当前位置:文档之家› 铽_镝_3_噻吩乙酸二元_三元配合物的合成及表征

铽_镝_3_噻吩乙酸二元_三元配合物的合成及表征

铽_镝_3_噻吩乙酸二元_三元配合物的合成及表征
铽_镝_3_噻吩乙酸二元_三元配合物的合成及表征

三元合金相图习题

三元合金相图 一、填空 1. 三元相图等温截面的三相区都是___________________形。 2. 图1是A-B-C三元系成分三角形的一部分,其中X合金的成分是_____________________。 图1 3. 图2是三元系某变温截面的一部分,其中水平线代表________________反应,反应式为______________________ 。 图2 4.图3是某三元系变温截面的一部分,合金凝固时,L+M+C将发生_________________反应。

图3 5. 三元相图的成分用__________________________表示。 6. 四相平衡共晶反应的表达式__________________________。 7. .图6是A-B-C三元共晶相图的投影图,在常温下: 合金I的组织是______________________________________ 合金II的组织是_______________________________________ 合金III的组织是______________________________________ 图4 8.三元相图有如下几类投影图 (1)_____________________________(2)________________________________(3)_______________________ ___(4)________________________________。 9. 三元系中两个不同成分合金,合成一个新合金时,则这三个合金成分点____________________________。 10. 四相平衡包共晶反应式为__________________________。 11. 三元相图垂直截面可用于分析__________________________________。 12. 三元系三条单变量线相交于__________,就代表一个__________________,并可根据单变量线箭头 _____________判断__________________。

新稀土铕三元配合物合成表征

新的稀土铕三元配合物的合成及表征摘要:通过乙酰蒽与乙酸乙酯的克莱森缩合反应,合成新配体9-蒽甲酰丙酮,并与邻菲罗啉、稀土铕(ⅲ)合成三元稀土配合物。通过元素分析、edta配位滴定分析、红外、荧光光谱分析测定了配合物的组成、结构和发光性能;利用差热-热重分析测定了配合物的热稳定性。研究结果表明,稀土三元配合物在612.05 nm处发出强的eu3+特征荧光。 关键词:克莱森缩合;三元稀土配合物;荧光性质 1 前言 稀土β-二酮配合物作为强荧光配合物的研究一直为人们所重视。这是由于配合物中存在着螯合环并包含电子可运动的共轭键,使β-二酮与稀土生成的配合物在只含有氧的配体中是最稳定的;而且在这类配合物中存在着从具有高吸收系数的β-二酮配体到 tb3+、eu3+等的高效能量传递,从而使得它们在所有稀土有机配合物中发光效率最高。 本文利用克莱森(claisen)缩合[6]的方法合成新的β-二酮配体9-蒽甲酰丙酮,并利用元素分析、红外光谱、核磁共振氢谱、对配体进行了表征;配体与邻菲罗啉、稀土铕(ⅲ)合成三元稀土配合物,用荧光光度法对三元稀土配合物的荧光性质进行了研究,并讨论了铕配合物的荧光性质。 2 实验部分 2.1原料与试剂

乙酰蒽按文献方法合成,纯化后产物熔点:74℃~75℃;氢化钠nah,纯度99%,含量80%;乙酸乙酯ch3cooc2h5,纯度99.9%;氧化铕eu2o3,纯度99.99%。本文所用其它试剂均为分析纯,所用溶剂使用前均经过脱水重蒸处理。 2.2仪器与测试条件 熔点用上海产x4型显微熔点仪测定;元素分析用elementar vario eliii 型元素分析仪测定;红外光谱用bruker equinox55 型红外光谱仪,kbr压片法测定;荧光光谱采用美国varina公司cary-eclipse荧光分光光度仪测定,测定条件为常温。 2.3 9-蒽甲酰丙酮的合成 反应方程式: 氮气保护下,以四氢呋喃为溶剂,2mmol的乙酰蒽和4mmol的乙酸乙脂在8mmol氢化钠存在下进行反应,反应温度约65℃,反应开始后有氢气缓慢放出。反应8小时后,氢气不再释放,停止反应。用少量无水乙醇破坏未反应的氢化钠。用水溶解褐色液体,用 3mol/l 的盐酸调节ph值至4。用无水乙醚进行萃取,有机相依次用5%碳酸氢钠溶液和水洗涤,无水硫酸镁干燥。过滤,滤液蒸除溶剂后,得到橘红色固体。用中性al2o3柱层析分离,旋干溶剂得橘红色固体。产率20%,m.p.132~134℃。 2.4 三元稀土配合物的合成 反应方程式: 其中en :9-蒽甲酰丙酮(c14h9coch2coch3)

Arndt-Eistert合成

有机人名反应及在合成中的应用 Arndt-Eistert合成【摘要】阿恩特-艾斯特尔特合成是用德国化学家弗里茨·阿恩特(Fritz Arndt,1885年-1969年)和贝恩德米·艾斯特尔特(Bernd Eistert,1902年-1978年)两人的名字命名的一个人名反应。是一类羧酸的同系化反应,能将一个酸转变成它的高一级同系物或转变成同系列酸的衍生物,同时也是一种非常有用的增长羧酸碳链的合成方法,在化学中有很广的应用。 【关键词】酰氯;重氮甲烷;重氮酮;反应机理;碳链加长;应用 ABSTRACT The Arndt - Esther Stewart synthesis is the German chemist Fritz Arndt (Fritz Arndt, -1969, 1885) and Bain Suleyman ? Esther Stewart (Bernd Eistert, 1902 -1978years) both named after a person's name reaction. Homologation reactions are a class of carboxylic acids, and capable of an acid into its high level homologues or converted into the acid derivative of the same series, is also a very useful synthetic method of the growth of a carboxylic acid carbon chain, Have wide application in the chemical. KEY WORDS Chloride; Diazomethane; Diazoketone; Reaction Mechanism; Carbon chain length; Application 在多达上百种的人名反应中,德国化学家弗里茨·阿恩特和贝恩德米·艾斯特尔特的这个人名反应在化学界中着实是一个比较经典的化学反应,在这个反应中,能将酸类化合物变成酯、酰胺等等衍生类物质,在这反应中,他们在Wolff 重排反应的基础上发现了碳链的增长与利用,这才是一个化学界上的大突破,因为此反应可以用来增长C原子的数目,解决了一个化学界中的难题,故此反应的应用也在逐步扩大,在化学界中有着广泛的应用,我参考过一些研究论文,以此基础来研究的反应挺多的,如利用重氮甲烷为重氮化试剂,以非天然N—Fmoc—

