当前位置:文档之家› 超临界CO2流体染色技术

超临界CO2流体染色技术

超临界CO2流体染色技术
超临界CO2流体染色技术

超临界CO2流体染色技术

河北科技大学纺织服装学院张晏铭

二氧化碳是一种无色、无臭和不燃,非极性的气体,沸点很低,在常温下为气体。如果在封闭体系中升温和加压,当温度和压力超过二氧化碳的临界温度31·1℃和临界压力7·39MPa,二氧化碳即转变到超临界流体状态。在临界温度以上,即使这样加热,他也不能变成气体。同理在临界压力以上,即使怎样加压,也不能变为液体和固体。

1、背景和发展历史

1988年,纺织物的超临界流体染色的首项专利提出。1989年,德国Bochum的Ruhr大学的理科硕士论文课题与GMSchneider教授密切合作,采用此新技术进行了首次实验室规模的聚酯染色。继首次成功试验[12]以后,由德国Krefeld的德国西北纺织研究中心(DTNW)继续这项工作。1991年,基于最佳的实验室规模的染色条件[19~25],德国Velen的Jasper公司与德国西北纺织研究中心紧密合作,制造了首台半工业规模的染色机。1994年,Jasper公司的其中一台CO2染色机安装在德国B ǒnnigheim的Amann&Sǒhne公司,用于聚酯缝纫线染色,以试验该技术用于纺织工业的可能性。1995年初,在德国Hagen的UHDEHochdrucktechnik公司开始了新的探讨,德国西北纺织研究中心终于建造了一台新的CO2染色试验设备。自1995年,国际上对这一技术的兴趣越来越高,最初在美国和亚洲,以后又在欧洲。

2、该技术的原理

染色时,只有分子状态的染料可以上染纤维,随着分子状态染料上染纤维,胶团中和晶粒中的染料分子会不断溶解到水中,直到上染结束;由于染料溶解度低,因此在低温时大大限制了上染速度。又由

于大部分染料是以悬浮体存在,因此,染液的分散稳定性不高,容易发生晶粒的凝聚、晶型转变和晶粒增长,严重时还会出现沉淀,引起染色困难或不匀。分散剂的存在虽然提高了染料悬浮体的分散稳定性,但是它的存在不仅增加了生产成本,也会污染水质,有的还会降低染料的平衡上染量。由于二氧化碳分子粘度低,它与染料分子间作用力又小,染料在超临界二氧化碳流体中扩散较快,加上在这种流体中纤维表面附近的扩散边界层很薄,所以染料可很快吸附到纤维表面。还由于它对纤维有较强的增塑作用,所以上染速度快,匀染性和透染性均很好。

3、该技术的加工工艺流程

超临界CO2染色在130℃、24MPa下,10分钟就可以上染,上染速度是传统工艺的5~10倍,匀染和透染性好,可以实现98%以上的上染率。超临界CO2染色工艺过程一般包括等温压缩、等容温升和等温释放3个过程,具体的工艺流程如图。

4、该技术的适用范围

该技术当前最适用于涤纶纤维,这方面的研究在实验室条件下已经获得成功。特别适合于低极性的分散染料染疏水性的合成纤维。另外,

超临界二氧化碳流体在超细涤纶纤维染色方面也取得了令人瞩目的成果。超细涤纶纤维纤度小,比表面积大,水浴染色时往往出现得色量低、显色性差、色牢度差等问题。超临界二氧化碳既对分散染料有较大的溶解度,又有易于扩散和运动的气体特性,有望解决超细涤纶纤维的染色问题。超临界二氧化碳染色也同样适用于其他各类合成纤维,如聚酯纤维、聚丙烯纤维、聚酰胺纤维、聚丙烯腈纤维等。用超临界二氧化碳染色可以实现染后织物具有良好机械性能、牢度性能。聚酯纤维同样极性较小,在二氧化碳中较易上染。

5、该技术目前的应用情况

研究表明,超临界二氧化碳染色在绦纶以及超细绦纶染色方面的应用最为成功,能够获得与常规染色同等甚至更为优异的染色效果。在合成纤维以及天然纤维的染色方面,国内外研究者通过对染料或纤维进行改性,已经取得了实验室条件下的初步成功。然而,这方面对工艺参数的影响、改性剂机理、适宜的改性方法和染色机理等研究尚处于空白阶段。并且国内外在超临界CO2染色技术实际工业应用方面报道还比较少,该技术现今仍处于实验室研究阶段。因此,超临界二氧化碳染色从实验设备或半产业化设备向产业化设备的转移仍需要大量研究工作。

6、该技术的优缺点

优点:(1) 真正实现了无水染色。

(2)无需使用助剂。

(3)二氧化碳易得,安全。CO2无毒,容易获取,且CO2可循环使用,不会带来“温室效应”;

(4)降低了能耗,热能消耗仅为常规工艺的百分之二十

(5)染色效果好,超临界CO2染色具有较高的上染率和良好的匀染性;

(6)染料可回用,残余染料可重新回到粉末状,并加以应用,从而使染料利用率大大提高;

(7)染色时间短,染色后一般不必进行还原清洗,缩短了生产周期,能实现“快速回应”的生产和经营机制。

缺点:(1)使用高压,安全性能差;

(2)设备投资高;

(3)不适用于天然纤维,如棉、毛、丝等

7、该技术的发展前景

超临界CO2染色技术是一个具有良好前景的新型染色技术,以CO2为介质,染色过程不产生污染物,充分体现了清洁生产的理念。加强对纤维改性、无水染色的理论研究与实践检验,开创超临界流体在染色领域的广泛应用,从源头上解决印染行业的环境污染问题,这是当前研究的主要任务。但纵观国内外的文献,在超临界CO2染色中各种分散染料在不同纤维上着色的最佳操作条件、染料在超临界CO2中的溶解状况和在纤维内部的扩散系数、染色过程的热力学基础、染料结构与纤维的结构关系以及染料与纤维的改性、设计等方面积累的数据仍不够充分,更缺乏染色机理和动力学的微观分析,因此尚需相关领域的科技工作者联合攻关。

