当前位置:文档之家› 碳化钼综述

碳化钼综述

碳化钼综述
碳化钼综述

碳化硼原料(石墨)

碳化硼原料(石墨) 石墨种类有很多,主要分天然的和人造的,天然的就是在地下经过变动造成的环境将含碳的物质石墨化,主要有:鳞片石墨,蠕状石墨,不定型石墨等。 人造石墨:是人为的将含碳物质进行石墨化而成的产品。 石墨质软,黑灰色;有油腻感,石墨的工艺特性主要决定于它的结晶形态。结晶形态不同的石墨矿物,具有不同的工业价值和用途。工业上,根据结晶形态不同,将天然石墨分为三类。 1.致密结晶状石墨 致密结晶状石墨又叫块状石墨。此类石墨结晶明显晶体肉眼可见。颗粒直径大于0.1毫米。晶体排列杂乱无章,呈致密块状构造。这种:石墨的特点是品位很高,一般含碳量为60~65%,有时达80~98%,但其可塑性和滑腻性不如鳞片石墨好。 2.鳞片石墨 石墨晶体呈鳞片状;这是在高强度的压力下变质而成的,有大鳞片和细鳞片之分。此类石墨矿石的特点是品位不高,一般在2~3%,或10~25%之间。是自然界中可浮性最好的矿石之一,经过多磨多选可得高品位石墨精矿。这类石墨的可浮性、润滑性、可塑性均比其他类型石墨优越;因此它的工业价值最大。 3.隐晶质石墨 隐品质石墨又称非晶质石墨或土状石墨,这种石墨的晶体直径一般小于1微米,是微晶石墨的集合体,只有在电子显微镜下才能见到晶形。此类石墨的特点是表面呈土状,缺乏光泽,润滑性也差。品位较高。一般的60~80%。少数高达90%以上。矿石可选性较差。 石墨由于其特殊结构,而具有如下特殊性质: 1)耐高温型:石墨的熔点为3850±50℃,沸点为4250℃,即使经超高温电弧灼烧,重量的损失很小,热膨胀系数也很小。石墨强度随温度提高而加强,在2000℃时,石墨强度提高一倍。 2)导电、导热性:石墨的导电性比一般非金属矿高一百倍。导热性超过钢、铁、铅等金属材料。导热系数随温度升高而降低,甚至在极高的温度下,石墨成绝热体。石墨能够导电是因为石墨中每个碳原子与其他碳原子只形成3个共价键,每个碳原子仍然保留1个自由电子来传输电荷. 3)润滑性:石墨的润滑性能取决于石墨鳞片的大小,鳞片越大,摩擦系数越小,润滑性能越好。 4)化学稳定性:石墨在常温下有良好的化学稳定性,能耐酸、耐碱和耐有机溶剂的腐蚀。 5)可塑性:石墨的韧性好,可年成很薄的薄片。 6)抗热震性:石墨在常温下使用时能经受住温度的剧烈变化而不致破坏,温度突变时,石墨的体积变化不大,不会产生裂纹。 另外要说明的石墨是碳的一种形态,它的层间距是可以被压缩的,石墨密封材料就是用石墨压制而成,它压缩了层间距,同时形态也发生改变,一般采用天然的可膨胀石墨加工制成。 钻石也是碳的一种形态,它与石墨之间的差别就是纯度,层间距和碳原子排列。

碳化硼

碳化硼 科技名词定义 中文名称:碳化硼 英文名称:boron carbide 定义:以碳化硼为主体的磨料。 应用学科: 机械工程(一级学科);磨料磨具(二级学科);磨料(三级学科) 百科名片 碳化硼(boron carbide ),又名一碳化四硼,分子式为B4C,通常为灰黑色粉末。俗称人造金刚石,是一种有很高硬度的硼化物。与酸、碱溶液不起反应,容易制造而且价格相对便宜。广泛应用于硬质材料的磨削、研磨、钻孔等。 目录 1简介管制信息 1名称 1化学式 1相对分子质量 1性状 1储存 1用途 1质检信息质检项目指标值 理化常数 物理化学性质 制备 1应用控制核裂变 1研磨材料 1涂层涂料 1喷嘴 1其他 包装及储存 简介 管制信息 本品不受管制

