h t X h t h s +-++<+≤与)()(s X t X -的分布是相同的,我们就称增量具有平稳性。那么这个时候,增量)()(s X t X -的分布函数只与时间差)0(t s s t <≤-有关,而与t 和s 无关(令s h -=便可得出)。值得注意的是,我们称独立增量过程是齐次的,此时的增量具有平稳性。

布朗运动和伊藤引理的运用

布朗运动与伊藤引理的运用 唐雨辰3112352013 统计2107 一、引言 1827年英国植物学家布朗发现液体中悬浮的花粉粒具有无规则的运动,这种运动就是布朗运动。1900年,法国数学家巴舍利耶(L.Bachelier)在其博士论文《投资理论》中,给出了布朗运动的数学描述,提出用算术布朗运动来模拟股票价格的变化。如果股票价格遵循算术布朗运动将意味着股票价格可能取负值,因此股票价格不遵循算术布朗运动,基于这个原因,萨缪尔森(P.A.Samuelson)提出股票的收益率服从算术布朗运动的假设,即股票价格服从算术布朗运动。在柯朗研究所著名数学家H.P.McKean的帮助下,萨缪尔森得到了欧式看涨期权的显式定价公式,但是该公式包含了一些个体的主观因素。1973年,布莱克(F.Black)和斯科尔斯(M.Scholes)发表了一篇名为《期权和公司负债定价》的论文,推导出了著名的Black-Scholes公式,即标准的欧式期权价格显式解,这个公式中的变量全是客观变量。哈佛大学教授莫顿(Merton)在《期权的理性定价理论》一文中提出了与Black-Scholes类似的期权定价模型,并做了一些重要推广,从此开创了金融学研究一个新的领域。 二、相关概念和公式推导 1、布朗运动介绍 布朗运动(Brownian Motion)是指悬浮在流体中的微粒受到流体分子与粒子的碰撞而发生的不停息的随机运动。然而真正用于描述布朗运动随机过程的定

义是维纳(Winener )给出的,因此布朗运动又称为维纳过程。 (1)、标准布朗运动 设t ?代表一个小的时间间隔长度,z ?代表变量z 在t ?时间内的变化,遵循标准布朗运动的z ?具有的两种特征: 特征1:z ?和t ?的关系满足下式: z ?= (2.1) 其中,ε代表从标准正态分布(即均值为0、标准差为1.0的正态分布)中的一个随机值。 特征2:对于任何两个不同时间间隔t ?,z ?的值相互独立。 从特征1可知,z ?本身也具有正态分布特征,其均值为0为t ?。 从特征2可知,标准布朗运动符合马尔可夫过程,因此是马尔可夫过程的一种特殊形式。 现在我们来考察遵循标准布朗运动的变量z 在一段较长时间T 中的变化情形。我们用z (T )-z (0)表示变量z 在T 中的变化量,它可被看作是在N 个长度为t ?的小时间间隔中z 的变化总量,其中/N T t =?,因此, 1()(0)N i z T z ε=-=∑ (2.2) 其中(1,2,)i i N ε= 是标准正态分布的随机抽样值。从特征2可知,i ε是相互独立的,因此z (T )-z (0)也具有正太分布特征,其均值为0,方差为N t T ?=, 由此我们可以发现两个特征:○ 1在任意长度的时间间隔T 中,遵循标准布朗 运动的变量的变化值服从均值为0,○ 2对于相互独立的正态分布,方差具有可加性,而标准差不具有可加性。 当0t ?→时,我们就可以得到极限的标准布朗运动: dz = (2.3) (2)、普通布朗运动