超临界二氧化碳

超临界二氧化碳在染整加工中的应用 摘要:针对传统水染工艺不能从根本上解决印染行业水环境污染严重及资源消耗、浪费大的问题,介绍了一种全新的清洁生产技术——超临界二氧化碳染色过程。文章综述了超临界二氧化碳应用于染整加工领域的研究进展,包括超临界二氧化碳的性质,其在前处理的应用、以超临界二氧化碳为介质染合技术的一般流程,染合成纤维及天然纤维相关内容等,并讨论了其利弊。 关键词:超临界流体:二氧化碳;染整; 前沿: 进入二十一世纪环境保护越来越受到人们的重视.可持续发展问题成为当今世界经济发展的主题,任何工业的发展都必须符合这一主题的要求。同时全球水资源环境问题日益尖锐,我国是严重缺水的国家,水污染使资源短缺问题变得更为突出,工业污染是造成水环境污染的主要污染源之一。而在纺织品染整加工过程中,大量使用了污染环境和对人体有害的染整剂,这些助剂生物降解性差,毒性大,游离甲醛含量高,重金属离子的含量超标。这些助剂大多以气体、液体、固体的形态排放而污染环境,严重危害人类的健康,因而,绿色染整加工技术成了近年来科研工作者追求的目标[16]。 近二十年来,超临界二氧化碳技术倍受青睐,它是采用二氧化碳来代替以水为介质的染整加工技术,工艺中无需清洗,无需烘干,二氧化碳可循环再利用。该技术可避免大量废水对环保带来严重污染问题。保护了水资源,省去还原清洗和烘干工序,降低了能源消耗,染色过程无有害气体排放,残余染料可循环使用,提高了染料利用率。它不仅无毒、无污染,不易燃烧,而且价格便宜,要求的操作温度和压力都较低,具有许多奇特的性能,以前较多地应用于食品及医药工业上。近几年来,超临界二氧化碳技术在高分子材料合成和加工以及纺织工业上的应用成为科技界关注的热点。下面介绍超临界二氧化碳的性质以及超临界二氧化碳技术在染整加工领域的一些应用。 1超临界二氧化碳的性质 常压下,物质在液相和气相间成平衡时,两相的物理性质如粘度、密度、导电度和介电常数等存在显著差别。当压力提高时,这种差别逐渐缩小,当达到某一温度和压力时,两相密度相等,气相和液相之间无明显的界限,而且仅有一相,称为临界状态。此时的温度和压力均称为临界温度和临界压力。超临界流体(SCF)是指在临界温度和临界压力以上的流体。处于超临界状态时,气液两相性质非常接近,以至于无法分辨。超临界流体本身具有如下特性[17]:①其扩散系数比气体

超临界二氧化碳染色

论文 题目:超临界二氧化碳染色 姓名:崔志鹏 学号:0810150201 专业班级:轻化082班 学院:纺织学部 二零一零年十二月十二日

超临界二氧化碳染色 【摘要】超临界二氧化碳染色技术是一种新型环保的染色技术,本文通过对一些文献的查阅,简单地概述这种技术的特点以及发展前景。 【关键词】超临界二氧化碳;新型染色技术;环保 【引言】利用超临界流体溶剂所具有的低粘度、高扩散性等等传统工艺中水溶剂所不具备的多种特性进行染整加工,而且加工工艺中不断体现出了新的优势,是目前值得探索的加工工艺之一。 超临界二氧化碳的概念 二氧化碳(CO2)是一种无色、无臭和不燃的气体,其相对密度是 空气的1. 5倍。它的分子呈直线型,两个氧原子分别在碳的两侧,呈对称分布,故不显极性。所以,它的相对分子质量虽比水大。但沸点很低,在常温时为气体。它的临界温度为31.10C?加压易液化。由于 其分子是非极性的,液态的二氧化碳对极性物质的溶解能力不高,对低极性和非极性物质都有较高的溶解能力,因而对非极性或疏水性纤维具有较强的溶胀能力。如果把二氧化碳置于密封体系中升温和加压,当超过C02的临界温度(31.10C)和临界压力〔7.39MPa)时,即超过临界点后,则C02转变到超临界流体状态。此时,它具有许多独特的性质。在临界温度以上,不管如何加热,它也不能变为气体;同时,在临界压力下,即使加很大的压力也不能变为液体和固体。由于它不同于气体、液体和固体,故将这种状态的流体状态称为超临界流体。

超临界CO2流体(SCF)是指处于临界温度和临界压力(31.2。C,7.31MPa)以上,具有良好溶解性和扩散性质的流体。i 超临界二氧化碳流体染色具有以下一些优点 (1)染色时不用水,无废水污染; (2)染色结束后可降低压力,此时CO2气化,不需要进行染后供干,既可縮短工艺流程,又可縮短染色时间、节省烘干能源; (3)上染速度快,匀染和透染性好,染色重现性也很好; (4)CO2本身无毒,不燃,可重复回用; (5)染料可重复利用,染色时不需要添加分散剂、匀染剂、缓冲剂等助剂,不仅可降低成本,提高染料的利用率,还有利于环境保护,减少污染; (6)适用的纤维品种较广,一些难染的合成纤维(如丙纶、芳纶等)也可染色。ii 超临界C02流体染整加工的优势: (1)真正实现了无水染色,彻底消除了染色废水的产生,因此可以从根本上解决印染废水处理的难题,保护了水资源; (2)无需使用助剂,如用分散染料染涤纶可省去分散剂、扩散剂、匀染剂等化学品;

超临界流体萃取

第八章超临界流体萃取 8.1概述 8.1.1什么是超临界流体萃取 超临界流体萃取是一个正在发展中的新型分离技术.超临界流体萃取是利用超临界流体作为萃取剂依靠被萃取的物质在不同的蒸汽压力下所具有的不同溶解能力以萃取所需组分。然后采用升温降压或两者兼用和吸收(吸附)等手段将萃取剂与所萃取的组分分离的一种新分离方法。 在有些文献中.它又被称为压力流体萃取、超临界气体萃取、临界溶剂萃取等等。 早在1879年,人们就已认识了超临界萃取这一概念。当时发现超临界流体的密度增大到与液体密度相近时,很多固体化合物会被溶解。如碘化钾可溶解干超临界态的乙醇中,而当压力降低后又可析出、后来人们又认识到地质演变过程中,水对岩石的形成,甲烷对石油的形成和迁移,都与超临界流体的溶解作用有关.直到1942年,苏联科学家才提出,将超临界作为技术应用于石油脱沥青过程,而基础理论和实际应用的研究到50年代后期才开始进行. 但直到60年代,才开始有了工业应用的研究工作.近年来各国都广泛地开展了这方面的研究。现在,超临界流体萃取已形成为一门新的分离枝术.并已被用在食品、石油、医药、香料等等工业部门.与其有关的超临界流体的热力学以及超临界流体萃取的工艺和设备等各项研究工作也正在广泛地开展.世界上已召开了多次专门的学术会议,并已发表了许多这方面的专著。我国也已开展了这方面的研究工作,并已取得了不少科研成见。 8.1.2超临界流体的概念 一.什么是超临界流体? 超临界流体(SCF)是指热力学状态处于临界点(Pc,Tc)之上的流体。SCF是气、液界面刚刚消失的状态点,高于临界温度和临界压力而接近临界点的状态称为超临界状态。此时流体处于气态与液态之间的一种特殊状态,具有十分独特的物理化学性质。不同的物质其临界点所要求的压力和温度各不相同。 复习:任何一种物质都存在三种相态——气相、液相、固相。三相成平衡态共存的点叫三相点。SCF是气、液界面刚刚消失的状态点叫临界点。在临界点时的温度和压力称为临界温度、临界压力。不同的物质其临界点所要求的压力和温度各不相同。 (在这种条件下,流体即使处于很高的压力下,也不会凝缩为液体.) 二.超临界流体的特征 图8.1二氧化碳的p-T相图 表8.1 超临界流体的气体、液体和SCF物理特征比较