名称 中文名称:碳化硼英文别名:Boroncarbide,Tetraboroncarbide 化学式 B4C 相对分子质量 55.26 性状 坚硬黑色有光泽晶体。硬度比工业金刚石低,但比碳化硅高。与大多数陶器相比,易碎性较低。具有大的热能中子俘获截面。抗化学作用强。不受热氟化氢和硝酸的侵蚀。溶于熔化的碱中,不溶于水和酸。相对密度(d204)2.508~2.512。熔点2350℃。沸点3500℃。 储存 密封保存。 用途 防化学品陶器、耐磨工具制造。 质检信息质检项目指标值 质检项目项目指标值 含量(B4C) ≥90.0% 游离炭及三氧化二硼和其它杂质总量≤10.0% 理化常数 名称;碳化硼 IUPAC英文名Boron carbide 别名B4-C、B4C、黑钻石、一碳化四硼 CAS号12069-32-8 化学式B4C 摩尔质量55.255 g mol 外观黑色粉状 密度 2.52 g/cm (固) 熔点2350 °C (2623.15 K)

含硼聚合物的制备及其在碳化硼制备中的应用

含硼聚合物的制备及其在碳化硼制备中的应用碳化硼是一种新型的特种陶瓷材料,具有比重小、硬度高、中子吸收能力强和化学稳定性好等优良特性。在耐磨喷嘴,核反应堆的屏蔽材料,轻质防弹装甲等领域有广泛应用。 在工业上,用来合成碳化硼粉末的方法是碳热还原法。但该方法存在温度高(一般高于2000℃)、能耗大、产品纯度低,环境污染严重等问题。 因此,研究开发一种低成本、低能耗的制备碳化硼粉体的方法十分必要。本文分别以硼酸和甘油为硼源和碳源,乙二醇为改进剂,经过酯化反应、低温裂解和高温还原合成碳化硼粉末。 采用傅里叶红外光谱(FT-IR)、X-射线衍射(XRD)、扫描电镜(SEM)、热重分析(TGA)、能谱分析(EDS)和粒度分析等表征方法对有机前驱体、裂解产物和最终产物进行表征。探讨了乙二醇的添加量、裂解温度、还原温度和时间对碳化硼的纯度、粒度的影响。 研究结果表明:在酯化反应过程中,乙二醇可以促进有机前驱体的生成。当硼酸和甘油摩尔比为1:1,乙二醇的添加量为20%,酯化反应温度为150℃,反应时间为3h时,有机前驱体的产率最大为56.3%。 对制备碳化硼的低温裂解过程进行研究,结果表明:以有机前驱体为低温裂解原料时,经过两次低温裂解与两次研磨工艺后可以得到具有三维网状结构的裂解产物,其主要成分为游离碳和B2O3。随着第二次裂解温度的升高,产物中游离碳和B2O3的摩尔比逐渐减小。 适宜的第二次裂解反应温度为650℃。对制备碳化硼的高温还原过程进行研究,结果表明:以裂解产物为高温还原原料时,还原温度越高,还原时间越长,越有

利于碳化硼的生成。 在高纯氩气保护下,当还原温度为1475℃,还原时间为2.5h时,合成的碳化硼粉末的纯度最高约98.29%,呈规则的六棱形块状结构,粒度分布均匀,平均粒径为3.089μm。