几何布朗运动

几何布朗运动(GBM) (也叫做指数布朗运动) 是连续时间情况下的随机过程,其中随机变量的对数遵循布朗运动,[1] also called a Wiener process.几何布朗运动在金融数学中有所应用,用来在布莱克-舒尔斯定价模型中模仿股票价格。 目录[隐藏] 1 Technical定义 2 几何布朗运动的特性 3 在金融中的应用 4 几何布朗运动推广 5 参见 6 References 7 链接s Technical定义 A 随机过程St在满足一下随机微分方程(SDE)的情况下被认为遵循几何布朗运动: 这里是一个维纳过程,或者说是布朗运动,而('百分比drift') 和('百分比volatility')则是常量。几何布朗运动的特性 给定初始值S0,根据伊藤积分,上面的SDE有如下解: 对于任意值t,这是一个对数正态分布随机变量,其期望值和方差分别是[2] 也就是说St的概率密度函数是: 根据伊藤引理,这个解是正确的。 When deriving further properties of GBM, use can be made of the SDE of which GBM is the solution, or the explicit solution given above can be used. 比如,考虑随机过程log(St). 这是一个有趣的过程,因为在布莱克-舒尔斯模型中这和股票价格的对数回报率相关。对f(S) = log(S)应用伊藤引理,得到 于是. 这个结果还有另一种方法获得:applying the logarithm to the explicit solution of GBM: 取期望值,获得和上面同样的结果: . 在金融中的应用 主条目:布莱克-舒尔斯模型 几何布朗运动在布莱克-舒尔斯定价模型被用来定性股票价格,因而也是最常用的描述股票价格的模型。 使用几何布朗运动来描述股票价格的理由: The expected returns of几何布朗运动are independent of the value of the process (stock price),

1.下列关于布朗运动的叙述,正确的是( )

1.下列关于布朗运动的叙述,正确的是() A.固体小颗粒做布朗运动是由于固体小颗粒内部的分子运动引起的 B.液体的温度越低,悬浮小颗粒的运动越缓慢,当液体的温度降到零摄氏度时,固体小颗粒的运动就会停止 C.被冻结在冰块中的小炭粒,不能做布朗运动是因为冰中的水分子不运动 D.固体小颗粒做布朗运动是由于液体分子对小颗粒的碰撞引起的 解析:选D.固体小颗粒的布朗运动是由于液体分子的无规则运动引起的,故A错误,D正确;温度越低,小颗粒的运动由于液体分子的运动减慢而减慢,但即使降到零摄氏度,液体分子还是在运动的,布朗运动是不会停止的,故B项错误;被冻结在冰块中的小炭粒不能做布朗运动是因为受力平衡,而不是由于水分子不运动(水分子不可能停止运动,因为热运动是永不停息的),故C项错误. 2.(2011年高考四川理综卷)气体能够充满密闭容器,说明气体分子除相互碰撞的短暂时间外() A.气体分子可以做布朗运动 B.气体分子的动能都一样大 C.相互作用力十分微弱,气体分子可以自由运动 D.相互作用力十分微弱,气体分子间的距离都一样大 解析:选C.布朗运动是指悬浮颗粒因受分子作用力不平衡而引起的悬浮颗粒的无规则运动,选项A错误;气体分子因不断相互碰撞其动能瞬息万变,因此才引入了分子的平均动能,选项B错误;气体分子不停地做无规则热运动,其分子间的距离大于10r0,因此气体分子间除相互碰撞的短暂时间外,相互作用力十分微弱,分子的运动是相对自由的,可以充满所能达到的整个空间,故选项C正确;气体分子在不停地做无规则运动,分子间距离不断变化,故选项D错误. 3.做布朗运动实验,得到某个观测记录如图1-3-3.图中记录的是() 图1-3-3 A.分子无规则运动的情况 B.某个微粒做布朗运动的轨迹 C.某个微粒做布朗运动的速度—时间图线 D.按等时间间隔依次记录的某个运动微粒位置的连线 解析:选D.图中的折线记录的是某个做布朗运动的微粒按相等时间间隔依次记录的位置连线,不是分子无规则运动的情况,也不是微粒做布朗运动的轨迹,更不是微粒运动的v t 图线,故D对,A、B、C错. 4.我们知道分子热运动的速率是比较大的,常温下能达几百米/秒.将香水瓶盖打开后,离瓶较远的人,为什么不能立刻闻到香味呢? 解析:分子热运动的速率虽然比较大,但分子之间的碰撞是很频繁的,由于频繁的碰撞使得分子的运动不再是匀速直线运动,香水分子从瓶子到鼻孔走过了一段曲折的路程,况且引起人的嗅觉需要一定量的分子,故将香水瓶盖打开后,离得较远的人不能立刻闻到香味.答案:见解析

数学归纳法的七种变式及其应用..