第五章 三元合金相图(习题)

第五章 三元合金相图 1 根据Fe -C -Si 的3.5%Si 变温截面图(5-1),写出含0.8%C 的Fe-C-Si 三元合金在平衡冷却时的相变过程和1100℃时的平衡组织。 图5-1 2 图5-2为Cu-Zn-Al 合金室温下的等温截面和2%Al 的垂直截面图,回答下列问题: 1) 在图中标出X 合金(Cu-30%Zn-10%Al )的成分点。 2) 计算Cu-20%Zn-8%Al 和 Cu-25%Zn-6%Al 合金中室温下各相的百分含量,其中α相成分点为Cu-22.5%Zn-3.45%Al ,γ相成分点为 Cu-18%Zn-11.5%Al 。 3) 分析图中Y 合金的凝固过程。 Y

% 图5-2 3 如图5-3是A-B-C 三元系合金凝固时各相区,界面的投影图,A 、B 、C 分别形成固溶体α、β、γ。 1) 写出P p '',P E '1和P E '2单变量线的三相平衡反应式。 2) 写出图中的四相平衡反应式。 3) 说明O 合金凝固平衡凝固所发生的相变。

图5-3 图5-4 4 图5-4为Fe-W-C三元系的液相面投影图。写出e1→1085℃,P1→1335℃,P2→1380℃单变量线的三相平衡反应和1700℃,1200℃,1085℃的四相平衡反应式。I,II,III三个合金结晶过程及室温组织,选择一个合金成分其组织只有三元共晶。 5 如图5-5为Fe-Cr-C系含13%Cr的变温截面 1)大致估计2Cr13不锈钢的淬火加热温度(不锈钢含碳量0.2%, 含Cr量13%) 2)指出Cr13模具钢平衡凝固时的凝固过程和室温下的平衡组织(Cr13钢含碳量2%)3)写出(1)区的三相反应及795 时的四相平衡反应式。 图5-5 图5-6 6 如图5-6所示,固态有限溶解的三元共晶相图的浓度三角形上的投影图,试分析IV区及VI区中合金之凝固过程。写出这个三元相图中四相反应式。

新型导电聚合物

新型导电聚合物/磁性复合物的性能概论 摘要论述了导电聚合物的结构及其特征以及导电聚合物的分类及其导电机理,并论述了近年来导电聚合物/磁性复合物的磁性能、导电性能、吸波性能、光电性能及聚苯胺等新型复合物的研究现状、导电聚合物/磁性复合物等有发展潜力的新应用领域。 关键词聚合物磁性导电复合物聚苯胺导电聚合物又称导电高分子,是指通过掺杂等手段,能使得电导率在半导体和导体范围内的聚合物。通常指本征导电聚合物,这一类聚合物主链上含有交替的单键和双键,从而形成了大的共轭π体系。π电子的流动产生了导电的可能性。 没有经过掺杂处理的导电聚合物电导率很低,属于绝缘体。其原因在于导电聚合物的能隙很宽(一维半导体的不稳定性),室温下反键轨道(空带)基本没有电子。但经过氧化掺杂(使主链失去电子)或还原掺杂(使主链得到电子),在原来的能隙产生新的极化子、双极化子或孤子能级,其电导率能上升到10~10000 S/cm2,达到半导体或导体的电导率范围。

导电聚合物分子结构 20世纪70年代初,日本驻波大学的化学教授白川英树等在高催化剂浓度条件下通过碘掺杂合成了具有金属光泽的高顺式聚乙炔薄膜,带动了导电聚合物在科学领域的研究。典型的导电聚合物有聚乙炔、聚苯胺、聚吡咯、聚噻吩和它们的衍生物。导电聚合物拥有金属的电子、电器及光学性能,并且具有传统聚合物的可加工性和力学性能。近几年导电聚合物被用作电磁屏蔽、静电消散材料和电子包装材料,以及用作制备蒸汽传感器材料。无机磁性材料是工业生产中使用最为广泛的磁性材料,对用于微波雷达、通信系统、电机与集成电感器等方面,而目前应用较广泛的无机材料主要是铁氧体类物质。 在导电聚合物和磁性材料成熟的情形下,人们对即导电又导磁的功能材料的兴趣越来越大,因为它们可应用于很多领域,比如电池、电化学显示设备、分子电子领域、电磁屏蔽、吸波材料和传感器等。制备纳米复合材料传统的方法是直接高分子聚合。 导电聚合物都具有长程π电子主链结构。π键与反键之间能隙差小,接近无极半导体,因此共轭聚合物大都表现出半导体的性质;共