超临界二氧化碳循环分析1

超临界二氧化碳动力循环与氦动力循环的比较 目前,世界上正在建设和研究的高温气冷堆都是使用He作为工质,这是因为He具有很好的稳定性、化学相容性及热传导性。但是,He作为工质存在一些不足,例如动力循环需要较高的温度、难于压缩等,给反应堆和换热部件的结构材料、叶轮机械的设计带来很多困难。出于降低反应堆结构材料要求、减少技术难度、提高反应堆的安全性与经济性等各方面的考虑,有学者进行了选取CO2作为循环工质的研究。CO2虽然在稳定性、热传导性方面比He稍差,但CO2具有合适的临界参数,不需要很高的循环温度就可以达到满意的效率,且具有压缩性好、储量丰富等优点。采用CO2作为循环工质可以降低循环温度和压缩功,从而提高反应堆的安全性,同时降低反应堆造价。超临界CO2的闭式布雷顿循环被推荐在铅冷快堆及钠冷快堆中使用。 1. 二氧化碳布雷顿循环分析 (1)二氧化碳布雷顿循环 CO2与He在动力循环中最大的不同点就是气体性质随压力、温度的变化差别很大(表1-1)。高压(7.5 MPa)环境中,CO2的导热系数λ、定压比热容c p 和压缩因子z均与低压(0.1 MPa)下的参数有很大差异;在循环工况下,He循环可以视为理想气体循环,除密度外,其余参数变化不大。动力循环的工况,CO2的工作参数在其临界点(7.377 MPa,31℃)附近;因此,CO2动力循环除与He循环有相同的决定因素外,还取决于动力循环的不同实际工况,即超临界压力、跨临界压力及亚临界压力3种循环工况(图1-1)。超临界循环:循环压力及温度均在临界参数以上;跨临界循环:循环高压侧压力高于临界压力,低压侧压力低于临界压力;亚临界压力循环:循环压力均低于临界压力,工作于气相区。 表1-1 CO2和He热物性比较(35℃) 工质P/MPa ρ/kg·m-3 λ/W·(m·K)-1 C P/kJ·(kg·K)-1z CO2 7.5 277.6 0.03532 5.9306 0.463 0.1 1.95 0.01497 0.828 0.879

超临界co2流体的应用

超临界CO2流体的应用 随着环境的温度和压力变化,任何一种物质都存在三种相态-气相,液相,固相,三相成平衡态共存的点叫三相点.液,气两相成平衡状态的点叫临界点.在临界点时的温度和压力称为临界温度和临界压力,不同的物质其临界点的压力和温度各不相同.超临界流体(Super Critical fluid,简称SCF)是指温度和压力均高于其临界点的流体,常用来制备成的超临界流体有二氧化碳,氨,乙烯,丙烷,丙烯,水等.物体处于超临界状态时,由于气液两相性质非常相近,以致无法清楚分别,所以称之为「超临界流体」。 超临界流体具有类似气体的扩散性及液体的溶解能力,同时兼具低黏度,低表面张力的特性,如表1所示,使得超临界流体能够迅速渗透进入微孔隙的物质.因此用于萃取时萃取速率比液体快速而有效,尤其是溶解能力可随温度,压力和极性而变化. 超临界流体萃取分离过程是利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的.当物质处于超临界状态时,成为性质介于液体和气体之间的单一相态,具有和液体相近的密度,黏度虽高于气体但明显低于液体,扩散系数为液体的10~100倍,因此对物料有较好的渗透性和较强的溶解能力,能够将物料中某些成分提取出来. 在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地依次把极性大小,沸点高低和分子量大小的成分萃取出来.同时超临界流体的密度,极性和介电常数随着密闭体系压力的增加而增加,利用预定程序的升

压可将不同极性的成分进行分步提取.当然,对应各压力范围所得到的萃取物不可能是单一的,但可以通过控制条件得到最佳比例的混合成分,然后借助减压,升降温的方法使超临界流体变成普通气体或液体,被萃取物质则自动完全析出,从而达到分离提纯的目的,并将萃取与分离两过程合为一体,这就是超临界流体萃取分离的基本原理. 关于CO2超临界体 二氧化碳在温度高于临界温度Tc=31.26℃,压力高于临界压力Pc=72.9atm的状态下,性质会发生变化,其密度近于液体,粘度近于气体,扩散系数为液体的100倍,因而具有惊人的溶解能力.用它可溶解多种物质,然后提取其中的有效成分,具有广泛的应用前景.超临界二氧化碳是目前研究最广泛的流体之一,因为它具有以下几个特点: (1)CO2临界温度为31.26℃,临界压力为72.9atm,临界条件容易达到. (2)CO2化学性质不活泼,无色无味无毒,安全性好. (3)价格便宜,纯度高,容易获得. 所谓的二氧化碳超临界萃取是将已经压温加压成超临界状态的二氧化碳作为溶剂,以其极高的溶解力萃取平时不易萃取的物质,以下有几项关于萃取的说明: (1)溶解作用 在超临界状态下,CO2对不同溶质的溶解能力差别很大,这与溶质的极性,沸点和分子量密切相关,一般来说有以下规律:亲脂性,低沸点成分可在104KPa(约1大气压)以下萃取,如挥发油,烃,酯,醚,环氧化合物,以及天然植物和果实中的香气成分,如桉树脑,麝香草酚,酒花中的低沸点