数学归纳法的七种变式及其应用 摘要:数学归纳法是解决与自然有关命题的一种行之有效的方法,又是数学证明 的又一种常用形式.数学归纳法不仅能够证明自然数命题,在实数中也广泛应用,还能对一些数学定理进行证明.在中学时学习了第一数学归纳法和第二数学归纳法,因而对一些命题进行了简单证明.在原有的基础上,给出了数学归纳法的另外五种变式,其中涉及到反向归纳法、二重归纳法、螺旋式归纳法、跳跃归纳法和关于实数的连续归纳法,并简单的举例说明了每种变式在数学各分支的应用.这就突破了数学归纳法仅在自然数中的应用,为今后的数学命题证明提供了一种行之有效的证明方法——数学归纳法. 关键词:数学归纳法;七种变式;应用 1引言 归纳法是由特殊事例得出一般结论的归纳推理方法,一般性结论的正确性依赖于各个个别论断的正确性。数学归纳法的本质[]4 是证明一个命题对于所有的自然数都是成立 的.由于它在本质上是与数的概念联系在一起,所以数学归纳法可以运用到数学的各个分支,例如:证明等式、不等式,三角函数,数的整除,在几何中的应用等. 数学归纳法的基本思想是用于证明与自然数有关的命题的正确性的证明方法,如第一数学归纳法,操作步骤简单明了.在第一数学归纳法的基础上,又衍生出了第二数学归纳法,反向归纳法,二重归纳法等证明方法.从而可以解决更多的数学命题. 2 数学归纳法的变式及应用 2.1 第一数学归纳法 设()p n 是一个含有正整数n 的命题,如果满足: 1) ()1p 成立(即当1n =时命题成立); 2)只要假设()p k 成立(归纳假设),由此就可证得()1p k +也成立(k 是自然数),就能保证对于任意的自然数n ,命题()p n 都成立. 通常所讨论的命题不都全是与全体自然数有关,而是从某个自然数a 开始的,因此,将第一类数学归纳法修改为: 设()p n 是一个含有正整数n 的命题(n a ≥,*a N ∈), 如果 1)当n =a 时,()p a 成立;

布朗运动

布朗运动 在显微镜下看起来连成一片的液体,实际上是由许许多多分子组成的。液体分子不停地做无规则的运动,不断地随机撞击悬浮微粒。悬浮的微粒足够小时,受到的来自各个方向的液体分子的撞击作用是不平衡的。在某一瞬间,微粒在另一个方向受到的撞击作用强,致使微粒又向其它方向运动。这样,就引起了微粒的无规则的布朗运动。 1定义 悬浮微粒永不停息地做无规则运动的现象叫做布朗运动 例如,在显微镜下观察悬浮在水中的藤黄粉、花粉微粒,或在无风情形观察空气中的烟粒、尘埃时都会看到这种运动。温度越高,运动越激烈。它是1827年植物学家R.布朗最先用显微镜观察悬浮在水中花粉的运动而发现的。作布朗运动 的粒子非常微小,直径约1~10微米,在周围液体或气体分子的碰撞下,产生一种涨落不定的净作用力,导致微粒的布朗运动。如果布朗粒子相互碰撞的机会很少,可以看成是巨大分子组成的理想气体,则在重力场中达到热平衡后,其数密度按高度的分布应遵循玻耳兹曼分布。J.B.佩兰的实验证实了这一点,并由此相当精确地测定了阿伏伽德罗常量及一系列与微粒有关的数据。1905年A.爱因斯坦根据扩散方程建立了布朗运动的统计理论。布朗运动的发现、实验研究和理论分析间接地证实了分子的无规则热运动,对于气体动理论的建立以及确认物质结构的原子性具有重要意义,并且推动统计物理学特别是涨落理论的发展。由于布朗运动代表一种随机涨落现象,它的理论对于仪表测量精度限制的研究以及高倍放大电讯电路中背景噪声的研究等有广泛应用。 这是1826年英国植物学家布朗(1773-1858)用显微镜观察悬浮在水中的花粉时发现的。后来把悬浮微粒的这种运动叫做布朗运动。不只是花粉和小炭粒,对于液体中各种不同的悬浮微粒,都可以观察到布朗运动。布朗运动可在气体和液体中进行。 2特点 无规则 每个液体分子对小颗粒撞击时给颗粒一定的瞬时冲力,由于分子运动的无规则性,每一瞬间,每个分子撞击时对小颗粒的冲力大小、方向都不相同,合力大小、方向随时改变,因而布朗运动是无规则的。 永不停歇