浅谈焦化苯中微量噻吩脱除方法

浅谈焦化苯中微量噻吩脱除方法 摘要:由于焦化苯中噻吩的沸点和苯非常相近,利用常规精馏工艺很难将其脱除,本文主要针对焦化苯中噻吩和卤素单质发生亲电取代反应生成高沸点的噻吩衍生物的特点,研究卤化方法脱除焦化苯中噻吩的可行性。 关键词:焦化苯噻吩卤化精制 一、焦化苯中噻吩脱除工艺简介 粗苯中硫化物主要包含二硫化碳、噻吩、甲基噻吩,以及微量的硫化氢气体。硫化物的质量分数约为0.5%~2%,噻吩硫质量分数0.2%-1.2%[1]。 经过常规精馏方法,沸程在79.6℃~80.5℃间的粗苯被分离出来,且纯度可以达到99.5%左右,但噻吩也在该馏分段。最新国家标准GB/T 2283-2008中对粗苯中全硫的含量提出严格要求,全硫含量要求不大于1mg/kg,因此,对焦化苯中噻吩的彻底脱除也有很高的要求。目前,噻吩的脱除方法主要有酸洗法、催化加氢法、萃取精馏法。酸洗法主要是噻吩和硫酸的磺化反应,磺化反应后,噻吩转化为高沸点的化合物,随焦油酸一起被分离。由于污染环境,该方法也基本淘汰。催化加氢法主要是将噻吩及其衍生物则被转化为相应的饱和烃及硫化氢而除去。由于催化加氢工艺流程相对较复杂,对设备材质和自动控制要求较高,投资成本过高,中小企业很难推广。萃取精馏工艺主要选取N-甲酰吗啉为萃取剂,分离芳烃和非芳烃。也是目前逐渐推广的一项工艺,但仅用萃取精馏对噻吩的分离却很难达到精制的要求,常配合其他方法联合脱除苯中噻吩[2]。 本文主要针对焦化苯中噻吩和卤素单质发生亲电取代反应生成高沸点的噻吩衍生物的特点,研究卤化方法脱除焦化苯中噻吩的可行性。 二、实验部分 1实验方法 在进行氯化实验时,由于氯气非常活泼,当氯气过量时,还会和噻吩生成加成产物四氯四氢噻吩。因此,本实验选择能生成氯气的高锰酸钾和六水合氯化铁溶液,一方面可以控制生成氯气的量;另一方面,可以使反应缓慢进行,避免反应过于剧烈。反应机理[3]如下:Fe3++3H2O Fe(OH)3+3H+由于氯化铁是路易斯酸,先发生水解反应,水解后的氯化铁和高锰酸钾发生氧化还原反应生成氯气:MnO4-+10Cl-+16H+→2Mn2++5Cl2+8H2O 氯化反应机理:噻吩氯化后被转化为2-氯噻吩和2,5-二氯噻吩。 2实验步骤

苯甲酸铕及苯甲酸-邻菲咯啉-铕的合成和荧光特性

苯甲酸铕及苯甲酸-邻菲咯啉-铕的 合成和荧光特性 卢浩杰唐思思黄燕平陈淑琼 (中南大学化学化工学院,长沙,410083) 摘要:合成了铕-苯甲酸和邻菲咯啉的二元、三元配合物,研究了它们的荧光光谱。结果表明,铕和苯甲酸、邻菲咯啉生成的二元、三元配合物,在紫外光激发下均可发出铕的特征荧光,且三元配合物的荧光强度明显大于二元配合物,三元配合物的第二配体具有协同效应。 关键词:稀土苯甲酸邻菲咯啉荧光光谱 前言 稀土光致发光配合物是一类具有独特性能的发光材料[1,2],它的荧光单色性好,发光强度高,因此日益受到人们的重视。稀土离子Sm(Ⅲ)、Eu(Ⅲ)、Tb(Ⅲ)和Dy(Ⅲ)发射线状光谱,属于4f 层电子跃迁发射,但都较微弱。可是,当它们与含芳环的有机配位体形成二元或三元配合物时,受激发的配位体的能量可能转移给金属离子,然后由激发态的金属离子返回基态而发出强的荧光。稀土芳香族有机羧酸配合物是一类性能良好的发光材料[3~5]。为此,本文以苯甲酸、邻菲咯啉为配体,研究了铕的二元、三元配合物的合成和荧光性能。 1 实验部分 1.1原料与试剂 Eu2O3:纯度为99.9%;苯甲酸钠、邻菲咯啉(Phen)及其他试剂均为分析纯,pH试纸,无水乙醇。 1.2样品的制备 Eu2O3溶于盐酸配成0.1mol/L的EuCl3水溶液,苯甲酸钠溶于水配成0.1mol/L的水溶液,邻菲咯啉溶于适量的乙醇中。 1.2.1铕-苯甲酸二元配合物的合成 在不断搅拌的情况下,按n(Eu3+):n(苯甲酸)=1:3取样,将EuCl3的水溶液逐渐滴入苯甲酸钠的水溶液中,保持温度在80℃左右,用氢氧化钠溶液调节溶液的pH为6~6.5,不断搅拌,溶液中逐渐析出沉淀。继续搅拌若干时间,静置,冷却至室温,过滤,分别用水和95%乙醇洗至无Cl-离子,置于烘箱中,于110℃下干燥,得粉末样品。 1.2.2苯甲酸-邻菲咯啉-铕三元配合物

噻吩

噻吩(Thiophene),系统名1-硫杂-2,4-环戊二烯,CAS号110-02-1。从结构式上看,噻吩是一种杂环化合物,也是一种硫醚。分子式C4H4S,分子量84.14。熔点-38℃,沸点84℃,密度1.051g/cm3。在常温下,噻吩是一种无色、有恶臭、能催泪的液体。噻吩天然存在于石油中,含量可高达数个百分点。工业上,用于乙基醇类的变性。和 呋喃一样,噻吩是芳香性的。硫原子2对孤电子中的一对与2个双键共轭,形成离域 Π键。噻吩的芳香性仅略弱于苯。 噻吩噻吩(thiophene),含有一个硫杂原子的五元杂环化合物。分子式C4H4S。存 在于煤焦油和页岩油中;由煤焦油分馏得到的粗苯和粗萘中,粗苯中含约0.5%。无色、有难闻的臭味的液体。熔点-38.2℃,沸点84.2℃,相对密度1.0649(20/4℃)。由于它的沸点为84℃,与苯接近,很难用蒸馏的方法将它们分开。溶于乙醇、乙醚、丙酮、苯等。噻吩具有芳香性,与苯相似,比苯更容易发生亲电取代反应,主要取代在 2位上。噻吩2位上的氢也很容易被金属取代,生成汞和钠等的衍生物。噻吩环系对 氧化剂具有一定的稳定性,例如,烷基取代的噻吩氧化后可以形成噻吩羧酸。用金属 钠在液氨和甲醇溶液内还原噻吩,可得二氢噻吩,以及某些开环化合物。用催化氢化 法还原噻吩,可得四氢噻吩。工业上噻吩用丁烷与硫作用制取。实验室中噻吩用1,4-二羰基化合物与三硫化二磷反应制取。乙酰基丁酮与硫化磷反应,能生成2,5-二甲基噻吩。噻吩在许多场合可代替苯,用作制取染料和塑料的原料,但由于性质较为活泼,一般不如由苯制造出来的产品性质优良。噻吩也可用作溶剂。 中文名称:噻吩[1] 中文别名:硫茂;硫杂茂;硫代呋喃;硫杂环戌二烯;硫杂环戊二烯 英文名称:Thiophene 英文别名:Thiophene-2,5-d2; sulfur metalloCene branched clutter; furan Cyclopentadiene thia; CAS No.: 110-02-1 EINECS号: 203-729-4[2] 编辑本段理化特性分子式:C4 H4 S分子量:84.13 外观与性状:无色液体,有类似苯的气味 Ph值:熔点(℃):一38.3℃ 相对密度(水=1):1.06沸点(℃):84.2