超临界二氧化碳的研究进展

超临界二氧化碳的研究进展 李会峰陈秀芝 (北京理工大学理学院化学系 100081) E-mail. lhf9898@https://www.doczj.com/doc/c81357636.html, 摘要 超临界CO2 具有气体的低粘度、高扩散系数和液体的高密度,且化学惰性,无毒无腐蚀,临界状态容易实现,是一种性能优良的环境友好溶剂。本文在超临界CO2 的萃取、超临界流体沉淀技术、以及化学反应等方面就目前的现状做了简介,指出了目前超临界CO2 的研究进展以及今后的研究方向。 关键词超临界二氧化碳萃取沉淀化学反应 1. 前言 自1822年Cagniard首次报道了物质的临界现象以来,超临界流体的研究被广泛关注。1869年Andrew测定了二氧化碳的临界参数。超临界二氧化碳是指温度和压力均高于其临界值(T=31.1℃ P=7.38MPa)的二氧化碳流体。在超临界状态下,二氧化碳具有类似液体的高密度和接近气体的低粘度,并且对人体和动植物无害、不燃、没有腐蚀性、对环境友好、原料易得、价格便宜和处理方便等优点,是目前使用最多的一种超临界流体。 超临界二氧化碳主要应用于热敏性物质和高沸点组分的萃取分离,超细特殊材料的制备,特殊化学反应的溶媒等方面。 2.超临界流体萃取(Supercritical Fluid Extraction,SFE) 与传统的分离方法相比,超临界二氧化碳萃取具有许多独特的优点:(1)超临界流体的萃取能力随其密度增大而提高,因而很容易通过调节温度和压力加以控制;(2)溶剂回收简单方便,不易产生溶剂残留或污染;(3)由于超临界二氧化碳化学性质稳定,无毒和无腐蚀,临界温度接近常温,所以特别适合食品及医药中的生理活性成分和热敏组分的分离[1]。因此,超临界二氧化碳萃取在医药、食品、化妆品、香料、化学工业及环保等领域得到了广泛的应用研究。超临界二氧化碳萃取主要应用于去处有害物质、分离有毒污染、提取有效成分以及回收有用物质[2]。 食品工业上,超临界二氧化碳萃取主要用于从天然中提取各种脂溶有效成分,其提取率优于有机溶剂萃取,且无溶剂残留,为纯天然产品。现已成功提取的物质有啤酒花浸膏、咖啡因、亚麻酸、农副产品植物油脂(如小麦胚芽油、米糠油、玉 - 1 -

超临界二氧化碳萃取的过程及设备教学教材

超临界二氧化碳萃取的过程及设备

3.2 超临界流体萃取过程的设计与开发 除了在一些食品提取工业中实现超临界流体萃取的工业化外,其在高附加值产品分离中也展现出新的活力,特别是在制药工业中,其重要性也日显增加。尤其是随着有关毒性物质排放越来越受到严格限制,SCFE的使用范围也会日渐扩大。但是SCFE的使用可行性是与过程的规模、产品的价值、是否需用无毒溶剂的一些因素有关。因此,只有进行周密的设计后,才能定量权衡上面提出的种种因素。一旦得出具有可行性的设计,便会吸引到企业界和研究者的重视和关注。 当前,不仅仅是国外的一些学者和专家作了扼要而实用的综述[1],而且在国内召开的“超临界流体技术学术及应用研讨会”上有多篇论文专门讨论了SCFE 的工艺与设备设计。早八十年代就出现了SCFE过程设计和开发的报告,近30年间,有关SCFE的设计研究还在不断进展,逐渐完善。有些产品,如真菌脂质的提取,不仅要作SCFE的过程设计,而且还要作其他单元操作,如对液液萃取的设计进行比较,从经济上确定何种过程有优势,从而便于在进一步的投资中作出判断。可以说,目前SCFE已如其他比较成熟的单元操作一样,设计、仿真和优化(design,simulation and optimization)的工作已全面开展,这也从-个侧面表明SCFE的实用性正在受到越来越多的科技工作者的关注。 3.2.1 超临界流体萃取工业装置的开发步骤 图3-16示出了任一扩散分离过程科学开发的流程示意图。在步骤2中确定所涉及物料的特征后,一般情况下,若选用传统的分离单元操作,如蒸馏、液液萃取等,往往是凭设计者的经验来选定,较少采用预设计的方法。在开发过程中直接进行实验研究。但SCFE是新技术,对其了解不多。为了能和其他分

超临界二氧化碳技术

超临界二氧化碳萃取技术及其应用 裴厚宝 (食科学院S2010140) 摘要:本文对超临界萃取技术的原理进行了综述,介绍了二氧化碳作为溶剂的优点、超临界二氧化碳技术的优点以及影响因素,并对当前的应用做出分析。 关键字:超临界萃取技术;二氧化碳;影响因素;应用 1.超临界萃取技术(SFE)的原理 超临界流体(SCF)指的是热力学状态处于临界点之上的流体。SCF既不同于气体,也不同于液体,是介于液体和气体之间的单一相态,此时流体处于气态与液态之间的一种特殊状态,具有独特的物理化学性质,其粘度接近于气体,密度接近于液体,扩散系数介于气体和液体之间,故其兼有气体和液体的特点,既像气体一样容易扩散,又像液体一样有很强的溶解能力,因而SCF具有高扩散性和高溶解性。 超临界萃取就是利用SCF在临界点附近体系温度和压力的微小变化,使物质溶解度发生几个数量级的突变性质来实现其对某些组分的提取和分离。通过改变压力或温度来改变SCF的性质,达到选择性地提取各种类型的化合物的目的。超临界萃取技术主要有两类萃取过程:恒温降压过程和恒压升温过程。不同点在于前者是把SCF经减压后与溶质分离,后者是超临界态经加热实现溶质与溶剂分离。两个过程的溶剂都可以反复循环使用。 2.CO2作为SCF溶剂的优点 常用作SCF的溶剂有CO2、H2O、C2H6、C3H6、NH3、甲苯等,其中CO2是工业上最常用萃取剂,其特点是:①临界温度低(31.06℃),萃取可以在室温附近的温和条件下进行,对易挥发组分或生理活性物质极少破坏,适合于天然活性成分的提取;②临界压力适中(7.14MPa),操作条件易于达到,在室温下液化压力为4—6MPa,便于储运;③安全无毒,尤其适合制药、食品工业,且萃取分离一次完成,无溶剂残留;④具有化学惰性不可燃,操作安全,价廉易得,而且为温室气体CO2的利用开辟了一条新的途径。 3.超临界二氧化碳技术的优点 较之常规萃取方法,超临界CO2流体萃取具有显著的优点:①可以在接近室温(35—40℃)及CO2气体笼罩下进行提取,有效地防止热敏性物质的氧化和逸散;能完整保留生物活性,而且能把高沸点,低挥发度、易热解的物质在其沸点温度以下萃取出来。②使用CO2是最干净的提取方法。由于全过程不用有机溶剂,因此萃取物绝无残留溶媒,同时也防止了提取过程对人体的毒害和对环境的污染。③萃取和分离合二为一。当饱含溶解物的CO2—SF流经分离器时,由于压力下降使得CO2与萃取物迅速成为两相(气液分离)而立即分开,不仅萃取效率高而且能耗较少,节约成本。④压力和温度都可以成为调节萃取过程的参数。临界点附近,温度压力的微小变化都会引起CO2密度显著变化,使得待萃物的溶解度发生变化,通过控制温度或压力达到萃取目的。压力固定,改变温度可将物质分离;反之温度固定,降低压力使萃取物分离,因此工艺流程短、耗时少。⑤对环境无污染。萃取流体可循环使用,真正实现生产过程绿色化[1]。 CO2是非极性溶剂,对于非极性、弱极性的目标组分的溶解度较大,而对于中等极性、极性的物质来所说,一般要加入能改善其在CO2中的溶解度的极性溶剂—改性剂。改性剂的加入还能降低操作温度和压力、缩短萃取时间。适宜的改性剂,其分子结构上应该既有