《用数学归纳法证明不等式》参考教(学)案

课题:用数学归纳法证明不等式 教学目标: 1、牢固掌握数学归纳法的证明步骤,熟练表达数学归纳法证明的过程。 2、通过事例,学生掌握运用数学归纳法,证明不等式的思想方法。 3、培养学生的逻辑思维能力,运算能力和分析问题,解决问题的能力。 重点、难点: 1、巩固对数学归纳法意义和有效性的理解,并能正确表达解题过程,以及掌握用数学归纳法证明不等式的基本思路。 2、应用数学归纳法证明的不同方法的选择和解题技巧。 教学过程: 一、复习导入: 1、上节课学习了数学归纳法及运用数学归纳法解题的步骤,请同学们回顾,说出数学归纳法的步骤? (1)数学归纳法是用于证明某些与自然数有关的命题的一种方法。 (2)步骤:1)归纳奠基; 2)归纳递推。 2、作业讲评:(出示小黑板) 习题:用数学归纳法证明:2+4+6+8+……+2n=n(n+1) 如采用下面的证法,对吗? 证明:①当n=1时,左边=2=右边,则等式成立。 ②假设n=k时,(k∈N,k≥1)等式成立, 即2+4+6+8+……+2k=k(k+1) 当n=k+1时, 2+4+6+8+……+2k+2(k+1) ∴ n=k+1时,等式成立。 由①②可知,对于任意自然数n,原等式都成立。 (1)学生思考讨论。

(2)师生总结:1)不正确 2)因为在证明n=k+1时,未用到归纳假设,直接用等差数列求和公式,违背了数学归纳法本质:递推性。 二、新知探究 明确了数学归纳法本质,我们共同讨论如何用数学归纳法证明不等式。 (出示小黑板) 例1 观察下面两个数列,从第几项起a n始终小于b n?证明你的结论。 {a n=n2}:1,4,9,16,25,36,49,64,81, …… {b n=2n}:2,4,8,16,32,64,128,256,512, …… (1)学生观察思考 (2)师生分析 (3)解:从第5项起,a n<b n,即n2<2n,n∈N+(n≥5) 证明:(1)当 n=5时,有52<25,命题成立。 即k2<2k 当n=k+1时,因为 (k+1)2=k2+2k+1<k2+2k+k=k2+3k<k2+k2=2k2<2×2k=2 所以,(k+1)2<2k+1 即n=k+1时,命题成立。 由(1)(2)可知n2<2n(n∈N+,n≥5) 学生思考、小组讨论:①放缩技巧:k2+2k+1<k2+2k+k;k2+3k<k2+k2 ②归纳假设:2k2<2×2k 例2证明不等式│Sin nθ│≤n│Sinθ│(n∈N+) 分析:这是一个涉及正整数n的三角函数问题,又与绝对值有关,在证明递推关 系时,应注意利用三角函数的性质及绝对值不等式。 证明:(1)当 n=1时,上式左边=│Sinθ│=右边,不等式成立。 (2)假设当n=k(k≥1)时命题成立, 即有│Sin kθ│≤k│Sinθ│ 当n=k+1时,

数学归纳法证明例题

数学归纳法例题 例 请读者分析下面的证法: 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k . 那么当n =k +1时,有: ()()()()32121121217 51531311++++-++?+?+?k k k k ????????? ??+-++??? ??+--++??? ??-+??? ??-+??? ? ?-=3211211211217151513131121k k k k 3 22221321121++?=??? ??+-=k k k ()1 121321+++=++=k k k k 这就是说,当n =k +1时,等式亦成立. 由①、②可知,对一切自然数n 等式成立. 评述:上面用数学归纳法进行证明的方法是错误的,这是一种假证,假就假在没有利用归纳假设n =k 这一步,当n =k +1时,而是用拆项法推出来的,这样归纳假设起到作用,不符合数学归纳法的要求. 正确方法是:当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k