几种EuⅢ有机三元配合物的合成发光

几种Eu(Ⅲ)三元有机配合物的合成与发光研究 方璞龚孟濂* i中山大学化学与化学工程学院 摘要:本论文合成了β-二酮及其Eu(Ⅲ)三元有机配合物,并用1H-NMR、元素分析、热重分析、红外吸收光谱、紫外-可见吸收光谱、荧光光谱等分析方法检验并比较其性质。实验结果表明,3种Eu(Ⅲ)三元配合物均为优良的光致发光材料,其跨越400 nm的激发带使之适用于涂覆在近400 nm InGaN芯片上,制备红色LED。 关键词:β-二酮Eu(Ⅲ)有机三元配合物荧光发光二极管 一前言 半导体白光发光二极管(white light-emitting diode,WLED)是一种继白炽灯泡、普通和紧凑型荧光灯与各种类型高强度气体放电灯(HID)之后新的固体光源。 本学位论文以稀土Eu3+有机配合物作为探求新型的、高效的LED用红色发光材料的研究对象,进行有机配体及其Eu3+s三元有机配合物的分子设计、合成、光致发光性能研究,并应用于制备近紫外光半导体芯片激发的LED,探索其实际应用的可能性。 二合成实验 (一) EuCl3溶液的制备 (二) 乙酰联苯(ACBP)的合成[1][2] (三) 联苯甲酰三氟丙酮(BPTFA)的合成[3] BPTFA元素分析测定值(计算值),%:C 62.17(65.75),H 3.909(3.767)。 BPTFA的FAB MS、1H NMR和元素分析结果表明:合成产物为目标产物。 (四) 二元配合物Eu(BPTFA)3(H2O)2的合成[4] ————————————— 创新项目:第六届化学院创新化学研究基金项目第200604号

第一作者:方璞中山大学化学与化学工程学院 指导教师:龚孟濂cesgml@https://www.doczj.com/doc/cc14829516.html, Eu(BPTFA)3(H2O)2元素分析测定值(计算值),%:C 55.44(55.44),H 3.098(3.477)。 (五) Eu(Ⅲ)有机三元配合物的合成 分别以邻菲啰啉(1,10-phenanthroline,phen)、联吡啶(bipyridine,bpy)和三苯基氧化膦 O)2二元配合物反应,制备(Triphenylphosphine oxide,TPPO)为第二配体,与Eu(BPTFA) 3(H2 Eu(Ⅲ)有机三元配合物。 Eu(BPTFA)3phen:EuC60H41N2O6F9元素分析值(计算值),%:C 59.46(59.60),H 3.017(3.394),N 2.250(2.322)。 Eu(BPTFA)3(TPPO)2:EuC84H63O8F9P2元素分析值(计算值),%: C 63.41(63.64),H 3.746(3.914)。 Eu(BPTFA)3bpy:EuC58H41N2O6F9元素分析值(计算值),%:C 58.91(58.78),H 3.077(3.463),N 2.342(2.365)。 由元素分析结果可知,合成的Eu(Ⅲ)有机三元配合纯度都较高。 三结果和讨论 (一) 热重分析 热重分析结果表明,合成的几种Eu(Ⅲ)三元配合物的热分解温度都在327 ℃以上,适合在WLED(不低于150℃)与OLED(organic electroluminescence diodes)(不低于250 ℃)中应用。(二) 红外吸收光谱分析 参照有关文献[5]-[7]对配合物和配体的红外谱图作归属,见表3.2。 表3.2 Eu(Ⅲ)三元配合物的红外吸收数据归属(cm-1) Table 3.2 Assignments in IR spectra of the europium(Ⅲ) complexes (cm-1) 以上结果表明phen和BPTFA均与Eu3+配位而生成了稳定的配合物。 (三) 紫外-可见吸收光谱

噻吩简介

噻吩 噻吩(thiophene),含有一个硫杂原子的五元杂环化合物。分子式C4H4S。存在于煤焦油和页岩油中;由煤焦油分馏得到的粗苯和粗萘中,含有少量的噻吩。 无色、有刺激性气味液体。熔点-38.2℃,沸点84.2℃,相对密度1.0649(20/4℃)。溶于乙醇、乙醚、丙酮、苯等。噻吩具有芳香性,与苯相似,比苯更容易发生亲电取代反应,主要取代在2位上。噻吩2位上的氢也很容易被金属取代,生成汞和钠等的衍生物。噻吩环系对氧化剂具有一定的稳定性,例如,烷基取代的噻吩氧化后可以形成噻吩羧酸。用金属钠在液氨和甲醇溶液内还原噻吩,可得二氢噻吩,以及某些开环化合物。用催化氢化法还原噻吩,可得四氢噻吩。工业上噻吩用丁烷与硫作用制取。实验室中噻吩用1,4-二羰基化合物与三硫化二磷反应制取。乙酰基丁酮与硫化磷反应,能生成2,5-二甲基噻吩。噻吩在许多场合可代替苯,用作制取染料和塑料的原料,但由于性质较为活泼,一般不如由苯制造出来的产品性质优良。噻吩也可用作溶剂。 CAS No.:110-02-1 理化特性[回目录] 分子式:C H S 分子量:84.13 外观与性状:无色液体,有类似苯的气味 Ph值:熔点(℃):一38.3℃ 相对密度(水=1):1.06 沸点(℃):84.2 相对密度(空气=1):2.9 饱和蒸汽压(kPa):5.33/12.5 燃烧热(Kj/mol):2802.7 临界温度(℃):96.8 临界压力(MPa):无资料辛醇/水分配系数:无资料 闪点(℃):一9 自燃温度(℃): 395 爆炸下限[%(V/V)]:1.5~爆炸上限[%(V/V)]:12.5