碳化硼涂层的研究进展

碳化硼涂层的研究进展 作者:孙军龙, 邓建新, 刘长霞, 丁明伟 作者单位:山东大学 刊名: 工具技术 英文刊名:TOOL ENGINEERING 年,卷(期):2006,40(5) 被引用次数:1次 参考文献(14条) 1.O Conde;A J Silvestre;J C Oliveira Influence of carbon content on the crystallographic structure of boron carbide films[外文期刊] 2000(1-3) 2.S J Harris;G G Krauss;S J Simko;R J Baird, S A Gebremariam, G Doll Abrasion and chemical-mechanical polishing between steel and a sputtered boron carbide coating[外文期刊] 2002(1-2) 3.A A Grossman;R P Doerner;S Luckhardt;R Seraydarian, A K Burnham Transport properties of hydrogen isotopes in boron carbide structures[外文期刊] 1999(266-269) 4.D C Reigada;R Prioli;L G Jacobsohn;F L Freire Jr Boron carbide films deposited by a magnetron sputter-ion plating process:film composition and tribological properties[外文期刊] 2000(3-6) 5.V Cholet;R Herbin;L Vandenbulcke Chemical vapor deposition of boron carbide from BBr3/CH4/H2 mixtures in a microwave plasma 1990(01) 6.U Jansson;J-O Carlsson;B Stridh;S Soederberg, M Olsson Chemical vapor deposition of boron carbides Ⅰ:Phase and chemical composition 1989(01) 7.E Pascual;E Martìnez;J Esteve;A Lousa Boron carbide thin films deposited by tuned-substrate RF magnetron sputtering[外文期刊] 1999(2-5) 8.J C Oliveira;O Conde Deposition of boron carbide by laser CVD:a comparison with thermodynamic prediction[外文期刊] 1997(1-2) 9.Kyu-Wang Lee;Stephen J;Harris Boron carbide films grown from microwave plasma chemical vapor deposition[外文期刊] 1998(10) 10.Yi Zeng;Chuanxian Ding a;Soo W Lee Young's modulus and residual stress of plasma-sprayed boron carbide coatings[外文期刊] 2001(01) 11.C I Chiang;O Meyer;Rui M C da Silva The modification of mechanical properties and adhesion of boron carbide sputtered films by ion implantation[外文期刊] 1996(117) 12.F Kustas;B Mishra;J Zhou Wear behavior of B4C-Mo cosputtered wear coatings[外文期刊] 2001(01) 13.H S Ahn;P D Cuong;K H Shin;Ki-Seung Lee Tribological behavior of sputtered boron carbide coatings and the influence of processing gas[外文期刊] 2005(7-12) 14.T Eckardt;K Bewilogua;G van der Kolk;T Hurkmans, T Trinh, W Fleischer Improving tribological properties of sputtered boron carbide coatings by process modifications[外文期刊] 2000(01) 本文读者也读过(10条) 1.曾毅.张叶方.黄静琪.丁传贤等离子喷涂碳化硼涂层的性能研究[期刊论文]-材料保护1999,32(4) 2.刘宗德.陈蕴博.刘静静.林涛.姜超.LIU Zong-de.CHEN Yun-bo.LIU Jing-jing.LIN Tao.JIANG Chao电磁加速

碳化硼原料(石油焦)标准

碳化硼的原料(石油焦) 石油焦是生产碳化硼的主要碳素材料之一,其基本理化性质如下: 石油焦(Petroleum coke)是原油经蒸馏将轻重质油分离后,重质油再经热裂的过程,转化而成的产品,从外观上看,焦碳为形状不规则,大小不一的黑色块状(或顆粒),有金属光泽,焦碳的颗粒具多孔隙结构,主要的元素组成为碳,占有80wt%以上,其余的为氢、氧、氮、硫和金属元素。石油焦具有其特有的物理、化学性质及机械性质,本身是发热部份的不挥发性碳,挥发物和矿物杂质(硫、金属化合物、水、灰等)這些指标決定焦炭的化学性质。 一、石油焦分类及性质 石油焦的形态随制程、操作条件及进料性质的不同而有所差异。从石油焦工场所生产的石油焦均称为生焦(green cokes),含一些未碳化的碳烃化合物的挥发份,生焦就可当做燃料级的石油焦,如果要做炼铝的阳极或炼钢用的电极,则需再经高温锻烧,使其完成碳化,降低挥发份至最少程度。 大部份石油焦工场所生产的焦外观为黑褐色多孔固体不规则块状,此种焦又称为海绵焦(sponge coke)。第二种品质较佳的石油焦叫做针状焦(ne EDL e coke)与海绵焦比,由于其具较低的电阻及热膨胀系数,因此更适合做电极。有时另一种坚硬石油焦亦会产生,称之为球状焦(shot coke)。这种焦形如弹丸,表面积少,不易焦化,故用途不多。 石油焦具有其特有的物理、化学性质及机械性质,本身是发热部份的不挥发性碳,挥发物和矿物杂质(硫、金属化合物、水、灰等)这些指针决定焦炭的化学性质。物理性质中孔隙度及密度,决定焦炭的反应能力和热物理性质。机械性质有硬度、耐磨性、强度及其它机械特性,颗粒组成及其它加工和运输、堆放、贮存等性质影响的情形。 二、石油焦的加工工艺 石油焦是以原油经蒸馏后的重油或其它重油为原料,以高流速通过500℃±1℃加热炉的炉管,使裂解和缩合反应在焦炭塔内进行,再经生焦到一定时间冷焦、除焦生产出石油焦。 用途:主要用于制取炭素制品,如石墨电极、阳极弧,提供炼钢、有色金属、炼铝之用;制取炭化硅制品,如各种砂轮、砂皮、砂纸等;制取商品电石供制作合成纤维、乙炔等产品;也可做为燃料。 石油焦(PE troleum coke)是原油经蒸馏将轻重质油分离后,重质油再经热裂的过程,转化而成的产品,从外观上看,焦碳为形状不规则,大小不一的黑色块状(或颗粒),有金属光泽,焦碳的颗粒具多孔隙结构,主要的元素组成为碳,占有80wt%以上,其余的为氢、氧、氮、硫和金属。 三、石油焦的质量标准