()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 例2.是否存在一个等差数列{a n },使得对任何自然数n ,等式: a 1+2a 2+3a 3+…+na n =n (n +1)(n +2) 都成立,并证明你的结论. 分析:采用由特殊到一般的思维方法,先令n =1,2,3时找出来{a n },然后再证明一般性. 解:将n =1,2,3分别代入等式得方程组. ?????=++=+=603224 26321 211a a a a a a , 解得a 1=6,a 2=9,a 3=12,则d =3. 故存在一个等差数列a n =3n +3,当n =1,2,3时,已知等式成立. 下面用数学归纳法证明存在一个等差数列a n =3n +3,对大于3的自然数,等式 a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 因为起始值已证,可证第二步骤. 假设n =k 时,等式成立,即 a 1+2a 2+3a 3+…+ka k =k (k +1)(k +2) 那么当n =k +1时, a 1+2a 2+3a 3+…+ka k +(k +1)a k +1 = k (k +1)(k +2)+ (k +1)[3(k +1)+3] =(k +1)(k 2+2k +3k +6) =(k +1)(k +2)(k +3) =(k +1)[(k +1)+1][(k +1)+2] 这就是说,当n =k +1时,也存在一个等差数列a n =3n +3使a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)成立. 综合上述,可知存在一个等差数列a n =3n +3,对任何自然数n ,等式a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立.

数学归纳法经典例题及答案

数学归纳法(2016.4.21) 一、用数学归纳法证明与正整数有关命题的步骤是: (1)证明当n 取第一个值0n (如01n =或2等)时结论正确; (2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),…… 注意:数学归纳法使用要点: 两步骤,一结论。 二、题型归纳: 题型1.证明代数恒等式 例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k . 当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k ()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 由①、②可知,对一切自然数n 等式成立.

题型2.证明不等式 例2.证明不等式n n 21 31 21 1<++++ (n ∈N). 证明:①当n =1时,左边=1,右边=2. 左边<右边,不等式成立. ②假设n =k 时,不等式成立,即k k 2131211<++++ . 那么当n =k +1时, 11 1 31 21 1++++++k k 1 1 1211 2+++=++

浅谈布朗运动

浅谈布朗运动 吉林大学 物理学院

浅谈布朗运动 摘要: 布朗运动作为具有连续时间参数和连续状态空间的一个随机过程,是一个最基本、最简单同时又是最重要的随机过程。本文对应用随机过程中的布朗运动理论进行了介绍,对布朗运动的背景,定义,性质及应用进行了阐述。 关键词: 布朗运动的定义;布朗运动的性质;布朗运动的应用 一、 概述 1827年,英国植物学家布朗(Robert Brown)发现浸没在液体中的花粉颗粒做无规则的运动,此现象后被命名为布朗运动.爱因斯坦(Albert Einstein)于1905年解释了布朗运动的原因,认为花粉粒子受到周围介质分子撞击的不均匀性造成了布朗运动.1918年,维纳(Wiener)在他的博士论文中给出了布朗运动的简明数学公式和一些相关的结论。 如今,布朗运动的模型及其推广形式在许多领域得到了广泛的应用,如经济学中, 布朗运动的理论可以对股票权定价等问题加以描述. 从数学角度来看,布朗运动是一个随机过程。具体的说,是连续时间、连续状态空间的马尔科夫过程。 二、 布朗运动的定义 随机过程}0t t {X ≥),(如果满足: 1、00X =)( . 2、}0t t {X ≥),(有独立的平稳增量. 3、对每个 t > 0,)(t X 服从正态分布) t 2,0N(σ

则称}0t t {X ≥),(为布朗运动,也称维纳过程。 常记为B(t),T ≥0或W(t), T ≥0。 如果1=σ,称之为标准布朗运动,标准布朗 运动的定义是一个随机函数()()X t t T ∈,它是维纳 随机函数。 皮兰1908的布朗运动实验 三、布朗运动的性质 1、它是高斯随机函数。 2、它是马尔科夫随机函数。它的转移概率密度是: {}(,)()()f t s y x P X t y X s x y ?--=≤=?21/22 2()2()exp 2()y x t s t s πσσ-??-??=--????-?? 可以看出它对空间和时间都是均匀的。 3、如()(0)X t t ≤是标准布朗运动,则下列各个随机函数也是标准布朗运动。 (1)、2 1( )(/)X t c Xtc = (c >0为常数,t ≥0) (2)、2()()()X t Xt h Xh =+- (h >0为常数,t ≥0) (3)、1 3()(0)()0 (0) tX t t X t t -?> =? =? 4、标准布朗运动的协方差函数2 (,)min(,)C s t s t σ=。 5、标准布朗运动非均方可微。 由于布朗运动()X t 是维纳随机函数,而后者按照定义应有 2 2 [()()] W t s W t h σ+-=。因而令()()X t W t =后,必有:2 2 ()()X t h X t h h σ+-?? = ? ?? ,

相关主题
文本预览
相关文档 最新文档