最小点火能(mJ):0.31 最大爆炸压力(MPa):0.843 溶解性:本品不溶于水,可混溶于乙醇、乙醚等多种有机溶剂 噻吩提取法[回目录] 噻吩存在于炼焦生成的粗苯馏分中,为焦油杂质。因噻吩与苯的沸点接近,难以用一般的分馏法将二者分开。目前世界上的精馏提取方法主要是加氢精制法、硫酸精制法和溶剂萃取法。 加氢精制法成本高、投资大,工业化生产不可取;硫酸法污染严重、收率低、后处理困难,也属落后工艺,目前仅有少量焦化厂采用此法生产少量噻吩;溶剂萃取法投资小、收率高、产品纯度高,适于规模化生产。 目前我国还未能很好地对噻吩进行提取、精制,浪费了有限的资源,并对环境造成了严重污染。在很多以苯为溶剂的化学合成中,因有微量噻吩存在而严重影响产品质量,甚至报废。 噻吩化学合成法[回目录] 噻吩 世界上第一套生产噻吩的工业化装置采用丁烷与硫的气相催化法工艺(nobiloil法,soccong-vaccum 公司开发),收率为40%,此方法于1950年获专利, 60年代因收率低、设备腐蚀严重、污染环境而停产。较新的方法有:①气相催化法,由丁烯、丁二烯、正丁醇、丁烯醛连续与二硫化碳或二氧化硫在碱促进的金属氧化物催化剂存在下于500℃反应,得到噻吩及其衍生物;②由呋喃或甲基呋喃与二硫化碳在杂多酸催化下于400℃反应,制备噻吩和甲基噻吩,收率可达93%,催化剂寿命长,不必周期再生,是一种有前途的合成工艺;③丁烷与硫气相混合,于600℃快速反应;④在氧化铁存在下,乙炔通过加热至300℃的黄铁矿反应;⑤无水丁二酸钠与三硫化二磷在高温和二氧化碳气流中反应。 工业上,噻吩用丁烷与硫作用制取,丁烷首先脱氢,然后再与硫关环,形成噻吩。实验室中,噻吩用 1,4-二羰基化合物与三硫化二磷反应制取。乙酰基丁酮与硫化磷反应,能生成2,5-二甲基噻吩。 α-噻吩衍生物[回目录]

材料科学基础-复习答案-学生用-2

材料科学基础复习重点知识点及典型例题 一、简答题: 1、测定扩散系数的方法。 示踪原子扩散方法、化学扩散方法、弛豫方法、核方法。 2、产生柯肯达尔效应的原因 由于两种原子以不同速度相对扩散而造成标记面的漂移。 3、影响扩散系数的因素: 温度、晶体结构及固溶体类型、各向异性、第三组元、晶体缺陷、 4、稳定化合物: 是指具有一定的熔点,而且在熔点以下都能保持自身固有的结构而不发生分解的化合物。 5、二元相图的几何规律: 1.两个单相区只能交与一点,而不能交成线段、 2.两个单相区之间,必定是一个由这两个单相构成的两 相区、3三相共存区,必定是一条水平线,该水平线必须与由这3个相组合而成的3个两相区相邻、4如果两个恒温转变中有两个是相同的相,那么在这两条水平线之间一定是由这两个相组成的两相区、5. 两相区和单相区的分界线与三相等温水平线相交,则分界线的延长线进入另一个两相区,而不会进入单相区。 6、相区接触法则: 在二元系相图中,相邻相区中相的数目只能相差一个,这一规律称作相区接触法则。 7、晶胞的选取原则 1.几何形状与晶体具有同样的对称性、 2.平面六面体内相等的棱与角的数目最多、 3.当平行六面体棱间 有直角时,直角数目最多、4.在满足上述条件下,晶包体积应最小。 8、形成置换固溶体的条件和影响溶解度因素: 1.条件:溶质取代了溶剂中原子或离子所形成的固溶体、2影响:原子或离子的尺寸的影响、晶体结构 类型的影响、电负性的影响、电子浓度的影响。 9、碳对铁碳合金的组织与性能的影响: 1.碳对铁碳合金平衡组织的影响:当含碳量增加时,使铁碳合金组成相的相对含量发生变化,从而导致 不同性质的结晶。2.碳对合金机械性能的影响:当含碳量达到0.77%时,铁碳合金不仅具有较高的强度和硬度,也具有一定的塑性和韧性,当>0.77%时,铁碳合金的塑性韧性降低。3.碳对合金工艺性能的影响: 10、写出下列缺陷反应式: (1) CaCl2固溶在NaCl晶体中(产生正离子空位,生成置换型SS) CaCl2+2NaCl→→Ca·Na+2Clcl+V’Na (2) MgO固溶在Na2O晶体中(产生正离子空位,生成置换型SS) MgO+Na2O→→Mg·Na+Oo+V’Na (3) Al2O3固溶在MgO晶体中(产生正离子空位,生成置换型SS) Al2O3+3MgO→→2Al·Mg+3Oo+V”Mg (4) YF3固溶在CaF2晶体中(产生正离子空位,生成置换型SS) 2YF3+3CaF2→→2Y·Ca+6F F+V”Ca (5) MgO固溶在ZrO2晶体中(产生负离子空位,生成置换型SS) MgO+ZrO2→→Mg”zr+Oo+V··o 11、材料科学基础 《材料科学基础》系统地介绍了材料科学的基础理论,探讨材料的共性和普遍规律。主要内容包括材料的结构,材料的凝固与相图,扩散,材料中铺缺陷,塑性变形、回复与再结晶等。《材料科学基础》可作为高等院校材料类和机械类专业的学生及研究生的教科书和参考书,也可以为相关专业的学生及