碳化硼材料研究进展

碳化硼材料研究进展 摘要: 综述了碳化硼粉末的合成方法、碳化硼复相陶瓷的种类及合成方法 ,并对其发展方向作了展望。 关键词:碳化硼;材料;研究;记载 1前言 碳化硼为菱面体结构,晶格属于D3d5- R3m空间点阵,晶格常数 a = 0. 519 nm , c = 1. 212 nm ,α = 66°18′,目前可被广泛接受的碳化硼模型是:B11C组成的二十面体和 C-B-C 链构成的菱面体结构。由于碳原子和硼原子半径相似,存在类质同相替代,所以碳化硼中的碳硼比并不固定,但多在1:4附近变化,且碳硼比= 1:4时碳 化硼的各项性能指标也最好。碳化硼中原子间共价键比超过90 %,这种特殊的结 合方式,使其具有具许多优良性能(参见表1),如:①高熔点、高硬度、高模量,高温强度高(>30GPa),具有很强的耐磨能力;②密度小、③较低的膨胀系数; ④很高的热中子吸收能力;⑤具有热电性;⑥在具备良好的物理性能的同时具 有优越的抗化学侵蚀能力。 表1 碳化硼陶瓷的主要性能 Table1 Main properties of boron carbide ceramics 密度 gcm-3 熔点 ℃电阻率 X104Ω/m导热系数 W/mk 线性膨胀系数 X10-6/K 弹性模量 GPa 显微硬度 GPa 抗弯强度 MPa 抗压强度 GPa 热电性能 S/ m室温 2.52 2450 0.2~7 29 4.5 448 50 490 2854 140, 正是由于碳化硼自身的优异性能使碳化硼在耐火材料、耐磨材料、装甲防护、核 工业、航空航天等领域得到了广泛的应用。 2碳化硼粉末的制备 2.1碳化硼的合成 2.1.1碳热还原法 碳热还原法是指以碳为还原剂,还原硼酸或硼酐制备碳化硼的方法。反应方程式为: 2B2O3+7C==B4C+6CO(g)或4H3BO3+7C==B4C+6CO(g)+6H2O(g) 碳热还原法制备碳化硼时通常使用碳管炉和电弧炉。采用电弧炉作为合成设备时,由于电弧温度高、炉区温差大。在中心区部位温度可能超过碳化硼的熔点,使其 发生包晶分解,析出游离碳和其他高硼化合物;而远离中心区温度偏低,反应不 完全,残留有硼酐和碳。所以电弧炉中制得的碳化硼一般杂质含量偏高。碳管炉 作为合成设备时,反应在保护气氛或真空状态下进行,反应条件更容易控制,生 产的碳化硼质量会更高一些,但产量低、成本高不利于大规模生产。 碳热还原法原料成本低、设备简单、产量大是目前碳化硼工业化生产的主要方法。

碳化硼-铝复合材料的研究进展

碳化硼-铝复合材料的研究进展 刘明朗1,韩增尧2郎静3马南钢1吴骁行1 1华中科技大学材料成型与模具技术国家实验室,武汉4300742中国空间技术研究院,北京100094; 3华中科技大学能源与动力工程学院,武汉430074 碳化硼陶瓷具有高硬度、高熔点、低密度的特点,将其与金属铝复合能克服自身缺陷,使其得到更广泛 的应用。碳化硼-铝复合材料按照基体的不同可分为铝基和碳化硼基两大类,分别综述了其制备工艺、界面反应以及 润湿性,并展望了其发展方向,最后指出,随着研究的深入该复合材料将在大面积防护领域得到广泛应用。 铝基;碳化硼基;制备;界面反应;润湿性 Research of Boron Carbide-Aluminum Composites LIU Minglang HAN ZengyaoLANG JingMA NangangWU Xiaoxing 国家科技项目(XXXX-401);中国空间研究院创新基金 刘明朗:男,1988年生,硕士研究生E-mail:ml_ liu1988@ 163. com 马南钢:通讯作者,男,1962年生,博士,教授Tel:027-87557949 E-mail: ngma@mail. hust. edu. cn

b(、/Al复合

@@1. Topcu I,et al. Processing and mechanical properties of B4C reinforced Al matrix composites[J]. J Alloys Compd,2009, 482:516 @@2. Liu C H,Sun J L. Erosion bchaviour of B4C -based ceramic composites[J]. Ceram Int, 2010,36 : 1297