超临界CO2流体染色技术

超临界CO2流体染色技术 河北科技大学纺织服装学院张晏铭 二氧化碳是一种无色、无臭和不燃,非极性的气体,沸点很低,在常温下为气体。如果在封闭体系中升温和加压,当温度和压力超过二氧化碳的临界温度31·1℃和临界压力7·39MPa,二氧化碳即转变到超临界流体状态。在临界温度以上,即使这样加热,他也不能变成气体。同理在临界压力以上,即使怎样加压,也不能变为液体和固体。 1、背景和发展历史 1988年,纺织物的超临界流体染色的首项专利提出。1989年,德国Bochum的Ruhr大学的理科硕士论文课题与GMSchneider教授密切合作,采用此新技术进行了首次实验室规模的聚酯染色。继首次成功试验[12]以后,由德国Krefeld的德国西北纺织研究中心(DTNW)继续这项工作。1991年,基于最佳的实验室规模的染色条件[19~25],德国Velen的Jasper公司与德国西北纺织研究中心紧密合作,制造了首台半工业规模的染色机。1994年,Jasper公司的其中一台CO2染色机安装在德国B ǒnnigheim的Amann&Sǒhne公司,用于聚酯缝纫线染色,以试验该技术用于纺织工业的可能性。1995年初,在德国Hagen的UHDEHochdrucktechnik公司开始了新的探讨,德国西北纺织研究中心终于建造了一台新的CO2染色试验设备。自1995年,国际上对这一技术的兴趣越来越高,最初在美国和亚洲,以后又在欧洲。 2、该技术的原理 染色时,只有分子状态的染料可以上染纤维,随着分子状态染料上染纤维,胶团中和晶粒中的染料分子会不断溶解到水中,直到上染结束;由于染料溶解度低,因此在低温时大大限制了上染速度。又由

超临界流体

超临界流体 超临界二氧化碳纯净的物质随着温度和压力的变化,会呈现出气体、液体或固体不同的物理状态;当到达某个特定的温度和压力时,物质的气、液界面会消失,此时的温度称为临界温度T,而压力称为临界压力P超临界流体(SCF)就是温度和压力处于临界点以上的流体 超临界流体是一种兼具气体和液体物理性质的独特流体。它本质上仍是一种气态,但又不同于常规意义上的气体,而是一种稠密的气态。超临界流体的密度与液体相似,粘度和扩散能力与气体相似,表面张力近似于零,有利于流体的传质和传热。此外,超临界流体的介电常数对压力非常敏感,可以通过改变压力来调控超临界流体溶解不同极性的物质。超临界流体还具有较强的可压缩性,略微地调节温度和压力就能改变超临界流体的物理性质 超临界二氧化碳(scCO2)是应用最为广泛的一种。因为scCO2 除了拥有超临界流体本身所具有的渗透性能好、传质系数高等特点之外,还拥有以下优点: (1)CO2达到超临界状态的条件很温和,只需温度超过31.1 °C、压力超过7.38MPa,CO2就会转变为scCO2; (2)CO2来源广泛,价格低廉,并且无色、无毒、无臭、无害,具有优异的化学稳定性,不会发生燃烧和爆炸; (3)scCO2在聚合物熔体中具有较高的扩散性和溶解度,对聚合物熔体有较强的增塑作用,从而能显著降低熔体黏度,提高熔体的流动性; (4)scCO2能轻易从产物中脱除,完全省去了使用传统溶剂带来的复杂的后处理工序,并且还能实现对CO2的回收利用; (5)CO2分子成对称结构,极性较弱,它能溶解非极性或极性较弱的物质,可以作为反应介质或萃取剂;若要溶解无机盐类或极性较强的物质,需要在scCO2中加入一些极性共溶剂(如乙醇)来改善它的极性。 1.3 scCO2在聚合物发泡中的应用 聚合物发泡材料是指以聚合物(塑料、橡胶、弹性体或天然高分子材料)为基体而内部含有

超临界流体萃取装置操作规范

超临界流体萃取装置使用指南 (一). 超临界流体定义 任何一种物质都存在三种相态-气相、液相、固相。三相成平衡态共存的点叫三相点。液、气两相成平衡状态的点叫临界点。在临界点时的温度和压力称为临界压力。不同的物质其临界点所要求的压力和温度各不相同。 超临界流体(Supercritical fluid,SCF)技术中的SCF是指温度和压力均高于临界点的流体,如二氧化碳、氨、乙烯、丙烷、丙烯、水等。高于临界温度和临界压力而接近临界点的状态称为超临界状态。处于超临界状态时,气液两相性质非常相近,以至无法分别,所以称之为SCF。 目前研究较多的超临界流体是二氧化碳,因其具有无毒、不燃烧、对大部分物质不反应、价廉等优点,最为常用。在超临界状态下,CO2流体兼有气液两相的双重特点,既具有与气体相当的高扩散系数和低粘度,又具有与液体相近的密度和物质良好的溶解能力。其密度对温度和压力变化十分敏感,且与溶解能力在一定压力范围内成比例,所以可通过控制温度和压力改变物质的溶解度。 (二). 超临界流体萃取的基本原理 超临界流体萃取分离过程是利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的。当气体处于超临界状态时, 成为性质介于液体和气体之间的单一相态, 具有和液体相近的密度, 粘度虽高于气体但明显低于液体, 扩散系数为液体的10~100倍; 因此对物料有较好的渗透性和较强的溶解能力, 能够将物料中某些成分提取出来。 在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地依次把极性大小、沸点高低和分子量大小的成分萃取出来。并且超临界流体的密度和介电常数随着密闭体系压力的增加而增加, 极性增大, 利用程序升压可将不同极性的成分进行分步提取。当然,对应各压力范围所得到的萃取物不可能是单一的,但可以通过控制条件得到最佳比例的混合成分,然后借助减压、升温的方法使超临界流体变成普通气体,被萃取物质则自动完全或基本析出,从而达到分离提纯的目的,并将萃取分离两过程合为一体,这就是超临界流体萃取分离的基本原理。 (三)超临界CO2的溶解能力 超临界状态下,CO2对不同溶质的溶解能力差别很大,这与溶质的极性、沸点和分子量密切相关,一般来说由一下规律: 1.亲脂性、低沸点成分可在低压萃取(104Pa), 如挥发油、烃、酯等。 2.化合物的极性基团越多,就越难萃取。 3.化合物的分子量越高,越难萃取。 超临界CO2成为目前最常用的萃取剂,它具有以下特点: 1.CO2临界温度为31.1℃,临界压力为7.2MPa,临界条件容易达到。 2.CO2化学性质不活波,无色无味无毒,安全性好。 3.价格便宜,纯度高,容易获得。 因此,CO2特别适合天然产物有效成分的提取。 (四)超临界萃取装置原理及概况 超临界萃取技术是现代化工分离中出现的最新学科,是目前国际上兴起的一种先进的分离工艺。超临界萃取即高压下、合适温度下在萃取缸中溶剂与被萃取物接触,溶质扩散到溶剂中,再在分离器中改变操作条件,使溶解物质析出以达到分离目的[2] 。近几年来,超临界苯取技术的国内外得到迅猛发展,先后在啤酒花、香料、中草药、油脂、石油化工、食品