三元相图练习题

三元相图练习题1 一、 在如图所示的相图中完成下面各个问题。 (25分) 1. 直接在给定图中划分副三角形; 2. 直接在给定图中用箭头标出界线上温 度下降的方向及界线的性质; 3. 判断化合物D 和M 的性质; 4. 写出各无变量点的性质及反应式; 5. G 点的析晶路程; 6. 组成为H 的液相在完全平衡条件下进 行冷却,写出结晶结束时各物质的百 分含量(用线段比表示)。 解: 1、 见图; 2、 见图; 3、 D ,一致熔融二元化合物,高温稳定、低温分解; M ,不一致熔融三元化合物; 4、 E1,单转熔点,M C A L +?+ E2,低共熔点,M B C L ++? E3,单转熔点,M B A L +?+ E4,过渡点,B A D L +?→← 5、 6、过H 点做副三角形BCM 的两条边CM 、BM 的平行线HH 1、HH 2,C%=BH 2/BC ×100%,B%=CH 1/BC ×100%,C%=H 1H 2/BC ×100% 1 没有心脏我还可以思念你没有下体我还可以燃烧你 ■■■■■■■■■■■■■张为政整理■■■■■■■■■■■■■勿删■■■■■■■■■■■■■■ L ? A f= 2 熔体G L f= 3 G[B ,(B)] 1[B,B+(A)] L ?A +B f=1 E 3[2,A+B+(M)] L +A ?B +M f=0 E 3[3,A 消失+B +M] L ? B +M f=2 E 2[4, B +M +(C)] L ?M +C +B f=0 E 2(L 消失)[G,M+B+C]

二(20分)下图为CaO-A12O3-SiO2系统的富钙部分相图,对于硅酸盐水泥的生产有一定的参考价值。试: 1、画出有意义的付三角形; 2、用单、双箭头表示界线的性质; 3、说明F、H、K三个化合物的性质和写出各点的相平衡式; 4、写出M熔体的冷却平衡结晶过程; 5、为何在缓慢冷却到无变量点K(1455℃)时再要急剧冷却到室温?

噻吩脱除方法研究现状与进展

噻吩脱除方法研究现状与进展 苗茂谦上官炬0 前言 噻吩作为一种有机硫广泛存在于焦化苯、石油馏分、液化石油气等液体及焦炉气、天然气、石油加工气和半水煤气等各种工业气体中,其含量相对于其它种类的有机硫低一些。它由于是一种杂原子五元单环化合物,会引起后续工业管道、设备腐蚀,导致催化剂中毒和降低产品质量。因此,脱除噻吩成为脱硫研究者关注的课题。噻吩由于其稳定性高(热解温度在400℃以上),文献称之为非反应性硫,故其脱除难度位于有机硫之首。为了研究开发化工原料气中噻吩的脱除,下面综述了目前国内外噻吩脱除方法研究现状与进展。 1催化加氢法 催化加氢法(HDS )是一种传统脱除有机硫的有效方法,是指有机硫化物在催化剂的作用下与氢发生转化反应,变成容易脱除的硫化氢。用于催化加氢脱硫的催化剂主要有Co-Mo ,Ni-Mp ,Ni-W 三个系列,催化剂载体为具有100~300m 2/g 表面积的Al 2O 3,SiO 2-Al 2O 3,分子筛,MgO 和硅藻土等多孔性材料。其中Co-Mo/Al 2O 3加氢串ZnO 是一种可以同时除去包括噻吩在内各种有机硫的方法。反应温度和压力的提高可以提高加氢活性,因此催化加氢通常都是在高温高压下操作的,典型的操作条件是温度为300~450℃,压力为3~5MPa 。催化加氢法,由于过程需要300℃以上的高温热源,对反应条件和设备要求高,并且催化剂价格昂贵,硫处理成本高,因此适合大型的合成氨厂和炼油厂使用。在实际生产中,低级的硫醇、硫醚、二硫化合物容易加氢脱除,而高级含硫化合物如高级硫醇、噻吩、苯并噻吩等经过催化加氢处理后残留量仍然较高。 催化加氢法的近期研究主要是开发新型的催化剂,以提高脱硫活性,降低反应温度,并提高催化剂的使用寿命。 2硫酸精制法 硫酸精制法也是一种传统方法,硫酸精制法有两种途径,即磺化法和借助不饱和化合物的共聚法。磺化法是最早应用的精制方法,用浓硫酸使噻吩磺化进入酸层而除去,因此操作过程简单,但这一过程将产生被大量的有机杂质污染了的再生酸,由于酸渣难以处理,而且油品和苯的损失大,从而限制了它的应用。 鉴于此,加入不饱和化合物类添加剂,在硫酸的催化作用下噻吩进行烷基化反应生成较重的噻吩衍生物,或者与添加剂反应生成树脂类聚合物,而后洗除或者精馏分离出来,这样可以提高净化度,减少脱硫时间及苯和油品的损失。应用的添加剂主要有醛类、稀烃类、含有不饱和化合物的植物油和动物脂和酚类等。 这些年的发展主要是操作工艺的改进,如采用多段加入添加剂法,或同时加入多种添加剂,这样可以大大降低添加剂和酸的用量。 为了避免硫酸的强腐蚀性,人们也研究了用无水AlCl 3和AlBr 3作催化剂的聚合过程。此外,还有将硫酸固定化工艺的报道,如用硫酸处理过的硅胶和通过硫酸活化后的蒙脱土,它们本质上仍然是利用噻酚与硫酸的反应,产物被吸附在硅胶和蒙脱土上。 3萃取脱硫 萃取脱硫的基本原理是在一个合适的溶剂中,有机硫化物的溶解性较烃类更高,硫化合物能从燃料油(太原理工大学煤化工研究所 030006) 山西科灵催化净化技术发展公司