碳化硼特性

碳化硼特性 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

碳化硼特性 B 4 C 具有高熔点、高硬度、低密度等优良性能,并具有良好的中子吸收能力 和抗化学侵蚀能力,因而广泛应用于耐火材料、工程陶瓷、核工业、宇航等领域。化学计量分子式为 B 4C,碳化硼存在许多同分异构体,含碳量从8%-20%,最 稳定的碳化硼结构是具有斜方六面体结构的B 13C 2 、B 13C 3、B 4C 和其它接近于B 13C 3的相。碳化硼斜方六面体结构中包括12个二十面的原子团簇,这些原子团簇通过共价键相互连接,并在斜方六面体的对角线上有一个三原子链。多硼的十二面体结构位于斜方六面体的顶点。硼原子和碳原子可以在二十面体和原子链上互相替代 ,这也是碳化硼具有如此多的同分异构体的主要原因。正因为碳化硼的特殊结构,使之有很多优 良的物理、机械性能。 碳化硼最重要的性能在于其超常的硬度(莫氏硬度为,显微硬度为55GPa-67G Pa),是最理想的高温耐磨材料;碳化硼密度很小,是陶瓷材料中最轻的,可用于航天航空领域;碳化硼的中子吸收能力很强,相对于纯元素B 和Cd 来说,造价低、耐腐蚀性好、热稳定性好,广泛用于核工业,碳化硼中子吸收能力还可以通过添加B 元素而进一步改善;碳化硼的化学性能优良,在常温下不与酸、碱和大多数无机化合物反应,仅在氢氟酸一硫酸、氢氟酸一硝酸混合物中有缓慢的腐蚀,是化学性质最稳定的化合物之一;碳化硼还具有高熔点、高弹性模量、低膨胀系数和良好的氧气吸收能力等优点。 不可否认,相对于其它陶瓷材料而言,碳化硼的强度和韧性略显偏低,尤其是断裂韧性低,影响了该材料的可靠性和应用性。但是可利用晶粒细化,相变韧化,相复合等多种手段使碳化 硼材料强韧化。众所周知,碳化硼的烧结温度过高、抗氧化能力差以及对金属的稳定性

碳化硼陶瓷的制备

碳化硼陶瓷的制备 1 碳化硼陶瓷的制备方法 1.1 碳化硼粉末的合成 根据合成碳化硼粉末所采用的反应原理、原料及设备的不同,碳化硼粉末的工业制取方法主要有高温自蔓延合成法(SHS)和碳管炉、电弧炉碳热还原法,近年来还出现了激光化学气相反应法、溶胶-凝胶碳热还原法等。 1.1.1 碳管炉、电弧炉碳热还原法 这是合成碳化硼粉末最常用的方法,早在化学计量的B4C被确定(1934年)后不久,电炉生产工业碳化硼的研究即取得成功,碳化硼作为磨料开始在工业上得到应用。将硼单质或含硼的化合物与碳粉或含碳的化合物均匀混合后放入高温设备,例如碳管炉或电弧炉中,通以保护气体或N2在一定温度下合成碳化硼粉末,基本的化学方程式为: 2B2O3(4H3BO3)+7C=B4C+6CO2(g)+6H2O(g) 这种方法的优点是:设备结构简单、占地面积小、建成速度快、工艺操作成熟、稳定。但该法也有较大的缺陷,包括能耗大、生产能力较低、高温下对炉体的损坏严重,尤其是合成的原始粉末平均粒径大(20~40μm),作为烧结碳化硼的原料还需要大量的破碎处理工序,大大增加了生产成本。 1.1.2 自蔓延高温合成法 自蔓延高温合成法(SHS)是利用化合物合成时的反应热,使反应进行下去的一种工艺方法。由前苏联物理化学研究所的MerzhahovG,BorovlnskayaLp发明,并成功制备了多种高纯度的陶瓷粉末,例如 B4C、BN等。由于此法制备碳化硼时多以镁作为助熔剂,故又称镁热法。与其他方法相比,具有反应温。度较低(1273~1473K)、节约能源、反应迅速及容易控制等优点,所以合成的碳化硼粉的纯度较高且原始粉末粒度较细(0.1~4μm),一般不需要破碎处理,是目前合成碳化硼粉的较佳方法,缺点是反应物中残留的MgO必须通过附加的工艺洗去,且极难彻底除去。 1.1.3 激光诱导化学气相沉积法 激光诱导化学气相沉积法(LICVD)是利用反应气体分子对特定波长激光束的吸收而产生热分解或化学反应,经成核生长形成超细粉末。1.1.4 溶胶-凝胶碳热还原法 溶胶-凝胶法(sol-gel)是指无机物或金属醇盐经过溶液、溶胶、凝胶而固化,再经热处理合成化合物的方法。由于提供硼源的硼化物很难与其他无机物或有机物形成凝胶,故用此法合成碳化的报道较少。