超临界二氧化碳萃取技术

摘要:介绍了超临界二氧化碳萃取技术的基本原理和特点,简单说明了该技术在香料、医药、食品等工业上的应用。 关键词:超临界二氧化碳萃取分离技术基本原理 前言 超临界流体萃取,又称超临界萃取、压力流体萃取、超临界气体萃取。它是以高压、高密度的超临界状态流体为溶剂,从液体或固体中萃取所需要的组分,然后采用升温、降压或二者兼用和吸收(吸附)等手段将溶剂与所萃取的组分分离。 早在1897年,人们就已经认识到了超临界萃取这一概念。当时发现超临界状态的压缩气体对于固体具有特殊的溶解作用。例如再高于临界点的条件下,金属卤化物可以溶解再在乙醇或四氯化碳中,当压力降低后又可以析出。但直到20世纪60年代,才开始了其工业应用的研究。目前超临界二氧化碳萃取已成为一种新型萃取分离技术,被广泛应用于食品、医药、化工、能源、香精香料的工业的生产部门。 1 超临界萃取的原理 当液体的温度和压力处于它的临界状态。 如图1是纯流体的典型压力—温度图。图中, AT表示气—固平衡的升华曲线,BT表示液— 固平衡的熔融曲线,CT表示气-液平衡的饱 和液体的蒸汽压曲线,点T是气-液-固三相 共存的三相点。按照相率,当纯物的气-液- 固三相共存时,确定系统状态的自由度为零, 即每个纯物质都有自己确定的三相点。将纯物 质沿气-液饱和线升温,当达到图中的C时, 气-液的分界面消失,体系的性质变得均一, 不再分为气体和液体,称点C为临界点。与该点相对应的临界温度和压力分别称 为临界温度T 0和临界压力P 。图中高于临界温度和临界压力的有影阴的区域属 于超临界流体状态。 在这种状态下,它既不完全与一般气相相同,又不是液相,故称为超临界流体。超临界流体有气、液相的特点,它既有与气体相当的高渗透力和低粘度,又兼有液体相近的密度和对物质优良的溶解能力。这种溶解能力能随体系参数的变化而连续的改变,因而可以通过改变体系的温度和压力,方便的调节组分的溶解度和萃取的选择性。利用上述特点,超临界二氧化碳萃取技术主要分为两大类原理流程即恒温降压流程和恒压升温流程。前者萃取相经减压,后者萃取相经升温。

浅谈物理化学中的超临界二氧化碳流体及其应用

浅谈物理化学中的超临界二氧化碳流体及其应用 李茹莉21096566 【关键词】物理化学;二氧化碳;超临界;流体;应用 【摘要】 本文由温室气体二氧化碳入手,基于《物理化学核心教程》——相平衡一章中,单组分系统的相图内容里关于二氧化碳相图的这一知识点,分别从基本原理、 优越性、前景展望三方面简单阐述了:超临界CO 流体(Supercritical Fluid, 2 流体萃取技术(Supercritcal Fluid 简称SF或SCF),及其重要应用超临界CO 2 Extraction,简称SFE)。 【abstract】 This report begin with greenhouse gas carbon dioxide , and is based on the "Core Course of Physical Chemistry" - a chapter in equilibrium , single-component phase diagram . On the knowledge point of the phase diagram of carbon dioxide , I discusses respectively the supercritical fluid of carbon dioxide (Supercritical Fluid, referred to as SF or SCF), and its important applications of supercritical fluid extraction of carbon dioxide (Supercritcal Fluid Extraction, referred to as SFE) , from the three aspects of basic principles, advantages, prospects Briefly . 【正文】 二氧化碳作为日常生活中常见的一种气体,目前较多被人们提及的是它造成 的各种危害,例如“温室效应”,社会各界都在倡导“低碳环保”,可是人们也 该认识到它的工业价值,充分利用二氧化碳。以往利用二氧化碳主要是生产干冰 作为灭火剂或作为食品添加剂等,现如今较为人们津津乐道的则是超临界CO 流 2 体(Supercritical Fluid,简称SF或SCF)及将其应用于萃取技术后的超临界流体萃取技术(Supercritical Fluid Extraction,简称SFE),在物理化学 CO 2 课程的相平衡一章中单组分系统的相图这一内容,有关于二氧化碳相图的详细讲 流体(Supercritical Fluid,简称SF或SCF)及解,这一理论知识对超临界CO 2 流体萃取技术(Supercritical Fluid Extraction,简称SFE)具有理 超临界CO 2 论支撑和指导意义,将这项技术运用于工业可以生产高附加值的产品,提取过去