三元相图的绘制详解

三元相图得绘制 本实验就就是综合性实验。其综合性体现在以下几个方面: 1、实验内容以及相关知识得综合 本实验涉及到多个基本概念,例如相律、相图、溶解度曲线、连接线、等边三角形坐标等,尤其就就是在一般得实验中(比如分析化学实验、无机化学实验等)作图都就就是用得直角坐标体系,几乎没有用过三角坐标体系,因此该实验中得等边三角形作图法就具有独特得作用。这类相图得绘制不仅在相平衡得理论课中有重要意义,而且对化学实验室与化工厂中经常用到得萃取分离中具有重要得指导作用。 2、运用实验方法与操作得综合 本实验中涉及到多种基本实验操作与实验仪器(如电子天平、滴定管等)得使用。本实验中滴定终点得判断,不同于分析化学中得大多数滴定。本实验得滴定终点,就就是在本来可以互溶得澄清透明得单相液体体系中逐渐滴加试剂,使其互溶度逐渐减小而变成两相,即“由清变浑”来判断终点。准确地掌握滴定得终点,有助于学生掌握多种操作,例如取样得准确、滴定得准确、终点得判断准确等。 一、实验目得 1、掌握相律,掌握用三角形坐标表示三组分体系相图。 2、掌握用溶解度法绘制三组分相图得基本原理与实验方法。 二、实验原理 三组分体系K= 3,根据相律: f =K–φ+2=5–ф 式中ф为相数。恒定温度与压力时: f= 3–φ 当φ= 1,则f = 2 因此,恒温恒压下可以用平面图形来表示体系得状态与组成之间得关系,称为三元相图。一般用等边三角形得方法表示三元相图。 在萃取时,具有一对共轭溶液得三组分相图对确定合理得萃取条件极为重要。在定温定压下,三组分体系得状态与组分之间得关系通常可用等边三角形坐标表示,如图1所示:

图1图2 等边三角形三顶点分别表示三个纯物质A,B,C。AB,BC,CA,三边表示A与B,B与C,C 与A所组成得二组分体系得组成。三角形内任一点则表示三组分体系得组成。如点P得组成为:A%=Cb B%=Ac C%=Ba 具有一对共轭溶液得三组分体系得相图如图2所示。该三液系中,A与B,及A与C完全互溶,而B与C部分互溶。曲线DEFHIJKL为溶解度曲线。EI与DJ就就是连接线。溶解度曲线内(ABDEFHIJKLCA)为单相区,曲线外为两相区。物系点落在两相区内,即分为两相。 图3(A醋,B水,C氯仿) 绘制溶解度曲线得方法有许多种,本实验采用得方法就就是:将将完全互溶得两组分(如氯仿与醋酸)按照一定得比例配制成均相溶液(图中N点),再向清亮溶液中滴加另一组分(如水),则系统点沿BN线移动,到K点时系统由清变浑。再往体系里加入醋酸,系统点则沿AK上升至N’点而变清亮。再加入水,系统点又沿BN’由N’点移至J点而再次变浑,再滴加醋酸使之变清……如此往复,最后连接K、J、I……即可得到互溶度曲线,如图3所示。 三、实验准备 1、仪器:具塞磨口锥形瓶,酸式滴定管,碱式滴定管,移液管,分析天平。 2、药品:冰醋酸,氯仿,NaOH溶液(0、2mol·mol–3),酚酞指示剂。 四、操作要点(各实验步骤中得操作关键点) 1、因所测得体系中含有水得成分,所以玻璃器皿均需干燥。

噻吩及其衍生物

摘要噻吩类杂环化合物应用较多的是其衍生物,该类化合物发展在我国处在起步阶段,大多数产品尚属空白,还没有产量规模化、品种系列化的生产厂家。α-噻吩衍生物广 泛应用于合成医药、农药、染料、化学试剂和高分子助剂等,重要的衍生物有噻吩-α-乙酸、α-氯甲基噻吩、α-乙酰噻吩和噻吩-α-甲醛,噻吩-α-乙酸是目前用量最大的噻 吩衍生物,全球用量在1000t/a左右。β-噻吩衍生物有特殊的活性,主要用于合成医 药和农药。大多数β-噻吩衍生物是以β-甲基噻吩为原料合成的、重要的衍生物有β-甲 基噻吩、β-噻吩甲醛、噻吩-β-乙酸乙酯和β-溴噻吩等,β-噻吩衍生物是高附加值产品,例如 -噻吩甲醛的售价为86万元/t,2-(邻硝基苯胺基)-5-甲基-β-氰基噻吩的售价为1.2万元/kg。 人们发现噻吩类杂环化合物已有几十年的历史,但真正广泛应用却只有十几年。噻吩类杂环化合物应用较多的是其衍生物,其中α位噻吩衍生物又较β位用量大、品种多。β位衍生物结构新颖,在很多领域有特殊用途,品种和用量正快速增长。 噻吩类化合物在我国处在起步阶段,大多数品种尚属空白,还没有产量规模化。品种系列化的生产厂家。 噻吩 噻吩又称硫杂茂、硫茂、硫代呋喃、硫杂环戊二烯。结构式为 噻吩为无色低粘度液体,微有苯味,不易发生水解、聚合反应。噻吩是稳定的五元杂环化合物,具有芳香族化合物的性质,化学性质与苯十分相近,但却有更高的反应 活性,如噻吩的氯化反应在乙酸中进行的速度是苯的100万倍,溴化反应是苯的 1000倍,但噻吩环热稳定性比苯环差,易发生开环裂解反应。噻吩的制造方法有提取法和 合成法2种。其主要物化性质列于表1。表1 噻吩的主要物化性质 ———————————————————————————————————— 项目指标 ———————————————————————————————————— 沸点/℃ 84.16 相对密度(25/4℃) 1.0583 凝固点/℃ -38.3