影响碳化硼陶瓷致密化的因素'

第25卷第6期 辽宁工学院学报 V o l .25 N o .62005年12月 Journal of L iaon ing In stitute of T echno l ogy D ec .2005 ① 影响碳化硼陶瓷致密化的因素 张 辉,穆柏春,唐立丹 (辽宁工学院材料与化学工程学院,辽宁锦州 121001) 摘 要:从纯碳化硼的无压烧结、添加烧结助剂、烧结时加压等方面介绍了碳化硼陶瓷活化烧结致密化的方法,综述了国内外在不同的烧结工艺下制备的碳化硼陶瓷材料的性能,进而分析了各种方法提高碳化硼陶瓷致密度的机制,比较了各种烧结方法的优缺点。结果表明:通过综合各种措施可以提高碳化硼陶瓷的致密度。 关键词:碳化硼;致密化;热压烧结;常压烧结 中图分类号:TM 286 文献标识码:A 文章编号:100521090(2005)0620378204 Effecti n g Factors on Co mpacti n g Boron Carbi de Ceram i cs ZHAN G H ui ,M U Bai 2chun ,TAN G L i 2dan (M aterials &Che m ical Engineering College ,L iaoning Institute of Technol ogy ,J inzhou 121001,China ) Key words :bo ron carbide ;compacting ;ho t p ressed sin tering ;no r m al p ressed sin tering Abstract :T he pykno sis m ethod of activated sin tering of bo ron carbide cera m ics w as p resen ted th rough s om e as pects of no 2vo ltage sin tering ,adding to sin tering assistan t ,fo rcing w h ile sin tering of pure bo ron carbide .T he p roperties of bo ron carbide cera m icsw h ich w ere p repared at differen t sin ter 2ing bo th at hom e and abroad w ere summ arized .T he m echan is m of i m p roving den sity of bo ron carbide cera m ics th rough vari ous m ethods w as analysed .T he m erits and faults of vari ous sin tering m ethods w ere compared ,the result indicates that it can i m p rove den sity of bo ron carbide cera m ics by syn thesiz 2ing vari ous m easures . 陶瓷材料在人类生存和发展过程中是不可缺少 的,陶瓷可分为传统陶瓷和新型陶瓷,而新型陶瓷按其组成成分可分为氧化物陶瓷、碳化物陶瓷和氮化物陶瓷等[1]。碳化物陶瓷是重要的耐高温材料之一,碳化物陶瓷包括Si C 、B 4C 、T i C 等,在众多的碳化物陶瓷中B 4C 陶瓷是最引人注目的一种,在碳化硼中,硼与碳同样为非金属元素,且原子半径相接近,其结合方式与一般间隙化合物不同[2],正是由于这种特殊的结合方式使它具有许多优良性能,如:①高熔点(2450℃)和超硬度(>30GPa )。其硬度在自然界中仅次于金刚石和立方氮化硼,被用于耐磨剂、耐磨部件和制造防弹装甲。②具有密度小(2.51 g c m 3 ),而且在高温下仍然具有较大的抗拉强度,因 此,正在研究利用它做喷气机叶片的金属陶瓷材料[3]。③具有很高的热中子吸收能力。可用作核反应堆的控制棒,又可用作核反应屏蔽材料[4]。④具有热电性,日本已开发出正常工作温度为2200℃的碳化硼热电偶,美国的SAN I A 实验室也正在研究一种新型的碳化硼热电转化装置。⑤具有优越的抗氧化侵蚀能力,如在室温下碳化硼陶瓷与酸碱不发生化学反应。正是由于B 4C 具有这些优良性能因此得到了广泛的应用,然而致密度是B 4C 陶瓷制品的重要的性能指标,研究如何提高B 4C 陶瓷制品的致密度具有重要的意义。 ① 收稿日期:2005201210 基金项目:辽宁省自然科学基金资助项目(9910300401);辽宁省专利局科研项目资助作者简介:张辉(19782),男(满族),辽宁锦州人,硕士生。