二氧化碳超临界萃取技术

超临界CO2萃取装置 该装置主要由萃取釜、分离釜、精镏柱、CO2高压泵、副泵、制冷系统、CO2贮罐、换热系统、净化系统、流量计、温度、压力控制(保护)系统等组成。 超临界CO2萃取装置的主要技术指标 萃取釜:0.5L、1L、2L、5L/50Mpa;10L、24L/40Mpa;50-200L/32Mpa,固态两用。配水夹套循环加热,温度可调。 分离釜:0.3-10L/30Mpa;50-100L/16-22Mpa。配水夹套循环加热,温度可调。 精镏柱:内径ф25×2-3m/30Mpa;ф35×2-3m/30Mpa;ф48×4-6m/30Mpa;ф78×4-6m/30Mpa,根据工艺要求可分4节、6节、8节梯度控温;柱内根据工艺要求由用户选相关填料。 CO2高压泵:20L/40Mpa·h双柱塞,50L/50Mpa·h双柱塞调频,400L/40Mpa·h三柱塞调频,800L/40Mpa·h三柱塞调频,泵头带冷却系统。 携带剂泵:用于萃取过程中,夹带溶剂来改变CO2极性,扩大应用范围。 制冷系统:配半封式、全封式压缩机,制冷量满足工艺要求。 换热及温度的控制系统:根据工艺要求,萃取釜、分离釜、精镏柱分别配置换热和温控系统,温度控制-85℃水循环、室温-150℃油循环,温度控制数显双屏控制水浴温度,测试CO2流体温度,控温±1℃ 压力控制(保护):高压泵出口配电接点压力表,设定工作压力,超压自动保护停泵。高压泵、萃取釜、分离釜、精镏柱,根据最高工作压力,分别配安全阀,超压自动泄压保护。萃取釜出口配背压阀系统,压力稳定,易于调整,压控制精度(动态)±0.1Mpa 流量显示:金属转子流量计,数显远传,分别显示瞬时流量和累积流量 管路:接触流体的容器、阀门、管件、管线均采用不锈钢制作。 其他:电源三相四线制380V/50Hz,CO2食品级≥99.5,用户自备 超临界CO2萃取装置的基本流程 1、CO2→萃取釜→分离Ⅰ→分离Ⅱ→回路; 2、CO2→萃取釜→分离Ⅰ→分离Ⅱ→精镏柱→回路; 3、CO2→萃取釜→精镏柱→分离Ⅰ→分离Ⅱ→回路; 4、CO2→萃取釜→分离Ⅰ→精镏柱→分离Ⅱ→回路。 超临界CO2萃取装置的特点

超临界CO2流体技术与纳米颗粒制备

超临界CO2流体技术与纳米颗粒制备 引言 纳米技术是21世纪最为活跃的研究领域之一。目前,对纳米的研究主要停留在对纳米材料制造方法的探索和纳米材料物性的表征水平上,其中超临界流体技术成功地被应用于纳米颗粒的制备尤为引人关注。 超临界流体技术在纳米材料制备的过程中主要采用了对环境无污染的CO2和H2O,以取代传统的制备方法中所用的大量的有机溶媒,这对于人们普遍所关心的日益严重的环境污染问题来说具有重要的意义。目前,有关超临界CO2的应用的报导比较多,这很大程度上是因为CO2的超临界操作条件比较容易实现(如下图所示): 物质名临界温度(K) 临界压力(BAR) CO2304.2 72.8 H2O 647.3 217.6 此外,因为超临界状态的H2O可以高速地分解有机物质,故其更多地被用于无机材料制备领域:比如说,用于制备金属氧化物的微粒和纳米多孔性物质。因此,相对於超临界的H2O 来说,超临界CO2更适合于有机纳米颗粒的制备过程。目前,该技术已被用于有机或高分子材料的制备,并取得了令人振奋的成果。 超临界流体 超临界流体(Supercritical Fluid ,SCF)是指物质处在临界温度和临界压力之上的状态, 介于气态和液态之间,兼有气体和液 体的某些物理性状:它即不是液体, 也不是气体,但它具有液体的高密度, 气体的低粘度,以及介入气液态之间 的扩散系数的特征。 一方面超临界流体的密度通常比 气体密度高两个数量级,因此具有较 高的溶解能力;另一方面,它表面张 力几近为零,因此具有较高的扩散性 能,可以和样品充分的混合、接触, 最大限度的发挥其溶解能力,又称为 超临界流体或高密度气体 (densegases)。 利用它的这种性质,在萃取分离过程中,溶解样品在气相和液相之间经过连续的多次的分配交换,从而达到分离的目的。 气体超临界流体液体 密度[Kg/m3] 0.6-1 200-900 1000 粘度[Ps.s] 10-510-5 -10-410-3 扩散系数[m2/s] 10-510-7 -10-8<10-9 热传导[W/mK] 10-310-3-10-110-1 目前,超临界流体作为一种技术已被广泛地用于对复杂物质比如天然产物的分离提取、食品加工、环境监测、工业分析、印染工业等各个领域。

二氧化碳超临界萃取技术

二氧化碳超临界萃取技 术 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

超临界CO2萃取装置 ??? 该装置主要由萃取釜、分离釜、精镏柱、CO2高压泵、副泵、制冷系统、CO2贮罐、换热系统、净化系统、流量计、温度、压力控制(保护)系统等组成。 ?超临界CO2萃取装置的主要技术指标 ??? 萃取釜:、1L、2L、5L/50Mpa;10L、24L/40Mpa;50-200L/32Mpa,固态两用。配水夹套循环加热,温度可调。 ??? 分离釜:30Mpa;50-100L/16-22Mpa。配水夹套循环加热,温度可调。 ??? 精镏柱:内径ф25×2-3m/30Mpa;ф35×2-3m/30Mpa;ф48×4-6m/30Mpa;ф78×4-6m/30Mpa,根据工艺要求可分4节、6节、8节梯度控温;柱内根据工艺要求由用户选相关填料。 ??? CO2高压泵:20L/40Mpa·h双柱塞,50L/50Mpa·h双柱塞调频,400L/40Mpa·h三柱塞调频,800L/40Mpa·h三柱塞调频,泵头带冷却系统。 ??? 携带剂泵:用于萃取过程中,夹带溶剂来改变CO2极性,扩大应用范围。 ??? 制冷系统:配半封式、全封式压缩机,制冷量满足工艺要求。 ??? 换热及温度的控制系统:根据工艺要求,萃取釜、分离釜、精镏柱分别配置换热和温控系统,温度控制-85℃水循环、室温-150℃油循环,温度控制数显双屏控制水浴温度,测试CO2流体温度,控温±1℃??? 压力控制(保护):高压泵出口配电接点压力表,设定工作压力,超压自动保护停泵。高压泵、萃取釜、分离釜、精镏柱,根据最高工作压力,分别配安全阀,超压自动泄压保护。萃取釜出口配背压阀系统,压力稳定,易于调整,压控制精度(动态)±??? 流量显示:金属转子流量计,数显远传,分别显示瞬时流量和累积流量??? 管路:接触流体的容器、阀门、管件、管线均采用不锈钢制作。??? 其他:电源三相四线制380V/50Hz,CO2食品级≥,用户自备 ?超临界CO2萃取装置的基本流程 ??? 1、CO2→萃取釜→分离Ⅰ→分离Ⅱ→回路; ??? 2、CO2→萃取釜→分离Ⅰ→分离Ⅱ→精镏柱→回路; ??? 3、CO2→萃取釜→精镏柱→分离Ⅰ→分离Ⅱ→回路; ??? 4、CO2→萃取釜→分离Ⅰ→精镏柱→分离Ⅱ→回路。 ?超临界CO2萃取装置的特点