(完整word版)材料科学基础习题5-答案-二元相图作业

《材料科学基础》第五章习题——二元相图1、发生匀晶转变的两个组元在晶体结构、原子尺寸方面有什么特点? 答:两者的晶体结构相同,原子尺寸相近,尺寸差小于15%。 2、固溶体合金的相图如下图所示,试根据相图确定: ①成分为ω(B) = 40%的合金首先要凝固出 来的固体成分;(画图标出) ②若首先凝固出来的固相成分含ω(B) = 60%,合金的成分为多少?(画图标出) ③成分为ω(B) = 70%的合金最后凝固的液 体成分;(画图标出) ④合金成分为ω(B) = 50%,凝固到某温度 时液相含ω(B)为40%,固相含有ω(B) = 80%, 此时液体和固相各占多少?(计算) ①过ω(B) = 40%的成分线与液相线的交点做与底边的平行线交固相线即可 ②过ω(B) = 60%的成分线与固相线的交点做与底边的平行线交液相线即可 ③过ω(B) = 70%的成分线与固相线的交点做与底边的平行线交液相线即可 ④液相:(80-50)/(80-40)=0.75 固相:(50-40)/(80-40)=0.25 3、指出下列相图中的错误,并加以改正。 由相律知,三相平衡时,图中应该为一点,而不是线 段,且二元相图中最多只有三相平衡,所以把d图中 r相除去。 由相律知在二元相图中 纯组元凝固温度恒定,液固 相线交于一点 4、根据教材图7.20,假设F与G点坐标分别选取5%与99%,计算:①Sn含量为40%的合金在凝固至室 A 20 40 60 80 B 温 度 W(B) % α L+a L

温后的组织组成比例;②根据初生相(α)、共晶组织中的相(α+β),以及冷却过程中析出的二次相(αⅡ或βⅡ),计算室温下的相组成比例。 解:①Sn 含量为40%的合金在凝固至室温后的组织组成比例: %95.4819 9.6119 40)(=--= +βαW =--?--=5991999199.61409.61αW 43.45% %6.7599519199.61409.61=--?--=∏βW ②根据一次相、共晶组织中的相,以及冷却过程中析出的二次相,计算室温下的相组成比例: 5、 Mg-Ni 系的一个共晶反应为 设C 1为亚共晶合金,C 2 为过共晶合金,这两种合金中的初生相的质量分数相等,但C 1合金中的α总量为C 2合金中的α总量的2.5倍,试计算C 1和C 2的成分。 解:相图: Ni Mg 由二者的初生相的质量分数相等得:(23.5- C 1 )/23.5= (C 2 -23.5)/54.6-23.5 又α总量为C 2 中α总量的205倍:(54.6- C 1 )/54.6=2.5*(54.6- C 2 )/54.6 由以上两式得C 1 =12.7% C 2 =37.8% 6、 组元A 和B 在液态完全互溶,但在固态互不溶解,且形成一个与A ,B 不同晶体结构的中间化合物,α(纯镁)+ 2Mg Ni[w(Ni) = 54.6%] L (ω(Ni) = 23.5%) 507℃ A 23.5 54.6 B

2_噻吩乙酸的合成_李贵杰

22噻吩乙酸的合成Ξ 李贵杰,马吉海,陈韶蕊,周志远 (河北科技大学理学院,河北石家庄 050018) 摘要:以噻吩为原料,经乙酰基反应、氧化重排生成22噻吩乙酸甲酯(2),2经水解得22噻吩乙酸(3),总收率53.0%,其结构经IR和1H NMR确证。 关 键 词:22乙酰噻吩;22噻吩乙酸甲酯;22噻吩乙酸;合成 中图分类号:O626.12;O621.3文献标识码:A文章编号:100521511(2004)0420394203 Synthesis of22Thiopheneacetic Acid L I Gui2jie, MA Ji2hai, CHEN Shao2rui, ZHOU Zhi2yuan (College of Sciences,Hebei University of Science and Technology,Shijiazhuang050018,China) Abstract:22Thiopheneacetic acid was synthesized by the reaction of acetyliation,oxidation rear2 rangement,hydrolysis of methyl22thiopheneacetate with the overall yield of53.0%,and its struc2 ture was characterized by IR and1H NMR. K eyw ords:22acetothiophene;methyl22thiopheneacetate;22thiopheneacetic acid;synthesis 22噻吩乙酸(3)是一种重要的合成头孢菌素药物的中间体,对头孢菌素母核72氨基头孢烷酸(72ACA)进行结构修饰,可提高药物的抗菌活性。早在1966年Woodward[1]就合成了头孢噻吩,近年来国外用3又研制出许多新的头孢菌素抗生素,有头孢三唑(Cefetrizole),头孢西丁(Cefox2 itin),头孢尼特罗(Nitrocefin)和呋烟腙(Furila2 zone)等[2]。3的文献合成方法主要有三种:(1) Scheme1[2,3]中22氯甲基噻吩很不稳定,不能长时间存放,只能低温保存,密闭时有爆炸的危险, 1,2两步产率低[4],且需用剧毒物质氰化钠;(2) Scheme2[5]要高压操作,条件较苛刻;(3)Scheme 3[6]虽然只有一步反应但原料不易获得且要消耗大量的碘。本文参考文献[4,6]方法,以噻吩为原料,在碘的催化下与乙酸酐进行Friedel-Crafts 酰基化反应生成22乙酰噻吩(1),1在三氟化硼催化下用四醋酸铅氧化重排生成22噻吩酰甲酯(2),2经水解得3(Scheme4)。该路线反应条件温和、反应时间短、易操作、总收率高,较之文献报道的方法更为可取,适于规模生产。 1 实验部分 1.1 仪器与试剂 北京X4数字显微熔点测定仪(温度未校正);美国AV400型核磁共振仪(400MHz,CD2 Cl3);上海ZF22型三用紫外仪;美国B IO2 RADF TS2135型傅立叶红外光谱仪(B Kr压片)。 三氟化硼合乙醚,化学纯;四醋酸铅,参考文献[7]方法自制;其余试剂均为分析纯。 1.2 1的合成 在250mL三颈瓶中加入噻吩30.00g(360 — 4 9 3 — 合成化学 Chinese Journal of Synthetic Chemistry Ξ收稿日期:2004204205 作者简介:李贵杰(1982-)男,汉族,河北馆陶人,河北科技大学在读本科生。 通讯联系人:马吉海(1964-),男,教授,主要从事药物化学和有机合成的教学和科研。Tel.0310********,E2mail:mz99@tom. com.

相关主题
文本预览
相关文档 最新文档