氮化硼特性

特性: 氮化硼是由氮原子和硼原子构成的晶体,该晶体结构分为:六方氮化硼(H BN)、密排六方氮化硼(WBN)和立方氮化硼,其中六方氮化硼的晶体结构具有类似的石墨层状结构,呈现松散、润滑、易吸潮、质轻等性状的白色粉末,所以又称“白色石墨”。理论密度2.27g/ cm3,比重:2.43,莫式硬度为2.六方氮化硼是具有良好的电绝缘性,导热性,化学稳定性,无明显熔点,在0.1MPA氮气中3000℃,在中性还原气氛中,耐热到2000℃,在氮和氩中使用温度可达到28 00℃,在氧气气氛中稳定性较差,使用温度1000℃以下。六方氨化硼的膨胀系数相当于石英,但导热率是石英的十倍。在高温时也具有良好的润滑性,是一种优良的高温固体润滑剂,有很强的中子吸收能力,化学性质稳定,对几乎所有熔融金属都具化学惰性。 六方氮化硼不溶冷水,水煮沸时水解非常缓慢并产生少量的硼酸和氨,与弱酸和强碱在室温下均不起反应,微溶于热酸,用熔融的氢氧化钠,氢氧化钾处理才能分解。对各种无机酸、碱、盐溶液及有机溶剂均有相当的抗腐能力。 10公斤/纸 箱 20公斤/纸 箱 氮化硼参数: 1、高耐热性:3000℃升华,其强度1800℃为室温的2倍,1500℃空冷至室温数十次不破裂,在惰性气体中2800℃不软化。 2、高导热系数:热压制品为33W/M.K和纯铁一样,在530℃以上是陶瓷材料中导热最大的材料。 3、低热膨胀系数:2×10-6的膨胀系数仅次于石英玻璃,是陶瓷中最小的,加上其具有高导热性,所以抗热震性能很好。 4、优良的电性能:高温绝缘性好,25℃为1014Ω-cm,2000℃还可以达到103Ω-c

m,是陶瓷中最好的高温绝缘材料,击穿电压3KV/MV,低介电损耗108HZ时为2. 5×10-4,介电常数为4,可透微波和红外线。 5、良好的耐腐蚀性:与一般金属(铁、铜、铝、铅等)、稀土金属,贵重金属,半导体材料(锗、硅、砷化钾),玻璃,熔盐(水晶石、氟化物、炉渣)、无机酸、碱不反应。 6、低的摩擦系数:U为0.16,高温下不增大,比二硫化钼,石墨耐高温,氧化气氛可用到900℃,真空下可用到2000℃。 7、高纯度好B高:其杂质含量小于10PPM,而含B大于43.6%。 8、可机械加工性:其硬度为莫氏2,所以可用一般机械加工方法加工成精度很高的零部件制品。 应用范围: 2氮化硼是一种无毒、耐高温、耐腐蚀、高导热、高绝缘,润滑性能优良的材料。 2既是电绝缘体又是热导体,高温状态下的特殊电解、电阻材料,高压高频电及等离子弧的绝缘体。 2可作为半导体的固相掺杂材料、抗氧化或抗水的润滑脂。 2高温润滑剂和模型的脱模剂,氮化硼粉末还可以作为玻璃微珠的防粘剂,玻璃和金属成型的脱模剂。 2由氮化硼加工制成的超硬材料,可制成高速切割工具和地质勘探、石油钻探的钻头。 2原子反应堆的结构材料,飞机、火箭发动机的喷,防止中子辐射的包装材料,航天航空中的热屏蔽材料。 2无毒无害又具有润滑性,可用作化妆品的填料。