超临界流体萃取原理及其特点

超临界流体萃取技术 超临界流体概念 任何物质,随着温度、压力的变化,都会相应的呈现为固态、液态和气态这三种状态,称为物质的三态。三态之间互相转化的温度和压力值叫做三相点,每种分子量不太大的稳定的物质都具有一个固有的临界点,严格意义上,临界点由临界温度、临界压力、临界密度构成。在临界温度以上,无论怎样加压,气态物质绝不会被液化。当温度和压力超过了临界点时,该物质就进入了超临界状态,超临界状态下的物质既非气体又非液体的状态,叫做超临界流体[11],SCF是气体和液体状态以外的第三流体。 超临界流体萃取原理及其特点 所谓超临界流体萃取[12],是指利用超临界条件下的流体作为萃取剂,从液体或固体中萃取出特定成分,以达到某种分离目的。SCF的密度对温度和压力的变化很敏感,而其溶解能力在一定压力范围内与其密度成比例,因此可以通过控制温度和压力来改变物质在SCF中的溶解度,特别是在临界点附近,温度和压力的微小变化可导致溶质溶解度发生几个数量级的突变,这就是SFE的依据。 与其它常规分离方法相比,SFE具有以下特点[13]: 1) 通过调节温度和压力可全部或选择性地提取有效成分或脱除有害物质; 可在较低温度和无氧环境下操作,分离、精制热敏 2)选择适宜的溶剂如CO 2 性物质和易氧化物质; 3)临界流体具有良好的渗透性和溶解性,能从固体或粘稠的原料中快速提 取有效成分; 4)降低超临界相的密度,很容易使溶剂从产品中分离,无溶剂污染,且回 收溶剂无相变过程,能耗低; 5)兼有蒸馏和萃取双重功能,可用于有机物的分离、精制。 SFE存在的不足有[14]: 1) 高压下萃取,相平衡较复杂,物性数据缺乏; 2) 高压装置与高压操作,投资费用高,安全要求亦高; 3) 超临界流体中溶质浓度相对还是较低,故需大量溶剂循环; 4) 超临界流体萃取过程固体物料居多,连续化生产较困难。 超临界流体的选择

超临界二氧化碳萃取设备操作步骤

SFE-CO2萃取技术操作步骤 一、开机操作 1.开启墙上的总电源(最下面一排右数第二个),面板总电源。开启萃取1、分离1、分离2按钮,设定萃取温度(范围35~60℃,正常约45℃)和分离1温度(范围35~65℃,正常约50~60℃),分离2的温度不动(正常约35℃)。2.看三个水箱的水位离口1至2公分,看水泵是否运转(水面有波动的话一般为转动或查看泵的叶片)。 3.开启面板制冷电源,启动制冷箱(顺时针扭90°,与地垂直)。 4.等萃取分离温度达到设定温度和冷机停时(此时准备向料桶加料),打开阀门1,2(逆时针旋3圈,每圈360°),打开球阀(在主机背面,逆时针扭至水平),关阀门4,5,慢慢打开阀门3,排气(听排气声),使萃取压力为0,打开堵头。 二、装料操作 1.加料:自下而上依次为物料(得率不少于5%,量至少达料筒高度一半,最高离料口2公分)→脱脂棉(圆形,直径比滤网长1公分)→白圈→滤纸→滤网→盖子(注意反正,细口朝下,用专用工具盖紧,能用吊篮提住)。 2.装料筒:自下而上依次为料筒→黑色细O型环→通气环→堵头(内部套黑色粗O型环,用水润湿)。 三、萃取操作 1.关阀门3,慢慢打开阀门4(稍微逆时针扭一下,幅度很小),使萃取1压力与贮罐压力相等。 2.慢慢打开阀门3排气5~10秒,关上。 3.全开阀门4和5(逆时针旋3圈,每圈360°),关阀门6(先顺时针旋2圈),泵电源,即绿灯(泵1调频,频率范围12~18,一般16~18,此时设定开CO 2 为18),按RUN,看萃取1压力,等萃取1压力达到设定压力(最高不超过35MPa,正常20~30MPa,此时设为约25MPa),调阀门6使之平衡,关阀门8,升分离1压力(最高不要超过11MPa,正常8~10MPa,此时设定为10MPa),等分离1压力达到设定压力,调阀门8使之平衡。(注:分离2的压力永远不能关,与贮罐压力相等)看时间开始循环(一般每半小时一个循环)。

超临界流体萃取装置使用说明

超临界流体萃取装置使用说明 一、开机前的准备工作 ⑴首先检查电源、三相四线是否完好无缺。冷冻机及贮罐的冷却水源是否畅通。 ⑵CO2气瓶压力保证在5-6MPa的气压。 ⑶检查管路接头以及各连接部位是否牢靠。 ⑷将各热箱内加入冷水,去氯离子水,不宜太满,离箱盖2公分左右。每次开机前都要检查水位。 ⑸萃取原料装入料简,不应装太满;将料筒装入萃取缸,装上料筒〇型圈,再放入通气环,盖好压环及上堵头。 二、开机操作顺序 1、先送空气开关,如三相电源指示灯都亮,则说明电源已接通,再起动电源的(绿色)按钮。 2.接通制冷开关,将冷箱温度控制器调在0℃左右,同时接通水循环开关,搅拌冷却水和冷却CO2泵头。 3、开始加温,先将萃取缸、分离I、分离II的加热升关接通,将各自控温仪调整到各自所需温度。 4、在冷冻机温度降到0-5℃左右,且萃取、分离I、分离n温度接近设定的要求后,进行下列操作。 5、开始制冷的同时将CO2气瓶通过阀门2进入净化器、冷盘管和贮罐,CO2 进行液化,液化CO2通过泵、混合器、净化器进入萃取缸,等压力平衡后,打开萃取缸放仝阀门3,慢慢放掉残留空气后,降低部分压力后,关闭放空阀。

6、加压力:先将电极点拨到需要的压力,启动泵I绿色按钮,再手按数位操器中的绿色触摸开关“RUN”.当压为加到接近设定压力,开始打开萃取缸后面的节流阀门,根据流程操作如下: 从阀门4进萃取缸,阀门5、6进入分离I,阀门7、8进入分离Ⅱ,阀门10、1回路循环。调节阀门6控制萃取缸压力,调节阀门8控制分离 I压力,调节阀门10控制分离Ⅱ压力。 7、中途停泵时,只需按数位操作上的“STOP”键。 8、萃取完成后,关闭冷冻机、泵各种加热循环开关,再关闭总电源开关,萃取缸内压力放入后面分离器,待萃取缸内压力和后面平衡后,再关闭阀门4、阀门5,打开放空阀3发巧门a1,待萃取缸没有压力后,打开萃取缸盖,取出料筒为止,整个萃取过程结束。 9、分离出来的物质分别在阀门b1、阀门b2处取出。

相关主题
文本预览
相关文档 最新文档