碳化硼特性

碳化硼特性 B4C具有高熔点、高硬度、低密度等优良性能,并具有良好的中子吸收能力和抗化学侵蚀能力,因而广泛应用于耐火材料、工程陶瓷、核工业、宇航等领域。化学计量分子式为 B4C,碳化硼存在许多同分异构体,含碳量从8%-20%,最稳定的碳化硼结构是具有斜方六面体结构的B13C2 、B13C3、B4C和其它接近于B13C3的相。碳化硼斜方六面体结构中包括12个二十面的原子团簇,这些原子团簇通过共价键相互连接,并在斜方六面体的对角线上有一个三原子链。多硼的十二面体结构位于斜方六面体的顶点。硼原子和碳原子可以在二十面体和原子链上互相替代,这也是碳化硼具有如此多的同分异构体的主要原因。正因为碳化硼的特殊结构,使之有很多优良的物理、机械性能。 碳化硼最重要的性能在于其超常的硬度(莫氏硬度为,显微硬度为55GPa-67GPa),是最理想的高温耐磨材料;碳化硼密度很小,是陶瓷材料中最轻的,可用于航天航空领域;碳化硼的中子吸收能力很强,相对于纯元素B和Cd来说,造价低、耐腐蚀性好、热稳定性好,广泛用于核工业,碳化硼中子吸收能力还可以通过添加B元素而进一步改善;碳化硼的化学性能优良,在常温下不与酸、碱和大多数无机化合物反应,仅在氢氟酸一硫酸、氢氟酸一硝酸混合物中有缓慢的腐蚀,是化学性质最稳定的化合物之一;碳化硼还具有高熔点、高弹性模量、低膨胀系数和良好的氧气吸收能力等优点。不可否认,相对于其它陶瓷材料而言,碳化硼的强度和韧性略显偏低,尤其是断裂韧性低,影响了该材料的可靠性和应用性。但是可利用晶粒细化,相变韧化,相复合等多种手段使碳化硼材料强韧化。众所周知,碳化硼的烧结温度过高、抗氧化能力差以及对金属的稳定性不好等缺点,但是近年来随着超细粉末制备技术的发展和有效烧结助剂的开发,使碳化硼的常规烧结问题得到解决。 2 碳化硼粉末的制备 现在工业上生产B4C的方法是用硼酸或脱水氧化硼与碳在碳管炉或者电炉中进行高温还原反应: 2B203(4H3BO3)+7C=B4C+6C0 +(6H2O)。目前国内外制取碳化硼粉末的方法主要有:碳管炉或电弧炉碳热还原法,镁热法,激光诱导CVD法,直接制备法,溶胶凝胶碳热还原法等。 碳管炉、电弧炉碳热还原法热法是用硼酸或脱水氧化硼与碳在电炉中进行高温还原反应。电弧炉根据石墨的电极工作原理分为立式冶炼炉和卧式冶炼炉。该反应必须严格控制才能获得高纯度和稳定性的碳化硼粉,决不允许有多余的碳存在,一般加入余量的硼或加入过量的硼酸和硼酐。其工艺流程为:硼酸+碳黑混合焙解碳化过筛分析检测产品(粉末)。碳管炉、电弧炉碳热还原法是目前工业制备碳化硼的最重要的方法。缺点:电弧的温度高,炉区温差大,在中心部分的温度可能超过碳化硼的熔点,使其发生包晶分解(包晶反应是有些合金当凝固到一定温度时,已结晶出来的一定成分的固相与剩余液相发生反应生成另一种新固相的恒温转变过程),析出游离碳和其它高硼化合物,而远离中心的地方温度偏低,反应进行不完全,残留的氧化硼和碳以游离碳和游离硼的形式存在于碳化硼粉中。因而制得的碳化硼粉含有较高的游离碳和游离硼。能量消耗大、生产能力低、高温下对炉体损坏严重、合成的原始粉末平均粒径大,需要经过破碎处理等。其优点在于:设备结构简单、占地面积小、建成速度快、工艺操作成熟等。 镁热法是利用化合物合成时的反应热,使反应进行下去的一种工艺,大多用镁作为助熔剂。其化学反应方程式为:2B203+5Mg+2C=B4C+CO +5MgO。镁热法的优点在于:过程简单、反应温度较低、节约能源、反应迅速、容易控制、纯度高、可制得极细至微米)碳化硼粉。但是反应物中残留的氧化镁即使通过附加的工序洗去也难彻底除去等利用自蔓延高温合成法,合成Mg-B4C。并研究了其微观组织,结果表明:由于Mg的高挥发性,B203-Mg-C体系燃烧产物显微组织受到环境气压的影响,B4C的晶粒尺寸受到气压的显着影响,高压下生成的B4C晶粒比大一个数量级以上。 近年出现了一些新的制备碳化硼粉末的方法:激光诱导CVD法,直接制备法,溶胶凝胶碳热还原法,气流粉碎B4C粗粉法,以BCI3、H2及CH4为原料通过气相沉积合成碳化硼法等。激光诱导化学气相沉积法是利用反应气体分子对特定波长激光束的吸收而产生热分解或化学反应,经成核生长成超细粉末。其优

相关主题
文本预览
相关文档 最新文档